EP3599438A1 - Method and device for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of ch4 - Google Patents

Method and device for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of ch4 Download PDF

Info

Publication number
EP3599438A1
EP3599438A1 EP19184179.0A EP19184179A EP3599438A1 EP 3599438 A1 EP3599438 A1 EP 3599438A1 EP 19184179 A EP19184179 A EP 19184179A EP 3599438 A1 EP3599438 A1 EP 3599438A1
Authority
EP
European Patent Office
Prior art keywords
column
liquid
carbon monoxide
mixture
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19184179.0A
Other languages
German (de)
French (fr)
Inventor
Manon CORTALE
Bertrand DEMOLLIENS
Antoine Hernandez
Guillaume TEIXEIERA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3599438A1 publication Critical patent/EP3599438A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0271Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/CO mixtures, i.e. of synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0276Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/N2 mixtures, i.e. of ammonia synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/50Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/10Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/14Carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/60Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/24Quasi-closed internal or closed external carbon monoxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to a method and an apparatus for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of methane.
  • the synthesis gas contains carbon monoxide, hydrogen and methane and these three components are preferably the main components of the synthesis gas.
  • the gas may also contain nitrogen and / or argon.
  • a method according to the preamble of claim 1 is known from EP677483 , FR2754541 , FR3011320 and FR3018599 .
  • the apparatus according to the invention preferably comprises a cold box on a washing process with impure CO where the energy of separation is provided by cycle N 2 and / or by cycle CH 4 .
  • the maximum pressure of the nitrogen cycle (outlet pressure of V4) preferably is 35 bars absolute (critical pressure of nitrogen). The process is possible with higher pressure and up to 70 bar but less effective if above the critical nitrogen pressure.
  • an apparatus for separating a mixture of carbon monoxide, hydrogen and methane comprising a washing column and / or at least one phase separator, a stripping column and a separation column, a heat exchanger, means for sending the mixture to cool to a cryogenic temperature in the heat exchanger, means for sending the cooled mixture or a fluid derived from this mixture to the washing column supplied at the top with a liquid containing at least 80% mol.
  • CH4 must be produced in gaseous form at a pressure greater than 25 bars, or even 30 bars absolute.
  • the CH 4 compressor produced is also used in the CH 4 cycle.
  • the reboiling energy of the CO / CH 4 column is supplied by direct injection into the tank of the column of a gaseous CH 4 circuit coming from the CH 4 compressor after cooling in the exchange line. Vaporization of CH 4 at low pressure provides the frigories for cooling the N 2 cycle.
  • the CH 4 vaporized at low pressure comes from the tank of the CO / CH 4 column and / or from the CH 4 cycle.
  • This scheme allows recovery of significant CH 4 without the use of CO pumps or a CO compressor.
  • the CH 4 cycle makes it possible to have no reboiler in the CO / CH 4 column tank and better thermal integration at the level of the main exchanger.
  • the CO / CH 4 column being operated at between 7 and 10 bars approximately, the state-of-the-art solutions with reboiling with syngas or nitrogen have the drawback that the reboiling supply is either by heat sensitive or else requires greatly increasing the pressure of the N 2 cycle above the critical nitrogen pressure.
  • a synthesis gas 1 purified of carbon dioxide and water is cooled in a heat exchanger E1.
  • An overhead gas rich in hydrogen 3 is drawn off at the top of the column K1, cooled in the exchanger E1 and sent partially condensed to a phase separator P1.
  • the gas 7 from the separator P1 heats up in the exchanger E1 while the liquid 5 is returned to the top of the column K1 as reflux.
  • a liquid coming from the head of column K3 can be sent to the head of column K1.
  • the liquid 5 contains at least 80 mol% of carbon monoxide.
  • the liquid 9 from the tank of the washing column K1 is expanded and sent to the head of the stripping column K2.
  • the overhead gas 11 of the column K2 heats up in the exchanger E1.
  • the tank liquid 13 is vaporized in the heat exchanger E2 against part 39 of the cycle nitrogen.
  • the rest of the tank liquid is sent to an intermediate point in the CO / CH 4 K3 separation column.
  • This separation column K3 does not have a tank reboiler by against it has a head condenser C1.
  • the carbon monoxide 17 at the head of the column K3 at least partially condenses in the condenser C1 by heat exchange with the cycle nitrogen.
  • the condenser C1 is located inside a bath whose walls B are indicated.
  • the tank liquid 21 enriched in methane is expanded and then vaporized in the heat exchanger E1 to form a gas. All the gas is compressed in the compressor V1 and part of the gas continues compression in the compressor V2 to form the gas produced 25 at at least 25 bar abs.
  • Another part 29 cools down to an intermediate temperature of the exchanger E1 then joins the liquid 21 to be vaporized in the exchanger after expansion in a valve.
  • the cycle nitrogen does not participate in the distillation but serves to reboil the column K2 and to condense the overhead gas 17 of K3.
  • the liquid nitrogen 35 of the condenser C1 vaporizes and is sent to a nitrogen compressor V4.
  • Nitrogen gas 19 vaporized by the condenser C1 is mixed with the vaporized liquid 35 in the exchanger.
  • Another flow of liquid from the condenser bath 33 is expanded to a relatively low pressure and is then compressed in the compressor V3.
  • the nitrogen compressed in V3 joins the nitrogen flow rates 19.35 and the combined flow rate is compressed in V4.
  • This compressed flow 37 cools in the exchanger and is divided into two.
  • a part 39 is used to heat the exchanger E2 to reboil K2.
  • Part 41 liquefies after cooling in the heat exchanger and is sent to the condenser bath C1.
  • the separation column K3 operates at between 1.5 and 15 bar abs, or even between 7 and 10 bar abs.
  • the separation column K3 does not include a tank reboiler.
  • the washing column K1 operates at between 15 and 60 bars absolute.
  • the maximum pressure of the nitrogen cycle (outlet pressure of V4) is chosen so that the nitrogen condensation temperature 37 in the heat exchanger E1 at this pressure is less than less than ten degrees ° VS at the vaporization temperature of liquid methane 21 in the heat exchanger.
  • the liquid 5 of the separator P1 joins the liquid 9 of the column K1 and supplies the head of the stripping column K2.
  • the vaporization stage for liquid methane 21 is located opposite the nitrogen condensation stage from compressor V4 (two vertical lines at between -155 ° C and -150 ° C) and the exchange diagram indicates performance particularly remarkable.
  • the presence of the nitrogen cycle is not essential, however; it can for example be replaced by a carbon monoxide cycle.
  • the gas to be treated 1 after having heated the tank of the column K2 by E2, is first separated in a phase separator P1.
  • the gas formed 3 is cooled in the heat exchanger E1 and then partially condensed in a second phase separator P2.
  • the gas from the separator P2 leaves the device as gas 4.
  • the liquid 9 is expanded to join the liquid 5 coming from the first phase separator P1 and the liquid formed feeds the head of the column K2.
  • phase separator and the column of the Figure 1 are replaced by two phase separators.
  • the Figure 5 is a variant of the Figure 2 where the column K3 is not surmounted by a condenser of the overhead gas but by a reservoir of liquid rich in carbon monoxide. This liquid participates in a carbon monoxide cycle.
  • the liquid 33 is withdrawn from the reservoir, expanded, vaporized in the exchanger E1 and sent to a compressor V3.
  • An overhead gas 19 from the tank is heated in the exchanger E1 as a flow 22 and sent to the outlet of the compressor V3 to be compressed in the compressor V4.
  • a portion 37 of compressed gas in V4 is returned as liquid 41 to the tank.
  • a second flow 35 of liquid from the reservoir is expanded at a lower pressure than the inlet of the compressor V3 and is sent to the inlet of V4 as well.
  • Head gas from column K3 is also sent to the inlet of compressor V4.
  • the flow of pressurized carbon monoxide 31, preferably between 10 and 15 bars, serves as a product.
  • the Figure 6 understands the carbon monoxide cycle of the Figure 5 and the two phase separators of the Figure 4 .
  • the remainder 41 of the liquid can be returned to the head tank of the column K3.
  • the liquid 11 preferably contains at least 80 mol% of carbon monoxide.
  • a CO / N 2 separation column can be added upstream or downstream of column K3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Dans un procédé de séparation d'un mélange de monoxyde de carbone, d'hydrogène et de méthane, le mélange (1) est envoyé à une colonne de lavage (K1), un liquide de cuve (9) soutiré en cuve de la colonne de lavage est appauvri en hydrogène par rapport au mélange et est envoyé à une colonne de strippage (K2),un liquide de cuve (15) de la colonne de strippage est envoyé à une colonne de séparation (K3), et un liquide enrichi en méthane (21) soutiré de la cuve de la colonne de séparation est vaporisé pour former un produit final (25).In a process for separating a mixture of carbon monoxide, hydrogen and methane, the mixture (1) is sent to a washing column (K1), a tank liquid (9) withdrawn from the tank of the column of washing is depleted in hydrogen compared to the mixture and is sent to a stripping column (K2), a tank liquid (15) from the stripping column is sent to a separation column (K3), and a liquid enriched in methane (21) withdrawn from the tank of the separation column is vaporized to form a final product (25).

Description

La présente invention est relative à un procédé et à un appareil de séparation cryogénique d'un mélange de monoxyde de carbone, d'hydrogène et de méthane pour la production de méthane.The present invention relates to a method and an apparatus for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of methane.

Le gaz de synthèse contient du monoxyde de carbone, de l'hydrogène et du méthane et ces trois composants sont de préférences les composants principaux du gaz de synthèse.The synthesis gas contains carbon monoxide, hydrogen and methane and these three components are preferably the main components of the synthesis gas.

Le gaz peut également contenir de l'azote et/ou de l'argon.The gas may also contain nitrogen and / or argon.

Les unités de production de monoxyde de carbone et d'hydrogène peuvent être séparées en deux parties :

  • Figure imgb0001
    génération du gaz de synthèse (mélange contenant H2, CO, CH4 essentiellement ainsi qu'éventuellement du CO2 et/ou de l'Ar et/ou du N2 essentiellement). Parmi les diverses voies industrielles de production de gaz de synthèse, celle à base de gazéification de charbon semble se développer de plus en plus notamment dans les pays riches en dépôts de charbon comme la Chine. Le procédé d'oxydation partielle du gaz naturel peut s'avérer également intéressant pour la production de CO seul ou avec des rapports de production H2/CO faibles. Une autre voie est le reformage à la vapeur.
  • Figure imgb0002
    purification du gaz de synthèse. On retrouve :
    • Une unité de lavage avec un solvant liquide pour éliminer la plus grande partie des gaz acides contenus dans le gaz de synthèse.
    • Une unité d'épuration sur lit d'adsorbants.
    • Une unité de séparation par voie cryogénique dite boite froide pour la production de CO.
    • Les deux brevets ci-dessous décrivent des schémas avec une première étape de lavage au CO (pur ou impur), une étape de stripage et une colonne de séparation CO/CH4.
    • Lavage au CO pur avec pompe CO + cycle N2 : CN101688753 .
    • Lavage au CO impur + turbines H2, pas de compresseur de cycle : FR 2754541 .
    • L'inconvénient du procédé de CN101688753 est qu'il utilise des pompes de monoxyde de carbone ainsi qu'un rebouilleur en cuve de la colonne CO/CH4.
    • L'inconvénient du schéma de condensation partielle décrit dans FR2754541 est que le gaz riche en hydrogène est produit à basse pression. Il y a présence d'un rebouilleur en cuve de la colonne CO/CH4.
The carbon monoxide and hydrogen production units can be separated into two parts:
  • Figure imgb0001
    generation of synthesis gas (mixture containing H 2 , CO, CH 4 essentially as well as possibly CO 2 and / or Ar and / or N 2 essentially). Among the various industrial routes for the production of synthesis gas, that based on coal gasification seems to be developing more and more especially in countries rich in coal deposits such as China. The process of partial oxidation of natural gas can also prove to be advantageous for the production of CO alone or with low H 2 / CO production ratios. Another route is steam reforming.
  • Figure imgb0002
    synthesis gas purification . We find :
    • A washing unit with a liquid solvent to remove most of the acid gases contained in the synthesis gas.
    • A purification unit on a bed of adsorbents.
    • A cryogenic separation unit known as a cold box for the production of CO.
    • The two patents below describe schemes with a first washing step with CO (pure or impure), a stripping step and a CO / CH 4 separation column.
    • Washing with pure CO with CO pump + N2 cycle: CN101688753 .
    • Washing with impure CO + H 2 turbines, no cycle compressor: FR 2754541 .
    • The disadvantage of the CN101688753 is that it uses carbon monoxide pumps as well as a reboiler in the bottom of the CO / CH 4 column.
    • The disadvantage of the partial condensation scheme described in FR2754541 is that the hydrogen-rich gas is produced at low pressure. There is a reboiler in the bottom of the CO / CH 4 column.

Un procédé selon le préambule de la revendication 1 est connu de EP677483 , FR2754541 , FR3011320 et FR3018599 .A method according to the preamble of claim 1 is known from EP677483 , FR2754541 , FR3011320 and FR3018599 .

L'appareil selon l'invention comprend de préférence une boite froide sur procédé lavage au CO impur où l'énergie de séparation est apportée par cycle N2 et/ou par cycle CH4.The apparatus according to the invention preferably comprises a cold box on a washing process with impure CO where the energy of separation is provided by cycle N 2 and / or by cycle CH 4 .

Selon un objet de l'invention, il est prévu un procédé de séparation d'un mélange de monoxyde de carbone, d'hydrogène et de méthane dans lequel :

  1. i) Le mélange refroidi à une température cryogénique dans un échangeur de chaleur ou un fluide, gaz ou liquide, dérivé de ce mélange est envoyé à une colonne de lavage alimentée en tête par un liquide contenant au moins 80 % mol. de monoxyde de carbone et/ou à au moins un séparateur de phases,
  2. ii) Un liquide de cuve soutiré en cuve de la colonne de lavage ou du séparateur de phases ou d'un des séparateurs de phases est appauvri en hydrogène par rapport au mélange et est envoyé à une colonne de strippage,
  3. iii) Un gaz est soutiré en tête de la colonne de strippage,
  4. iv) Un liquide de cuve de la colonne de strippage est envoyé à une colonne de séparation, et
  5. v) Un liquide enrichi en méthane est soutiré de la cuve de la colonne de séparation, vaporisé dans l'échangeur de chaleur pour former un produit final caractérisé en ce que le liquide vaporisé enrichi en méthane est comprimé dans un compresseur et une partie du gaz comprimé est renvoyée en cuve de la colonne de séparation pour s'y séparer
According to an object of the invention, there is provided a method for separating a mixture of carbon monoxide, hydrogen and methane in which:
  1. i) The mixture cooled to a cryogenic temperature in a heat exchanger or a fluid, gas or liquid, derived from this mixture is sent to a washing column supplied at the head with a liquid containing at least 80 mol%. carbon monoxide and / or at least one phase separator,
  2. ii) A tank liquid withdrawn from the tank of the washing column or of the phase separator or of one of the phase separators is depleted in hydrogen with respect to the mixture and is sent to a stripping column,
  3. iii) A gas is drawn off at the head of the stripping column,
  4. iv) A liquid from the stripping column is sent to a separation column, and
  5. v) A liquid enriched in methane is withdrawn from the tank of the separation column, vaporized in the heat exchanger to form a final product characterized in that the vaporized liquid enriched in methane is compressed in a compressor and part of the gas tablet is returned to the separation column tank for separation

Selon d'autres aspects facultatifs :

  • la partie du gaz comprimé est à une pression inférieure à celle du produit final comprimé.
  • la colonne de lavage est alimentée en tête par un liquide provenant d'un condenseur où se condense au moins une partie du gaz de tête de la colonne de lavage ou provenant de la tête de la colonne de séparation ou provenant d'un cycle de réfrigération au monoxyde de carbone.
  • le mélange contient de l'azote et la colonne de séparation produit en cuve le liquide enrichi en méthane et appauvri en monoxyde de carbone et en tête un gaz enrichi en monoxyde de carbone.
  • la colonne de séparation a un condenseur de tête refroidi par un cycle d'azote fermé comprenant un compresseur d'azote gazeux.
  • la colonne de séparation est refroidi en tête par un cycle de monoxyde de carbone.
  • un cycle de monoxyde de carbone fournit du froid au procédé
  • le cycle de monoxyde de carbone produit un produit riche en monoxyde de carbone.
  • le cycle de monoxyde de carbone fournit un liquide de lavage à la colonne de lavage.
  • le cycle d'azote sert à rebouillir la colonne de strippage.
  • la pression maximale du cycle d'azote est inférieure à la pression critique de l'azote.
  • la pression maximale du cycle de monoxyde de carbone est inférieure à la pression critique de monoxyde de carbone.
  • la pression maximale du cycle de l'azote ou de monoxyde de carbone est choisie de sorte que la température de condensation d'azote ou de monoxyde de carbone dans l'échangeur de chaleur à cette pression soit supérieure de moins d'une dizaine de degrés °C à la température de vaporisation du méthane liquide dans l'échangeur de chaleur.
  • la pression maximale du cycle de l'azote ou de monoxyde de carbone est choisie de sorte que la température de condensation d'azote ou de monoxyde de carbone dans l'échangeur de chaleur à cette pression soit supérieure d'au moins 2 °C à la température de vaporisation du méthane liquide dans l'échangeur de chaleur.
  • le mélange ou un gaz dérivé du mélange sert à rebouillir la colonne de strippage.
  • la colonne de séparation opère à entre 7 et 10 bars abs.
  • la colonne de séparation ne comprend pas de rebouilleur de cuve.
  • le méthane gazeux est produit comme produit final à au moins 25 bars abs.
  • la colonne de lavage opère à entre 15 et 60 bars absolus.
  • la colonne de strippage opère à entre 3 et 20 bar absolus.
  • la colonne de séparation opère entre 1,5 et 15 bar absolus, de préférence entre 7 et 10 bars absolus.
  • le palier de vaporisation du méthane liquide est à entre -155°C et - 150°C.
  • le palier de vaporisation du méthane liquide se trouve en face du palier de condensation de l'azote provenant du compresseur
  • le palier de condensation de l'azote se trouve entre -155°C et - 150°C.
According to other optional aspects:
  • the part of the compressed gas is at a pressure lower than that of the final compressed product.
  • the washing column is supplied at the head with a liquid coming from a condenser where at least part of the overhead gas of the washing column or coming from the head of the separation column or coming from a carbon monoxide refrigeration cycle.
  • the mixture contains nitrogen and the separation column produces in the tank the liquid enriched in methane and depleted in carbon monoxide and at the head a gas enriched in carbon monoxide.
  • the separation column has an overhead condenser cooled by a closed nitrogen cycle comprising a nitrogen gas compressor.
  • the separation column is cooled at the head by a cycle of carbon monoxide.
  • a carbon monoxide cycle provides cold to the process
  • the carbon monoxide cycle produces a product rich in carbon monoxide.
  • the carbon monoxide cycle provides washing liquid to the washing column.
  • the nitrogen cycle is used to reboil the stripping column.
  • the maximum nitrogen cycle pressure is lower than the critical nitrogen pressure.
  • the maximum pressure of the carbon monoxide cycle is less than the critical pressure of carbon monoxide.
  • the maximum pressure of the nitrogen or carbon monoxide cycle is chosen so that the temperature of condensation of nitrogen or carbon monoxide in the heat exchanger at this pressure is less than ten degrees higher ° C at the vaporization temperature of liquid methane in the heat exchanger.
  • the maximum pressure of the nitrogen or carbon monoxide cycle is chosen so that the temperature of condensation of nitrogen or carbon monoxide in the heat exchanger at this pressure is at least 2 ° C higher than the vaporization temperature of the liquid methane in the heat exchanger.
  • the mixture or a gas derived from the mixture is used to reboil the stripping column.
  • the separation column operates at between 7 and 10 bar abs.
  • the separation column does not include a tank reboiler.
  • methane gas is produced as final product at least 25 bar abs.
  • the washing column operates at between 15 and 60 bar absolute.
  • the stripping column operates at between 3 and 20 bar absolute.
  • the separation column operates between 1.5 and 15 bar absolute, preferably between 7 and 10 bar absolute.
  • the vaporization stage for liquid methane is between -155 ° C and - 150 ° C.
  • the liquid methane vaporization stage is opposite the nitrogen condensation stage from the compressor
  • the nitrogen condensation level is between -155 ° C and - 150 ° C.

La pression maximale du cycle de l'azote (pression de sortie de V4) de préférence est 35 bars absolus (pression critique de l'azote). Le procédé est possible avec une pression supérieure et jusqu'à 70 bar mais moins efficace si au-dessus de la pression critique de l'azote.The maximum pressure of the nitrogen cycle (outlet pressure of V4) preferably is 35 bars absolute (critical pressure of nitrogen). The process is possible with higher pressure and up to 70 bar but less effective if above the critical nitrogen pressure.

Selon un autre objet de l'invention, il est prévu un appareil de séparation d'un mélange de monoxyde de carbone, d'hydrogène et de méthane comprenant une colonne de lavage et/ou au moins un séparateur de phases, une colonne de strippage et une colonne de séparation, un échangeur de chaleur, des moyens pour envoyer le mélange se refroidir à une température cryogénique dans l'échangeur de chaleur, des moyens pour envoyer le mélange refroidi ou un fluide dérivé de ce mélange à la colonne de lavage alimentée en tête par un liquide contenant au moins 80 % mol. de monoxyde de carbone et/ou au séparateur de phases ou à au moins un des séparateurs de phases, des moyens pour soutirer un liquide de cuve appauvri en hydrogène par rapport au mélange de la colonne de lavage ou du séparateur de phases ou d'un des séparateurs de phases, des moyens pour envoyer le liquide soutiré à la colonne de strippage, des moyens pour soutirer un gaz en tête de la colonne de strippage, des moyens pour envoyer un liquide de cuve de la colonne de strippage à la colonne de séparation, des moyens pour soutirer un liquide enrichi en méthane de la cuve de la colonne de séparation et des moyens pour vaporiser le liquide soutiré dans l'échangeur de chaleur pour former un produit final caractérisé en ce qu'il comprend un compresseur, des moyens pour envoyer le liquide vaporisé enrichi en méthane pour être comprimé dans le compresseur et des moyens pour envoyer une partie du gaz comprimé dans le compresseur en cuve de la colonne de séparation pour s'y séparer.According to another object of the invention, there is provided an apparatus for separating a mixture of carbon monoxide, hydrogen and methane comprising a washing column and / or at least one phase separator, a stripping column and a separation column, a heat exchanger, means for sending the mixture to cool to a cryogenic temperature in the heat exchanger, means for sending the cooled mixture or a fluid derived from this mixture to the washing column supplied at the top with a liquid containing at least 80% mol. carbon monoxide and / or to the phase separator or to at least one of the phase separators, means for drawing off a hydrogen-depleted tank liquid with respect to the mixture of the washing column or of the phase separator or of a phase separators, means for sending the liquid withdrawn to the stripping column, means for withdrawing a gas at the head of the stripping column, means for sending a tank liquid from the stripping column to the separation column , means for withdrawing a liquid enriched in methane from the tank of the separation column and means for vaporizing the liquid withdrawn in the heat exchanger to form a final product characterized in that it comprises a compressor, means for send the methane-enriched vaporized liquid to be compressed in the compressor and means for sending part of the compressed gas into the compressor in the tank of the separation column to separate therefrom.

De préférence :

  • l'appareil comprend un cycle de réfrigération à l'azote ou au monoxyde de carbone.
  • l'appareil comprend un cycle de réfrigération fermé.
  • la colonne de séparation a un condenseur de tête, de préférence refroidi par un/le cycle de réfrigération.
  • la colonne de séparation est surmontée d'un réservoir du liquide du cycle de réfrigération.
  • la colonne de séparation est surmontée d'un réservoir d'azote liquide ou de monoxyde de carbone liquide.
  • la colonne de lavage est surmontée d'un condenseur de gaz de tête.
  • la colonne de lavage est alimentée par un liquide riche en monoxyde de carbone provenant de la tête de la colonne de séparation et/ou du réservoir et/ou d'un stockage de liquide et/ou du cycle de réfrigération.
  • l'appareil comprend deux séparateurs de phase et des moyens pour envoyer le gaz du premier séparateur de phase au deuxième séparateur de phase.
  • l'appareil comprend un séparateur de phase, de préférence un seul séparateur de phase en amont de la colonne de lavage.
  • les moyens pour envoyer une partie du gaz comprimé dans le compresseur en cuve de la colonne de séparation sont reliés à l'échangeur de chaleur.
Preferably:
  • the appliance includes a nitrogen or carbon monoxide refrigeration cycle.
  • the appliance includes a closed refrigeration cycle.
  • the separation column has an overhead condenser, preferably cooled by a / the refrigeration cycle.
  • the separation column is surmounted by a reservoir for the refrigeration cycle liquid.
  • the separation column is surmounted by a tank of liquid nitrogen or liquid carbon monoxide.
  • the washing column is surmounted by an overhead gas condenser.
  • the washing column is supplied with a liquid rich in carbon monoxide coming from the head of the separation column and / or from the tank and / or from a liquid storage and / or from the refrigeration cycle.
  • the apparatus comprises two phase separators and means for sending gas from the first phase separator to the second phase separator.
  • the apparatus comprises a phase separator, preferably a single phase separator upstream of the washing column.
  • the means for sending part of the compressed gas into the compressor in the tank of the separation column are connected to the heat exchanger.

Toute caractéristique mentionnée ci-dessus peut être combinée avec toute autre caractéristique dans les limites de la logique et la science.Any characteristic mentioned above can be combined with any other characteristic within the limits of logic and science.

Selon une variante de l'invention, le CH4 doit être produit sous forme gazeuse à une pression supérieure à 25 bars, voire à 30 bars absolus.According to a variant of the invention, CH4 must be produced in gaseous form at a pressure greater than 25 bars, or even 30 bars absolute.

Le compresseur de CH4 produit sert également au cycle CH4. L'énergie de rebouillage de la colonne CO/CH4 est apportée par injection directe en cuve de la colonne d'un circuit de CH4 gazeux venant du compresseur de CH4 après refroidissement dans la ligne d'échange. La vaporisation de CH4 à basse pression apporte les frigories pour le refroidissement du cycle N2. Le CH4 vaporisé à basse pression vient de la cuve de la colonne CO/CH4 et/ou du cycle CH4.The CH 4 compressor produced is also used in the CH 4 cycle. The reboiling energy of the CO / CH 4 column is supplied by direct injection into the tank of the column of a gaseous CH 4 circuit coming from the CH 4 compressor after cooling in the exchange line. Vaporization of CH 4 at low pressure provides the frigories for cooling the N 2 cycle. The CH 4 vaporized at low pressure comes from the tank of the CO / CH 4 column and / or from the CH 4 cycle.

Ce schéma permet une récupération de CH4 important sans l'utilisation de pompes CO, ni de compresseur CO. Le cycle CH4 permet de ne pas avoir de rebouilleur en cuve de colonne CO/CH4 et une meilleure intégration thermique au niveau de l'échangeur principal. La colonne CO/CH4 étant opérée à entre 7 et 10 bars environ, les solutions de l'état de l'art avec rebouillage avec du syngas ou de l'azote présentent l'inconvénient que l'apport de rebouillage est soit par chaleur sensible ou bien nécessite d'augmenter fortement la pression du cycle N2 au-dessus de la pression critique de l'azote.This scheme allows recovery of significant CH 4 without the use of CO pumps or a CO compressor. The CH 4 cycle makes it possible to have no reboiler in the CO / CH 4 column tank and better thermal integration at the level of the main exchanger. The CO / CH 4 column being operated at between 7 and 10 bars approximately, the state-of-the-art solutions with reboiling with syngas or nitrogen have the drawback that the reboiling supply is either by heat sensitive or else requires greatly increasing the pressure of the N 2 cycle above the critical nitrogen pressure.

Deux alternatives sont proposées pour pallier ce problème : le rebouillage de la colonne de strippage avec gaz de synthèse ou bien avec de l'azote gazeux haute pression.Two alternatives are proposed to overcome this problem: reboiling the stripping column with synthesis gas or with high pressure nitrogen gas.

L'invention sera décrite en plus de détail en se référant aux Figures 1,2,4,5,6 et 7 qui représentent des procédés selon l'invention et à la Figure 3 qui représente l'échange de chaleur entre les fluides qui se refroidissent et les fluides qui se réchauffent dans l'échangeur de chaleur E1.The invention will be described in more detail with reference to Figures 1 , 2 , 4 , 5 , 6 and 7 which represent processes according to the invention and to the Figure 3 which represents the heat exchange between the fluids which cool and the fluids which heat in the heat exchanger E1.

Dans la Figure 1, un gaz de synthèse 1 épuré en dioxyde de carbone et en eau est refroidi dans un échangeur de chaleur E1.In the Figure 1 , a synthesis gas 1 purified of carbon dioxide and water is cooled in a heat exchanger E1.

Il se refroidit jusqu'à une température intermédiaire de l'échangeur et puis alimente la cuve d'une colonne de lavage au CO K1.It cools down to an intermediate temperature of the exchanger and then feeds the tank of a CO K1 washing column.

Un gaz de tête riche en hydrogène 3 est soutiré en tête de la colonne K1, refroidi dans l'échangeur E1 et envoyé partiellement condensé à un séparateur de phases P1. Le gaz 7 du séparateur P1 se réchauffe dans l'échangeur E1 alors que le liquide 5 est renvoyé en tête de la colonne K1 comme reflux. En alternative ou en addition un liquide provenant de la tête de la colonne K3 peut être envoyé en tête de la colonne K1.An overhead gas rich in hydrogen 3 is drawn off at the top of the column K1, cooled in the exchanger E1 and sent partially condensed to a phase separator P1. The gas 7 from the separator P1 heats up in the exchanger E1 while the liquid 5 is returned to the top of the column K1 as reflux. As an alternative or addition, a liquid coming from the head of column K3 can be sent to the head of column K1.

Le liquide 5 contient au moins 80% mol de monoxyde de carbone.The liquid 5 contains at least 80 mol% of carbon monoxide.

Le liquide 9 de cuve de la colonne de lavage K1 est détendu et envoyé en tête de la colonne de strippage K2. Le gaz de tête 11 de la colonne K2 se réchauffe dans l'échangeur E1. Le liquide de cuve 13 est vaporisé dans l'échangeur de chaleur E2 contre une partie 39 de l'azote de cycle. Le reste 15 du liquide de cuve est envoyé à un point intermédiaire de la colonne de séparation CO/CH4 K3. Cette colonne de séparation K3 n'a pas de rebouilleur de cuve par contre elle a un condenseur de tête C1. Le monoxyde de carbone 17 de tête de la colonne K3 se condense au moins partiellement dans le condenseur C1 par échange de chaleur avec l'azote de cycle. Le condenseur C1 est localisé à l'intérieur d'un bain dont les parois B sont indiquées.The liquid 9 from the tank of the washing column K1 is expanded and sent to the head of the stripping column K2. The overhead gas 11 of the column K2 heats up in the exchanger E1. The tank liquid 13 is vaporized in the heat exchanger E2 against part 39 of the cycle nitrogen. The rest of the tank liquid is sent to an intermediate point in the CO / CH 4 K3 separation column. This separation column K3 does not have a tank reboiler by against it has a head condenser C1. The carbon monoxide 17 at the head of the column K3 at least partially condenses in the condenser C1 by heat exchange with the cycle nitrogen. The condenser C1 is located inside a bath whose walls B are indicated.

Le liquide de cuve 21 enrichi en méthane est détendu puis vaporisé dans l'échangeur de chaleur E1 pour former un gaz. Tout le gaz est comprimé dans le compresseur V1 et une partie du gaz poursuit la compression dans le compresseur V2 pour former le gaz produit 25 à au moins 25 bars abs.The tank liquid 21 enriched in methane is expanded and then vaporized in the heat exchanger E1 to form a gas. All the gas is compressed in the compressor V1 and part of the gas continues compression in the compressor V2 to form the gas produced 25 at at least 25 bar abs.

Le reste 23 du gaz comprimé dans V1 seul est refroidi dans l'échangeur de chaleur et divisé en deux. Une partie 27 est renvoyée en cuve de la colonne K3 pour rebouillir la colonne par échange de chaleur direct et pour participer à la distillation.The remainder 23 of the compressed gas in V1 alone is cooled in the heat exchanger and divided into two. Part 27 is returned to the bottom of the column K3 to reboil the column by direct heat exchange and to participate in the distillation.

Une autre partie 29 se refroidit jusqu'à une température intermédiaire de l'échangeur E1 puis rejoint le liquide 21 à vaporiser dans l'échangeur après détente dans une vanne.Another part 29 cools down to an intermediate temperature of the exchanger E1 then joins the liquid 21 to be vaporized in the exchanger after expansion in a valve.

L'azote de cycle ne participe pas à la distillation mais sert à rebouillir la colonne K2 et à condenser le gaz de tête 17 de K3. L'azote liquide 35 du condenseur C1 se vaporise et est envoyé à un compresseur d'azote V4. De l'azote gazeux 19 vaporisé par le condenseur C1 est mélangé avec le liquide vaporisé 35 dans l'échangeur. Un autre débit de liquide du bain du condenser 33 est détendu à une pression relativement basse et est comprimé ensuite dans le compresseur V3. L'azote comprimé en V3 rejoint les débits d'azote 19,35 et le débit réuni est comprimé en V4. Ce débit comprimé 37 se refroidit dans l'échangeur et est divisé en deux. Une partie 39 sert à chauffer l'échangeur E2 pour rebouillir K2. Une partie 41 se liquéfie après refroidissement dans l'échangeur de chaleur et est envoyé au bain d condenseur C1.The cycle nitrogen does not participate in the distillation but serves to reboil the column K2 and to condense the overhead gas 17 of K3. The liquid nitrogen 35 of the condenser C1 vaporizes and is sent to a nitrogen compressor V4. Nitrogen gas 19 vaporized by the condenser C1 is mixed with the vaporized liquid 35 in the exchanger. Another flow of liquid from the condenser bath 33 is expanded to a relatively low pressure and is then compressed in the compressor V3. The nitrogen compressed in V3 joins the nitrogen flow rates 19.35 and the combined flow rate is compressed in V4. This compressed flow 37 cools in the exchanger and is divided into two. A part 39 is used to heat the exchanger E2 to reboil K2. Part 41 liquefies after cooling in the heat exchanger and is sent to the condenser bath C1.

La colonne de séparation K3 opère à entre 1,5 et 15 bar abs, voire entre 7 et 10 bars abs.The separation column K3 operates at between 1.5 and 15 bar abs, or even between 7 and 10 bar abs.

La colonne de séparation K3 ne comprend pas de rebouilleur de cuve.The separation column K3 does not include a tank reboiler.

La colonne de lavage K1 opère à entre 15 et 60 bars absolus.The washing column K1 operates at between 15 and 60 bars absolute.

La pression maximale du cycle de l'azote (pression de sortie de V4) est choisie de sorte que la température de condensation d'azote 37 dans l'échangeur de chaleur E1 à cette pression soit inférieure de moins d'une dizaine de degrés °C à la température de vaporisation du méthane liquide 21 dans l'échangeur de chaleur.The maximum pressure of the nitrogen cycle (outlet pressure of V4) is chosen so that the nitrogen condensation temperature 37 in the heat exchanger E1 at this pressure is less than less than ten degrees ° VS at the vaporization temperature of liquid methane 21 in the heat exchanger.

Dans la Figure 2, on retrouve une variante de la Figure 1 où le mélange 1 sert à chauffer l'échangeur de chaleur E2 et ainsi la cuve de la colonne K2. Le mélange s'y condense partiellement, est envoyé au séparateur P1 et le gaz formé 3 alimente la colonne K1.In the Figure 2 , we find a variant of the Figure 1 where the mixture 1 is used to heat the heat exchanger E2 and thus the tank of the column K2. The mixture partially condenses there, is sent to the separator P1 and the gas formed 3 feeds the column K1.

Le liquide 5 du séparateur P1 rejoint le liquide 9 de la colonne K1 et alimente la tête de la colonne de stripping K2.The liquid 5 of the separator P1 joins the liquid 9 of the column K1 and supplies the head of the stripping column K2.

Ici tout l'azote du compresseur V4 est renvoyé au condenseur C1.Here all the nitrogen from compressor V4 is returned to condenser C1.

Comme illustré à la Figure 3, le palier de vaporisation du méthane liquide 21 se trouve en face du palier de condensation de l'azote provenant du compresseur V4 (deux lignes verticales à entre -155°C et -150°C) et le diagramme d'échange indique des performances particulièrement remarquables.As illustrated in Figure 3 , the vaporization stage for liquid methane 21 is located opposite the nitrogen condensation stage from compressor V4 (two vertical lines at between -155 ° C and -150 ° C) and the exchange diagram indicates performance particularly remarkable.

La présence du cycle d'azote n'est toutefois pas essentielle ; il peut par exemple être remplacé par un cycle de monoxyde de carbone.The presence of the nitrogen cycle is not essential, however; it can for example be replaced by a carbon monoxide cycle.

Dans la Figure 4, variante de la Figure 1, le gaz à traiter 1, après avoir chauffé la cuve de la colonne K2 par E2, est d'abord séparé dans un séparateur de phases P1. Le gaz formé 3 est refroidi dans l'échangeur de chaleur E1 et ensuite partiellement condensé dans un deuxième séparateur de phases P2. Le gaz du séparateur P2 sort de l'appareil comme gaz 4. Le liquide 9 est détendu pour rejoindre le liquide 5 provenant du premier séparateur de phases P1 et le liquide formé alimente la tête de la colonne K2.In the Figure 4 , variant of the Figure 1 , the gas to be treated 1, after having heated the tank of the column K2 by E2, is first separated in a phase separator P1. The gas formed 3 is cooled in the heat exchanger E1 and then partially condensed in a second phase separator P2. The gas from the separator P2 leaves the device as gas 4. The liquid 9 is expanded to join the liquid 5 coming from the first phase separator P1 and the liquid formed feeds the head of the column K2.

Ainsi le séparateur de phases et la colonne de la Figure 1 sont remplacées par deux séparateurs de phases.Thus the phase separator and the column of the Figure 1 are replaced by two phase separators.

La Figure 5 est une variante de la Figure 2 où la colonne K3 n'est pas surmontée par un condenseur du gaz de tête mais par un réservoir de liquide riche en monoxyde de carbone. Ce liquide participe à un cycle de monoxyde de carbone. Le liquide 33 est soutiré du réservoir, détendu, vaporisé dans l'échangeur E1 et envoyé à un compresser V3. Un gaz de tête 19 du réservoir est réchauffé dans l'échangeur E1 comme débit 22 et envoyé à la sortie du compresseur V3 pour être comprimé dans le compresseur V4. Une partie 37 d gaz comprimé en V4 est renvoyée comme liquide 41 dans le réservoir.The Figure 5 is a variant of the Figure 2 where the column K3 is not surmounted by a condenser of the overhead gas but by a reservoir of liquid rich in carbon monoxide. This liquid participates in a carbon monoxide cycle. The liquid 33 is withdrawn from the reservoir, expanded, vaporized in the exchanger E1 and sent to a compressor V3. An overhead gas 19 from the tank is heated in the exchanger E1 as a flow 22 and sent to the outlet of the compressor V3 to be compressed in the compressor V4. A portion 37 of compressed gas in V4 is returned as liquid 41 to the tank.

Un deuxième débit 35 de liquide du réservoir est détendu à une pressions moins basse que l'entrée du compresseur V3 et est envoyé à l'entrée de V4 aussi. Du gaz de tête de la colonne K3 est également envoyé à l'entrée du compresseur V4. Le débit de monoxyde de carbone 31 pressurisé, de préférence à entre 10 et 15 bars, sert de produit.A second flow 35 of liquid from the reservoir is expanded at a lower pressure than the inlet of the compressor V3 and is sent to the inlet of V4 as well. Head gas from column K3 is also sent to the inlet of compressor V4. The flow of pressurized carbon monoxide 31, preferably between 10 and 15 bars, serves as a product.

Ainsi, on voit que le cycle de monoxyde de carbone remplace le cycle d'azote fermé.Thus, we see that the carbon monoxide cycle replaces the closed nitrogen cycle.

La Figure 6 comprend le cycle de monoxyde de carbone de la Figure 5 et les deux séparateurs de phases de la Figure 4.The Figure 6 understands the carbon monoxide cycle of the Figure 5 and the two phase separators of the Figure 4 .

Pour les cas avec cycle de monoxyde de carbone, par exemple dans les Figures 5 et 6, il est possible, comme illustré dans la Figure 7, de prendre du monoxyde de carbone liquide 37 à la pression de sortie du compresseur V4, de le condenser et d'envoyer au moins une partie 11 en tête de la colonne K1.For cases with carbon monoxide cycle, for example in Figures 5 and 6 , it is possible, as illustrated in the Figure 7 , to take liquid carbon monoxide 37 at the outlet pressure of the compressor V4, to condense it and to send at least one part 11 at the top of the column K1.

Le reste 41 du liquide peut être renvoyé au réservoir de tête de la colonne K3. Le liquide 11 contient de préférence au moins 80% mol de monoxyde de carbone.The remainder 41 of the liquid can be returned to the head tank of the column K3. The liquid 11 preferably contains at least 80 mol% of carbon monoxide.

En cas de présence d'azote, une colonne de séparation CO/N2 peut être rajoutée en amont ou en aval de la colonne K3.If nitrogen is present, a CO / N 2 separation column can be added upstream or downstream of column K3.

Pour toutes les figures :

  • la colonne de lavage K1 opère à entre 15 et 60 bars absolus.
  • la colonne de strippage K2 opère à entre 3 et 20 bar absolus
  • la colonne de séparation opère entre 1,5 et 15 bar absolus
  • la pression maximale du cycle de l'azote (pression de sortie de V4) est 35 bars absolus (pression critique de l'azote). Le procédé est possible avec une pression supérieure et jusqu'à 70 bar mais moins efficace si au-dessus de la pression critique de l'azote.
For all figures:
  • the washing column K1 operates at between 15 and 60 bars absolute.
  • the stripping column K2 operates at between 3 and 20 bar absolute
  • the separation column operates between 1.5 and 15 bar absolute
  • the maximum nitrogen cycle pressure (outlet pressure of V4) is 35 bar absolute (critical nitrogen pressure). The process is possible with higher pressure and up to 70 bar but less effective if above the critical nitrogen pressure.

Claims (14)

Procédé de séparation d'un mélange de monoxyde de carbone, d'hydrogène et de méthane dans lequel : i) Le mélange (1) refroidi à une température cryogénique dans un échangeur de chaleur (E1) ou un fluide (9) dérivé de ce mélange est envoyé à une colonne de lavage (K1) alimentée en tête par un liquide contenant au moins 80 % mol. de monoxyde de carbone ou à au moins un séparateur de phases (P1), ii) Un liquide de cuve (9) soutiré en cuve de la colonne de lavage ou du séparateur de phases ou d'un des séparateurs de phases est appauvri en hydrogène par rapport au mélange et est envoyé à une colonne de strippage (K2), iii) Un gaz (14) est soutiré en tête de la colonne de strippage, iv) Un liquide de cuve (15) de la colonne de strippage est envoyé à une colonne de séparation (K3), et v) Un liquide enrichi en méthane (21) est soutiré de la cuve de la colonne de séparation et vaporisé dans l'échangeur de chaleur pour former un produit final (25) caractérisé en ce que le liquide vaporisé enrichi en méthane est comprimé dans un compresseur (V1, V2) et une partie (27) du gaz comprimé est renvoyée en cuve de la colonne de séparation (K3) pour s'y séparer. Process for the separation of a mixture of carbon monoxide, hydrogen and methane in which: i) The mixture (1) cooled to a cryogenic temperature in a heat exchanger (E1) or a fluid (9) derived from this mixture is sent to a washing column (K1) supplied at the head with a liquid containing at least 80 % mol. carbon monoxide or at least one phase separator (P1), ii) A tank liquid (9) withdrawn from the tank of the washing column or of the phase separator or of one of the phase separators is depleted in hydrogen relative to the mixture and is sent to a stripping column (K2), iii) A gas (14) is drawn off at the head of the stripping column, iv) A liquid from the tank (15) of the stripping column is sent to a separation column (K3), and v) A liquid enriched in methane (21) is withdrawn from the tank of the separation column and vaporized in the heat exchanger to form a final product (25) characterized in that the vaporized liquid enriched in methane is compressed in a compressor (V1, V2) and part (27) of the compressed gas is returned to the tank of the separation column (K3) to separate there. Procédé selon la revendication 1 dans lequel la partie du gaz comprimé (27) est à une pression inférieure à celle du produit final comprimé (25).The method of claim 1 wherein the portion of the compressed gas (27) is at a pressure lower than that of the compressed end product (25). Procédé selon l'une des revendications précédentes dans lequel la colonne de lavage (K1) est alimentée en tête par un liquide (11) provenant d'un condenseur où se condense au moins une partie du gaz de tête de la colonne de lavage ou provenant de la tête de la colonne de séparation ou provenant d'un cycle de réfrigération au monoxyde de carbone.Method according to one of the preceding claims, in which the washing column (K1) is supplied at the head with a liquid (11) coming from a condenser which condenses at least part of the head gas of the washing column or coming from from the head of the separation column or from a carbon monoxide refrigeration cycle. Procédé selon l'une des revendications précédentes dans lequel le mélange (1) contient de l'azote et dans lequel la colonne de séparation (K3) produit en cuve le liquide (21) enrichi en méthane et appauvri en monoxyde de carbone et en tête un gaz (35) enrichi en monoxyde de carbone.Method according to one of the preceding claims, in which the mixture (1) contains nitrogen and in which the separation column (K3) produced in tank the liquid (21) enriched in methane and depleted in carbon monoxide and at the top a gas (35) enriched in carbon monoxide. Procédé selon l'une des revendications précédentes dans lequel la colonne de séparation (K3) a un condenseur de tête refroidi par un cycle d'azote fermé comprenant un compresseur d'azote gazeux ou par un cycle de monoxyde de carbone fermé comprenant un compresseur de monoxyde de carbone gazeux.Method according to one of the preceding claims, in which the separation column (K3) has an overhead condenser cooled by a closed nitrogen cycle comprising a nitrogen gas compressor or by a closed carbon monoxide cycle comprising a liquid compressor. carbon monoxide gas. Procédé selon la revendication 5 dans lequel le cycle d'azote sert à rebouillir la colonne de strippage (K2).The method of claim 5 wherein the nitrogen cycle serves to reboil the stripping column (K2). Procédé selon l'une des revendications précédentes 5 et 6 dans lequel la pression maximale du cycle d'azote ou de monoxyde de carbone est inférieure à la pression critique de l'azote ou de monoxyde de carbone.Method according to one of the preceding claims 5 and 6, in which the maximum pressure of the nitrogen or carbon monoxide cycle is lower than the critical pressure of nitrogen or carbon monoxide. Procédé selon l'une des revendications 5 à 7 dans lequel la pression maximale du cycle d'azote ou de monoxyde de carbone est choisie de sorte que la température de condensation d'azote ou de monoxyde de carbone dans l'échangeur de chaleur (E1) à cette pression soit supérieure de moins d'une dizaine de degrés °C à la température de vaporisation du méthane liquide dans l'échangeur de chaleur.Method according to one of Claims 5 to 7, in which the maximum pressure of the nitrogen or carbon monoxide cycle is chosen so that the temperature of condensation of nitrogen or carbon monoxide in the heat exchanger (E1 ) at this pressure is less than ten degrees ° C above the vaporization temperature of liquid methane in the heat exchanger. Procédé selon l'une des revendications 1 à 5 dans lequel le mélange (1) ou un gaz dérivé du mélange sert à rebouillir la colonne de strippage (K2).Method according to one of Claims 1 to 5, in which the mixture (1) or a gas derived from the mixture serves to reboil the stripping column (K2). Procédé selon l'une des revendications précédentes dans lequel la colonne de séparation (K3) opère à entre 1,5 et 15 bars abs, voire entre 7 et 10 bars abs.Method according to one of the preceding claims, in which the separation column (K3) operates at between 1.5 and 15 bar abs, or even between 7 and 10 bar abs. Appareil de séparation d'un mélange de monoxyde de carbone, d'hydrogène et de méthane comprenant une colonne de lavage (K1) et/ou au moins un séparateur de phases (P1), une colonne de strippage (K2) et une colonne de séparation (K3), un échangeur de chaleur (E1), des moyens pour envoyer le mélange se refroidir à une température cryogénique dans l'échangeur de chaleur, des moyens pour envoyer le mélange refroidi ou un gaz dérivé de ce mélange à la colonne de lavage alimentée en tête par un liquide (11) contenant au moins 80 % mol. de monoxyde de carbone et/ou au séparateur de phases ou à au moins un des séparateurs de phases, des moyens pour soutirer un liquide de cuve appauvri en hydrogène par rapport au mélange de la colonne de lavage ou du séparateur de phases ou d'un des séparateurs de phases, des moyens pour envoyer le liquide soutiré à la colonne de strippage, des moyens pour soutirer un gaz en tête de la colonne de strippage, des moyens pour envoyer un liquide de cuve de la colonne de strippage à la colonne de séparation, des moyens pour soutirer un liquide enrichi en méthane de la cuve de la colonne de séparation et des moyens pour vaporiser le liquide soutiré (21) dans l'échangeur de chaleur pour former un produit final caractérisé en ce qu'il comprend un compresseur (V1, V2), des moyens pour envoyer le liquide vaporisé enrichi en méthane pour être comprimé dans le compresseur et des moyens pour envoyer une partie (27) du gaz comprimé dans le compresseur en cuve de la colonne de séparation (K3) pour s'y séparer.Apparatus for separating a mixture of carbon monoxide, hydrogen and methane comprising a washing column (K1) and / or at least one phase separator (P1), a stripping column (K2) and a column separation (K3), a heat exchanger (E1), means for sending the mixture to cool to a cryogenic temperature in the exchanger heat, means for sending the cooled mixture or a gas derived from this mixture to the washing column supplied at the head with a liquid (11) containing at least 80 mol%. carbon monoxide and / or to the phase separator or to at least one of the phase separators, means for drawing off a hydrogen-depleted tank liquid with respect to the mixture of the washing column or of the phase separator or of a phase separators, means for sending the liquid withdrawn to the stripping column, means for withdrawing a gas at the head of the stripping column, means for sending a tank liquid from the stripping column to the separation column , means for withdrawing a liquid enriched in methane from the tank of the separation column and means for vaporizing the liquid withdrawn (21) in the heat exchanger to form a final product characterized in that it comprises a compressor ( V1, V2), means for sending the vaporized liquid enriched in methane to be compressed in the compressor and means for sending part (27) of the compressed gas in the compressor in the tank of the column of separation (K3) to separate there. Appareil selon la revendication 11 dans lequel la colonne de séparation (K3) a un condenseur de tête refroidi par un cycle d'azote fermé comprenant un compresseur d'azote gazeux.Apparatus according to claim 11 wherein the separation column (K3) has an overhead condenser cooled by a closed nitrogen cycle comprising a nitrogen gas compressor. Appareil selon la revendication 11 dans lequel la colonne de séparation (K3) a un condenseur de tête refroidi par un cycle de monoxyde de carbone fermé comprenant un compresseur de monoxyde de carbone gazeux.The apparatus of claim 11 wherein the separation column (K3) has an overhead condenser cooled by a closed carbon monoxide cycle comprising a gaseous carbon monoxide compressor. Appareil selon la revendication 11,12 ou 13 dans lequel les moyens pour envoyer une partie (27) du gaz comprimé dans le compresseur en cuve de la colonne de séparation (K3) sont reliés à l'échangeur de chaleur (E1).Apparatus according to claim 11, 12 or 13 in which the means for sending part (27) of the compressed gas to the tank compressor of the separation column (K3) are connected to the heat exchanger (E1).
EP19184179.0A 2018-07-25 2019-07-03 Method and device for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of ch4 Pending EP3599438A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1856889A FR3084453B1 (en) 2018-07-25 2018-07-25 METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF A MIXTURE OF CARBON MONOXIDE, HYDROGEN AND METHANE FOR THE PRODUCTION OF CH4

Publications (1)

Publication Number Publication Date
EP3599438A1 true EP3599438A1 (en) 2020-01-29

Family

ID=65031506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19184179.0A Pending EP3599438A1 (en) 2018-07-25 2019-07-03 Method and device for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of ch4

Country Status (4)

Country Link
US (1) US11965694B2 (en)
EP (1) EP3599438A1 (en)
CN (1) CN110779276B (en)
FR (1) FR3084453B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210254891A1 (en) * 2020-02-14 2021-08-19 Joseph Michael Schwartz Method for an improved partial condensation carbon monoxide cold box operation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2692484A (en) * 1950-04-24 1954-10-26 Air Liquide Separation of gaseous mixtures
EP0677483A1 (en) 1994-04-13 1995-10-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture
FR2754541A1 (en) 1996-10-15 1998-04-17 Air Liquide PROCESS AND INSTALLATION FOR THE SEPARATION OF A MIXTURE OF HYDROGEN AND / OR AT LEAST ONE HYDROCARBON AND / OR NITROGEN AND / OR CARBON OXIDE
CN101688753A (en) 2007-05-04 2010-03-31 乔治洛德方法研究和开发液化空气有限公司 Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation
FR2953004A1 (en) * 2009-11-24 2011-05-27 Air Liquide PROCESS FOR CRYOGENIC SEPARATION OF A NITROGEN MIXTURE AND CARBON MONOXIDE
FR3011320A1 (en) 2013-10-02 2015-04-03 Air Liquide METHOD AND APPARATUS FOR SEPARATION BY CRYOGENIC DISTILLATION OF A MIXTURE COMPRISING HYDROGEN, CARBON MONOXIDE AND METHANE
FR3018599A1 (en) 2014-03-17 2015-09-18 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS CONTAINING CARBON MONOXIDE, METHANE AND HYDROGEN

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722113A (en) * 1951-10-09 1955-11-01 Shell Dev Fractionation process
DE1626323B1 (en) * 1964-01-22 1970-09-24 Linde Ag Method and apparatus for the production of low-carbon, nitrogen-containing hydrogen
DE1551609A1 (en) * 1967-12-15 1972-03-02 Messer Griesheim Gmbh Process for the decomposition of liquid natural gas
DE3247782A1 (en) * 1982-12-23 1984-06-28 Linde Ag, 6200 Wiesbaden METHOD FOR DISASSEMBLING A GAS MIXTURE TO BE USED IN A METHANOL SYNTHESIS GAS SYSTEM AT LOW TEMPERATURES
FR2681131A1 (en) * 1991-09-11 1993-03-12 Air Liquide METHOD AND PLANT FOR PRODUCING CARBON MONOXIDE AND HYDROGEN
FR2718428B1 (en) * 1994-04-11 1997-10-10 Air Liquide Process and installation for the production of carbon monoxide.
GB2298034B (en) * 1995-02-10 1998-06-24 Air Prod & Chem Dual column process to remove nitrogen from natural gas
US5832747A (en) * 1997-08-12 1998-11-10 Air Products And Chemicals, Inc. Cryogenic adjustment of hydrogen and carbon monoxide content of syngas
WO1999067587A1 (en) * 1998-06-25 1999-12-29 Process Systems International, Inc. Cryogenic and membrane synthesis gas production
FR2930332A1 (en) * 2008-04-18 2009-10-23 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A MIXTURE OF HYDROGEN AND CARBON MONOXIDE
US9528759B2 (en) * 2008-05-08 2016-12-27 Conocophillips Company Enhanced nitrogen removal in an LNG facility
US20100251765A1 (en) * 2009-04-01 2010-10-07 Air Products And Chemicals, Inc. Cryogenic Separation of Synthesis Gas
DE102010044869A1 (en) * 2010-09-09 2012-03-15 Linde Aktiengesellschaft Liquefied Natural gas
US20130298600A1 (en) * 2011-01-17 2013-11-14 L'air Liquide Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Process and apparatus for production of ammonia synthesis gas and pure methane by cryogenic separation
EP2562502A1 (en) * 2011-06-24 2013-02-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for supplying gaseous carbon monoxide by cryogenic distillation
FR2982168B1 (en) * 2011-11-04 2015-05-01 Air Liquide PROCESS AND APPARATUS FOR SEPARATING CARBON DIOXIDE-RICH GAS BY DISTILLATION
EP3147611A1 (en) * 2015-09-24 2017-03-29 General Electric Technology GmbH Method and system for separating carbon dioxide from flue gas
CN105371592B (en) 2015-11-17 2017-11-14 辽宁中集哈深冷气体液化设备有限公司 The method that the oven gas without reboiler produces LNG in rectifying column
CN107367127B (en) 2017-08-15 2022-11-29 四川蜀道装备科技股份有限公司 Cryogenic separation of CO and H 2 Nitrogen circulating methane washing system and method
US20200191477A1 (en) * 2018-12-13 2020-06-18 Fluor Technologies Corporation Heavy hydrocarbon and btex removal from pipeline gas to lng liquefaction
FR3100057A1 (en) * 2019-08-20 2021-02-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude PROCESS AND APPARATUS FOR THE PRODUCTION OF CARBON MONOXIDE BY PARTIAL CONDENSATION

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2692484A (en) * 1950-04-24 1954-10-26 Air Liquide Separation of gaseous mixtures
EP0677483A1 (en) 1994-04-13 1995-10-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture
FR2754541A1 (en) 1996-10-15 1998-04-17 Air Liquide PROCESS AND INSTALLATION FOR THE SEPARATION OF A MIXTURE OF HYDROGEN AND / OR AT LEAST ONE HYDROCARBON AND / OR NITROGEN AND / OR CARBON OXIDE
CN101688753A (en) 2007-05-04 2010-03-31 乔治洛德方法研究和开发液化空气有限公司 Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation
FR2953004A1 (en) * 2009-11-24 2011-05-27 Air Liquide PROCESS FOR CRYOGENIC SEPARATION OF A NITROGEN MIXTURE AND CARBON MONOXIDE
FR3011320A1 (en) 2013-10-02 2015-04-03 Air Liquide METHOD AND APPARATUS FOR SEPARATION BY CRYOGENIC DISTILLATION OF A MIXTURE COMPRISING HYDROGEN, CARBON MONOXIDE AND METHANE
FR3018599A1 (en) 2014-03-17 2015-09-18 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS CONTAINING CARBON MONOXIDE, METHANE AND HYDROGEN

Also Published As

Publication number Publication date
US20200033055A1 (en) 2020-01-30
FR3084453B1 (en) 2020-11-27
CN110779276B (en) 2022-12-13
US11965694B2 (en) 2024-04-23
CN110779276A (en) 2020-02-11
FR3084453A1 (en) 2020-01-31

Similar Documents

Publication Publication Date Title
CA2146736C (en) Process and facility for the production of carbon monoxide
EP2122282B1 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and nitrogen by cryogenic distillation
EP0677483A1 (en) Process and apparatus for the separation of a gaseous mixture
EP0968959B1 (en) Process for the production of carbon monoxide
WO2019115966A1 (en) Method and apparatus for the cryogenic separation of a synthesis gas containing a nitrogen separation step
EP2504646B1 (en) Method and apparatus for cryogenically separating a mixture of nitrogen and carbon monoxide
EP2137474B1 (en) Method and apparatus for producing carbon monoxide by cryogenic distillation
CA2761307A1 (en) Process and plant for recovering argon in a separation unit for a purge gas used in the synthesis of ammonia
WO2013135993A2 (en) Method and device for separating a mixture containing carbon dioxide by means of distillation
EP3350119B1 (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
EP3599438A1 (en) Method and device for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of ch4
WO2018020091A1 (en) Method and apparatus for scrubbing at cryogenic temperature in order to produce a mixture of hydrogen and nitrogen
EP3464171A1 (en) Method and facility for combined production of a mixture of hydrogen and nitrogen as well as carbon monoxide by cryogenic distillation and scrubbing
EP3783292A1 (en) Method and device for producing carbon monoxide by partial condensation
WO2019180374A1 (en) Method and appliance for separating a synthesis gas by cryogenic distillation
FR3079288A1 (en) METHOD AND APPARATUS FOR SEPARATING A SYNTHESIS GAS BY CRYOGENIC DISTILLATION
FR3057942A1 (en) METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS BY PARTIAL CONDENSATION
EP3542112B1 (en) Method and installation for cryogenic separation of a gaseous mixture by methane scrubbing
WO2023222637A1 (en) Method and apparatus for low-temperature separation of a gas containing co2 to produce a co2-rich fluid
FR3097951A1 (en) METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF SYNTHESIS GAS FOR THE PRODUCTION OF CH4
FR3118144A3 (en) METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF A MIXTURE OF HYDROGEN, METHANE, NITROGEN AND CARBON MONOXIDE
FR3011320A1 (en) METHOD AND APPARATUS FOR SEPARATION BY CRYOGENIC DISTILLATION OF A MIXTURE COMPRISING HYDROGEN, CARBON MONOXIDE AND METHANE
FR3129388A3 (en) Method and apparatus for separating an oxygen-rich gas produced by electrolysis
FR2910603A1 (en) Carbon monoxide, hydrogen, methane and nitrogen mixture separating method, involves separating mixture at cold temperature by overhead condensation of carbon monoxide/methane separating column and boiling of discharge and separating columns
WO2018078249A1 (en) Method for cryogenically separating a mixture of hydrogen and carbon monoxide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200729

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230510