FR3027063A1 - MOTOR VEHICLE WITH COMBUSTION CYLINDER DEACTIVATION - Google Patents

MOTOR VEHICLE WITH COMBUSTION CYLINDER DEACTIVATION Download PDF

Info

Publication number
FR3027063A1
FR3027063A1 FR1459793A FR1459793A FR3027063A1 FR 3027063 A1 FR3027063 A1 FR 3027063A1 FR 1459793 A FR1459793 A FR 1459793A FR 1459793 A FR1459793 A FR 1459793A FR 3027063 A1 FR3027063 A1 FR 3027063A1
Authority
FR
France
Prior art keywords
torque
cylinder
cylinders
achievable
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1459793A
Other languages
French (fr)
Other versions
FR3027063B1 (en
Inventor
Jean Louis Charrier
Julien Parodi
Efstratios Kretzas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto Sas Fr
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Priority to FR1459793A priority Critical patent/FR3027063B1/en
Priority to PCT/FR2015/052450 priority patent/WO2016059312A1/en
Priority to EP15771209.2A priority patent/EP3207237A1/en
Priority to CN201580055181.0A priority patent/CN106795822B/en
Publication of FR3027063A1 publication Critical patent/FR3027063A1/en
Application granted granted Critical
Publication of FR3027063B1 publication Critical patent/FR3027063B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé de commande d'un moteur à combustion de véhicule automobile comportant une étape consistant à évaluer si la consigne de couple (1)est inférieure à un couple seuil (Ts) distinct du couple minimal atteignable avec le nombre de cylindres actifs actuel (3) et distinct du couple maximal atteignable avec un cylindre actif en moins (5).The invention relates to a method for controlling a motor vehicle combustion engine comprising a step of evaluating whether the torque setpoint (1) is lower than a threshold torque (Ts) distinct from the minimum torque achievable with the number of cylinders. active current (3) and distinct from the maximum torque achievable with a cylinder active less (5).

Description

1 MOTEUR DE VEHICULE AUTOMOBILE A DESACTIVATION DE CYLINDRE DE COMBUSTION [0001] L'invention se situe dans le domaine technique du contrôle de la combustion d'un moteur de véhicule automobile, notamment à allumage commandé, et plus précisément la stratégie visant à construire la coupure d'injection sélective de cylindres. Cette stratégie surveille au préalable le couple atteignable par le moteur thermique et demande la coupure, respectivement la remise, d'injection d'un ou plusieurs cylindres lorsque le moteur ne parvient plus à suivre une consigne de couple devenu trop faible, respectivement trop élevée en cas de remise d'un cylindre. [0002] Lors de situations de vie particulières telles qu'un changement de rapport sur boîte de vitesses automatique, une requête ESP (pour « Electronic Stability Program » en anglais ou Electro-Stabilisateur Programmé) ou encore une requête d'agrément par exemple, la consigne de couple reçue par le moteur peut devenir tellement faible que le moteur ne parvient plus à la respecter. Pour suivre cette consigne, le contrôle moteur utilise différents leviers. Sur la branche avance, la dégradation de l'avance à l'allumage diminue le rendement du moteur et donc le couple produit. Ce levier est utilisé pour des phases transitoires vives, car il a une dynamique rapide. Sur la branche air, la solution consiste à diminuer au maximum l'alimentation en air du moteur, en fermant le papillon par exemple. Ce levier a une dynamique plutôt lente en raison du pilotage des actionneurs, le boîtier papillon en l'occurrence, et en raison de la dynamique de l'air. Ainsi pour suivre une consigne de couple faible avec une forte dynamique, le levier sur la branche air seul ne peut être que difficilement utilisé, notamment lors d'une action telle qu'un changement de rapport sur boîte de vitesses automatique, car son potentiel de dégradation du couple est élevé, mais sa dynamique est faible. Ce qui a pour impact d'avoir un mauvais suivi du couple et une qualité de changement de rapport dégradée, voire un mauvais ressenti pour le client. A l'opposé, la dégradation d'avances à l'allumage offre un potentiel sur le couple plutôt faible, mais une dynamique très élevée et là aussi, le suivi de couple n'est pas toujours assuré, avec les impacts vus plus haut. L'autre inconvénient de ce levier est qu'il dégrade fortement le rendement du moteur ce qui engendre de fortes contraintes thermiques telles qu'une augmentation de la température à l'échappement, avec risque de casse. [0003] Ces actions, qui peuvent être combinées, ne sont donc pas toujours suffisantes pour assurer le suivi de la consigne de couple envoyée au moteur. La coupure d'injection sélective de cylindre apporte donc un levier supplémentaire lors d'une demande de 3027063 2 réduction de couple très dynamique. Cependant, à l'heure actuelle, les normes antipollution et le souhait de limiter au maximum la consommation des moteurs amènent les constructeurs automobiles à faire appel au « downsizing » ou réduction de dimension en français, c'est-à-dire la production de moteurs thermiques à faible cylindrée, avec un 5 nombre de cylindres en diminution. Pour conserver un niveau de performance équivalent à celui d'un moteur à plus forte cylindrée, le moteur se trouve alors très chargé, ce qui crée des « zones mortes » de couple dans le champ moteur, entre un fonctionnement avec tous les cylindres injectant et avec un cylindre coupé par exemple. Le contrôle moteur doit donc disposer d'un système de surveillance du couple atteignable en cas de coupure ou 10 de remise de l'injection. [0004] Au regard de ces leviers pour assurer le suivi de couple, la coupure d'injection de cylindre offre donc un fort potentiel. Mais avant d'établir la consigne de coupure d'injection d'un cylindre ou de remise d'injection d'un cylindre, le contrôle moteur doit idéalement s'assurer au préalable que la consigne de couple demandée par la structure couple sera 15 atteinte par le moteur. Par conséquent, l'enjeu est de mettre en place une stratégie visant à demander la coupure d'injection d'un ou plusieurs cylindres avec pour avantage d'améliorer le suivi de couple par un meilleur potentiel de couple atteignable et une dynamique équivalente à celle de la branche avance. Aussi cette stratégie a pour effet de diminuer le débit de gaz en sortie du moteur et donc de maitriser la température à 20 l'échappement. [0005] Le but de la présente invention est de proposer un moteur dans lequel les désactivations et réactivations de cylindres s'effectuent de manière efficace sur le suivi de consigne de couple. [0006] Ce but est atteint selon l'invention grâce à un procédé de commande d'un moteur 25 à combustion de véhicule automobile comportant une pluralité de cylindres de combustion, le procédé comprenant l'étape consistant à diminuer le nombre de cylindres actifs en cas de diminution de consigne de couple, caractérisé en ce qu'il comporte une étape consistant à évaluer si la consigne de couple est inférieure à un couple seuil distinct du couple minimal atteignable avec le nombre de cylindres actifs actuel et distinct du couple 30 maximal atteignable avec un cylindre actif en moins, le couple seuil étant compris entre ces deux couples respectivement minimal et maximal et l'étape consistant à réduire le nombre de cylindres actifs dans l'affirmative de cette évaluation. [0007] Avantageusement, le couple maximal atteignable avec un cylindre actif en moins est inférieur au couple minimal atteignable avec le nombre de cylindres actifs actuel. 3027063 3 [0008] Avantageusement, le procédé comprend l'étape consistant à évaluer si la consigne de couple est inférieure au couple minimal atteignable avec le nombre de cylindres actifs actuel et à réaliser l'étape consistant à évaluer si la consigne de couple est inférieure au couple seuil dans le cas où la consigne de couple est inférieure au couple minimal 5 atteignable avec le nombre de cylindres actifs actuel. [0009] Avantageusement, le procédé comporte l'étape consistant à calculer différents trajets de couple parmi lesquels un trajet consistant à désactiver un cylindre lors d'un franchissement dudit couple seuil et à opter pour l'un de ces différents trajets en fonction d'un paramètre préétabli de suivi de couple. 10 [0010] Avantageusement, l'un des différents trajets calculés comprend un tronçon précédant une désactivation de cylindre dans lequel tronçon le couple reste supérieur à la consigne de couple. [0011] Avantageusement, l'un des différents trajets calculés consiste à désactiver un cylindre lorsque la consigne de couple devient inférieure au couple maximal atteignable 15 avec un cylindre actif en moins. [0012] Avantageusement, l'un des différents trajets calculés comprend un tronçon consécutif à une désactivation de cylindre dans lequel tronçon le couple est inférieur à la consigne de couple. [0013] Avantageusement, l'un des différents trajets consiste à désactiver un cylindre dès 20 que la consigne de couple devient inférieure au couple minimal atteignable avec le nombre de cylindres actifs actuel. [0014] L'invention concerne également un module de commande de moteur à combustion de véhicule automobile comportant une pluralité de cylindres de combustion, le module de commande étant configuré pour diminuer le nombre de cylindres actifs en cas de 25 diminution de consigne de couple, caractérisé en ce qu'il est configuré pour évaluer si la consigne de couple est inférieure à un couple seuil distinct du couple minimal atteignable avec le nombre de cylindres actifs actuel et distinct du couple maximal atteignable avec un cylindre actif en moins, le couple seuil étant compris entre ces deux couples respectivement minimal et maximal et le module de commande est configuré pour réduire 30 le nombre de cylindres actifs dans l'affirmative de cette évaluation. [0015] L'invention concerne également un véhicule automobile comprenant un moteur à combustion et un tel module de commande du moteur à combustion. [0016] D'autres caractéristiques, buts et avantages de l'invention apparaitront à la lecture de la description détaillée qui va suivre, faite en référence à la figure unique annexée, 3027063 4 laquelle est un tracé représentatif d'une désactivation de cylindre selon un mode de réalisation de l'invention. [0017] On décrira maintenant un exemple de réalisation de l'invention dans lequel une consigne de couple du moteur devient trop faible pour le nombre de cylindres actifs.The invention lies in the technical field of controlling the combustion of a motor vehicle engine, especially with a spark ignition engine, and more specifically the strategy for constructing the combustion engine. selective injection cutting of cylinders. This strategy firstly monitors the torque attainable by the heat engine and requests the cut-off, respectively the delivery, of injection of one or more cylinders when the engine is no longer able to follow a torque setpoint that has become too low, respectively too high. case of delivery of a cylinder. In particular life situations such as a shift gearbox automatic transmission, an ESP request (for "Electronic Stability Program" in English or Electro-Stabilizer Scheduled) or a request for approval, for example, the torque setpoint received by the engine can become so low that the engine can no longer meet it. To follow this guideline, the motor control uses different levers. On the advance branch, the degradation of the ignition advance decreases the efficiency of the engine and therefore the torque produced. This lever is used for bright transient phases because it has a fast dynamic. On the air branch, the solution is to minimize the engine air supply, by closing the butterfly for example. This lever has a rather slow dynamic due to the control of the actuators, the throttle body in this case, and because of the dynamics of the air. Thus, to follow a low torque setpoint with a high dynamic range, the lever on the air branch alone can only be used with difficulty, especially during an action such as a gearshift on automatic gearbox, because its potential to torque degradation is high, but its momentum is weak. This has the impact of having a poor follow-up of the couple and a quality of change of report degraded, even a bad feeling for the customer. On the other hand, the degradation of ignition advances offers a rather low potential on the torque, but a very high dynamic and here too, torque tracking is not always ensured, with the impacts seen above. The other disadvantage of this lever is that it greatly degrades the efficiency of the engine which generates high thermal stresses such as an increase in the temperature at the exhaust, with risk of breakage. These actions, which can be combined, are not always sufficient to monitor the torque setpoint sent to the engine. Selective cylinder injection cutoff thus provides additional leverage in a very dynamic torque reduction application. However, at the present time, anti-pollution standards and the wish to limit the consumption of engines as much as possible lead automobile manufacturers to resort to "downsizing" or reduction of dimension in French, that is to say the production of low-cylinder engines, with a decreasing number of cylinders. To maintain a level of performance equivalent to that of a larger displacement engine, the engine is then very loaded, which creates "dead zones" of torque in the engine field, between operation with all injecting cylinders and with a cylinder cut for example. The engine control must therefore have a torque monitoring system achievable in the event of a cutoff or delivery of the injection. [0004] With regard to these levers to ensure torque tracking, the cylinder injection cutoff thus offers a high potential. But before establishing the cylinder injection cutoff or cylinder injection reset setpoint, the engine control must ideally ensure in advance that the torque setpoint requested by the torque structure will be reached. by the engine. Therefore, the challenge is to put in place a strategy to request the injection cut of one or more cylinders with the advantage of improving the torque tracking by a better torque potential achievable and a dynamic equivalent to that branch advance. Also this strategy has the effect of reducing the gas flow output of the engine and therefore to control the temperature at the exhaust. The object of the present invention is to provide an engine in which the deactivations and reactivations of cylinders are effected effectively on torque reference tracking. This object is achieved according to the invention by means of a control method of a motor vehicle combustion engine 25 having a plurality of combustion cylinders, the method comprising the step of reducing the number of active cylinders by torque reduction case, characterized in that it comprises a step of evaluating whether the torque setpoint is lower than a threshold torque distinct from the minimum torque achievable with the number of active cylinders current and distinct from the maximum torque attainable with a less active cylinder, the threshold torque being between these two pairs respectively minimum and maximum and the step of reducing the number of active cylinders in the affirmative of this evaluation. Advantageously, the maximum achievable torque with a less active cylinder is less than the minimum achievable torque with the current number of active cylinders. Advantageously, the method comprises the step of evaluating whether the torque setpoint is lower than the minimum achievable torque with the number of active cylinders present and performing the step of evaluating whether the torque setpoint is lower to the threshold torque in the case where the torque setpoint is lower than the minimum torque achievable with the number of active cylinders present. Advantageously, the method comprises the step of calculating different torque paths, including a path consisting in deactivating a cylinder when crossing said threshold torque and opting for one of these different paths as a function of a preset parameter of torque tracking. [0010] Advantageously, one of the different calculated paths comprises a section preceding a cylinder deactivation in which section the torque remains greater than the torque setpoint. Advantageously, one of the different calculated paths consists of deactivating a cylinder when the torque setpoint becomes lower than the maximum achievable torque with one less active cylinder. Advantageously, one of the different calculated paths comprises a consecutive section to a cylinder deactivation in which section the torque is less than the torque setpoint. Advantageously, one of the different paths consists of deactivating a cylinder as soon as the torque setpoint becomes lower than the minimum attainable torque with the number of current active cylinders. The invention also relates to a motor vehicle combustion engine control module comprising a plurality of combustion cylinders, the control module being configured to reduce the number of active cylinders in the event of a decrease in the torque setpoint. characterized in that it is configured to evaluate whether the torque setpoint is lower than a threshold torque distinct from the minimum achievable torque with the current active cylinder number and distinct from the maximum achievable torque with one less active cylinder, the threshold torque being between these two pairs respectively minimum and maximum and the control module is configured to reduce the number of active cylinders in the affirmative of this evaluation. The invention also relates to a motor vehicle comprising a combustion engine and such a control module of the combustion engine. Other features, objects and advantages of the invention will appear on reading the detailed description which follows, with reference to the single appended figure, which is a representative diagram of a deactivation cylinder according to an embodiment of the invention. An example embodiment of the invention will now be described in which an engine torque setpoint becomes too low for the number of active cylinders.

5 Lorsque la consigne de couple devient trop faible, il peut devenir impossible pour le moteur de la suivre du fait de la limitation par l'avance minimale. Il est alors nécessaire de recourir à la coupure d'injection sélective d'un ou de plusieurs cylindre(s). La coupure sélective consiste à couper l'injection sur un certain nombre de cylindres afin de réduire le couple optimal. Le rendement de consigne se trouve alors automatiquement accru dans la 10 même proportion :mons .cons =Ccons Copti [0018] On peut mettre en oeuvre une succession de demandes de coupure d'injection sélective, suivies de la réactivation de ces cylindres, par exemple sur un moteur à quatre cylindres. Lorsque le couple sur n cylindres recouvre celui sur n-1 cylindres, dans le cas d'une coupure, ou n+1 cylindres dans le cas d'une remise d'injection, on parle de « zone 15 couvrante ». [0019] Dans ce cas, la consigne de couple devient très faible au point d'être inférieure au couple minimum réalisable avec quatre cylindres. La stratégie demande alors la coupure d'injection d'un cylindre. Si par la suite la consigne de couple diminue toujours, un autre cylindre peut être coupé, jusqu'à atteindre la limite de nombre de cylindres autorisé à être 20 coupé. A l'inverse, lorsque le couple augmente suffisamment pour dépasser le couple minimal réalisable avec 1+n cylindres, n'étant le nombre de cylindres injectant à l'instant considéré, la stratégie demande la remise d'injection d'un cylindre. [0020] A l'inverse, lorsque le couple sur n cylindres ne recouvre pas celui sur n-1 cylindres dans le cas d'une coupure d'injection, respectivement sur n+1 cylindres dans le cas d'une 25 remise d'injection, on parle de « zone non couvrante » ou de zone morte. Dans ce cas, lorsque la consigne de couple devient inférieure au couple maximal réalisable avec un cylindre de moins, alors, la stratégie demande la coupure d'injection d'un cylindre. Si par la suite, la consigne de couple diminue toujours, un autre cylindre peut être coupé, jusqu'à atteindre la limite de cylindres que l'on s'autorise à couper. A l'inverse, lorsque la consigne 30 de couple devient supérieure au couple minimal réalisable avec un cylindre de plus, alors la stratégie demande la remise d'injection d'un cylindre. [0021] On décrira maintenant une désactivation de cylindre selon un mode de réalisation de l'invention dans le cas d'une zone non couvrante. Sur la figure annexée, on a représenté sous la référence 1 l'évolution d'un couple de consigne. Une zone 2 représente 35 une zone de valeurs de couple atteignable avec un nombre de quatre cylindres, cette zone 3027063 5 2 présentant une limite basse 3 correspondant à la valeur de couple minimale accessible avec quatre cylindres actifs. [0022] Une zone 4 représente quant à elle la zone de couple accessible avec trois cylindres actifs, la zone 4 présentant une limite supérieure 5 consistant en la valeur de 5 couple maximale atteignable avec trois cylindres actifs. La bande horizontale 6 située entre les zones 2 et 4 consiste elle en une bande de valeurs de couple qui ne sont accessibles ni avec quatre cylindres ni avec trois cylindres, cette bande consistant en une zone morte telle que définie plus haut. [0023] Dans cette partie du champ moteur, en cas de consigne de couple trop faible, la 10 présente stratégie propose différents chemins pour le couple effectif, parmi lesquels le contrôle moteur va choisir suivant le type de suivi de couple désiré. [0024] Selon un premier chemin, la coupure d'injection est demandée lorsque le moteur ne peut plus suivre la consigne de couple avec le nombre de cylindre courant. La désactivation du cylindre est représentée sous la forme d'une flèche verticale 10 laquelle 15 prend naissance à l'endroit où la consigne de couple atteint la limite inférieure 3 de la zone 2 réalisable avec quatre cylindres. Dans ce cas, la consigne de couple 1 est sous-estimée tel qu'illustré par la flèche horizontale 11 tant que la consigne de couple n'a pas atteint la zone de couple 4 réalisable avec un cylindre de moins. [0025] Selon un deuxième chemin, la coupure d'injection est demandée lorsque la 20 consigne de couple 1 atteint le couple maximal réalisable 5 avec un cylindre de moins. Dans ce cas, la consigne de couple est surestimée selon la flèche horizontale 20 pendant l'intervalle de temps où la consigne de couple 1 se situe dans la zone morte 6, c'est-à-dire pendant l'intervalle de temps où la consigne de couple 1 n'a pas encore atteint la zone de couple 4 réalisable avec un cylindre de moins, ici avec trois cylindres. Une fois que la 25 consigne de couple 1 a atteint la zone de couple 4, alors la désactivation d'un cylindre est commandée et le cylindre est désactivé selon la flèche verticale 21. [0026] Selon un troisième chemin, la coupure d'injection est demandée lorsque la consigne de couple moteur 1 atteint un couple Ts qui est calibrable entre le couple minimal 3 atteignable avec le nombre de cylindre actifs courant et le couple maximal 5 atteignable 30 avec le nombre de cylindres actifs diminué d'un cylindre, ici avec trois cylindres actifs. Ainsi, après que le couple effectif ait suivi la valeur de couple minimal 3 selon la flèche horizontale 30, lorsque la consigne de couple atteint une progression établie entre la valeur de couple minimale 3 et la valeur de couple maximal inférieure 5, cette progression étant par exemple établie à une valeur de 60 pourcents, alors un cylindre est désactivé 35 selon la flèche 31 puis le couple effectif suit, selon la flèche horizontale 32, la valeur 3027063 6 maximale 5 avec trois cylindres actifs jusqu'à rejoindre la valeur de consigne 1 lorsque celle-ci rejoint la zone 4. Dans ce cas, la consigne de couple est suivie de manière optimale. Dans le cas de ce chemin de couple, la stratégie mesure l'écart entre le couple minimal avec le nombre de cylindres courant et le couple maximal avec le nombre de 5 cylindre courant diminué d'un cylindre. Le seuil de couple calibrable à partir duquel la désactivation d'un cylindre est demandée est un pourcentage de la zone morte. Un pourcentage à 100% est équivalent au premier chemin décrit plus haut, un pourcentage à 0% est équivalent au deuxième chemin décrit plus haut. [0027] De la même manière, pour la remise d'injection d'un cylindre coupé, lorsque la 10 consigne de couple augmente, la présente stratégie propose différents chemins suivant le type de suivi de couple désiré. Selon un premier chemin, la remise d'injection est demandée lorsque le moteur ne peut plus suivre la consigne de couple avec le nombre de cylindres courant. Dans ce cas, la consigne de couple est surestimée tant qu'elle n'aura pas atteint la zone de couple réalisable avec un cylindre de plus. Selon un deuxième 15 chemin, la remise d'injection est demandée lorsque la consigne de couple atteint le couple réalisable avec un cylindre de plus. Dans ce cas, la consigne de couple est sous-estimée tant qu'elle n'aura pas atteint la zone de couple réalisable avec un cylindre de plus. [0028] Selon un troisième chemin, la remise d'injection est demandée lorsque la consigne de couple moteur atteint un couple calibrable entre le couple minimal avec le nombre de 20 cylindres actifs courant additionné d'un cylindre et le couple maximal atteignable avec le nombre de cylindres actifs courant. Dans ce cas, la consigne de couple est suivie de manière optimale. Dans le cas de ce troisième chemin, la stratégie mesure l'écart entre le couple minimal atteignable avec un cylindre actif de plus et le couple maximal atteignable avec le nombre de cylindres actifs courant. Le seuil calibrable est un pourcentage de la 25 zone morte. Un pourcentage de 0% est équivalent au premier chemin décrit plus haut, un pourcentage de 100% est équivalent au deuxième chemin décrit plus haut. [0029] Le présent dispositif demande donc la désactivation sélective d'injection sur un ou plusieurs cylindres lorsque la consigne de couple demandée au moteur sur la branche avance ou la branche air ne peut plus être suivie, respectivement, dans le cas d'une 30 réactivation, lorsque la consigne de couple demandée au moteur peut être réalisée avec un cylindre de plus. Pour cela il calcule en temps réel le couple atteignable une fois un cylindre désactivé ou une fois un cylindre réactivé pour demander la désactivation, respectivement l'activation selon plusieurs « chemins » calibrables suivant le type de suivi de couple désiré. Le type de suivi de couple désiré, qui génère la mise en oeuvre de l'un 35 ou l'autre des chemins élaborés, est par exemple un choix de niveau de confort de 3027063 7 conduite, choisi par le conducteur au tableau de bord ou choisi en usine. Le type de suivi peut en variante être conditionné par le fait que le véhicule est piloté en ville ou sur autoroute, sur la base d'une détection de variations plus ou moins élevées de la vitesse du véhicule. 5 [0030] Bien que l'on ait décrit un exemple de réalisation où différents chemins de pilotage de couple sont élaborés, en variante le contrôle moteur élabore un seul chemin tel que le troisième chemin à déclenchement calibré de la désactivation et/ou de la réactivation de cylindre, permettant par là un pilotage amélioré de la désactivation et/ou de la réactivation. Le dispositif décrit ici est particulièrement avantageux lorsque la consigne de couple 10 moteur se situe dans une zone de couple moteur dite « morte », c'est-à-dire où l'évolution de couple souhaitée ne peut pas être réalisée. [0031] Un tel dispositif n'améliore pas les performances intrinsèques du moteur, les zones de couple couvrantes ou non sont définies par la physique du moteur telle que la cylindrée et les technologies de combustion utilisées ainsi que par les choix de calibrations. Mais 15 une fois ces paramètres définis, un tel dispositif, et notamment le chemin à calibrage de désactivation et/ou de réactivation, permet d'offrir un gain significatif dans le pilotage en couple en faisant varier artificiellement les zones de couple atteignables par le moteur. [0032] La stratégie permet de suivre au plus juste la consigne de couple dans les situations de vie délicates telles que les changements de rapport de boite de vitesse 20 automatique ou les activations de l'ESP en utilisant au maximum le potentiel de la coupure sélective de cylindre. La stratégie proposée permet d'améliorer le suivi du couple par le moteur lors de situations de vie à très fortes dynamiques qui peuvent être critiques pour le moteur lui-même et les systèmes consommateurs tels que la boîte de vitesses automatique ou les actionneurs ESP, avec pour impact un mauvais ressenti par le client, 25 voire un risque pour sa sécurité. Ainsi, cette stratégie apporte un gain dans le suivi de couple en permettant une dynamique élevée combinée à un potentiel de diminution de couple élevé. Elle apporte également un gain en termes de protection du moteur car la dégradation d'avances à l'allumage est moindre et comme l'injection est coupée sur un ou plusieurs cylindres, le débit de gaz à l'échappement est plus faible, ce qui diminue la 30 température des gaz à l'échappement. La surveillance du couple atteignable permet en outre d'éviter les situations de ballottement de consigne de coupure d'injection parce que le système se retrouve dans une zone morte de couple. [0033] Une telle stratégie peut être mise en oeuvre sans coût supplémentaire élevé car elle peut être implémentée dans le contrôle moteur seul, sans besoin de capteur et/ou 35 d'actionneur supplémentaire. 3027063 8 [0034] Ce type de stratégie est particulièrement avantageux sur les moteurs à faible cylindrée fortement chargés et parfois avec peu de cylindres car leur potentiel de diminution du couple est assez faible par la seule dégradation de l'avance à l'allumage par rapport à un moteur thermique avec beaucoup de cylindres et une cylindrée élevée. 5When the torque set point becomes too low, it may become impossible for the motor to follow it due to the limitation by the minimum advance. It is then necessary to resort to selective injection cutting of one or more cylinder (s). Selective shutdown involves cutting the injection on a number of cylinders to reduce the optimum torque. The target efficiency is then automatically increased in the same proportion: mons .cons = Ccons Copti [0018] A succession of selective injection cut-off requests can be implemented, followed by the reactivation of these cylinders, for example on a four-cylinder engine. When the torque on n cylinders overlaps that on n-1 cylinders, in the case of a cut, or n + 1 cylinders in the case of a delivery injection, it is called "zone 15 covering". In this case, the torque setpoint becomes very low to the point of being less than the minimum torque achievable with four cylinders. The strategy then requires the injection cut of a cylinder. If thereafter the torque setpoint still decreases, another cylinder may be cut, until the limit of the number of cylinders allowed to be cut is reached. Conversely, when the torque increases sufficiently to exceed the minimum torque achievable with 1 + n cylinders, not being the number of cylinders injecting at the instant considered, the strategy requires the surrender injection of a cylinder. Conversely, when the torque on n cylinders does not cover that on n-1 cylinders in the case of an injection cut, respectively on n + 1 cylinders in the case of a delivery of injection, we speak of "non-covering area" or dead zone. In this case, when the torque setpoint becomes lower than the maximum achievable torque with one less cylinder, then the strategy requires the injection cutoff of a cylinder. If subsequently, the torque setpoint still decreases, another cylinder can be cut, until reaching the limit of cylinders that is allowed to cut. On the other hand, when the torque setpoint becomes greater than the minimum achievable torque with one more cylinder, then the strategy requires the injection reset of a cylinder. We will now describe a cylinder deactivation according to one embodiment of the invention in the case of a non-covering area. In the attached figure, there is shown under reference 1 the evolution of a set torque. Zone 2 represents a zone of achievable torque values with a number of four cylinders, this zone 3027063 having a low limit 3 corresponding to the minimum torque value accessible with four active cylinders. An area 4 represents the accessible torque zone with three active cylinders, the zone 4 having an upper limit 5 consisting of the maximum achievable torque value with three active cylinders. The horizontal band 6 situated between zones 2 and 4 consists of a band of torque values which are accessible neither with four cylinders nor with three cylinders, this band consisting of a dead zone as defined above. In this part of the motor field, in the case of too low torque setpoint, the present strategy proposes different paths for the effective torque, among which the motor control will choose according to the type of desired torque tracking. In a first path, the injection cutoff is requested when the motor can no longer follow the torque setpoint with the current roll number. The deactivation of the cylinder is shown as a vertical arrow 10 which starts at the point where the torque setpoint reaches the lower limit 3 of zone 2 achievable with four cylinders. In this case, the torque setpoint 1 is underestimated as illustrated by the horizontal arrow 11 as long as the torque setpoint has not reached the torque zone 4 achievable with one less cylinder. According to a second path, the injection cutoff is required when the torque setpoint 1 reaches the maximum achievable torque with one less cylinder. In this case, the torque setpoint is overestimated according to the horizontal arrow 20 during the time interval when the torque setpoint 1 is in the dead zone 6, that is to say during the time interval where the Torque reference 1 has not yet reached the torque zone 4 achievable with one less cylinder, here with three cylinders. Once the torque setpoint 1 has reached the torque zone 4, then the deactivation of a cylinder is controlled and the cylinder is deactivated according to the vertical arrow 21. [0026] In a third path, the injection cutoff is requested when the engine torque setpoint 1 reaches a torque Ts which is calibrated between the minimum torque 3 achievable with the number of active cylinders current and the maximum torque 5 achievable with the number of active cylinders decreased by one cylinder, here with three active cylinders. Thus, after the effective torque has followed the minimum torque value 3 according to the horizontal arrow 30, when the torque setpoint reaches a progression established between the minimum torque value 3 and the lower maximum torque value 5, this progression being by Example established at a value of 60 percent, then a cylinder is deactivated according to the arrow 31 and then the effective torque follows, according to the horizontal arrow 32, the maximum value 3027063 6 with three active cylinders until reaching the set point 1 when it reaches zone 4. In this case, the torque setpoint is followed optimally. In the case of this torque path, the strategy measures the difference between the minimum torque with the number of cylinders running and the maximum torque with the current cylinder number decreased by one cylinder. The calibrated torque threshold from which the deactivation of a cylinder is requested is a percentage of the dead zone. A percentage at 100% is equivalent to the first path described above, a percentage at 0% is equivalent to the second path described above. [0027] In the same way, for the injection refill of a cut cylinder, when the torque setpoint increases, the present strategy proposes different paths depending on the type of desired torque tracking. According to a first path, the injection delivery is requested when the engine can no longer follow the torque setpoint with the number of cylinders running. In this case, the torque setpoint is overestimated until it reaches the achievable torque zone with one more cylinder. In a second way, the injection delivery is requested when the torque setpoint reaches the achievable torque with one more cylinder. In this case, the torque setpoint is underestimated until it reaches the achievable torque zone with one more cylinder. According to a third path, the injection reset is requested when the engine torque setpoint reaches a calibrated torque between the minimum torque with the number of active cylinders added with a cylinder and the maximum torque achievable with the number active cylinders. In this case, the torque setpoint is optimally monitored. In the case of this third path, the strategy measures the difference between the minimum achievable torque with one more active cylinder and the maximum achievable torque with the number of active cylinders running. The calibratable threshold is a percentage of the dead zone. A percentage of 0% is equivalent to the first path described above, a percentage of 100% is equivalent to the second path described above. The present device therefore requires the selective deactivation of injection on one or more cylinders when the torque setpoint requested from the motor on the advance branch or the air branch can no longer be followed, respectively, in the case of a 30 reactivation, when the requested torque setpoint to the motor can be achieved with one more cylinder. For this it calculates in real time the achievable torque once a deactivated cylinder or once a reactivated cylinder to request the deactivation or activation according to several "paths" calibrated according to the type of desired torque tracking. The desired type of torque tracking, which generates the implementation of one or the other of the elaborate paths, is for example a choice of driving comfort level chosen by the driver on the dashboard or chosen in the factory. The type of monitoring can alternatively be conditioned by the fact that the vehicle is driven in the city or highway, on the basis of a detection of more or less high variations of the speed of the vehicle. Although an exemplary embodiment has been described in which different torque control paths are developed, in a variant the motor control generates a single path such as the third calibrated trigger path of the deactivation and / or the reactivation cylinder, thereby allowing improved control of the deactivation and / or reactivation. The device described here is particularly advantageous when the motor torque setpoint 10 is in a so-called "dead" motor torque zone, that is to say where the desired torque change can not be achieved. Such a device does not improve the intrinsic performance of the engine, the torque areas covering or not are defined by the physics of the engine such as the displacement and combustion technologies used and the choice of calibrations. But once these parameters have been defined, such a device, and in particular the path with deactivation and / or reactivation calibration, makes it possible to offer a significant gain in the torque control by artificially varying the torque zones that can be reached by the motor. . The strategy makes it possible to follow as closely as possible the torque setpoint in delicate life situations such as automatic gearbox ratio changes or ESP activations by making maximum use of the potential of selective disconnection. of cylinder. The proposed strategy makes it possible to improve torque monitoring by the engine during very dynamic life situations that may be critical for the engine itself and the consumer systems such as the automatic gearbox or the ESP actuators, with for impact a bad feeling by the customer, 25 even a risk for his safety. Thus, this strategy provides a gain in torque tracking by allowing high dynamics combined with high torque reduction potential. It also brings a gain in terms of protection of the engine because the degradation of advance ignition is less and as the injection is cut on one or more cylinders, the exhaust gas flow is lower, which decreases the exhaust gas temperature. The monitoring of the achievable torque also makes it possible to avoid situations of sloshing of the injection cut-off set point because the system is found in a dead zone of torque. Such a strategy can be implemented without any additional high cost since it can be implemented in the motor control alone, without the need for a sensor and / or additional actuator. This type of strategy is particularly advantageous on heavily loaded small displacement engines and sometimes with little cylinders because their potential for reducing the torque is quite low by the only degradation of the ignition advance compared to to a combustion engine with a lot of cylinders and a high engine capacity. 5

Claims (10)

REVENDICATIONS1. Procédé de commande d'un moteur à combustion de véhicule automobile comportant une pluralité de cylindres de combustion, le procédé comprenant l'étape consistant à diminuer le nombre de cylindres actifs (10,21,31) en cas de diminution de consigne de couple (1), caractérisé en ce qu'il comporte une étape consistant à évaluer si la consigne de couple (1) est inférieure à un couple seuil (Te) distinct du couple minimal atteignable avec le nombre de cylindres actifs actuel (3) et distinct du couple maximal atteignable avec un cylindre actif en moins (5), le couple seuil (Ts) étant compris entre ces deux couples respectivement minimal (3) et maximal (5) et l'étape consistant à réduire le nombre de cylindres actifs (10,21,31) dans l'affirmative de cette évaluation.REVENDICATIONS1. A method of controlling a motor vehicle combustion engine having a plurality of combustion cylinders, the method comprising the step of decreasing the number of active cylinders (10, 21, 31) in the event of a decrease in torque setpoint ( 1), characterized in that it comprises a step of evaluating whether the torque setpoint (1) is lower than a threshold torque (Te) distinct from the minimum torque achievable with the current number of active cylinders (3) and distinct from the maximum torque achievable with a cylinder less active (5), the threshold torque (Ts) being between these two pairs respectively minimum (3) and maximum (5) and the step of reducing the number of active cylinders (10, 21,31) in the affirmative of this evaluation. 2. Procédé selon la revendication 1, caractérisé en ce que le couple maximal atteignable avec un cylindre actif en moins (5) est inférieur au couple minimal atteignable avec le nombre de cylindres actifs actuel (3).2. Method according to claim 1, characterized in that the maximum torque achievable with a cylinder active less (5) is less than the minimum torque achievable with the number of active cylinders current (3). 3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce qu'il comprend l'étape consistant à évaluer si la consigne de couple (1) est inférieure au couple minimal atteignable avec le nombre de cylindres actifs actuel (3) et à réaliser l'étape consistant à évaluer si la consigne de couple (1) est inférieure au couple seuil (Te) dans le cas où la consigne de couple (1) est inférieure au couple minimal atteignable avec le nombre de cylindres actifs actuel (3).3. Method according to claim 1 or claim 2, characterized in that it comprises the step of evaluating whether the torque setpoint (1) is lower than the minimum torque achievable with the number of active cylinders present (3) and performing the step of evaluating whether the torque setpoint (1) is lower than the threshold torque (Te) in the case where the torque setpoint (1) is lower than the minimum torque achievable with the current number of active cylinders (3). ). 4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte l'étape consistant à calculer différents trajets de couple (10,20,30) parmi lesquels un trajet (30) consistant à désactiver un cylindre (31) lors d'un franchissement dudit couple seuil (Ts) et à opter pour l'un de ces différents trajets (10,20,30) en fonction d'un paramètre préétabli de suivi de couple.4. Method according to any one of the preceding claims, characterized in that it comprises the step of calculating different torque paths (10,20,30) among which a path (30) consisting of deactivating a cylinder (31). ) during a crossing of said threshold torque (Ts) and to opt for one of these different paths (10, 20, 30) as a function of a predetermined parameter of torque tracking. 5. Procédé selon la revendication précédente, caractérisé en ce que l'un des différents trajets calculés (10,20,30) comprend un tronçon (30) précédant une désactivation de cylindre (31) dans lequel tronçon (30) le couple reste supérieur à la consigne de couple (1).5. Method according to the preceding claim, characterized in that one of the different calculated paths (10,20,30) comprises a section (30) preceding a deactivation of cylinder (31) in which section (30) the torque remains higher to the torque setpoint (1). 6. Procédé selon la revendication précédente, caractérisé en ce que l'un des différents trajets calculés (10,20,30) consiste à désactiver un cylindre (21) lorsque la consigne de couple (1) devient inférieure au couple maximal atteignable avec un cylindre actif en moins (5).6. Method according to the preceding claim, characterized in that one of the different calculated paths (10,20,30) is to deactivate a cylinder (21) when the torque setpoint (1) becomes lower than the maximum torque achievable with a active cylinder less (5). 7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé en ce que l'un des différents trajets calculés (10,20,30) comprend un tronçon (11) consécutif à une 3027063 10 désactivation de cylindre (10) dans lequel tronçon (11) le couple est inférieur à la consigne de couple (1).7. Method according to any one of claims 4 to 6, characterized in that one of the different calculated paths (10, 20, 30) comprises a section (11) consecutive to a cylinder deactivation (10) in which section (11) the torque is less than the torque setpoint (1). 8. Procédé selon la revendication précédente, caractérisé en ce que l'un des différents trajets (10,20,30) consiste à désactiver un cylindre (10) dès que la consigne de 5 couple (1) devient inférieure au couple minimal atteignable avec le nombre de cylindres actifs actuel (3).8. Method according to the preceding claim, characterized in that one of the different paths (10,20,30) is to deactivate a cylinder (10) as soon as the torque setpoint (1) becomes less than the minimum torque achievable with the number of current active cylinders (3). 9. Module de commande de moteur à combustion de véhicule automobile comportant une pluralité de cylindres de combustion, le module de commande étant configuré pour diminuer le nombre de cylindres actifs (10,21,31) en cas de diminution de consigne de 10 couple (1), caractérisé en ce qu'il est configuré pour évaluer si la consigne de couple (1) est inférieure à un couple seuil (Te) distinct du couple minimal atteignable avec le nombre de cylindres actifs actuel (3) et distinct du couple maximal atteignable avec un cylindre actif en moins (5), le couple seuil (Ts) étant compris entre ces deux couples respectivement minimal (3) et maximal (5) et le module de commande est configuré pour 15 réduire le nombre de cylindres actifs (10,21,31) dans l'affirmative de cette évaluation.Motor vehicle combustion engine control module comprising a plurality of combustion cylinders, the control module being configured to reduce the number of active cylinders (10, 21, 31) in the event of a torque setpoint decrease ( 1), characterized in that it is configured to evaluate whether the torque setpoint (1) is lower than a threshold torque (Te) distinct from the minimum attainable torque with the current active number of cylinders (3) and distinct from the maximum torque achievable with an active cylinder in minus (5), the threshold torque (Ts) being between these two pairs respectively minimum (3) and maximum (5) and the control module is configured to reduce the number of active cylinders (10 , 21,31) in the affirmative of this evaluation. 10. Véhicule automobile comprenant un moteur à combustion et un module de commande du moteur à combustion selon la revendication précédente.10. Motor vehicle comprising a combustion engine and a control module of the combustion engine according to the preceding claim.
FR1459793A 2014-10-13 2014-10-13 MOTOR VEHICLE ENGINE WITH COMBUSTION CYLINDER DEACTIVATION Active FR3027063B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR1459793A FR3027063B1 (en) 2014-10-13 2014-10-13 MOTOR VEHICLE ENGINE WITH COMBUSTION CYLINDER DEACTIVATION
PCT/FR2015/052450 WO2016059312A1 (en) 2014-10-13 2015-09-14 Internal combustion engine for a motor vehicle provided with cylinder deactivation
EP15771209.2A EP3207237A1 (en) 2014-10-13 2015-09-14 Internal combustion engine for a motor vehicle provided with cylinder deactivation
CN201580055181.0A CN106795822B (en) 2014-10-13 2015-09-14 Internal combustion engine for a motor vehicle with cylinder deactivation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1459793A FR3027063B1 (en) 2014-10-13 2014-10-13 MOTOR VEHICLE ENGINE WITH COMBUSTION CYLINDER DEACTIVATION
FR1459793 2014-10-13

Publications (2)

Publication Number Publication Date
FR3027063A1 true FR3027063A1 (en) 2016-04-15
FR3027063B1 FR3027063B1 (en) 2020-07-17

Family

ID=52021275

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1459793A Active FR3027063B1 (en) 2014-10-13 2014-10-13 MOTOR VEHICLE ENGINE WITH COMBUSTION CYLINDER DEACTIVATION

Country Status (4)

Country Link
EP (1) EP3207237A1 (en)
CN (1) CN106795822B (en)
FR (1) FR3027063B1 (en)
WO (1) WO2016059312A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399475B2 (en) * 2017-03-17 2018-10-03 マツダ株式会社 Vehicle control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262648A2 (en) * 2001-06-01 2002-12-04 Hitachi Ltd. Control apparatus of internal combustion engine
US20030131820A1 (en) * 2002-01-15 2003-07-17 Mckay Daniel Lee System for controllably disabling cylinders in an internal combustion engine
JP2006250133A (en) * 2005-03-14 2006-09-21 Hitachi Ltd Torque control method and torque control device for internal combustion engine
US20090118977A1 (en) * 2007-11-05 2009-05-07 Gm Global Technology Opearations, Inc. Cylinder fueling coordination for torque estimation and control
FR2992026A1 (en) * 2012-06-13 2013-12-20 Peugeot Citroen Automobiles Sa Method for controlling e.g. spark ignition internal combustion engine, of car, involves modifying number of cylinders used for combustion when set point torque crosses minimum torque threshold during control of effective engine torque

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249748B2 (en) * 2012-10-03 2016-02-02 GM Global Technology Operations LLC System and method for controlling a firing sequence of an engine to reduce vibration when cylinders of the engine are deactivated
JP5979030B2 (en) * 2013-02-05 2016-08-24 マツダ株式会社 Variable cylinder engine
US9611769B2 (en) * 2013-03-14 2017-04-04 GM Global Technology Operations LLC System and method for controlling airflow through a ventilation system of an engine when cylinders of the engine are deactivated

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262648A2 (en) * 2001-06-01 2002-12-04 Hitachi Ltd. Control apparatus of internal combustion engine
US20030131820A1 (en) * 2002-01-15 2003-07-17 Mckay Daniel Lee System for controllably disabling cylinders in an internal combustion engine
JP2006250133A (en) * 2005-03-14 2006-09-21 Hitachi Ltd Torque control method and torque control device for internal combustion engine
US20090118977A1 (en) * 2007-11-05 2009-05-07 Gm Global Technology Opearations, Inc. Cylinder fueling coordination for torque estimation and control
FR2992026A1 (en) * 2012-06-13 2013-12-20 Peugeot Citroen Automobiles Sa Method for controlling e.g. spark ignition internal combustion engine, of car, involves modifying number of cylinders used for combustion when set point torque crosses minimum torque threshold during control of effective engine torque

Also Published As

Publication number Publication date
CN106795822B (en) 2020-08-04
FR3027063B1 (en) 2020-07-17
WO2016059312A1 (en) 2016-04-21
EP3207237A1 (en) 2017-08-23
CN106795822A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
FR2992026A1 (en) Method for controlling e.g. spark ignition internal combustion engine, of car, involves modifying number of cylinders used for combustion when set point torque crosses minimum torque threshold during control of effective engine torque
EP1217202B1 (en) Method and apparatus of damping pressure waves in a common rail injection system
FR2987404A1 (en) Method for defining training speed of adaptive correction of ignition advance of cylinder of car's spark ignition combustion engine, involves establishing training speed for increase of advance based on engine speed and rattling index value
FR3027063A1 (en) MOTOR VEHICLE WITH COMBUSTION CYLINDER DEACTIVATION
EP2929168B1 (en) Method for selectively cutting off injection into one or more cylinders of a combustion engine and corresponding motor vehicle
FR3028292A1 (en) METHOD OF CONTROLLING A TORQUE OF A MOTOR POWERTRAIN
FR2850429A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE
FR3018549A1 (en) COMBUSTION ENGINE OF A MOTOR VEHICLE WITH CYLINDER DEACTIVATION
FR3036737B1 (en) METHOD FOR DISENGAGING CYLINDERS FROM A COMBUSTION ENGINE
FR2895458A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE
EP2976517B1 (en) Motor vehicle combustion engine automatic restart control device
WO2022013487A1 (en) Method for determining ignition advance in a controlled-ignition internal combustion engine
WO2014057184A1 (en) Method and device for controlling the acceleration to be applied to a vehicle in case of reactivation of a speed regulation function
FR3048265A1 (en) METHOD FOR CONTROLLING THE COMBUSTION OF A THERMAL ENGINE BY ADAPTING THE FUEL INJECTION
FR2942006A1 (en) Ignition advance adjusting method for internal combustion engine, involves determining current advance by decrementing ignition advance of step when chattering event is detected, where step is less than or equal to crankshaft angle
FR3120593A1 (en) METHOD FOR CORRECTING A TORQUE ERROR OF A THERMAL ENGINE BY AN ELECTRIC TRACTION MACHINE
EP2900988B1 (en) Method for controlling a power train, vehicle, associated recording medium and program
WO2016059311A1 (en) Method for interrupting the injection of fuel to an internal combustion engine
FR3041705A1 (en) METHOD FOR CONTROLLING INJECTED AIR FLOW IN A TURBO-PRESSURE ENGINE
FR2887587A1 (en) METHOD FOR MANAGING A DRIVE FACILITY COMPRISING A COMBUSTION ENGINE
WO2016128639A1 (en) Method for the selective cutting off of the injection of one or more cylinders
FR3001937A1 (en) Method for controlling changes of operating mode of traction device of e.g. hybrid vehicle, involves passing integration directly to mode when integration reaches preset threshold and another integration is positive
FR3070436A1 (en) METHOD OF CONTROLLING THERMAL MOTOR FOR INCREASING MOTOR TORQUE
FR2795773A1 (en) Method of smoothening or in fact eliminating the slight jerk felt by drivers during gear change especially in automatic gear change vehicles
FR3081411A1 (en) GENERATOR CONTROL DEVICE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20160415

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

CA Change of address

Effective date: 20180312

CD Change of name or company name

Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR

Effective date: 20180312

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

CD Change of name or company name

Owner name: STELLANTIS AUTO SAS, FR

Effective date: 20240423