FR3010511A1 - Procede et appareil de separation d'un melange gazeux a temperature subambiante - Google Patents

Procede et appareil de separation d'un melange gazeux a temperature subambiante Download PDF

Info

Publication number
FR3010511A1
FR3010511A1 FR1358668A FR1358668A FR3010511A1 FR 3010511 A1 FR3010511 A1 FR 3010511A1 FR 1358668 A FR1358668 A FR 1358668A FR 1358668 A FR1358668 A FR 1358668A FR 3010511 A1 FR3010511 A1 FR 3010511A1
Authority
FR
France
Prior art keywords
heat
pressure
liquid
separation
gaseous mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1358668A
Other languages
English (en)
Other versions
FR3010511B1 (fr
Inventor
Antony Correia-Anacleto
Benoit Davidian
Bernard Saulnier
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to FR1358668A priority Critical patent/FR3010511B1/fr
Priority to EP14786968.9A priority patent/EP3044529A2/fr
Priority to PCT/FR2014/052103 priority patent/WO2015036673A2/fr
Priority to US15/021,037 priority patent/US20160223254A1/en
Priority to CN201480061005.3A priority patent/CN105705892A/zh
Priority to US15/021,035 priority patent/US20160223253A1/en
Priority to EP14784274.4A priority patent/EP3044522A2/fr
Priority to PCT/FR2014/052241 priority patent/WO2015036697A2/fr
Priority to CN201480061010.4A priority patent/CN105705893A/zh
Priority to EP14784278.5A priority patent/EP3071910A2/fr
Priority to CN201480061009.1A priority patent/CN105705884B/zh
Priority to US15/021,031 priority patent/US20160216013A1/en
Priority to PCT/FR2014/052246 priority patent/WO2015036700A2/fr
Publication of FR3010511A1 publication Critical patent/FR3010511A1/fr
Application granted granted Critical
Publication of FR3010511B1 publication Critical patent/FR3010511B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Dans un procédé de séparation d'un mélange gazeux par séparation à température subambiante, un mélange gazeux à une première pression est refroidi, puis séparé dans une unité de séparation (23, 25), un liquide (47) est soutiré de l'unité de séparation et vaporisé pour former un produit gazeux sous pression, et une partie au moins de la chaleur de vaporisation du liquide est fournie par une pompe à chaleur (31) utilisant l'effet magnétocalorique dont la source chaude échange de la chaleur, directement ou indirectement, avec le liquide qui se vaporise.

Description

La présente invention est relative à un procédé et à un appareil de séparation d'un mélange gazeux, par exemple l'air, à température subambiante, voire cryogénique. Pour produire un gaz de l'air sous pression, il est connu de vaporiser un liquide pressurisé soutiré d'une colonne de distillation par échange de chaleur contre un autre gaz pressurisé du procédé, généralement de l'air pressurisé à haute pression. Cette vaporisation s'effectue généralement en envoyant le liquide pressurisé dans au moins un passage d'une ligne d'échange, l'autre gaz pressurisé étant envoyé se refroidir dans au moins un autre passage de cette ligne d'échange, le transfert de chaleur latente de l'autre gaz pressurisé au liquide pressurisé étant indirect, car il s'effectue à travers la paroi du passage. Si le liquide est pressurisé à une pression supercritique, la pseudovaporisation remplace la vaporisation. Dans ce qui suit, le terme « vaporisation » couvre également la pseudo-vaporisation. Si l'autre gaz est pressurisé à une pression supercritique, la pseudo-condensation remplace la condensation. Dans ce qui suit, le terme « condensation » couvre également la pseudo-condensation. Les pourcentages concernant les puretés dans ce document sont des pourcentages molaires. La séparation peut s'effectuer dans au moins une colonne de distillation et/ou au moins une colonne d'absorption et/ou au moins un pot séparateur et/ou au moins 25 une membrane et/ou par déflegmation. La réfrigération magnétique repose sur l'utilisation de matériaux magnétiques présentant un effet magnétocalorique. Réversible, cet effet se traduit par une variation de leur température lorsqu'ils sont soumis à l'application d'un champ magnétique externe. Les plages optimales d'utilisation de ces matériaux se situent au 30 voisinage de leur température de Curie (Tc). En effet, plus les variations d'aimantation, et par conséquent les changements d'entropie magnétique, sont élevés, plus les changements de leur température sont élevés. L'effet magnétocalorique est dit direct lorsque la température du matériau augmente quand il est mis dans un champ magnétique, indirect lorsqu'il se refroidit quand il est mis dans un champ magnétique. La suite de la description sera faite pour le cas direct, mais la transposition au cas indirect est évidente pour l'homme de l'art. Il existe plusieurs cycles thermodynamiques basés sur ce principe. Un cycle classique de réfrigération magnétique consiste i) à magnétiser le matériau pour en augmenter la température, ii) à refroidir le matériau à champ magnétique constant pour rejeter de la chaleur, iii) à démagnétiser le matériau pour le refroidir, et iv) à chauffer le matériau à champ magnétique constant (en général, nul) pour capter la chaleur. Un dispositif de réfrigération magnétique met en oeuvre des éléments en matériau magnétocalorique, qui génèrent de la chaleur lorsqu'ils sont magnétisés et absorbent de la chaleur lorsqu'ils sont démagnétisés. Il peut mettre en oeuvre un régénérateur à matériau magnétocalorique pour amplifier la différence de température entre la « source chaude » et la « source froide » : on parle alors de réfrigération magnétique à régénération active. Cet effet est décrit dans l'article de Techniques de l'Ingénieur de 2005 de Lebouc entitulé « Réfrigération magnétique ». Il est connu d'utiliser l'effet magnétocalorique pour fournir du froid à un procédé de séparation à température subambiante dans EP-A-2551005 ou encore 20 US-A-6502404. La présente invention pose le problème de comment vaporiser un liquide issu de la séparation en réduisant le rapport de pression entre le gaz à condenser et le liquide à vaporiser normalement nécessaire pour un échange de chaleur à travers un échangeur. 25 Selon la présente invention, au moins une partie de la chaleur requise pour vaporiser un liquide d'une séparation provient d'une pompe à chaleur utilisant l'effet magnétocalorique. Selon un objet de l'invention, il est prévu un procédé de séparation d'un mélange gazeux par séparation à température subambiante, voire cryogénique, dans 30 lequel un mélange gazeux à une première pression est refroidi, puis séparé dans une unité de séparation, par exemple un système de colonnes comprenant au moins une colonne. Un liquide est soutiré de l'unité de séparation et vaporisé pour former un produit gazeux sous pression, éventuellement après pressurisation à une pression supérieure ou après dépressurisation à une pression inférieure à la pression à laquelle il est soutiré, caractérisé en ce qu'une partie au moins de la chaleur de vaporisation du liquide est fournie par une pompe à chaleur utilisant l'effet magnétocalorique dont la source chaude échange de la chaleur, directement ou indirectement, avec le liquide qui se vaporise. Selon d'autres objets facultatifs de l'invention : la source froide de la pompe à chaleur échange de la chaleur avec au moins une partie du mélange gazeux et/ou d'un gaz issu du procédé de séparation qui se refroidit, voire se condense au moins partiellement ; - le liquide vaporisé contient au moins 70% d'oxygène, ou au moins 80% d'azote, ou au moins 60% de dioxyde de carbone, ou au moins 60% de méthane ou 15 au moins 60% de monoxyde de carbone ; - la séparation s'effectue par distillation et le système comprend au moins une colonne de distillation ; - un fluide, participant à la séparation ou non, est mis en contact direct avec un matériau magnétocalorique de la pompe à chaleur ; 20 l'échange thermique est au moins en partie réalisé entre au moins un fluide participant à la séparation ou non et un fluide caloporteur en contact avec un matériau magnétocalorique de la pompe à chaleur à travers un échangeur ; - l'échange thermique est au moins en partie réalisé entre au moins un fluide participant à la séparation ou non et le fluide caloporteur ayant été en contact 25 avec un matériau magnétocalorique de la pompe à chaleur à travers un circuit caloporteur intermédiaire ; - le mélange gazeux est l'air, le liquide pressurisé est riche en oxygène ou en azote, tout le mélange gazeux est comprimé jusqu'à une unique pression et au moins une partie du mélange gazeux est au moins partiellement condensée 30 transférant de la chaleur vers la source froide de la pompe à chaleur ; - le mélange gazeux est l'air, le liquide pressurisé est riche en oxygène ou en azote, tout le mélange gazeux est comprimé jusqu'à une première pression, une partie du mélange gazeux est comprimée de la première pression jusqu'à une deuxième pression supérieure à la première pression et au moins une partie du mélange gazeux comprimé à la deuxième pression est au moins partiellement condensé transférant de la chaleur vers la source froide de la pompe à chaleur. Selon un autre objet de l'invention, il est prévu un appareil de séparation d'un mélange gazeux par séparation à température subambiante, voire cryogénique, comprenant des moyens de refroidissement pour refroidir un mélange gazeux à une première pression , une unité de séparation, par exemple un système de colonnes comprenant au moins une colonne, reliée aux moyens de refroidissement, une conduite pour soutirer un liquide de l'unité de séparation, des moyens pour vaporiser le liquide pour former un produit gazeux sous pression, éventuellement en aval de moyens de pressurisation à une pression supérieure ou de dépressurisation à une pression inférieure à la pression à laquelle il est soutiré, caractérisé en ce qu'il comprend par une pompe à chaleur utilisant l'effet magnétocalorique capable de fournir une partie au moins de la chaleur de vaporisation du liquide ainsi que des moyens permettant la source chaude de la pompe à chaleur d'échanger de la chaleur, directement ou indirectement, avec le liquide qui se vaporise. L'appareil peut comprendre - des moyens pour permettre un échange de chaleur entre la source froide de la pompe à chaleur et au moins une partie du mélange gazeux et/ou d'un gaz issu du procédé de séparation qui se refroidit, voire se condense au moins partiellement ; - des moyens pour soutirer un liquide contenant au moins 70% d'oxygène, ou au moins 80% d'azote, ou au moins 60% de dioxyde de carbone, ou au moins 60% de méthane ou au moins 60% de monoxyde de carbone ; la séparation s'effectue par distillation et le système comprend au moins une colonne de distillation ; - des moyens pour mettre en contact direct un fluide, participant à la séparation ou non, et un matériau magnétocalorique de la pompe à chaleur ; - l'échange thermique est au moins en partie réalisé entre au moins un fluide participant à la séparation ou non et un fluide caloporteur en contact avec un 5 matériau magnétocalorique de la pompe à chaleur à travers un échangeur ; - l'échange thermique est au moins en partie réalisé entre au moins un fluide participant à la séparation ou non et le fluide caloporteur ayant été en contact avec un matériau magnétocalorique de la pompe à chaleur à travers un circuit caloporteur intermédiaire ; 10 le mélange gazeux est l'air, le liquide pressurisé est riche en oxygène ou en azote, un compresseur pour comprimer tout le mélange gazeux jusqu'à une unique pression et des moyens pour transférer de la chaleur d'au moins une partie du mélange gazeux au moins partiellement condensée vers la source froide de la pompe à chaleur ; 15 le mélange gazeux est l'air, le liquide pressurisé est riche en oxygène ou en azote, tout le mélange gazeux est comprimé jusqu'à une première pression ; - un compresseur pour comprimer une partie du mélange gazeux de la première pression jusqu'à une deuxième pression supérieure à la première pression et des moyens pour transférer de la chaleur d'au moins une partie du mélange 20 gazeux comprimé à la deuxième pression vers la source froide de la pompe à chaleur. Une pompe à chaleur est un dispositif thermodynamique permettant de transférer une quantité de chaleur d'un milieu considéré comme « émetteur » dit 25 « source froide » d'où l'on extrait la chaleur vers un milieu considéré comme « récepteur » dit « source chaude » où l'on fournit la chaleur, la source froide étant à une température plus froide que la source chaude. Le cycle classique utilisé dans l'état de l'art pour ce type d'application est un cycle thermodynamique de compression - refroidissement (condensation) - détente 30 - réchauffement (vaporisation) d'un fluide frigorifique.
La figure 12 du document «TECHNIQUES DE L'INGENIEUR - Réfrigération magnétique de 2005 » montre un gain d'un facteur 2 sur le coefficient de performance d'un système frigorifique utilisant un cycle magnétique par rapport au cycle classique.
Une température ambiante est la température de l'air ambiant dans lequel se situe le procédé, ou encore une température d'un circuit d'eau de refroidissement en lien avec la température d'air. Une température subambiante est au moins 10°C inférieure à la température ambiante.
Une température cryogénique est inférieure à -50°C. L'invention sera décrite de manière plus détaillée en se référant aux figures 1 à 8. La Figure 1 montre un appareil de séparation d'air par distillation cryogénique.
L'appareil comprend une ligne d'échange de chaleur 17 et une double colonne de séparation d'air comprenant une colonne moyenne pression 23 et une colonne basse pression 25 reliées thermiquement au moyen d'un vaporiseur-condenseur 27. De l'air 1 est comprimé dans un compresseur 3 jusqu'à une pression de 5.5 bara.
L'air comprimé est refroidi dans le refroidisseur 5 pour former un débit refroidi 7 qui est épuré pour enlever l'eau et le dioxyde de carbone et d'autres impuretés dans une unité d'adsorption 9. L'air épuré est divisé en deux. Une partie 8 se refroidit en traversant entièrement la ligne d'échange 17 jusqu'à une température de -170°C environ. Elle est ensuite divisée en deux. Une partie 19 sert de source froide pour la pompe à chaleur 31 utilisant l'effet magnétocalorique. Le reste 21 est envoyé se séparer sous forme gazeuse en cuve de colonne moyenne pression 23. La partie 19 se refroidit et se liquéfie par échange de chaleur dans la pompe à chaleur 31 pour former le débit 37. Le débit 37 est divisé en une partie 39 qui est envoyée à la colonne moyenne pression 23 et une partie 41 qui est refroidie dans le sous-refroidisseur 43, détendue puis envoyée à la colonne basse pression 25.
Un liquide enrichi en oxygène 33 est soutiré de la cuve de la colonne moyenne pression 23, refroidi dans le sous-refroidisseur 43 et envoyé à la colonne basse pression 25. Un liquide enrichi en azote 35 est soutiré de la tête de la colonne moyenne pression 23, refroidi dans le sous-refroidisseur 43 et envoyé à la tête de la colonne basse pression 25. De l'air 11 est surpressé dans un surpresseur 13, refroidi en partie dans la ligne d'échange 17, détendu dans la turbine d'insufflation 15 et envoyé à la colonne basse pression 25. Un gaz riche en azote 45 est soutiré de la tête de la colonne basse pression 25, réchauffé dans le sous-refroidisseur 43 et dans la ligne d'échange 17 pour servir au moins en partie de gaz pour la régénération de l'unité d'adsorption 9. Du gaz riche en azote 49 est soutiré de la tête de la colonne moyenne pression 23, réchauffé dans la ligne d'échange 17 et sert de produit. De l'oxygène liquide 47 est soutiré de la colonne basse pression 25, pressurisé par une pompe 29 et réchauffé partiellement dans la ligne d'échange 17. Ensuite, le liquide réchauffé est sorti de la ligne d'échange 17, vaporisé au moins partiellement dans la pompe à chaleur utilisant l'effet magnétocalorique 31 où il sert de source chaude et renvoyé à la ligne d'échange 17, soit pour terminer la vaporisation et se réchauffer soit uniquement pour se réchauffer. L'oxygène ainsi obtenu sert de produit.
Dans la Figure 2, à la différence de la Figure 1, tout l'air 8 se refroidit dans la ligne d'échange 17 pour former le débit 19 qui se condense partiellement dans la pompe à chaleur utilisant l'effet magnétocalorique 31 pour former le débit 37. Tout le débit 37 est envoyé en cuve de la colonne moyenne pression 23. Dans la Figure 3, l'air épuré est divisé en trois parties. Une partie 11 est envoyée au surpresseur 13 comme dans les Figures 1 et 2. Une autre partie 8 se refroidit en traversant entièrement la ligne d'échange 17 puis est envoyée en cuve de la colonne 23. Le reste de l'air 12 est surpressé dans un surpresseur 14, envoyé à la ligne d'échange 17 où il se refroidit jusqu'à un niveau intermédiaire. Ensuite, l'air 12 partiellement refroidi est condensé au moins en partie dans la pompe à chaleur utilisant l'effet magnétocalorique 31 où il sert de source froide. L'air au moins en partie condensé est réintroduit dans la ligne d'échange 17 où il se refroidit encore.
L'air encore refroidi dans la ligne d'échange sort du bout froid de celle-ci et est divisé en deux parties. La première partie 16 est détendue et envoyée en cuve de la colonne moyenne pression 23. La deuxième partie 18 est refroidie dans le sous-refroidisseur 43, détendue et envoyée à la colonne basse pression.
Dans la Figure 4, à la différence de la figure 1, de l'oxygène liquide 51 est aussi soutiré de la colonne basse pression 25, refroidi dans le sous-refroidisseur 43 et sert de produit liquide. La proportion d'oxygène produit liquide peut représenter jusqu'à plus de la moitié de l'oxygène gazeux produit sous pression. Dans la Figure 5, à la différence des autres figures, le liquide 47 se vaporise par échange de chaleur avec de l'azote 53 de la colonne basse pression 23 à l'aide de la pompe à chaleur utilisant l'effet magnétocalorique 31. L'azote gazeux 53 qui sert de source froide se liquéfie et est renvoyé en tête de la colonne 23 pour fournir du reflux. Dans ce cas, tout l'air épuré est soit envoyé au surpresseur 13, refroidi et détendu soit refroidi et envoyé à la distillation.
La Figure 6 est apparentée à la Figure 3. A la différence de la Figure 3, le fluide 12, respectivement 47 qui est lié thermiquement de façon indirecte à la source froide, respectivement la source chaude de la pompe à chaleur utilisant l'effet magnétocalorique 31 ne sort pas de la ligne d'échange 17. Un fluide caloporteur A transfère de la chaleur de l'air 12 provenant du surpresseur 14 (à un niveau intermédiaire de la ligne d'échange 17 à proximité de l'endroit où l'air 12 se condense au moins partiellement), se refroidit dans la pompe à chaleur utilisant l'effet magnétocalorique 31 au niveau de la source froide et est renvoyé à la ligne d'échange 17, en circuit fermé. Un fluide caloporteur B transfère de la chaleur vers l'oxygène 47 (à un niveau intermédiaire de la ligne d'échange 17 à proximité de l'endroit où l'oxygène 47 se vaporise au moins partiellement), se réchauffe dans la pompe à chaleur utilisant l'effet magnétocalorique 31 au niveau de la source chaude et est renvoyé à la ligne d'échange 17, en circuit fermé. Les fluides caloporteurs A et B peuvent être identiques ou différents. L'invention pourrait également s'appliquer aux procédés de séparation d'autres mélanges. Par l'exemple, dans les Figures 1 à 6, l'air pourrait être remplacé par un mélange contenant comme composants principaux le méthane et/ou l'azote et/ou le dioxyde de carbone et/ou le monoxyde de carbone et/ou l'hydrogène. La Figure 7 est une figure générique, illustrant la vaporisation au moins partielle de liquide 47 selon l'invention. Le liquide 47 peut provenir d'une unité de séparation, par exemple d'une colonne de distillation ou d'absorption, d'un séparateur de phase, d'un déflegmateur ou d'une membrane. Il peut être vaporisé dans l'échangeur 17 suite à une pressurisation (par exemple dans une pompe ou par hauteur hydrostatique) ou une dépressurisation (par exemple, dans une vanne ou une turbine). Il peut contenir par exemple au moins 70% d'oxygène, au moins 80% d'azote, au moins 60% de dioxyde de carbone ou au moins 60% de méthane ou au moins 60% de monoxyde de carbone. Le fluide 12 qui fournit la chaleur directement ou indirectement à la source froide peut être le fluide à séparer dans l'unité de séparation, un fluide séparé dans l'unité de séparation ou un autre fluide. Ce fluide 12 se condense au moins partiellement.
L'échangeur 17 peut également servir à réchauffer et/ou à refroidir au moins un autre fluide 8, 45. La pompe à chaleur utilisant l'effet magnétocalorique 31 permet l'échange de chaleur entre le fluide 12 (par exemple de l'air) qui sert de source froide et le liquide 47 (par exemple un liquide contenant au moins 70% d'oxygène) qui sert de source 20 chaude. La Figure 7 peut être modifiée pour utiliser au moins un fluide caloporteur en circuit fermé qui transfère la chaleur vers et/ou de la pompe à chaleur utilisant l'effet magnétocalorique 31. La Figure 8 montre un appareil de séparation cryogénique d'un mélange de 25 méthane et d'azote (typiquement 85% de méthane). L'appareil comprend une ligne d'échange de chaleur 17 et une double colonne de séparation comprenant une colonne moyenne pression 23 et une colonne basse pression 25 reliées thermiquement au moyen d'un vaporiseur-condenseur 27. Le mélange de méthane et d'azote sous haute pression 8 se refroidit et se 30 condense partiellement dans la ligne d'échange 17. Il est ensuite détendu vers une colonne à distiller à moyenne pression 23. Cette détente participe à la tenue en froid de l'appareil. Un liquide enrichi en méthane 33 est soutiré de la cuve de la colonne moyenne pression 23, refroidi dans le sous-refroidisseur 43 et envoyé à la colonne basse pression 25. Un liquide enrichi en azote 35 est soutiré de la tête de la colonne moyenne pression 23, refroidi dans le sous-refroidisseur 43A et envoyé à la tête de la colonne basse pression 25. Un gaz riche en azote 45 est soutiré de la tête de la colonne basse pression 25, réchauffé dans les sous-refroidisseurs 43A, 43 et dans la ligne d'échange 17. Du méthane liquide 47 est soutiré de la colonne basse pression 25, pressurisé par une pompe 29 et puis est réchauffé, puis vaporisé dans la ligne d'échange 17, puis le méthane liquide vaporisé continue à se réchauffer dans la ligne d'échange 17. Le méthane gazeux peut être directement valorisé comme produit sans compression supplémentaire dans un compresseur.
Un fluide caloporteur A transfère de la chaleur du mélange 12 (à un niveau intermédiaire de la ligne d'échange 17 à proximité de l'endroit où le mélange 12 se condense au moins partiellement), se refroidit dans la pompe à chaleur utilisant l'effet magnétocalorique 31 au niveau de la source froide et est renvoyé à la ligne d'échange 17, en circuit fermé. Un fluide caloporteur B transfère de la chaleur vers le méthane 47 (à un niveau intermédiaire de la ligne d'échange 17 à proximité de l'endroit où le méthane 47 se vaporise au moins partiellement), se réchauffe dans la pompe à chaleur utilisant l'effet magnétocalorique 31 au niveau de la source chaude et est renvoyé à la ligne d'échange 17, en circuit fermé.
Dans l'ensemble des figures, le liquide à vaporiser n'est pas forcement d'abord réchauffé dans la ligne d'échange 17, avant de faire un échange de chaleur avec la pompe à chaleur utilisant l'effet magnétocalorique.

Claims (4)

  1. REVENDICATIONS1. Procédé de séparation d'un mélange gazeux par séparation à température subambiante, voire cryogénique, dans lequel un mélange gazeux à une première pression est refroidi, puis séparé dans une unité de séparation (23, 25), par exemple un système de colonnes comprenant au moins une colonne, un liquide (47) est soutiré de l'unité de séparation et vaporisé pour former un produit gazeux sous pression, éventuellement après pressurisation à une pression supérieure ou après dépressurisation à une pression inférieure à la pression à laquelle il est soutiré, caractérisé en ce qu'une partie au moins de la chaleur de vaporisation du liquide est fournie par une pompe à chaleur (31) utilisant l'effet magnétocalorique dont la source chaude échange de la chaleur, directement ou indirectement, avec le liquide qui se vaporise.
  2. 2. Procédé selon la revendication 1, dans lequel la source froide de la pompe à chaleur (31) échange de la chaleur avec au moins une partie du mélange gazeux (8) et/ou d'un gaz issu du procédé de séparation qui se refroidit, voire se condense au moins partiellement.
  3. 3. Procédé selon l'une des revendications précédentes, dans lequel le liquide vaporisé (47) contient au moins 70% d'oxygène, ou au moins 80% d'azote, ou au moins 60% de dioxyde de carbone, ou au moins 60% de méthane ou au moins 25 60% de monoxyde de carbone.
  4. 4. Procédé selon l'une des revendications précédentes, dans lequel la séparation s'effectue par distillation et le système comprend au moins une colonne de distillation (23, 25). 305 Procédé selon l'une des revendications précédentes, dans lequel un fluide, participant à la séparation ou non, est mis en contact direct avec un matériau magnétocalorique de la pompe à chaleur. 6. Procédé selon l'une des revendications précédentes, dans lequel l'échange thermique est au moins en partie réalisé entre au moins un fluide participant à la séparation ou non et un fluide caloporteur en contact avec un matériau magnétocalorique de la pompe à chaleur à travers un échangeur. 7. Procédé selon l'une des revendications précédentes, dans lequel l'échange thermique est au moins en partie réalisé entre au moins un fluide participant à la séparation ou non et le fluide caloporteur ayant été en contact avec un matériau magnétocalorique de la pompe à chaleur à travers un circuit caloporteur intermédiaire. 8. Procédé selon l'une des revendications précédentes, dans lequel le mélange gazeux est l'air, le liquide pressurisé est riche en oxygène ou en azote, tout le mélange gazeux est comprimé jusqu'à une unique pression et au moins une partie du mélange gazeux est au moins partiellement condensée transférant de la chaleur vers la source froide de la pompe à chaleur. 9 Procédé selon l'une des revendications précédentes, dans lequel le mélange gazeux est l'air, le liquide pressurisé est riche en oxygène ou en azote, tout le mélange gazeux est comprimé jusqu'à une première pression, une partie du mélange gazeux est comprimée de la première pression jusqu'à une deuxième pression supérieure à la première pression et au moins une partie du mélange gazeux comprimé à la deuxième pression est au moins partiellement condensé transférant de la chaleur vers la source froide de la pompe à chaleur.3010 Appareil de séparation d'un mélange gazeux par séparation à température subambiante, voire cryogénique, comprenant des moyens de refroidissement (17) pour refroidir un mélange gazeux à une première pression , une unité de séparation (23, 25), par exemple un système de colonnes comprenant au moins une colonne, reliée aux moyens de refroidissement, une conduite pour soutirer un liquide (47) de l'unité de séparation, des moyens (17) pour vaporiser le liquide pour former un produit gazeux sous pression, éventuellement en aval de moyens de pressurisation à une pression supérieure ou de dépressurisation à une pression inférieure à la pression à laquelle il est soutiré, caractérisé en ce qu'il comprend une pompe à chaleur (31) utilisant l'effet magnétocalorique capable de fournir une partie au moins de la chaleur de vaporisation du liquide ainsi que des moyens permettant la source chaude de la pompe à chaleur d'échanger de la chaleur, directement ou indirectement, avec le liquide qui se vaporise.15
FR1358668A 2013-09-10 2013-09-10 Procede et appareil de separation d'un melange gazeux a temperature subambiante Active FR3010511B1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
FR1358668A FR3010511B1 (fr) 2013-09-10 2013-09-10 Procede et appareil de separation d'un melange gazeux a temperature subambiante
PCT/FR2014/052103 WO2015036673A2 (fr) 2013-09-10 2014-08-20 Procédé et appareil de séparation d'un mélange gazeux à température subambiante
US15/021,037 US20160223254A1 (en) 2013-09-10 2014-08-20 Method and apparatus for separation of a gaseous mixture at sub-ambient temperature
CN201480061005.3A CN105705892A (zh) 2013-09-10 2014-08-20 用于在低于环境温度下分离气态混合物的方法和装置
EP14786968.9A EP3044529A2 (fr) 2013-09-10 2014-08-20 Procédé et appareil de séparation d'un mélange gazeux à température subambiante
EP14784274.4A EP3044522A2 (fr) 2013-09-10 2014-09-10 Procédé et appareil de séparation à température subambiante
US15/021,035 US20160223253A1 (en) 2013-09-10 2014-09-10 Method and device for separation at cryogenic temperature
PCT/FR2014/052241 WO2015036697A2 (fr) 2013-09-10 2014-09-10 Procédé et appareil de séparation à température subambiante
CN201480061010.4A CN105705893A (zh) 2013-09-10 2014-09-10 用于在低于环境温度下分离的方法和装置
EP14784278.5A EP3071910A2 (fr) 2013-09-10 2014-09-10 Procédé et appareil de séparation à température cryogénique
CN201480061009.1A CN105705884B (zh) 2013-09-10 2014-09-10 用于在低温下分离的方法和装置
US15/021,031 US20160216013A1 (en) 2013-09-10 2014-09-10 Method and device for separation at sub-ambient temperature
PCT/FR2014/052246 WO2015036700A2 (fr) 2013-09-10 2014-09-10 Procédé et appareil de séparation à température cryogénique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1358668A FR3010511B1 (fr) 2013-09-10 2013-09-10 Procede et appareil de separation d'un melange gazeux a temperature subambiante

Publications (2)

Publication Number Publication Date
FR3010511A1 true FR3010511A1 (fr) 2015-03-13
FR3010511B1 FR3010511B1 (fr) 2017-08-11

Family

ID=49667380

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1358668A Active FR3010511B1 (fr) 2013-09-10 2013-09-10 Procede et appareil de separation d'un melange gazeux a temperature subambiante

Country Status (5)

Country Link
US (1) US20160223254A1 (fr)
EP (1) EP3044529A2 (fr)
CN (1) CN105705892A (fr)
FR (1) FR3010511B1 (fr)
WO (1) WO2015036673A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139432A2 (fr) 2015-03-05 2016-09-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation d'un mélange gazeux à température subambiante
WO2016139433A1 (fr) 2015-03-05 2016-09-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de compression d'un gaz

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111406191B (zh) * 2017-12-25 2021-12-21 乔治洛德方法研究和开发液化空气有限公司 具有反向主热交换器的单封装空气分离设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2088542A (en) * 1980-11-26 1982-06-09 Union Carbide Corp Process for the production of high pressure oxygen gas
WO2001086218A2 (fr) * 2000-05-05 2001-11-15 University Of Victoria Innovation And Development Corporation Appareil et procedes de refroidissement et de liquefaction d'un fluide par refrigeration magnetique
US6502404B1 (en) * 2001-07-31 2003-01-07 Praxair Technology, Inc. Cryogenic rectification system using magnetic refrigeration
US20060037357A1 (en) * 2004-08-17 2006-02-23 Linde Aktiengesellschaft Process and system for obtaining a gaseous pressure product by the cryogenic separation of air
EP1972875A1 (fr) * 2007-03-23 2008-09-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Procédé et dispositif pour la séparation cryogénique d'air

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987744A (en) * 1990-01-26 1991-01-29 Union Carbide Industrial Gases Technology Corporation Cryogenic distillation with unbalanced heat pump
US5722259A (en) * 1996-03-13 1998-03-03 Air Products And Chemicals, Inc. Combustion turbine and elevated pressure air separation system with argon recovery
US6293106B1 (en) * 2000-05-18 2001-09-25 Praxair Technology, Inc. Magnetic refrigeration system with multicomponent refrigerant fluid forecooling
US6336331B1 (en) * 2000-08-01 2002-01-08 Praxair Technology, Inc. System for operating cryogenic liquid tankage
GB0119500D0 (en) * 2001-08-09 2001-10-03 Boc Group Inc Nitrogen generation
CH695836A5 (fr) * 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique.
US20080016907A1 (en) * 2006-07-18 2008-01-24 John Arthur Barclay Active gas regenerative liquefier system and method
US20130025294A1 (en) * 2011-07-28 2013-01-31 Christian Vogel System and method for carbon dioxide removal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2088542A (en) * 1980-11-26 1982-06-09 Union Carbide Corp Process for the production of high pressure oxygen gas
WO2001086218A2 (fr) * 2000-05-05 2001-11-15 University Of Victoria Innovation And Development Corporation Appareil et procedes de refroidissement et de liquefaction d'un fluide par refrigeration magnetique
US6502404B1 (en) * 2001-07-31 2003-01-07 Praxair Technology, Inc. Cryogenic rectification system using magnetic refrigeration
US20060037357A1 (en) * 2004-08-17 2006-02-23 Linde Aktiengesellschaft Process and system for obtaining a gaseous pressure product by the cryogenic separation of air
EP1972875A1 (fr) * 2007-03-23 2008-09-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Procédé et dispositif pour la séparation cryogénique d'air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139432A2 (fr) 2015-03-05 2016-09-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation d'un mélange gazeux à température subambiante
WO2016139433A1 (fr) 2015-03-05 2016-09-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de compression d'un gaz

Also Published As

Publication number Publication date
WO2015036673A2 (fr) 2015-03-19
US20160223254A1 (en) 2016-08-04
EP3044529A2 (fr) 2016-07-20
FR3010511B1 (fr) 2017-08-11
CN105705892A (zh) 2016-06-22
WO2015036673A3 (fr) 2015-08-06

Similar Documents

Publication Publication Date Title
WO2015036697A2 (fr) Procédé et appareil de séparation à température subambiante
EP3044529A2 (fr) Procédé et appareil de séparation d'un mélange gazeux à température subambiante
WO2015036700A2 (fr) Procédé et appareil de séparation à température cryogénique
WO2015092330A2 (fr) Procédé et appareil de séparation à température subambiante
FR2973485A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
WO2016142606A1 (fr) Procédé de séparation d'un mélange gazeux à température subambiante
EP2938414B1 (fr) Procédé et appareil de séparation d'un gaz riche en dioxyde de carbone
FR2971044A1 (fr) Procede et appareil de separation d'un gaz contenant du dioxyde de carbone pour produire un debit liquide riche en dioxyde de carbone
FR3033257A1 (fr) Procede et appareil de separation d’un melange gazeux a temperature subambiante
FR3033395A1 (fr) Procede et appareil de compression d’un gaz
WO2016139425A1 (fr) Procédé et appareil de séparation à température subambiante
FR3028187A3 (fr) Procede et appareil de separation a temperature subambiante
WO2016132083A1 (fr) Procede et appareil de separation a temperature subambiante
FR3033260A1 (fr) Procede et appareil de separation a temperature subambiante
FR3032888A1 (fr) Procede et appareil de separation a temperature subambiante
EP3071910A2 (fr) Procédé et appareil de séparation à température cryogénique
WO2016132082A1 (fr) Procédé et appareil de séparation a température subambiante
FR3033397A1 (fr) Procede de compression et de refroidissement d’un melange gazeux
FR3015014A1 (fr) Appareil et procede de separation a temperature subambiante et procede de rechauffage d’au moins une partie d’un tel appareil
WO2016132086A1 (fr) Procede et appareil de separation a temperature subambiante
EP3058296A2 (fr) Procede de deazotation du gaz naturel avec ou sans recuperation d'helium
FR3128011A1 (fr) Procédé et appareil de refroidissement d’un débit riche en CO2
FR3020667A1 (fr) Procede et appareil de refroidissement et d’epuration d’un melange gazeux contenant des impuretes
WO2015075398A2 (fr) Appareil de séparation d'un mélange gazeux à température subambiante et procédé de maintien en froid d'un tel appareil
FR2968749A1 (fr) Procede et appareil de separation d'air par distillation cryogenique

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5