FR3006452A3 - DIOPTRE CONFIGURE TO REDUCE ELECTROMAGNETIC RADIATIONS THAT DAMAGE THE VISUAL SYSTEM - Google Patents

DIOPTRE CONFIGURE TO REDUCE ELECTROMAGNETIC RADIATIONS THAT DAMAGE THE VISUAL SYSTEM Download PDF

Info

Publication number
FR3006452A3
FR3006452A3 FR1355732A FR1355732A FR3006452A3 FR 3006452 A3 FR3006452 A3 FR 3006452A3 FR 1355732 A FR1355732 A FR 1355732A FR 1355732 A FR1355732 A FR 1355732A FR 3006452 A3 FR3006452 A3 FR 3006452A3
Authority
FR
France
Prior art keywords
diopter
visual system
lens
substance
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1355732A
Other languages
French (fr)
Other versions
FR3006452B3 (en
Inventor
Ramos Celia Sanchez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad Complutense de Madrid
Original Assignee
Universidad Complutense de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Complutense de Madrid filed Critical Universidad Complutense de Madrid
Publication of FR3006452A3 publication Critical patent/FR3006452A3/en
Application granted granted Critical
Publication of FR3006452B3 publication Critical patent/FR3006452B3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/06Special ophthalmologic or optometric aspects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Prostheses (AREA)

Abstract

L'invention concerne un dioptre configuré pour réduire les radiations qui endommagent le système visuel, ledit dioptre comprenant une substance à sa superficie ou à l'intérieur, ladite substance modifiant les propriétés de transmission dudit dioptre. L'invention concerne également un élément qui comprend un tel dioptre.The invention relates to a diopter configured to reduce radiation that damages the visual system, said diopter comprising a substance at or inside its surface, said substance modifying the transmission properties of said diopter. The invention also relates to an element which comprises such a diopter.

Description

La présente invention est incluse dans le champ général de la médecine préventive et de la santé publique et se réfère en particulier à un dioptre configuré pour réduire les radiations qui endommagent le système visuel.The present invention is included in the general field of preventive medicine and public health and refers in particular to a diopter configured to reduce radiation that damages the visual system.

Les longueurs d'onde dans la gamme de 180 nm à 380 nm peuvent causer des photokératites et des opacités sur le cristallin. Dans la gamme de 380 nm à 550 nm du spectre visible (lumière violette et bleue), elles peuvent provoquer des lésions photochimiques de la rétine (310 nm à 550 nm pour l'oeil aphakique). Le réchauffement par absorption de la radiation visible ou infrarouge IR A (400 nm à 1200 nm) peut contribuer à la formation d'opacités sur le cristallin. De plus, des érosions peuvent se produire sur la cornée. En conséquence de la transparence des environnements oculaires, la radiation visible ou IR A (400 nm à 1400 nm) peut produire des dommages thermiques sur la rétine. Dans la gamme des radiations infrarouges IR A et B (800 nm à 3000 nm), les lésions thermiques du cristallin sont attribuées à une dégradation des protéines cristallines. Quant aux radiations infrarouges IR B et C (1400 nm à 3000 nm et 3000 nm à 10000 nm, respectivement), l'absorption se produit principalement sur la cornée et l'humeur aqueuse. Au-dessus de 1900 nm, la cornée est l'unique environnement d'absorption, raison pour laquelle les lésions thermiques se limitent généralement à cette structure. Ce type de lésion se doit, quasi exclusivement, à l'exposition à la radiation laser. Dans les brevets ES-2 247 946, ES-2 257 976, ES-2 281 301, ES-2 281 303, ES-2 289 957, ES-2 296 552, ES-2 298 089, ES-2 303 484 et ES-2 312 284, il est fait mention de la problématique des longueurs d'onde courtes dans le spectre de 380 à 500 nm, mais aucun de ces documents n'explique le dommage que causent les radiations comprises entre 180nm et 10 000 nm. Il existe donc un besoin de fournir un élément protégeant le système visuel des radiations dommageables.30 La présente invention résout le problème envisagé à l'état de la technique. Ainsi, selon un premier aspect, la présente invention se réfère à un dioptre (nommé ci-après dioptre de la présente invention) configuré pour réduire les radiations qui endommagent le système visuel, ledit dioptre étant caractérisé en ce qu'il comprend une substance à sa superficie ou à l'intérieur, ladite substance modifiant les propriétés de transmission dudit dioptre. Dans la présente invention, le terme dioptre, selon le Manuel d'Optique Géométrique (Felipe, 1998), est une superficie de réfraction, c'est-à-dire une io superficie qui sépare deux environnements à indices de réfraction distincts. En particulier, les radiations qui endommagent le système visuel sont des radiations du spectre infrarouge, ultraviolet et/ou du spectre visible, dont les longueurs d'onde sont comprises entre 180 nm et 10 000 nm. 15 Plus particulièrement, les propriétés de transmission qui sont modifiées par le dioptre de la présente invention sont la réflexion, la réfraction, l'absorption, la dispersion, la polarisation, et/ou le phénomène interférentiel. Selon un mode de réalisation, le dioptre de la présente invention a une forme 20 plan qui peut être parallèle, concave, convexe, biconcave ou biconvexe. Plus particulièrement, la substance comprise dans le dioptre de la présente invention est sélectionnée parmi des pigments, des substances métalliques, des polymères, des composés inorganiques, des composés organiques ou un mélange de ces substances. 25 Selon un autre mode de réalisation, le dioptre de la présente invention a une forme courbe. Plus particulièrement, le dioptre de la présente invention est une lentille ophtalmique. Plus particulièrement, le dioptre de la présente invention est une lentille de contact.Wavelengths in the range of 180 nm to 380 nm can cause photokeratitis and opacities on the lens. In the range of 380 nm to 550 nm of the visible spectrum (violet and blue light), they can cause photochemical lesions of the retina (310 nm to 550 nm for the aphakic eye). The heating by absorption of visible or infrared IR A (400 nm to 1200 nm) can contribute to the formation of opacities on the lens. In addition, erosions can occur on the cornea. As a result of the transparency of the ocular environments, visible radiation or IR A (400 nm to 1400 nm) can produce thermal damage to the retina. In the range of infrared radiation IR A and B (800 nm to 3000 nm), the thermal lesions of the crystalline lens are attributed to a degradation of crystalline proteins. For infrared IR B and C radiation (1400 nm at 3000 nm and 3000 nm at 10000 nm, respectively), absorption occurs mainly on the cornea and the aqueous humor. Above 1900 nm, the cornea is the only absorption environment, which is why thermal lesions are usually limited to this structure. This type of lesion owes almost exclusively to exposure to laser radiation. In the patents ES-2 247 946, ES-2 257 976, ES-2 281 301, ES-2 281 303, ES-2 289 957, ES-2 296 552, ES-2 298 089, ES-2 303 484 and ES-2,312,284, mention is made of the problem of short wavelengths in the 380 to 500 nm spectrum, but none of these documents explains the damage caused by radiation between 180 nm and 10,000 nm. . There is therefore a need to provide an element that protects the visual system from damaging radiation. The present invention solves the problem envisioned in the state of the art. Thus, according to a first aspect, the present invention refers to a diopter (hereinafter referred to as the diopter of the present invention) configured to reduce radiations which damage the visual system, said diopter being characterized in that it comprises a substance having its surface or inside, said substance modifying the transmission properties of said diopter. In the present invention, the term diopter, according to the Geometric Optical Manual (Felipe, 1998), is a refractive area, i.e., an area that separates two environments with distinct refractive indices. In particular, radiations which damage the visual system are radiations of the infrared, ultraviolet and / or visible spectrum, whose wavelengths are between 180 nm and 10 000 nm. More particularly, the transmission properties that are modified by the diopter of the present invention are reflection, refraction, absorption, dispersion, polarization, and / or interference. According to one embodiment, the diopter of the present invention has a planar shape which may be parallel, concave, convex, biconcave or biconvex. More particularly, the substance included in the diopter of the present invention is selected from pigments, metallic substances, polymers, inorganic compounds, organic compounds or a mixture of these substances. According to another embodiment, the diopter of the present invention has a curved shape. More particularly, the diopter of the present invention is an ophthalmic lens. More particularly, the diopter of the present invention is a contact lens.

Selon un autre mode de réalisation, le dioptre de la présente invention a une forme plane. Plus particulièrement, le dioptre de la présente invention est un filtre.According to another embodiment, the diopter of the present invention has a planar shape. More particularly, the diopter of the present invention is a filter.

Selon un deuxième aspect, la présente invention se réfère à un élément qui comprend le dioptre de la présente invention, notamment des lunettes, des superficies de cadres de fenêtres, des portes ou des systèmes de division d'espaces, des visières de casque, des superficies de couverture, de revêtement, ou des parasols de tout types.According to a second aspect, the present invention refers to an element that includes the diopter of the present invention, including eyeglasses, window frame surfaces, doors or space division systems, helmet visors, areas of cover, covering, or umbrellas of any type.

Exemple 1: Dioptre : lentille de contact On dissous une quantité de 10,3 mg d'une teinture conventionnelle jaune à base de 4-Phenylazophenol, le Solvent Yellow 7 (5Y7), dans 10,01 g d'une solution de monomères contenant 66% de phényléthylamine (PEA), 30,5% de phényléthylmalonamide (PEMA) et 3,3% d'acide bisdehydrodoisynolique (BDDA), avec pour résultat une concentration de 5Y7 de 0,103 wt °/0. On incorpore ensuite 52,3 mg de bi-4-ter-butylcyclohexylperoxyde dicarboné comme catalyseur de la polymérisation.Example 1 Diopter: contact lens 10.3 mg of a conventional yellow 4-phenylazophenol dye, Solvent Yellow 7 (5Y7), were dissolved in 10.01 g of a monomer solution containing 66% phenylethylamine (PEA), 30.5% phenylethylmalonamide (PEMA) and 3.3% bisdehydrodoisynolic acid (BDDA), resulting in a concentration of 5Y7 of 0.103 wt ° / 0. 52.3 mg of bi-4-tert-butylcyclohexylperoxide dicarbonate is then incorporated as a catalyst for the polymerization.

Avec une seringue, la solution est introduite dans un moule formé par deux assiettes en verre, unies en superposition par des clips métalliques, et un anneau de Téflon de 1 mm. La solution est étendue en couche de 1 mm. La polymérisation se produit en mettant le moule dans un four à 65QC durant 17 heures. La température du four est ensuite augmentée jusqu'à 100QC durant 3 heures de plus. Une fois la polymérisation finalisée, on extrait la couche du moule, on réalise les vérifications adéquates de mesure de la protection et on procède à la taille finale. Dans cet exemple, le dioptre est donc une lentille de contact qui comprend un pigment jaune comme substance modifiant ses propriétés de transmission, notamment en augmentant l'absorbance des longueurs d'onde courtes comprises entre 350 nm et 500 nm. Exemple 2 : Dioptre : lentille ophtalmique Après calcul des paramètres de la lentille, on sélectionne des moules dont les superficies internes sont en verre et parfaitement polies, formant ainsi le négatif parfait des superficies de la lentille. Le mélange à polymériser, nommé prépolymère et constitué par un monomère 1 o et un catalyseur, est maintenu à basse température pour éviter la polymérisation avant l'injection dans le moule. Le prépolymère est ensuite introduit dans le moule à température ambiante puis agité afin d'éliminer les bulles d'air. Puis, le moule avec le prépolymère est introduit dans un récipient et on réalise la polymérisation au bain-marie, en maintenant la température à 15 40QC durant 12 heures. Puis on élève la température à 97QC durant une heure. Du fait de la réduction du volume du mélange durant la polymérisation, on a réalisé, durant le processus, le remplissage du moule avec le prépolymère. Une fois le polymère solidifié et la lentille taillée et polie, elle est immergée 20 durant 5 min dans une solution de pigment jaune à 90QC, pour une diminution d'approximativement 10%de l'absorbance de la lumière violette et bleue. Exemple 3 : Dioptre : Filtre pour fenêtres d'immeubles et/ou de véhicules Dans cet exemple, le dioptre est un filtre qui comprend un pigment jaune 25 comme substance modifiant ses propriétés de transmission, notamment en augmentant l'absorbance des longueurs d'onde courtes comprises entre 350 nm et 500 nm. Ce filtre est compris dans du verre. 30 Exemple 4 : Dioptre : lentille avec superficie miroitée Pour la préparation d'une lentille avec superficie miroitée, on utilise les solutions suivantes: - une solution 1 comprenant 30 g de nitrate d'argent mélangé à 900 cm3 d'eau distillée ; - une solution 2 comprenant 20 g de potasse caustique mélangée à 900 cm3 d'eau distillée ; - une solution réductrice 3 comprenant 50 g de glucose mélangé à 1000 cm3 d'eau distillée.With a syringe, the solution is introduced into a mold formed by two glass plates, united in superposition by metal clips, and a Teflon ring of 1 mm. The solution is extended in a layer of 1 mm. Polymerization occurs by placing the mold in an oven at 65 ° C for 17 hours. The oven temperature is then increased to 100 ° C for an additional 3 hours. Once the polymerization is finalized, the layer is extracted from the mold, adequate checks are made to measure the protection and the final size is carried out. In this example, the diopter is a contact lens that comprises a yellow pigment as a substance that modifies its transmission properties, in particular by increasing the absorbance of short wavelengths between 350 nm and 500 nm. EXAMPLE 2 Diopter: Ophthalmic Lens After calculating the parameters of the lens, molds are selected whose internal surfaces are made of glass and perfectly polished, thus forming the perfect negative of the surfaces of the lens. The mixture to be polymerized, named prepolymer and consisting of a monomer and a catalyst, is maintained at a low temperature to prevent polymerization before injection into the mold. The prepolymer is then introduced into the mold at room temperature and then stirred to remove air bubbles. Then, the mold with the prepolymer is introduced into a vessel and the polymerization is carried out in a water bath, keeping the temperature at 40 ° C. for 12 hours. Then the temperature is raised to 97QC for one hour. Due to the reduction of the volume of the mixture during the polymerization, during the process, the mold was filled with the prepolymer. Once the polymer has solidified and the lens is cut and polished, it is immersed for 5 minutes in a yellow pigment solution at 90 ° C., for a decrease of approximately 10% in the absorbance of the violet and blue light. Example 3: Diopter: Filter for windows of buildings and / or vehicles In this example, the diopter is a filter which comprises a yellow pigment 25 as a substance modifying its transmission properties, in particular by increasing the absorbance of wavelengths. from 350 nm to 500 nm. This filter is included in glass. Example 4: Diopter: lens with mirror surface For the preparation of a lens with a mirror-like surface, the following solutions are used: a solution 1 comprising 30 g of silver nitrate mixed with 900 cm 3 of distilled water; a solution 2 comprising 20 g of caustic potash mixed with 900 cm 3 of distilled water; a reducing solution 3 comprising 50 g of glucose mixed with 1000 cm 3 of distilled water.

Les solutions sont conservées dans des bouteilles opaques et sans exposition à la lumière directe. La superficie à argenter est frottée avec l'acide nitrique concentré et rincées à l'eau, puis séchée avec une serviette en fil. Puis, on instille à cette superficie un mélange à parts égales de solution mixte 2 et d'alcool, puis on la sèche et on la rince à nouveau à l'eau. Ensuite, on immerge la lentille dans un récipient rempli d'eau distillée, en maintenant la superficie à argenter vers le bas.The solutions are stored in opaque bottles and without exposure to direct light. The surface to be silvered is rubbed with concentrated nitric acid and rinsed with water, then dried with a napkin. Then, an equal mixture of mixed solution 2 and alcohol is instilled at this surface, then dried and rinsed again with water. Then, the lens is immersed in a container filled with distilled water, keeping the area to be silvered down.

Par ailleurs, on prépare une solution mixte avec 5 parties de la solution 1, auxquelles on ajoute peu à peu de l'ammoniaque jusqu'à la correcte clarification. On ajoute ensuite 6 parties de la solution 2, et de nouveau de l'ammoniaque jusqu'à éclaircissement. Enfin, on ajoute une partie de la solution 1. On obtient ainsi une solution de coloration que l'on transvase dans une bouteille obscure, après filtration. La lentille est disposée avec la superficie à miroiter vers le bas dans un récipient contenant la solution mixte sur approximativement 1 cm de hauteur puis on ajoute la solution réductrice 3 en agitant doucement le récipient qui contient ladite lentille. Les proportions de solution mixte et de solution réductrice sont de 3:1 à 2:1. Une fois l'argent déposé sur la superficie à miroiter de la lentille, on retire ladite lentille de la solution, on la rince sous un filet d'eau, puis on la met à sécher sur du papier filtre disposé sur une plaque chauffante légèrement chauffée.In addition, a mixed solution is prepared with 5 parts of the solution 1, to which ammonia is gradually added until the correct clarification. 6 parts of solution 2 are then added, and again ammonia until lightening. Finally, a portion of solution 1 is added. A coloring solution is thus obtained which is transferred to a dark bottle after filtration. The lens is disposed with the area to be dangled downward into a container containing the mixed solution approximately 1 cm in height and then the reducing solution 3 is added by gently shaking the container which contains said lens. The proportions of mixed solution and reducing solution are from 3: 1 to 2: 1. Once the silver is deposited on the mirror surface of the lens, the lens is removed from the solution, rinsed under a trickle of water, and then dried on filter paper placed on a slightly heated heating plate. .

Dans cet exemple, le dioptre est donc une lentille qui comprend de l'argent comme substance modifiant ses propriétés de transmission, notamment pour lui permettre de transmettre 40% des radiations comprises entre 380 nm et 780 nm et de réfléchir 60% de la lumière incidente.In this example, the diopter is therefore a lens that comprises silver as a substance that modifies its transmission properties, in particular to enable it to transmit 40% of the radiation between 380 nm and 780 nm and to reflect 60% of the incident light. .

Exemple 5: dioptre : lunettes de soudure Dans cet exemple, le dioptre est une lentille qui comprend des pigments verts comme substance modifiant ses propriétés de transmission, notamment de la façon suivante: Données de transmission et d'absorption de la radiation incidente: - % absorption UV (180 nm - 380 nm): 99,9%; - % transmission visible (380 nm - 780 nm): 3%; - % absorption IR (780 nm - 1100 nm): 99,5%.Example 5: Diopter: Welding Glasses In this example, the diopter is a lens that comprises green pigments as a substance that modifies its transmission properties, in particular as follows: Transmission and absorption data of the incident radiation: -% UV absorption (180 nm - 380 nm): 99.9%; - Visible transmission (380 nm - 780 nm): 3%; IR absorption (780 nm - 1100 nm): 99.5%.

Claims (7)

REVENDICATIONS1. Dioptre configuré pour réduire les radiations qui endommagent le système visuel, caractérisé en ce qu'il comprend une substance à sa superficie ou à l'intérieur, ladite substance modifiant les propriétés de transmission dudit dioptre.REVENDICATIONS1. A dioptre configured to reduce radiation that damages the visual system, characterized in that it comprises a substance at or inside its surface, said substance modifying the transmission properties of said diopter. 2. Dioptre selon la revendication 1, caractérisé en ce que les radiations qui endommagent le système visuel sont des radiations du spectre infrarouge, ultraviolet et/ou du spectre visible, dont les longueurs d'onde sont comprises entre 180 nm et 10000 nm.2. Diopter according to claim 1, characterized in that the radiations which damage the visual system are radiations of the infrared spectrum, ultraviolet and / or visible spectrum, whose wavelengths are between 180 nm and 10000 nm. 3. Dioptre selon l'une quelconque des revendications précédentes, caractérisé en ce que les propriétés de transmission qui sont modifiées par le dioptre sont la réflexion, l'absorption, la réfraction, la dispersion, la polarisation, et/ou le phénomène interférentiel.3. Diopter according to any one of the preceding claims, characterized in that the transmission properties which are modified by the diopter are reflection, absorption, refraction, dispersion, polarization, and / or the interference phenomenon. 4. Dioptre selon n'importe laquelle des revendications précédentes, caractérisé en ce que la substance comprise dans le dioptre est sélectionnée parmi des pigments, des substances métalliques, des polymères, des composés inorganiques, des composés organiques ou un mélange de ces substances.4. Diopter according to any one of the preceding claims, characterized in that the substance included in the diopter is selected from pigments, metallic substances, polymers, inorganic compounds, organic compounds or a mixture of these substances. 5. Dioptre selon n'importe laquelle des revendications précédentes, caractérisé en ce que sa forme est sélectionnée entre la forme courbe et la forme plane.5. Diopter according to any one of the preceding claims, characterized in that its shape is selected between the curved shape and the flat shape. 6. Dioptre selon n'importe laquelle des revendications précédentes, caractérisé en ce que le dioptre est une lentille ophtalmique, une lentille de contact, un verre de tout type, un miroir, une visière, une superficie de couverture, une superficie de revêtement ou un polymère.6. Diopter according to any one of the preceding claims, characterized in that the diopter is an ophthalmic lens, a contact lens, a glass of any type, a mirror, a visor, a covering area, a coating surface or a polymer. 7. Élément qui comprend un dioptre selon n'importe laquelle des revendications 1 à 6.An element comprising a diopter according to any one of claims 1 to 6.
FR1355732A 2013-06-03 2013-06-18 DIOPTRE CONFIGURE TO REDUCE ELECTROMAGNETIC RADIATIONS THAT DAMAGE THE VISUAL SYSTEM Expired - Lifetime FR3006452B3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201300500U ES1094781Y (en) 2013-06-03 2013-06-03 Diopter configured to restrict electromagnetic radiation that damages the visual system

Publications (2)

Publication Number Publication Date
FR3006452A3 true FR3006452A3 (en) 2014-12-05
FR3006452B3 FR3006452B3 (en) 2015-10-09

Family

ID=49323617

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1355732A Expired - Lifetime FR3006452B3 (en) 2013-06-03 2013-06-18 DIOPTRE CONFIGURE TO REDUCE ELECTROMAGNETIC RADIATIONS THAT DAMAGE THE VISUAL SYSTEM

Country Status (7)

Country Link
CH (1) CH708114A2 (en)
DE (1) DE202013102610U1 (en)
ES (1) ES1094781Y (en)
FR (1) FR3006452B3 (en)
IE (1) IES20140139A2 (en)
IT (1) ITRM20130168U1 (en)
PT (1) PT10925T (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10642087B2 (en) 2014-05-23 2020-05-05 Eyesafe, Llc Light emission reducing compounds for electronic devices
EP3125005A1 (en) 2015-07-29 2017-02-01 Tecnología Sostenible y Responsable SL Optical product comprising two pigments
US11810532B2 (en) 2018-11-28 2023-11-07 Eyesafe Inc. Systems for monitoring and regulating harmful blue light exposure from digital devices
US11126033B2 (en) 2018-11-28 2021-09-21 Eyesafe Inc. Backlight unit with emission modification
US11592701B2 (en) 2018-11-28 2023-02-28 Eyesafe Inc. Backlight unit with emission modification

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2247946B2 (en) 2005-04-19 2006-10-01 Universidad Complutense De Madrid THERAPEUTIC CONTACT LENS FOR PSEUDO-AFAQUIC EYES AND / OR IN NEURODEGENERATION PROCESS.
ES2257976B2 (en) 2006-01-10 2007-03-16 Universidad Complutense De Madrid THERAPEUTIC AND PROFILACTIC OPHTHALMOLOGICAL LENS FOR PSEUDOAFAQUIC EYES AND / OR IN THE PROCESS OF NEURODEGENERATION.
ES2281301B1 (en) 2006-10-16 2008-07-16 Universidad Complutense De Madrid LIGHTING DEVICE WITH THERAPEUTIC AND PROFILACTIC FILTER FOR HEALTHY EYES, PSEUDO-AFAQUICOS AND / OR IN NEURODEGENERATION PROCESS.
ES2281303B1 (en) 2006-12-04 2008-07-16 Universidad Complutense De Madrid PREVENTION COMPONENT FOR HEALTHY EYES AND THERAPY AND PROFILAXIS FOR PSEUDO-AFAQUIC EYES AND / OR IN PROCESS OF VEHICLE NEURODEGENERATION.
ES2289957B1 (en) 2007-02-07 2008-12-01 Universidad Complutense De Madrid LIGHTING SOURCE WITH REDUCED ISSUANCE OF SHORT WAVE LENGTHS FOR EYE PROTECTION.
ES2296552B1 (en) 2007-06-01 2009-08-25 Universidad Complutense De Madrid ELEMENT OF PREVENTION ON TRANSPARENT SURFACES OF BUILDINGS FOR THE PROTECTION AND THERAPY OF EYES.
ES2298089B2 (en) 2007-07-19 2010-03-08 Universidad Complutense De Madrid SAFETY HELMET VISOR AND PREVENTION WITH SURFACE TREATED FOR EYE PROTECTION AND THERAPY.
ES2303484B2 (en) 2007-10-15 2010-03-08 Universidad Complutense De Madrid COVERAGE, COATING OR DISPLAY MATERIAL FOR EYE PROTECTION AND THERAPY AGAINST THE EFFECTS OF BLUE LIGHT.
ES2312284B1 (en) 2007-10-26 2010-01-08 Universidad Complutense De Madrid SAFETY AND PREVENTION GLASSES WITH SURFACE TREATED FOR THE PROTECTION AND THERAPY OF EYES IN OFFICES AND SPORTS.

Also Published As

Publication number Publication date
DE202013102610U1 (en) 2013-09-05
ES1094781Y (en) 2014-02-24
FR3006452B3 (en) 2015-10-09
IES86544B2 (en) 2015-06-03
ITRM20130168U1 (en) 2014-12-04
ES1094781U (en) 2013-12-03
IES20140139A2 (en) 2015-06-03
CH708114A2 (en) 2014-12-15
PT10925T (en) 2013-12-17

Similar Documents

Publication Publication Date Title
FR3006452A3 (en) DIOPTRE CONFIGURE TO REDUCE ELECTROMAGNETIC RADIATIONS THAT DAMAGE THE VISUAL SYSTEM
Min et al. Deformable and conformal silk hydrogel inverse opal
AU2005330628B2 (en) Therapeutic contact lens for pseudoaphakic eyes and/or eyes undergoing a neurodegenerative process
US4698374A (en) Optical lens system incorporating melanin as an absorbing pigment for protection against electromagnetic radiation
ES2585632T3 (en) Ophthalmic reflective-diffractive device and compositions useful for manufacturing it
ES2668994T3 (en) Color balanced ophthalmic system with selective light inhibition
US5047447A (en) Medium incorporating melanin as an absorbing pigment for protection against electromagnetic radiation
US5112883A (en) Medium incorporating melanin as an absorbing pigment against electromagnetic radiation
US5252628A (en) Method of making photoprotective hydrophilic polymers and ocular devices thereof
US11826974B2 (en) Methods and compositions for pigmented hydrogels and contact lenses
EA012793B1 (en) Therapeutic and prophylactic ophthalmologic lens for pseudoaphakic eyes and/or eyes undergoing a neurodegenerative process
US20050041299A1 (en) Light filters using the oxidative polymerization product of 3-hydroxykynurenine (3-OHKyn)
EP2247976B1 (en) Ophthalmic lens having a yellow dye light blocking component
US11072137B2 (en) Methods of forming contact lenses to reduce the transmittance of light
US6825975B2 (en) Light filters using the oxidative polymerization product of 3-Hydroxykynurenine (3-OHKyn)
Majdi et al. The role of ultraviolet radiation in the ocular system of mammals
Xu et al. In vitro and in vivo evaluation of brimonidine loaded silica nanoparticles-laden silicone contact lenses to manage glaucoma
Sekar et al. Pigmented contact lenses for managing ocular disorders
KR20210009257A (en) Contact lenses for blocking blue light and methods of manufacturing the same
Alam et al. 3D printed intraocular lens for managing the color blindness
Anstey et al. Ultraviolet radiation‐blocking characteristics of contact lenses: relevance to eye protection for psoralen‐sensitised patients
Sood et al. Climatic Keratopathy in Snow Laden Hilly Areas
EP2178892B1 (en) Novel photochromic materials
Hamidi et al. New-generation of PDMS-based Lenses for Color Blindness management
KR20200037001A (en) A silicon hydrogel lens for blocking blue light using natural material

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6