FR2982676A1 - Method for determining charge state of electric energy storage system i.e. battery of e.g. electric car, involves determining state of charge of battery from maximum dispersion of state of charge - Google Patents

Method for determining charge state of electric energy storage system i.e. battery of e.g. electric car, involves determining state of charge of battery from maximum dispersion of state of charge Download PDF

Info

Publication number
FR2982676A1
FR2982676A1 FR1160348A FR1160348A FR2982676A1 FR 2982676 A1 FR2982676 A1 FR 2982676A1 FR 1160348 A FR1160348 A FR 1160348A FR 1160348 A FR1160348 A FR 1160348A FR 2982676 A1 FR2982676 A1 FR 2982676A1
Authority
FR
France
Prior art keywords
charge
state
useful
socmin
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1160348A
Other languages
French (fr)
Inventor
Melaine Migaud
Aurelie Boisard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Priority to FR1160348A priority Critical patent/FR2982676A1/en
Publication of FR2982676A1 publication Critical patent/FR2982676A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The method involves determining the state of charge of a least charged storage element and the state of charge of a most charged storage element (20). A difference between the state of charge of the most charged storage element and the state of charge of the least charged storage element is determined (22), so as to obtain maximum dispersion of the state of charge. The state of charge of an electric energy storage system i.e. battery is determined (24) from the maximum dispersion of the state of charge. An independent claim is also included for a drivetrain controller of an electric car or a hybrid car.

Description

PROCEDE DE DETERMINATION DE L'ETAT DE CHARGE D'UN SYSTEME DE STOCKAGE D'ENERGIE ELECTRIQUE POUR VEHICULES AUTOMOBILES ELECTRIQUES ET HYBRIDES La présente invention se rapporte à un procédé de détermination de l'état de charge d'un système de stockage d'énergie électrique pour véhicules automobiles électriques et hybrides. La présente invention se rapporte également à un calculateur de chaîne de traction adapté à mettre en oeuvre un tel procédé et à un véhicule automobile électrique ou hybride comportant un tel calculateur. L'invention appartient au domaine des véhicules automobiles électriques et hybrides utilisant un système de stockage d'énergie électrique constitué de plusieurs éléments de stockage. Les stratégies de gestion et d'optimisation d'un véhicule automobile électrique ou hybride sont généralement fondées sur l'état de charge (SOC, en anglais "State Of Charge") de son système de stockage d'énergie électrique. Par conséquent, l'information sur l'état de charge doit être la plus pertinente possible. A l'heure actuelle, lorsque le système de stockage comporte plusieurs éléments de stockage, l'information sur l'état de charge global du système de stockage est le plus souvent obtenue en calculant la moyenne des états de charge des différents éléments. Cette méthode de l'art antérieur présente des inconvénients. En particulier, le calcul du SOC par une moyenne ne prend pas en compte la dispersion des états de charge des différents éléments de stockage. Il en résulte que l'information, qui est généralement renvoyée au système de gestion de la chaîne de traction du véhicule, ne reflète pas la capacité réellement exploitable du système de stockage. En effet, le SOC d'un des éléments de stockage peut être nul sans que le SOC moyen ne le soit. Pourtant, cet élément de stockage déchargé est un élément limitant. En conséquence, les performances du système de stockage fondées sur l'élément limitant sont nulles, ce qui signifie en pratique que l'énergie indiquée par le SOC moyen n'est en fait pas utilisable par le véhicule électrique ou hybride. The present invention relates to a method for determining the state of charge of an energy storage system. electric vehicle for electric and hybrid motor vehicles. The present invention also relates to a traction chain computer adapted to implement such a method and to an electric or hybrid motor vehicle comprising such a computer. The invention belongs to the field of electric and hybrid motor vehicles using an electrical energy storage system consisting of several storage elements. The management and optimization strategies of an electric or hybrid motor vehicle are generally based on the state of charge (SOC) of its electrical energy storage system. Therefore, the state of charge information should be as relevant as possible. At present, when the storage system comprises several storage elements, the information on the overall state of charge of the storage system is most often obtained by calculating the average of the states of charge of the various elements. This method of the prior art has drawbacks. In particular, the calculation of SOC by an average does not take into account the dispersion of the states of charge of the various storage elements. As a result, the information, which is generally returned to the vehicle's power train management system, does not reflect the actual usable capacity of the storage system. Indeed, the SOC of one of the storage elements can be zero without the average SOC being. However, this unloaded storage element is a limiting element. As a result, the performance of the storage system based on the limiting element is zero, which means in practice that the energy indicated by the average SOC is in fact not usable by the electric or hybrid vehicle.

La présente invention a pour but de remédier à ces inconvénients en fournissant une information sur l'état de charge global du système de stockage qui soit pertinente sans discontinuité et qui reflète l'énergie réellement utilisable par le véhicule. Dans ce but, la présente invention propose un procédé de détermination de l'état de charge d'un système de stockage d'énergie électrique d'un véhicule automobile électrique ou hybride, ce système de stockage comportant une pluralité d'éléments de stockage, le procédé étant remarquable en ce qu'il comporte des étapes consistant à : déterminer l'état de charge de l'élément le moins chargé et l'état de charge de l'élément le plus chargé ; déterminer la différence entre l'état de charge de l'élément le plus chargé et l'état de charge de l'élément le moins chargé, de façon à obtenir la dispersion maximale d'état de charge ; et déterminer l'état de charge du système de stockage à partir de cette dispersion. The present invention aims to remedy these drawbacks by providing information on the overall state of charge of the storage system that is relevant without discontinuity and which reflects the energy actually usable by the vehicle. For this purpose, the present invention proposes a method for determining the state of charge of an electrical energy storage system of an electric or hybrid motor vehicle, this storage system comprising a plurality of storage elements, the method being remarkable in that it comprises the steps of: determining the state of charge of the least charged element and the state of charge of the most charged element; determining the difference between the state of charge of the most charged element and the state of charge of the least charged element, so as to obtain the maximum dispersion of state of charge; and determining the state of charge of the storage system from this dispersion.

Ainsi, la stratégie proposée par l'invention permet de tenir compte de la dispersion du SOC des différents éléments de stockage. En effet, par construction, le SOC global déterminé selon l'invention est continu et reflète le pourcentage de l'énergie réellement utilisable au niveau du système de stockage, par opposition avec la méthode consistant à calculer le SOC moyen. L'invention permet ainsi d'offrir au client un affichage plus précis du SOC et contribue à obtenir un gain de consommation sur un véhicule hybride, comportant un moteur thermique et une machine électrique. En outre, le procédé conforme à l'invention est facile à intégrer dans un calculateur car il nécessite peu de ressources de calcul. Selon une caractéristique particulière, l'étape de détermination de l'état de charge du système comporte des étapes consistant à : déterminer la différence entre un état de charge constituant une limite d'utilisation haute prédéterminée des éléments de stockage et un état de charge constituant une limite d'utilisation basse prédéterminée des éléments de stockage, de façon à obtenir une plage utile d'état de charge ; déterminer la différence entre cette plage utile et la dispersion précitée, de façon à obtenir une plage utilisable d'état de charge ; et déterminer l'état de charge du système comme suit : (a) si SOCmin < SOCmin utile alors SOC global = SOCmin (b) si SOCmax > SOCmax utile alors SOC global = SOCmax (c) si SOCmin SOCmin utile et SOCmax SOCmax utile alors SOCmin - SOCmin utile SOC global = x Plage_utile + SOCmin utile Plage_utilisable où SOC global désigne l'état de charge du système, SOCmin désigne l'état de charge de l'élément le moins chargé, SOCmin utile désigne l'état de charge constituant la limite d'utilisation basse prédéterminée, SOCmax désigne l'état de charge de l'élément le plus chargé, SOCmax utile désigne l'état de charge constituant la limite d'utilisation haute prédéterminée, Plage_utilisable désigne la plage utilisable d'état de charge, et Plage_utile désigne la plage utile d'état de charge. Dans le même but que celui indiqué plus haut, la présente invention propose également un calculateur de chaîne de traction d'un véhicule automobile électrique ou hybride, remarquable en ce qu'il comporte des moyens adaptés à mettre en oeuvre des étapes d'un procédé tel que succinctement décrit ci-dessus. Toujours dans le même but, la présente invention propose également un véhicule automobile électrique ou hybride comportant un système de stockage d'énergie électrique ayant une pluralité d'éléments de stockage, ce véhicule étant remarquable en ce qu'il comporte un calculateur de chaîne de traction tel que succinctement décrit ci-dessus. D'autres aspects et avantages de l'invention apparaîtront à la lecture de la description qui suit de modes particuliers de réalisation, donnés à titre d'exemples non limitatifs et en référence aux dessins qui l'accompagnent, dans lesquels : - la figure 1 est une représentation schématique d'un système de stockage d'énergie électrique du type considéré dans le cadre de la présente invention, dans un mode particulier de réalisation ; - la figure 2 est un organigramme illustrant les principales étapes d'un procédé conforme à la présente invention, dans un mode particulier de réalisation ; - la figure 3 est un graphique illustrant un exemple de détermination de l'état de charge suivant l'invention, dans un mode particulier de réalisation ; et - la figure 4 illustre trois exemples de configuration d'état de charge des éléments de stockage d'un système de stockage à quatre éléments auquel on applique le procédé conforme à la présente invention. On considère dans le cadre de la présente invention un système de stockage d'énergie électrique d'un véhicule automobile électrique ou hybride (tel qu'une batterie de traction d'un véhicule électrique ou hybride) du type illustré sur la figure 1. Le système 100 de stockage d'énergie électrique comporte n éléments de stockage 101, 102, ..., 10,. Il comporte également un superviseur 12 du système 100 de stockage, qui se charge notamment d'envoyer à un calculateur 14 de la chaîne de traction l'information sur l'état de charge global du système 100. Comme le montre l'organigramme de la figure 2, le procédé de détermination de l'état de charge du système 100 conforme à l'invention comporte une première étape 20 consistant à déterminer l'état de charge de l'élément de stockage le moins chargé, noté "SOCmin", et l'état de charge de l'élément de stockage le plus chargé, noté "SOCmax". Cette détermination peut être effectuée par exemple en déterminant l'état de charge de chacun des éléments de stockage et en les comparant les uns aux autres. Thus, the strategy proposed by the invention makes it possible to take into account the dispersion of the SOC of the various storage elements. Indeed, by construction, the overall SOC determined according to the invention is continuous and reflects the percentage of energy actually usable at the level of the storage system, as opposed to the method of calculating the average SOC. The invention thus makes it possible to offer the customer a more accurate display of the SOC and contributes to obtaining a gain in consumption on a hybrid vehicle, comprising a heat engine and an electric machine. In addition, the method according to the invention is easy to integrate into a computer because it requires little computing resources. According to one particular characteristic, the step of determining the state of charge of the system comprises the following steps: determining the difference between a state of charge constituting a predetermined high utilization limit of the storage elements and a state of charge constituting a predetermined low utilization limit of the storage elements, so as to obtain a useful range of state of charge; determining the difference between this useful range and the above-mentioned dispersion so as to obtain a usable range of state of charge; and determine the state of charge of the system as follows: (a) if SOCmin <SOCmin useful then SOC global = SOCmin (b) if SOCmax> SOCmax useful then SOC global = SOCmax (c) if SOCmin SOCmin useful and SOCmax SOCmax useful then SOCmin - SOCmin useful Global SOC = x Useful_value + SOCmin useful Usable range where global SOC denotes the state of charge of the system, SOCmin denotes the state of charge of the least loaded element, SOCmin indicates the state of charge constituting the predetermined low utilization limit, SOCmax denotes the state of charge of the most charged element, SOCmax indicates the state of charge constituting the predetermined high utilization limit, Usable range is the usable range of state of charge, and Useful_value is the useful range of state of charge. For the same purpose as that indicated above, the present invention also proposes a traction chain calculator of an electric or hybrid motor vehicle, remarkable in that it comprises means adapted to implement steps of a method. as succinctly described above. Still with the same object in view, the present invention also proposes an electric or hybrid motor vehicle comprising an electrical energy storage system having a plurality of storage elements, this vehicle being remarkable in that it comprises a chain computer of traction as succinctly described above. Other aspects and advantages of the invention will appear on reading the following description of particular embodiments, given by way of non-limiting examples and with reference to the accompanying drawings, in which: FIG. 1 is a schematic representation of an electrical energy storage system of the type considered in the context of the present invention, in a particular embodiment; FIG. 2 is a flowchart illustrating the main steps of a method according to the present invention, in a particular embodiment; FIG. 3 is a graph illustrating an example of determining the state of charge according to the invention, in a particular embodiment; and FIG. 4 illustrates three examples of state of charge configuration of the storage elements of a four-element storage system to which the method according to the present invention is applied. In the context of the present invention, an electric energy storage system of an electric or hybrid motor vehicle (such as a traction battery of an electric or hybrid vehicle) of the type illustrated in FIG. system 100 for storing electrical energy comprises n storage elements 101, 102, ..., 10,. It also includes a supervisor 12 of the storage system 100, which is responsible in particular for sending to a computer 14 of the power train information on the overall state of charge of the system 100. As shown in the flowchart of the 2, the method for determining the state of charge of the system 100 according to the invention comprises a first step of determining the state of charge of the least charged storage element, denoted "SOCmin", and the state of charge of the most heavily loaded storage element, denoted "SOCmax". This determination can be made for example by determining the state of charge of each of the storage elements and comparing them to each other.

Puis une deuxième étape 22 consiste à déterminer la différence Delta = SOCmax - SOCmin. Cette différence "Delta" est représentative de la dispersion maximale d'état de charge entre deux éléments. Enfin, une étape 24 consiste à déterminer l'état de charge global du système 100 de stockage à partir de la dispersion Delta. Then a second step 22 consists of determining the difference Delta = SOCmax - SOCmin. This difference "Delta" is representative of the maximum dispersion of state of charge between two elements. Finally, a step 24 consists in determining the overall state of charge of the storage system 100 from the Delta dispersion.

Dans un mode particulier de réalisation, l'étape 24 consiste à effectuer les étapes suivantes. On détermine tout d'abord la différence entre un état de charge noté "SOCmax utile", constituant une limite d'utilisation haute prédéterminée des éléments de stockage 101, 102, ..., 10, et un état de charge noté "SOCmin utile", constituant une limite d'utilisation basse prédéterminée des éléments de stockage 101, 102, ..., 10,. On note cette différence SOCmax utile SOCmin utile = Plage_utile. Elle représente une plage utile d'état de charge. Puis on détermine la différence Plage_utile - Delta = Plage_utilisable. Cette différence représente une plage d'état de charge réellement utilisable par le système 100, prenant en compte la dispersion. Ensuite, on détermine l'état de charge global du système 100 de la façon suivante : 2 9826 76 5 (a) si SOCmin < SOCmin utile alors SOC global = SOCmin (b) si SOCmax > SOCmax utile alors SOC global = SOCmax (c) si SOCmin SOCmin utile et SOCmax SOCmax utile alors SOCmin - SOCmin utile SOC global = x Plage_utile + SOCmin utile Plag e _utilisable 5 où "SOC global" désigne l'état de charge (global) du système 100. Ainsi, le SOC global renvoyé au calculateur 14 de la chaîne de traction tient compte de la dispersion d'état de charge entre les éléments de stockage 101, 102, ..., 10n. Si le SOC d'un des éléments de stockage 101, 102, ..., 10n est proche 10 d'une limite basse ou haute, le SOC global reflète le SOC de cet élément tout en assurant la continuité de l'information dans la plage d'énergie utilisable. Les cas (a), (b) et (c) ci-dessus sont illustrés dans un exemple sur le graphique de la figure 3, qui représente différentes mesures de l'état de charge en fonction du temps : SOCmin, SOCmax, le SOC moyen classique 15 (moyenne des SOC des différents éléments de stockage) et le SOC global déterminé conformément à l'invention. Toutes les valeurs d'état de charge sont comprises entre une valeur notée "SOCmin autorisé" représentant l'état de charge minimal autorisé et une valeur notée "SOCmax autorisé" représentant l'état de charge maximal 20 autorisé. Cette plage de SOC autorisée est un domaine explorable mais ne garantissant pas la tenue des performances dans le temps. Un élément de stockage se caractérise non seulement par cette plage de SOC autorisée, mais également par une plage de SOC utile (entre SOCmin utile et SOCmax utile, dont des valeurs exemples sont portées en 25 ordonnée du graphique de la figure 3), cette plage de SOC utile constituant un domaine qui garantit la pérennité des performances. Si on considère une information de SOC global basée sur une moyenne des SOC des éléments, la grandeur obtenue est décorrélée des grandeurs caractéristiques des éléments de stockage mentionnées ci-30 dessus. En effet, le SOC moyen peut être dans la plage [SOCmin utile ; SOCmax utile] alors que le SOC de l'élément le plus/le moins chargé n'y est pas. L'information SOC moyen ne représente pas le pourcentage de 35 l'énergie accessible du système 100 de stockage car il suffit qu'un élément soit aux limites utiles (max ou min) pour que la différence d'énergie SOCmax utile - SOC élément ou SOC élément - SOCmin utile (où SOC élément représente le SOC de l'élément considéré) ne soit pas exploitable. Les trois exemples de la figure 4 concernent un système 100 de 5 stockage comportant 4 éléments de stockage, chacune des quatre barres de chaque graphique représentant respectivement le SOC d'un de ces quatre éléments. Si on note E_elt l'énergie contenue dans un élément de stockage, Emax l'énergie maximale contenue dans le système 100 de stockage, Emin 10 l'énergie minimale contenue dans le système 100 et E l'énergie contenue dans le système 100, on a les relations suivantes : - pour l'exemple illustré en haut de la figure 4, Emax = n x E_elt x (SOCmax utile - Delta) ; - pour l'exemple illustré au milieu de la figure 4, E = n x E_elt x 15 SOCmin ; et - pour l'exemple illustré en bas de la figure 4, Emin = n x E_elt x SOCmin utile. Lorsque E = Emax, le SOC global renvoyé au calculateur 14 de la chaîne de traction est fixé à SOCmax utile.In a particular embodiment, step 24 consists of performing the following steps. Firstly, the difference between a state of charge marked "useful SOCmax", constituting a predetermined high utilization limit of the storage elements 101, 102, ..., 10, and a state of charge noted "SOCmin" is determined first. ", constituting a predetermined low usage limit of the storage elements 101, 102, ..., 10 ,. Note this SOCmax difference useful SOCmin useful = Useful_range. It represents a useful range of state of charge. Then the difference is determined Usable range - Delta = Usable range. This difference represents a state of charge range actually usable by the system 100, taking into account the dispersion. Then, the overall state of charge of the system 100 is determined as follows: (a) if SOCmin <SOCmin then SOC global = SOCmin (b) if SOCmax> SOCmax then SOC global = SOCmax (c ) if SOCmin useful SOCmin and SOCmax SOCmax useful then SOCmin - SOCmin useful Global SOC = x Useful_scale + SOCmin useful Plag e_utilisable 5 where "Global SOC" refers to the state of charge (global) of the system 100. Thus, the global SOC returned the calculator 14 of the traction chain takes into account the state of charge dispersion between the storage elements 101, 102, ..., 10n. If the SOC of one of the storage elements 101, 102, ..., 10n is close to a low or high limit, the global SOC reflects the SOC of that element while ensuring the continuity of the information in the Usable energy range. The cases (a), (b) and (c) above are illustrated in an example in the graph of Figure 3, which shows different measurements of the state of charge as a function of time: SOCmin, SOCmax, the SOC conventional means (average SOC of the different storage elements) and the overall SOC determined according to the invention. All state of charge values are between a value marked "authorized SOCmin" representing the minimum state of charge allowed and a value denoted "SOCmax authorized" representing the maximum state of charge allowed. This authorized SOC range is an explorable domain but does not guarantee performance over time. A storage element is characterized not only by this allowed SOC range, but also by a useful SOC range (between useful SOCmin and useful SOCmax, whose example values are plotted on the ordinate of the graph of FIG. of useful SOC constituting a domain which guarantees the durability of the performances. Considering global SOC information based on an average of the SOCs of the elements, the magnitude obtained is decorrelated from the characteristic quantities of the storage elements mentioned above. Indeed, the average SOC can be in the range [SOCmin useful; SOCmax useful] while the SOC of the least / most loaded element is not there. The average SOC information does not represent the percentage of the accessible energy of the storage system 100 because it is sufficient for one element to be at the useful limits (max or min) for the SOCmax energy difference to be useful - SOC element or SOC element - SOCmin useful (where SOC element represents the SOC of the considered element) is not exploitable. The three examples of FIG. 4 relate to a storage system 100 comprising 4 storage elements, each of the four bars of each graph representing respectively the SOC of one of these four elements. If we note E_elt the energy contained in a storage element, Emax the maximum energy contained in the storage system 100, Emin 10 the minimum energy contained in the system 100 and E the energy contained in the system 100, one has the following relations: - for the example illustrated at the top of Figure 4, Emax = nx E_elt x (SOCmax useful - Delta); for the example illustrated in the middle of FIG. 4, E = n x E_elt x 15 SOCmin; and for the example illustrated at the bottom of FIG. 4, Emin = n x E_elt x SOCmin is useful. When E = Emax, the global SOC returned to the computer 14 of the drivetrain is set to SOCmax useful.

20 Lorsque E = Emin, le SOC global renvoyé au calculateur 14 de la chaîne de traction est fixé à SOCmin utile. Lorsque Emin < E < Emax, le SOC global au calculateur 14 de la chaîne de traction est construit par interpolation linéaire : SOCglobal - SOCglobal_min E - Emin = SOCglobal_max - SOCglobal_min Emax - Emin 25 où SOCglobal_min désigne la valeur minimale du SOC global et SOCglobal_max désigne la valeur maximale du SOC global. On en déduit : SOCmin - SOCmin utile SOC global = x Plage_utile + SOCmin utile Plage_utilisable 30 Par construction, le SOC global ainsi déterminé est continu et reflète le pourcentage de l'énergie électrique réellement utilisable au niveau du système, alors que ce n'est pas le cas pour le SOC moyen. Il est à noter néanmoins que, si l'on fait l'impasse sur la continuité de l'information de SOC, on peut simplifier la méthode de détermination du SOC global en conservant le calcul du SOC moyen tant que SOCmin > SOCmin utile et SOCmax < SOCmax utile et en décidant que lorsque SOCmin SOCmin utile, alors SOC = SOCmin et lorsque SOCmax SOCmax utile, alors SOC = SOCmax.5 When E = Emin, the overall SOC returned to the pull chain computer 14 is set to SOCmin useful. When Emin <E <Emax, the SOC global to the calculator 14 of the traction chain is constructed by linear interpolation: SOCglobal - SOCglobal_min E - Emin = SOCglobal_max - SOCglobal_min Emax - Emin 25 where SOCglobal_min denotes the minimum value of the global SOC and SOCglobal_max designates the maximum value of the global SOC. From this is deduced: SOCmin - SOCmin useful Global SOC = x Useful_value + SOCmin useful Usable range 30 By construction, the overall SOC thus determined is continuous and reflects the percentage of electrical energy actually usable at the system level, whereas this is not the case for the average SOC. It should be noted, however, that, if the continuity of the SOC information is omitted, the method of determining the global SOC can be simplified by keeping the calculation of the average SOC as long as SOCmin> SOCmin is useful and SOCmax <SOCmax useful and deciding that when SOCmin SOCmin useful, then SOC = SOCmin and SOCmax when SOCmax useful, then SOC = SOCmax.5

Claims (4)

REVENDICATIONS1. Procédé de détermination de l'état de charge d'un système (100) de stockage d'énergie électrique d'un véhicule automobile électrique ou hybride, ledit système (100) de stockage comportant une pluralité d'éléments de stockage (101, 102, ..., 10,), ledit procédé étant caractérisé en ce qu'il comporte des étapes consistant à : déterminer (20) l'état de charge de l'élément le moins chargé et l'état de charge de l'élément le plus chargé ; déterminer (22) la différence entre l'état de charge de l'élément le plus chargé et l'état de charge de l'élément le moins chargé, de façon à obtenir la dispersion maximale d'état de charge ; et déterminer (24) l'état de charge du système de stockage à partir de ladite dispersion. REVENDICATIONS1. A method of determining the state of charge of a system (100) for storing electrical energy of an electric or hybrid motor vehicle, said storage system (100) having a plurality of storage elements (101, 102 , ..., 10,), said method being characterized in that it comprises the steps of: determining (20) the state of charge of the least charged element and the state of charge of the element the most charged; determining (22) the difference between the state of charge of the most charged element and the state of charge of the least charged element, so as to obtain the maximum dispersion of state of charge; and determining (24) the state of charge of the storage system from said dispersion. 2. Procédé selon la revendication 1, caractérisé en ce que ladite étape (24) de détermination de l'état de charge du système comporte des étapes consistant à : déterminer la différence entre un état de charge constituant une limite d'utilisation haute prédéterminée des éléments de stockage (101, 102, ..., 10n) et un état de charge constituant une limite d'utilisation basse prédéterminée des éléments de stockage (10i, 102, ..., 10n), de façon à obtenir une plage utile d'état de charge ; déterminer la différence entre ladite plage utile et ladite dispersion, de façon à obtenir une plage utilisable d'état de charge ; et déterminer l'état de charge du système comme suit : (a) si SOCmin < SOCmin utile alors SOC global = SOCmin (b) si SOCmax > SOCmax utile alors SOC global = SOCmax (c) si SOCmin SOCmin utile et SOCmax SOCmax utile alors SOCmin - SOCmin utile SOC global = x Plage_utile + SOCmin utile Plage_utilisable où SOC global désigne l'état de charge du système (100), SOCmin désigne l'état de charge de l'élément le moins chargé, SOCmin utile désigne l'état de charge constituant ladite limite d'utilisation basse prédéterminée, SOCmax désigne l'état de charge de l'élément le plus chargé,SOCmax utile désigne l'état de charge constituant ladite limite d'utilisation haute prédéterminée, Plage_utilisable désigne ladite plage utilisable d'état de charge, et Plage_utile désigne ladite plage utile d'état de charge. The method of claim 1, characterized in that said step (24) of determining the state of charge of the system includes steps of: determining the difference between a state of charge constituting a predetermined high utilization limit of storage elements (101, 102, ..., 10n) and a state of charge constituting a predetermined low utilization limit of the storage elements (10i, 102, ..., 10n), so as to obtain a useful range state of charge; determining the difference between said useful range and said dispersion, so as to obtain a usable state of charge range; and determine the state of charge of the system as follows: (a) if SOCmin <SOCmin useful then SOC global = SOCmin (b) if SOCmax> SOCmax useful then SOC global = SOCmax (c) if SOCmin SOCmin useful and SOCmax SOCmax useful then SOCmin - SOCmin useful Global SOC = x Useful_value + useful SOCmin Usable_value where global SOC denotes the state of charge of the system (100), SOCmin denotes the state of charge of the least loaded element, useful SOCmin denotes the state of charge. load constituting said predetermined low utilization limit, SOCmax denotes the state of charge of the most heavily loaded element, SOCmax means the state of charge constituting said predetermined high utilization limit, Usable range refers to said usable state range load, and useful_value means said useful range of state of charge. 3. Calculateur de chaîne de traction (14) d'un véhicule automobile électrique ou hybride, caractérisé en ce qu'il comporte des moyens adaptés à mettre en oeuvre des étapes d'un procédé selon la revendication 1 ou 2. 3. Traction chain calculator (14) of an electric or hybrid motor vehicle, characterized in that it comprises means adapted to implement steps of a method according to claim 1 or 2. 4. Véhicule automobile électrique ou hybride comportant un système (100) de stockage d'énergie électrique ayant une pluralité d'éléments de stockage (101, 102, ..., 10e), ledit véhicule étant caractérisé en ce qu'il comporte un calculateur de chaîne de traction (14) selon la revendication 3. An electric or hybrid motor vehicle having a system (100) for storing electrical energy having a plurality of storage elements (101, 102, ..., 10e), said vehicle being characterized in that it comprises a Traction chain calculator (14) according to Claim 3.
FR1160348A 2011-11-15 2011-11-15 Method for determining charge state of electric energy storage system i.e. battery of e.g. electric car, involves determining state of charge of battery from maximum dispersion of state of charge Pending FR2982676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1160348A FR2982676A1 (en) 2011-11-15 2011-11-15 Method for determining charge state of electric energy storage system i.e. battery of e.g. electric car, involves determining state of charge of battery from maximum dispersion of state of charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1160348A FR2982676A1 (en) 2011-11-15 2011-11-15 Method for determining charge state of electric energy storage system i.e. battery of e.g. electric car, involves determining state of charge of battery from maximum dispersion of state of charge

Publications (1)

Publication Number Publication Date
FR2982676A1 true FR2982676A1 (en) 2013-05-17

Family

ID=45688663

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1160348A Pending FR2982676A1 (en) 2011-11-15 2011-11-15 Method for determining charge state of electric energy storage system i.e. battery of e.g. electric car, involves determining state of charge of battery from maximum dispersion of state of charge

Country Status (1)

Country Link
FR (1) FR2982676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132544A1 (en) * 2014-03-07 2015-09-11 Renault S.A.S Method for assessing a state of charge of a battery comprising a plurality of cells having a variable range of use of state of charge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027449A1 (en) * 2009-09-03 2011-03-10 トヨタ自動車株式会社 Assembled battery state-of-charge detecting device and state-of-charge detecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027449A1 (en) * 2009-09-03 2011-03-10 トヨタ自動車株式会社 Assembled battery state-of-charge detecting device and state-of-charge detecting method
EP2474833A1 (en) * 2009-09-03 2012-07-11 Toyota Jidosha Kabushiki Kaisha Assembled battery state-of-charge detecting device and state-of-charge detecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132544A1 (en) * 2014-03-07 2015-09-11 Renault S.A.S Method for assessing a state of charge of a battery comprising a plurality of cells having a variable range of use of state of charge
FR3018360A1 (en) * 2014-03-07 2015-09-11 Renault Sa METHOD OF ESTIMATING A CHARGE STATE OF A BATTERY COMPRISING MULTIPLE CELLS HAVING A VARIABLE CHARGE STATE UTILIZATION RANGE

Similar Documents

Publication Publication Date Title
EP2991853B1 (en) Method for managing the cooling of a battery with adjustable cooling thresholds
EP3237258B1 (en) Method for energy management of a rechargeable traction battery of a hybrid vehicle
EP2774246B1 (en) Method and system for managing the electric charges of battery cells
FR3009093A1 (en) ESTIMATING THE AGING CONDITION OF AN ELECTRIC BATTERY
EP3465240B1 (en) Method for estimating the state of health of a battery
FR2994027A1 (en) VEHICLE COMPRISING A BATTERY AND MEANS FOR DETERMINING A MAXIMUM POWER ADMITABLE FOR THE BATTERY, AND METHOD THEREOF
EP3079940A1 (en) Assessing the quantity of energy in a motor vehicle battery
RU2475919C2 (en) Secondary battery discharge control device
EP4111219B1 (en) Method for estimating the state of health of a battery
EP3870985B1 (en) Method for determining the state of charge and state of ageing of an electrochemical battery as a function of a mapping of the open circuit voltage
FR2980274A1 (en) Method for estimating ageing indicators of electric traction battery of e.g. electric car, involves providing battery health status indication to user, based on stored battery intensity and temperature values and ageing prediction model
FR2982676A1 (en) Method for determining charge state of electric energy storage system i.e. battery of e.g. electric car, involves determining state of charge of battery from maximum dispersion of state of charge
WO2021130068A1 (en) Method for identifying the start of the acceleration of the degradation of the state of health of a pack of rechargeable batteries
FR3041914A1 (en) METHOD FOR DETERMINING TRACTION BATTERY UTILIZATION RANGES
FR2946150A1 (en) SYSTEM AND METHOD FOR DETERMINING CAPACITY LOSS OF A BATTERY.
FR2965361A1 (en) Method for estimating state of health of lithium-ion battery in e.g. hybrid motor vehicle, involves verifying that variation in voltage is strictly increased or decreased during considered time interval
FR3025755A1 (en) METHOD FOR LIMITING THE MOTOR TORQUE OF AN ELECTRIC MOTOR AND CORRESPONDING DEVICE
FR2691019A1 (en) Interface system between battery accumulator and e.g. electric vehicle - has batteries of accumulators to store electricity and transformers to discharge power for light, heat, movement when required
FR2952187A1 (en) Method for detecting power imbalance between elements or cells of battery of e.g. hybrid vehicle, involves calculating average dispersion of voltage of cells of battery and comparing average dispersion with predetermined imbalance threshold
FR2963997A1 (en) Device for charging battery of e.g. electric or hybrid vehicle, on electric distribution network, has adjusting device formed of charge supervisor and diagnostic socket to adjust limit value of state of charge reaching end of charge
EP4101047B1 (en) Method of pulse charging with variable amplitude step
FR3132150A1 (en) RELIABLE ESTIMATION OF THE CELL(S) STORAGE CAPACITY OF A CELLULAR BATTERY
FR2980851A1 (en) Method for calculating ratio between measured value and reference value of physical quantity representative of aging of lithium-ion battery of e.g. electric car, involves storing state of ageing of battery in memory
WO2023006505A1 (en) Method for diagnosing a battery and associated monitoring method
WO2023099823A1 (en) Estimating information in relation to a cellular battery