FR2908156A3 - Exhaust gas cooling device's control valve diagnosing method for vehicle's power train, involves simulating temperature by simulator so that gas flow is oriented to by-pass/network, and verifying whether valve orients flow towards by-pass - Google Patents

Exhaust gas cooling device's control valve diagnosing method for vehicle's power train, involves simulating temperature by simulator so that gas flow is oriented to by-pass/network, and verifying whether valve orients flow towards by-pass Download PDF

Info

Publication number
FR2908156A3
FR2908156A3 FR0654705A FR0654705A FR2908156A3 FR 2908156 A3 FR2908156 A3 FR 2908156A3 FR 0654705 A FR0654705 A FR 0654705A FR 0654705 A FR0654705 A FR 0654705A FR 2908156 A3 FR2908156 A3 FR 2908156A3
Authority
FR
France
Prior art keywords
temperature
valve
simulator
engine
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0654705A
Other languages
French (fr)
Inventor
Yann Kerboul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0654705A priority Critical patent/FR2908156A3/en
Publication of FR2908156A3 publication Critical patent/FR2908156A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/083Safety, indicating, or supervising devices relating to maintenance, e.g. diagnostic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1437Simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • F02D2041/2062Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value the current value is determined by simulation or estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)

Abstract

The method involves connecting a temperature simulator at the place of a temperature probe e.g. temperature variable resistor. A predetermined temperature is simulated by using the simulator such that an exhaust gas flow is oriented towards a by-pass or an exchange network of an exhaust gas cooling device, where the temperature is lower than 55 degrees Celsius. Verification is made whether a control valve orients the flow towards the by-pass, where the valve is controlled by an actuator of the device. An independent claim is also included for a temperature simulator connected at the place of a temperature probe.

Description

1 Méthode de diagnostic appliquée à un groupe motopropulseur. L'invention1 Diagnostic method applied to a power train. The invention

concerne une méthode de diagnostic appliquée à un groupe motopropulseur, et en particulier à une vanne de commande d'un dispositif de refroidissement des gaz d'échappement recyclés.  relates to a diagnostic method applied to a power train, and in particular to a control valve of a recycled exhaust gas cooling device.

Un groupe motopropulseur à moteur à combustion interne peut être équipé d'un système de recyclage des gaz d'échappement dans le but de diminuer l'émission des gaz polluants tels que des oxydes d'azote. La figure 1 montre le schéma d'un tel groupe motopropulseur. Un compresseur 2, entraîné par la turbine 3 d'un turbocompresseur aspire de l'air d'admission. L'air comprimé passe par une conduite d'admission 6 à travers un échangeur d'air d'admission 5 pour le refroidir avant d'entrer dans le moteur 7. Des gaz d'échappement ressortent du moteur 7 dans un collecteur 8 et sont conduits vers la turbine 3. Une boucle 10 relie un piquage 9 de la conduite d'échappement 8 vers la conduite d'admission 6 en passant par une vanne de recyclage 11. La vanne de recyclage 11 permet de contrôler la quantité de gaz d'échappement recyclés. Un dispositif de refroidissement 4 des gaz d'échappement recyclés est disposé dans la boucle et comporte une vanne 14 orientant le flux de gaz d'échappement recyclés vers un réseau d'échange 12 ou vers un bipasse 13. Le réseau d'échange 12 est traversé par le fluide caloporteur d'un circuit de refroidissement, non représenté. 2908156 2 La figure 2 représente une vue partielle du dispositif de refroidissement 4 des gaz d'échappement recyclés dans lequel on voit un conduit 23 du bipasse 13, et plusieurs canaux 22 du réseau d'échange 12. La 5 vanne 14 est actionnée par un actionneur 16 apte à faire pivoter un volet 18 en amont du conduit du bipasse 13 et des canaux 22. Dans une première position, telle que représentée sur la figure 3, le flux de gaz d'échappement recyclés est orienté vers 10 le bipasse 13, tandis que dans une deuxième position, non représentée, le flux de gaz d'échappement recyclés est orienté vers le réseau d'échange 12. Le moteur comporte une sonde 30 qui délivre un signal représentatif de la température du moteur 7, 15 par exemple la température du liquide de refroidissement du moteur à la sortie de ce dernier. Une unité de commande 32 reçoit ce signal et détermine une commande pour l'actionneur 16. Si le moteur 7 est froid, il n'est pas utile de refroidir 20 les gaz d'échappement recyclés et l'unité de commande 32 pilote l'actionneur 16 pour que la vanne 14 soit dans la première position et que le flux de gaz d'échappement recyclés soit orienté vers le bipasse 13. Si le moteur est chaud, il est utile de refroidir 25 les gaz d'échappement recyclés et l'unité de commande 32 pilote l'actionneur 16 pour que la vanne 14 soit dans la deuxième position et que le flux de gaz d'échappement recyclés soit orienté vers le réseau d'échange 12.  A power train with an internal combustion engine may be equipped with an exhaust gas recirculation system in order to reduce the emission of polluting gases such as nitrogen oxides. Figure 1 shows the diagram of such a powertrain. A compressor 2 driven by the turbine 3 of a turbocharger sucks intake air. The compressed air passes through an intake pipe 6 through an intake air exchanger 5 to cool it before entering the engine 7. Exhaust gases emerge from the engine 7 in a manifold 8 and are to the turbine 3. A loop 10 connects a tapping 9 of the exhaust pipe 8 to the intake pipe 6 through a recycle valve 11. The recycling valve 11 allows to control the amount of gas recycled exhaust. A cooling device 4 of the recycled exhaust gas is arranged in the loop and comprises a valve 14 directing the flow of recycled exhaust gas to an exchange network 12 or to a bypass 13. The exchange network 12 is traversed by the heat transfer fluid of a cooling circuit, not shown. FIG. 2 shows a partial view of the cooling device 4 of the recycled exhaust gas in which a duct 23 of the bypass 13, and several channels 22 of the exchange network 12 are seen. The valve 14 is actuated by a actuator 16 adapted to rotate a flap 18 upstream of bypass duct 13 and channels 22. In a first position, as shown in FIG. 3, the flow of recycled exhaust gas is directed towards bypass 13, while in a second position, not shown, the stream of recycled exhaust gas is directed towards the exchange network 12. The engine comprises a probe 30 which delivers a signal representative of the engine temperature 7, 15 for example the temperature of the engine coolant at the outlet of the engine. A control unit 32 receives this signal and determines a command for the actuator 16. If the engine 7 is cold, it is not useful to cool the recycled exhaust gas and the control unit 32 drives the actuator 16 so that the valve 14 is in the first position and the flow of recycled exhaust gas is directed towards the bypass 13. If the engine is hot, it is useful to cool the recycled exhaust gas and the control unit 32 drives the actuator 16 so that the valve 14 is in the second position and the flow of recycled exhaust gas is directed towards the exchange network 12.

Lors de la vie du moteur, après une durée de fonctionnement importante, il est possible que des dysfonctionnements apparaissent. Par exemple, il se 2908156 3 peut que de la suie se dépose sur un siège du clapet 18 et gêne le mouvement de ce dernier. L'orientation du flux de gaz d'échappement recyclés n'est alors plus correctement assurée. Il se peut aussi que 5 l'actionneur 16 ait subit des dommages tels qu'il ne fonctionne plus. Il est donc utile de vérifier régulièrement que la vanne change de position lors du changement de température du moteur. Cependant, pour effectuer une telle vérification, il est nécessaire 10 de faire monter en température le groupe motopropulseur et de le refroidir. Une telle opération nécessite une durée de quelques dizaines de minutes et une intervention sur le moteur lorsqu'il est chaud, ce qui présente des risques de brûlures.  During the life of the engine, after a long period of operation, it is possible that malfunctions occur. For example, it may be that soot settles on a seat of the valve 18 and hinders the movement of the latter. The orientation of the recycled exhaust stream is then no longer properly ensured. It is also possible that the actuator 16 has suffered damage such that it no longer functions. It is therefore useful to regularly check that the valve changes position when changing the engine temperature. However, to perform such a check, it is necessary to warm up the power train and cool it. Such an operation requires a duration of a few tens of minutes and an intervention on the engine when it is hot, which presents a risk of burns.

15 C'est donc un objectif de l'invention de proposer une méthode de diagnostic appliquée à un groupe motopropulseur permettant de vérifier rapidement et sans risques qu'un actionneur de dispositif de refroidissement de gaz d'échappement 20 recyclés fonctionne correctement ou non. Avec ces objectifs en vue, l'invention a pour objet une méthode de diagnostic appliquée à un groupe motopropulseur comportant un moteur, un système de recyclage de gaz d'échappement vers une conduite 25 d'admission du moteur, le système de recyclage comportant un dispositif de refroidissement des gaz d'échappement, le dispositif de refroidissement comportant un réseau d'échange pour refroidir les gaz, un bipasse pour transmettre les gaz sans les 30 refroidir et une vanne orientant les gaz sélectivement vers le réseau d'échange ou vers le bipasse, la vanne étant commandée par un actionneur, 2908156 4 l'actionneur étant piloté par une unité de commande recevant une information de température caractéristique du moteur par une sonde, méthode selon laquelle on connecte un simulateur de 5 température à la place de la sonde, on simule avec le simulateur au moins une première température prédéterminée de telle sorte que le flux de gaz soit orienté soit vers le bipasse, soit vers le réseau d'échange, et on vérifie que la vanne est orientée 10 comme attendu. En fournissant ainsi un signal représentatif de la température à partir d'un simulateur, on n'est plus tributaire de la température réelle du moteur pour effectuer la vérification. De ce fait, la 15 vérification peut être effectuée lorsque le moteur est froid. De plus, il n'est pas nécessaire d'effectuer un cycle thermique complet. Pour autant, la méthode de diagnostic selon l'invention fait intervenir le plus d'éléments possible de la chaîne 20 de pilotage du dispositif de refroidissement des gaz d'échappement recyclés, ce qui permet de mettre en évidence le plus grand nombre possible de dysfonctionnements, que ceux-ci aient leur origine dans l'unité de commande, l'actionneur ou la vanne.It is therefore an object of the invention to provide a diagnostic method applied to a power train for quickly and safely verifying that a recycled exhaust gas cooler actuator is operating properly or not. With these objectives in view, the subject of the invention is a diagnostic method applied to a power unit comprising an engine, an exhaust gas recirculation system to an engine intake pipe, the recycling system comprising a an exhaust gas cooling device, the cooling device comprising an exchange network for cooling the gases, a bypass for transmitting the gases without cooling them and a valve directing the gases selectively towards the exchange network or to the bypass, the valve being controlled by an actuator, the actuator being controlled by a control unit receiving a temperature information characteristic of the engine by a probe, a method according to which a temperature simulator is connected in place of the probe simulating with the simulator at least a first predetermined temperature so that the flow of gas is directed towards the bipas either to the exchange network, and it is verified that the valve is oriented 10 as expected. By thus providing a signal representative of the temperature from a simulator, it is no longer dependent on the actual temperature of the engine to perform the verification. As a result, verification can be performed when the engine is cold. In addition, it is not necessary to perform a complete thermal cycle. However, the diagnostic method according to the invention involves the most possible elements of the chain of control of the cooling device of the recycled exhaust gas, which makes it possible to highlight as many malfunctions as possible. , whether these originate in the control unit, the actuator or the valve.

25 Cette méthode peut être appliquée sur un banc d'essai de moteur ou lors d'une opération d'entretien d'un véhicule. De manière particulière, la première température simulée est inférieure à 55 C et on 30 vérifie que la vanne oriente le flux vers le bipasse. La valeur de la température simulée à 55 C représente une température pour laquelle le moteur est considéré 2908156 5 froid. Avec une telle information en entrée de l'unité de commande, la vanne prend normalement la position permettant d'orienter le flux des gaz d'échappement recyclés vers le bipasse.This method can be applied on an engine test stand or during a vehicle maintenance operation. In particular, the first simulated temperature is below 55 ° C and it is verified that the valve directs the flow to the bypass. The value of the simulated temperature at 55 ° C. represents a temperature for which the engine is considered cold. With such input information from the control unit, the valve normally takes the position to direct the flow of recycled exhaust gas to the bypass.

5 De préférence, on simule en outre une deuxième température prédéterminée de telle sorte que le flux de gaz soit orienté inversement à l'orientation avec la première température. Ainsi, on peut simuler le moteur froid et le moteur chaud, ce qui permet de 10 commander les deux états possibles de la vanne. Par exemple, la deuxième température simulée est supérieure à 70 C et on vérifie que la vanne oriente le flux des gaz d'échappement recyclés vers le réseau d'échange. La valeur de la température 15 simulée à 70 C représente une température pour laquelle le moteur est considéré chaud. Avec une telle information en entrée de l'unité de commande, la vanne prend normalement la position permettant d'orienter le flux des gaz d'échappement recyclés 20 vers le réseau d'échange. De manière particulière, on connecte le simulateur lorsque le moteur est à l'arrêt, et on démarre le moteur au ralenti avant de simuler la première température. L'unité de commande ne détecte 25 alors pas de dysfonctionnement au niveau de la sonde, ce qui serait le cas si la sonde était débranchée pendant le fonctionnement du moteur pour brancher le simulateur. Selon un mode de réalisation particulier, la 30 sonde de température est une résistance variable avec la température, et le simulateur comporte un 2908156 6 sélecteur de résistances. Le simulateur permet de connecter une résistance de valeur correspondant aux températures à simuler. Par exemple un sélecteur permet de sélectionner laquelle des températures est 5 à simuler. Selon une première manière, pour vérifier l'orientation du flux des gaz, on vérifie visuellement la position d'un élément de commande de l'actionneur ou de la vanne. Un contrôle visuel 10 rapide permet de déterminer si la vanne commute ou non de position. Selon une deuxième manière, pour vérifier l'orientation du flux des gaz, on mesure la position d'un élément de commande de l'actionneur ou de la 15 vanne. La mesure, par exemple à l'aide d'un comparateur micrométrique placé en appui contre l'élément de commande permet d'avoir plus de précision sur la position effectivement atteinte par le volet de la vanne qu'un contrôle visuel.Preferably, a second predetermined temperature is further simulated such that the gas flow is inversely oriented to the orientation with the first temperature. Thus, it is possible to simulate the cold engine and the hot engine, which makes it possible to control the two possible states of the valve. For example, the second simulated temperature is greater than 70 C and it is verified that the valve directs the flow of recycled exhaust gas to the exchange network. The value of the simulated temperature at 70 ° C. represents a temperature for which the engine is considered hot. With such input information from the control unit, the valve normally takes the position to direct the flow of recycled exhaust gas to the exchange network. In particular, the simulator is connected when the engine is stopped, and the engine is started at idle before simulating the first temperature. The control unit then detects no malfunction at the probe, which would be the case if the probe was disconnected during operation of the engine to connect the simulator. According to a particular embodiment, the temperature probe is a variable resistance with temperature, and the simulator comprises a resistor selector. The simulator makes it possible to connect a resistance of value corresponding to the temperatures to be simulated. For example, a selector makes it possible to select which of the temperatures is to be simulated. In a first way, to verify the orientation of the gas flow, the position of a control element of the actuator or of the valve is visually checked. A quick visual check is used to determine whether the valve is switching positional or not. In a second way, to verify the orientation of the gas flow, the position of a control element of the actuator or of the valve is measured. The measurement, for example using a micrometer comparator placed in abutment against the control element makes it possible to have more precision on the position actually reached by the shutter of the valve than a visual control.

20 Par exemple, on mesure la différence de course entre les positions de l'élément de commande avec la première et la deuxième température, et on déduit un dysfonctionnement si la course est inférieure à un seuil prédéterminé. Le dysfonctionnement pourrait 25 être provoqué par l'accumulation de suie sur le trajet du volet de la vanne, ce qui limiterait la course réelle du volet. La mesure différentielle permet de mettre ce phénomène en évidence. L'invention a aussi pour objet un simulateur de 30 température apte à être connecté à la place d'une sonde d'un groupe motopropulseur tel que décrit 2908156 7 précédemment, et à simuler au moins une première température (T1) prédéterminée. L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture 5 de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels : - la figure 1 est une vue schématique d'un groupe motopropulseur auquel 10 s'applique ;la méthode selon l'invention - la figure 2 est une vue partielle en perspective d'un dispositif de refroidissement des gaz d'échappement recyclés - la figure 3 est une d'une vanne du dispositif de 15 la figure 2 ; - la figure 4 est un organigramme de la méthode selon un mode de réalisation de l'invention - la figure 5 est une vue schématique d'un simulateur pour la mise en oeuvre de la méthode 20 selon l'invention. La méthode selon l'invention s'applique à un groupe motopropulseur tel que décrit précédemment en lien avec l'art antérieur et montré sur les figures 1 à 3. Elle utilise un simulateur 40 comportant un 25 boîtier 42, un connecteur 44 apte à être connecté à la place de la sonde 30, un sélecteur 46 pour choisir entre une première T1 et une deuxième température T2 simulée. Le boîtier 42 contient deux résistances 48, 49 aptes à être reliées sélectivement au connecteur 30 44 par le sélecteur 46 de manière à remplacer dans un circuit électrique la sonde 30 de température. La 2908156 8 première résistance 48 a par exemple une valeur de 2,2 kS2, pour simuler la première température T1, inférieure à 55 C, et la deuxième résistance 49 a une valeur de 200 S2, pour simuler la deuxième 5 température T2, supérieure à 70 C. Lorsqu'on souhaite effectuer une vérification du bon fonctionnement du dispositif de refroidissement 4 des gaz d'échappement recyclés, le moteur étant arrêté, comme mentionné à l'étape 100 de 10 la figure 4, on débranche la sonde 30 de température pour y brancher à la place le connecteur 44 du simulateur 40, comme indiqué à l'étape 102. On place le sélecteur 46 sur la première position pour simuler la première température T1.For example, the stroke difference between the positions of the control element with the first and the second temperature is measured, and a malfunction is deduced if the stroke is below a predetermined threshold. The malfunction could be caused by the accumulation of soot in the path of the valve flap, which would limit the actual stroke of the flap. The differential measurement makes it possible to highlight this phenomenon. The invention also relates to a temperature simulator adapted to be connected in place of a probe of a powertrain as described previously, and to simulate at least a first predetermined temperature (T1). The invention will be better understood and other features and advantages will become apparent on reading the description which follows, the description referring to the appended drawings in which: FIG. 1 is a schematic view of a powertrain to which The method according to the invention - Figure 2 is a partial perspective view of a recycled exhaust gas cooling device - Figure 3 is a valve of the device of Figure 2; FIG. 4 is a flowchart of the method according to one embodiment of the invention; FIG. 5 is a schematic view of a simulator for implementing the method according to the invention. The method according to the invention applies to a powertrain as described above in connection with the prior art and shown in FIGS. 1 to 3. It uses a simulator 40 comprising a housing 42, a connector 44 capable of being connected in place of the probe 30, a selector 46 for choosing between a first T1 and a second simulated T2 temperature. The housing 42 contains two resistors 48, 49 adapted to be selectively connected to the connector 44 by the selector 46 so as to replace the temperature sensor 30 in an electrical circuit. The first resistor 48 has, for example, a value of 2.2 kS 2, to simulate the first temperature T1, lower than 55 C, and the second resistor 49 has a value of 200 S 2, to simulate the second temperature T2, which is higher. at 70 C. When it is desired to carry out a verification of the proper functioning of the cooling device 4 of the recycled exhaust gases, the engine being stopped, as mentioned in step 100 of FIG. 4, the probe 30 is disconnected from temperature to connect instead the connector 44 of the simulator 40, as indicated in step 102. The selector 46 is placed on the first position to simulate the first temperature T1.

15 A l'étape 104, on met en marche le moteur. Lorsque le moteur 7 est démarré et tourne au ralenti, on vérifie visuellement, à l'étape 106, que la vanne 14 est dans la première position, par exemple que la tige 20 est sortie.In step 104, the engine is started. When the engine 7 is started and idling, it is visually verified, in step 106, that the valve 14 is in the first position, for example that the rod 20 is output.

20 A l'étape 108, on place le sélecteur 46 dans la deuxième position pour simuler la deuxième température T2. On vérifie visuellement que la vanne 14 est passée dans la deuxième position, par exemple que la tige 20 est rentrée.In step 108, the selector 46 is placed in the second position to simulate the second temperature T2. It is visually verified that the valve 14 has passed into the second position, for example that the rod 20 is retracted.

25 A l'étape 110, on arrête le moteur. Puis, à l'étape 112, on débranche le simulateur 40 et on rebranche la sonde 30. A l'étape 114, si les contrôles effectués précédemment ont montré que les positions étaient 30 atteintes par la vanne 14, on en conclut que le 2908156 9 système ne présente pas de défaut. Dans le cas contraire, à l'étape 116, on provoque une alerte de dysfonctionnement selon une procédure appropriée. L'ensemble de ces opérations peut être mené en 5 quelques minutes. Dans une variante de la méthode, à l'étape 106, on place un comparateur contre un élément de commande de l'actionneur 16 ou de la vanne 14, comme par exemple une tige 20 de l'actionneur 16, et on 10 initialise la mesure. A l'étape 108, on relève le déplacement mesuré par le comparateur, c'est-à-dire la course de la tige 20. A l'étape 114, on compare la course à une valeur prédéterminée, et si la course est inférieure à cette valeur, on en conclut un 15 dysfonctionnement. L'invention n'est pas limitée à cet exemple. Le simulateur 40 pourra être adapté à différents types de sondes de température tels que des thermocouples ou des sondes platine.In step 110, the engine is stopped. Then, in step 112, the simulator 40 is disconnected and the probe 30 is reconnected. In the step 114, if the previous checks have shown that the positions were reached by the valve 14, 2908156 9 system has no defect. In the opposite case, in step 116, a malfunction alert is triggered according to an appropriate procedure. All of these operations can be conducted in a few minutes. In a variant of the method, in step 106, a comparator is placed against a control element of the actuator 16 or of the valve 14, such as for example a rod 20 of the actuator 16, and the actuator 16 is initialized. measured. In step 108, the displacement measured by the comparator, that is to say the stroke of the rod 20, is recorded. In step 114, the stroke is compared with a predetermined value, and if the stroke is lower at this value, a malfunction is concluded. The invention is not limited to this example. The simulator 40 can be adapted to different types of temperature probes such as thermocouples or platinum probes.

Claims (10)

REVENDICATIONS 1. Méthode de diagnostic appliquée à un groupe motopropulseur comportant un moteur, un système de recyclage de gaz d'échappement vers une conduite d'admission (6) du moteur, le système de recyclage comportant un dispositif de refroidissement (4) des gaz d'échappement, le dispositif de refroidissement (4) comportant un réseau d'échange (12) pour refroidir les gaz, un bipasse (13) pour transmettre les gaz sans les refroidir et une vanne (14) orientant les gaz sélectivement vers le réseau d'échange (12) ou vers le bipasse (13), la vanne (14) étant commandée par un actionneur (16), l'actionneur (16) étant piloté par une unité de commande (32) recevant une information de température caractéristique du moteur par une sonde (30), méthode caractérisée en ce qu'on connecte un simulateur (40) de température à la place de la sonde (30), on simule avec le simulateur (40) au moins une première température (T1) prédéterminée de telle sorte que le flux de gaz soit orienté soit vers le bipasse (13), soit vers le réseau d'échange (12), et on vérifie que la vanne (14) est orientée comme attendu.  1. A method of diagnosis applied to a power train comprising an engine, an exhaust gas recirculation system to an engine intake pipe (6), the recycling system comprising a cooling device (4) for the engine gases. exhaust, the cooling device (4) having an exchange network (12) for cooling the gas, a bypass (13) for transmitting the gases without cooling them and a valve (14) directing the gas selectively towards the gas network. exchange (12) or to the bypass (13), the valve (14) being controlled by an actuator (16), the actuator (16) being controlled by a control unit (32) receiving a temperature information characteristic of the motor by a probe (30), characterized in that a temperature simulator (40) is connected in place of the probe (30), at least a first predetermined temperature (T1) is simulated with the simulator (40) so that the flow of gas is orientated either to the bypass (13) or to the exchange network (12), and verifies that the valve (14) is oriented as expected. 2. Méthode selon la revendication 1, selon laquelle la première température (T1) simulée est inférieure à 55 C et on vérifie que la vanne (14) oriente le flux vers le bipasse (13).  2. Method according to claim 1, wherein the first temperature (T1) simulated is less than 55 C and it is verified that the valve (14) directs the flow to the bypass (13). 3. Méthode de diagnostic selon la revendication 1, selon laquelle on simule en outre une deuxième température (T2) prédéterminée de telle 2908156 11 sorte que le flux de gaz soit orienté inversement à l'orientation avec la première température (T1).  The diagnostic method of claim 1, wherein a second predetermined temperature (T2) is further simulated such that the gas flow is inversely oriented to the orientation with the first temperature (T1). 4. Méthode selon la revendication 3, selon laquelle la deuxième température (T2) simulée est 5 supérieure à 70 C et on vérifie que la vanne (14) oriente le flux des gaz d'échappement recyclés vers le réseau d'échange (12).  4. Method according to claim 3, wherein the simulated second temperature (T2) is greater than 70 ° C. and it is verified that the valve (14) directs the flow of the recycled exhaust gases towards the exchange network (12). . 5. Méthode selon la revendication 1, selon laquelle on connecte le simulateur (40) lorsque le 10 moteur est à l'arrêt, et on démarre le moteur au ralenti avant de simuler la première température (T1) .  The method of claim 1, wherein the simulator (40) is connected when the engine is stopped, and the engine is started at idle before simulating the first temperature (T1). 6. Méthode selon la revendication 1, dans laquelle la sonde (30) de température est une 15 résistance variable avec la température, et le simulateur (40) comporte un sélecteur (46) de résistances.  The method of claim 1, wherein the temperature probe (30) is a temperature-variable resistor, and the simulator (40) includes a resistor selector (46). 7. Méthode selon la revendication 1, selon laquelle, pour vérifier l'orientation du flux des 20 gaz, on vérifie visuellement la position d'un élément de commande (20) de l'actionneur (16) ou de la vanne (14).  The method of claim 1, wherein, to verify the orientation of the gas flow, the position of a control element (20) of the actuator (16) or the valve (14) is visually verified. . 8. Méthode selon la revendication 1, selon laquelle, pour vérifier l'orientation du flux des 25 gaz, on mesure la position d'un élément de commande (20) de l'actionneur (16) ou de la vanne (14).  The method of claim 1, wherein, to verify the orientation of the gas flow, the position of a control element (20) of the actuator (16) or the valve (14) is measured. 9. Méthode selon les revendications 3 et 8 prises en combinaison, selon laquelle on mesure la différence de course entre les positions de l'élément de commande (20) avec la première et la deuxième 2908156 12 température (T1, T2), et on déduit un dysfonctionnement si la course est inférieure à un seuil prédéterminé.  9. The method according to claims 3 and 8 taken in combination, wherein the difference in stroke between the positions of the control element (20) and the first and second temperature (T1, T2) is measured, and deduces a malfunction if the stroke is below a predetermined threshold. 10. Simulateur de température, caractérisé 5 en ce qu'il est apte à être connecté à la place d'une sonde (30) d'un groupe motopropulseur comportant un moteur, un système de recyclage de gaz d'échappement vers une conduite d'admission (6) du moteur, le système de recyclage comportant un dispositif de 10 refroidissement (4) des gaz d'échappement, le dispositif de refroidissement (4) comportant un réseau d'échange (12) pour refroidir les gaz, un bipasse (13) pour transmettre les gaz sans les refroidir et une vanne (14) orientant les gaz 15 sélectivement vers le réseau d'échange (12) ou vers le bipasse (13), la vanne (14) étant commandée par un actionneur (16), l'actionneur (16) étant piloté par une unité de commande (32) recevant une information de température caractéristique du moteur par la sonde 20 (30), le simulateur étant apte à simuler au moins une première température (T1) prédéterminée.  10. A temperature simulator, characterized in that it is capable of being connected in place of a probe (30) of a power train comprising an engine, an exhaust gas recirculation system to a fuel pipe. the intake (6) of the engine, the recycling system comprising an exhaust gas cooling device (4), the cooling device (4) comprising an exchange network (12) for cooling the gases, a bypass (13) for transmitting the gases without cooling them and a gas-guiding valve (14) selectively to the exchange network (12) or to the bypass (13), the valve (14) being controlled by an actuator (16). ), the actuator (16) being controlled by a control unit (32) receiving a temperature information characteristic of the engine by the probe 20 (30), the simulator being able to simulate at least a first predetermined temperature (T1).
FR0654705A 2006-11-03 2006-11-03 Exhaust gas cooling device's control valve diagnosing method for vehicle's power train, involves simulating temperature by simulator so that gas flow is oriented to by-pass/network, and verifying whether valve orients flow towards by-pass Withdrawn FR2908156A3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0654705A FR2908156A3 (en) 2006-11-03 2006-11-03 Exhaust gas cooling device's control valve diagnosing method for vehicle's power train, involves simulating temperature by simulator so that gas flow is oriented to by-pass/network, and verifying whether valve orients flow towards by-pass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0654705A FR2908156A3 (en) 2006-11-03 2006-11-03 Exhaust gas cooling device's control valve diagnosing method for vehicle's power train, involves simulating temperature by simulator so that gas flow is oriented to by-pass/network, and verifying whether valve orients flow towards by-pass

Publications (1)

Publication Number Publication Date
FR2908156A3 true FR2908156A3 (en) 2008-05-09

Family

ID=38162150

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0654705A Withdrawn FR2908156A3 (en) 2006-11-03 2006-11-03 Exhaust gas cooling device's control valve diagnosing method for vehicle's power train, involves simulating temperature by simulator so that gas flow is oriented to by-pass/network, and verifying whether valve orients flow towards by-pass

Country Status (1)

Country Link
FR (1) FR2908156A3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923867A1 (en) * 2007-11-19 2009-05-22 Renault Sas Internal combustion engine e.g. oil engine, for motor vehicle, has comparison unit to compare values of calculation units with threshold value, where calculation units calculate difference of air flows measured after controlling shutter
FR2932223A1 (en) * 2008-06-06 2009-12-11 Peugeot Citroen Automobiles Sa Exhaust gas recirculation circuit for e.g. petrol engine, of vehicle, has actuator with thermostatic element adjusting permeability of bypass valve based on temperature dependent of fluid temperature of cooling circuit of engine
WO2013070308A1 (en) * 2011-11-09 2013-05-16 General Electric Company Methods and systems for regenerating an exhaust gas recirculation cooler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214582A (en) * 1991-01-30 1993-05-25 Edge Diagnostic Systems Interactive diagnostic system for an automotive vehicle, and method
WO2002037399A1 (en) * 2000-11-03 2002-05-10 Detroit Diesel Corporation Sensor simulator for calibration and service of internal combustion engines
DE102004010117A1 (en) * 2003-02-27 2004-11-18 Denso Corp., Kariya Exhaust gas recirculation circuit for motor vehicle internal combustion engine has regulating valve connected to heat exchanger outlet and bypass pipe
EP1630403A1 (en) * 2004-08-19 2006-03-01 Pierburg GmbH Adjustable two way valve arrangement for internal combustion engine
EP1672209A2 (en) * 2004-12-14 2006-06-21 Honeywell International, Inc. Bypass for exhaust gas cooler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214582A (en) * 1991-01-30 1993-05-25 Edge Diagnostic Systems Interactive diagnostic system for an automotive vehicle, and method
US5214582C1 (en) * 1991-01-30 2001-06-26 Edge Diagnostic Systems Interactive diagnostic system for an automobile vehicle and method
WO2002037399A1 (en) * 2000-11-03 2002-05-10 Detroit Diesel Corporation Sensor simulator for calibration and service of internal combustion engines
DE102004010117A1 (en) * 2003-02-27 2004-11-18 Denso Corp., Kariya Exhaust gas recirculation circuit for motor vehicle internal combustion engine has regulating valve connected to heat exchanger outlet and bypass pipe
EP1630403A1 (en) * 2004-08-19 2006-03-01 Pierburg GmbH Adjustable two way valve arrangement for internal combustion engine
EP1672209A2 (en) * 2004-12-14 2006-06-21 Honeywell International, Inc. Bypass for exhaust gas cooler

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923867A1 (en) * 2007-11-19 2009-05-22 Renault Sas Internal combustion engine e.g. oil engine, for motor vehicle, has comparison unit to compare values of calculation units with threshold value, where calculation units calculate difference of air flows measured after controlling shutter
FR2932223A1 (en) * 2008-06-06 2009-12-11 Peugeot Citroen Automobiles Sa Exhaust gas recirculation circuit for e.g. petrol engine, of vehicle, has actuator with thermostatic element adjusting permeability of bypass valve based on temperature dependent of fluid temperature of cooling circuit of engine
WO2013070308A1 (en) * 2011-11-09 2013-05-16 General Electric Company Methods and systems for regenerating an exhaust gas recirculation cooler
CN104185732A (en) * 2011-11-09 2014-12-03 通用电气公司 Methods and systems for regenerating an exhaust gas recirculation cooler
US9212630B2 (en) 2011-11-09 2015-12-15 General Electric Company Methods and systems for regenerating an exhaust gas recirculation cooler
CN104185732B (en) * 2011-11-09 2016-11-16 通用电气公司 Method and system for regeneration exhaust recycle cooler
EA031681B1 (en) * 2011-11-09 2019-02-28 Дженерал Электрик Компани Method and system for regenerating an exhaust gas recirculation cooler

Similar Documents

Publication Publication Date Title
EP2191125B1 (en) Method for diagnosing the bypass flap of an exchanger in an exhaust gas recirculation system
FR2951777B1 (en) METHOD OF MONITORING THE HEATING SYSTEM OF A REDUCING AGENT RESERVOIR AND A DOSING FACILITY OF A SCR CATALYST SYSTEM
FR2908825A1 (en) ESTIMATION OF EXHAUST GAS TEMPERATURE OUTPUT OF EGR CIRCUIT OF COMBUSTION ENGINE
US20100286960A1 (en) Method and device for monitoring an intercooler bypass valve
FR2919677A1 (en) METHOD AND DEVICE FOR MANAGING AN INTERNAL COMBUSTION ENGINE
US6862878B2 (en) Method and device for operating an internal combustion engine
FR2852631A1 (en) Thermal engine controlling method, involves monitoring input variable/internal size of physical model based on deviation between calculated and measured values of physical size of model, to correct input variable/internal size
FR2908156A3 (en) Exhaust gas cooling device's control valve diagnosing method for vehicle's power train, involves simulating temperature by simulator so that gas flow is oriented to by-pass/network, and verifying whether valve orients flow towards by-pass
US20090076716A1 (en) Characteristic number method for engine real-time diagnostics application
WO2012127158A1 (en) Method for detecting the failure of a charge air cooler
US11125146B2 (en) Systems and methods for diagnosing a thermostat
FR2948415A1 (en) Intake air supercharging device control system for internal combustion engine of motor vehicle, has detection unit comprising comparison unit to compare difference of estimated and measured pressure with supercharging defect threshold
FR2921432A1 (en) Assembly i.e. exhaust gas recirculation device, function diagnosing method, involves comparing calculated difference with predetermined threshold value, diagnosing function of assembly based on comparison result
JP4739389B2 (en) Operation method of internal combustion engine
FR2997185A1 (en) METHOD FOR RECOGNIZING THE TYPE OF SENSOR OR ACTUATOR CONNECTED TO A CONTROL APPARATUS
FR2937379A1 (en) Supercharging device's state i.e. operating state, diagnosing method for e.g. diesel engine, of motor vehicle, involves calculating diagnostic criterion from measurement and estimation of supercharging pressure of high pressure turbine
FR2957972A1 (en) METHOD AND DEVICE FOR MONITORING AN EXHAUST GAS SENSOR
FR2910059A1 (en) Exhaust gas pressure estimating method for oil engine of motor vehicle, involves estimating pressure of exhaust gas in upstream of turbine by choosing one of two formulas comprising parameters e.g. pressure of gas in downstream of turbine
JP5241842B2 (en) Diagnostic method for heat exchanger bypass flaps in exhaust gas recirculation circuits.
FR2899278A1 (en) Particle filter`s regeneration triggering assistance system for motor vehicle, has sensor performing dual function such as delivering information and determining pressure between portion and catalyst, to determine clogging state of filter
FR2925674A3 (en) Temperature sensor or estimator functioning state diagnosing method for diesel engine, involves calculating difference between temperature delivered by measuring unit and temperature delivered by temperature sensor or estimator
EP3746647B1 (en) Degassing vessel for motor vehicle cooling circuit
FR2949817A1 (en) Pneumatic control device operation diagnosing method for internal combustion engine of motor vehicle, involves carrying out operation diagnosis of part of control device based on comparison between pressure measurement and threshold
FR2955620A1 (en) Preassembled connector for air supercharging cooling system in e.g. car, to supercharge air cooler, has side outlet case deviating portion of supercharging air to encircle hoses and directing supercharging air towards intake hose
FR2852630A1 (en) Internal combustion engine managing method, involves determining reference pressure signal based on engines actual operating parameters, and comparing signal and measured pressure signal to verify likelihood of measured signal

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20080930