FR2882203A1 - Procede de stabilisation d'un objet en suspension dans un champ magnetique - Google Patents

Procede de stabilisation d'un objet en suspension dans un champ magnetique Download PDF

Info

Publication number
FR2882203A1
FR2882203A1 FR0501514A FR0501514A FR2882203A1 FR 2882203 A1 FR2882203 A1 FR 2882203A1 FR 0501514 A FR0501514 A FR 0501514A FR 0501514 A FR0501514 A FR 0501514A FR 2882203 A1 FR2882203 A1 FR 2882203A1
Authority
FR
France
Prior art keywords
magnetic field
magnetic
flywheel
magnets
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0501514A
Other languages
English (en)
Other versions
FR2882203B1 (fr
Inventor
Mleux Michel Saint
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Levisys SAS
Original Assignee
Levisys SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR0501514A priority Critical patent/FR2882203B1/fr
Application filed by Levisys SAS filed Critical Levisys SAS
Priority to PCT/FR2006/000340 priority patent/WO2006087463A1/fr
Priority to EP06709318A priority patent/EP1848896A1/fr
Priority to CNA2006800042582A priority patent/CN101115930A/zh
Priority to RU2007133582/11A priority patent/RU2007133582A/ru
Priority to US11/816,216 priority patent/US20080122308A1/en
Priority to JP2007554607A priority patent/JP2008537872A/ja
Priority to CA002597560A priority patent/CA2597560A1/fr
Publication of FR2882203A1 publication Critical patent/FR2882203A1/fr
Application granted granted Critical
Publication of FR2882203B1 publication Critical patent/FR2882203B1/fr
Priority to IL184935A priority patent/IL184935A0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

La présente invention se rapporte, d'une part, à un procédé de stabilisation d'un objet (2, 21, 31, 32, 52, 200) en suspension magnétique soumis à un champ magnétique constant, ledit objet étant stable selon au moins une direction et instable selon au moins une autre direction, caractérisé en ce qu'il comprend une étape de stabilisation, répétée aussi souvent que nécessaire, consistant à appliquer un courant électrique à travers au moins un élément conducteur (15a à 16c, 27, 44, 62, 211) soumis à un champ magnétique secondaire de manière à générer une force de Laplace compensatrice dans la direction d'instabilité, et d'autre part, à un dispositif (1, 20, 30, 50) à sustentation magnétique stabilisé par le procédé selon l'invention.

Description

2882203 1
La présente invention se rapporte à un procédé pour stabiliser un objet en suspension dans un champ magnétique, ainsi qu'à un dispositif à sustentation magnétique.
Les champs magnétiques peuvent être utilisés pour générer des forces dans divers actionneurs dont ils permettent un mouvement sans frottement et un fonctionnement sans bruit. Un tel moyen d'actionnement est utilisé lorsque les systèmes mécaniques classiques atteignent leurs limites et ne sont plus adaptés. II s'agit plus particulièrement d'applications qui nécessitent de très hautes vitesses de rotation et pour lesquelles il est notamment nécessaire de minimiser les pertes par frottements, et/ou éviter l'usure, et/ou pour lesquelles il est impossible d'employer des lubrifiants.
Des exemples d'applications pour lesquelles ces avantages sont tout particulièrement recherchés sont, entre autres, les volants d'inertie qui constituent des dispositifs permettant de stocker de l'énergie sous forme d'énergie cinétique dans une roue tournant à plusieurs milliers de tours par minute, et les trains à sustentation magnétique pour lesquels seuls les frottements de l'air subsistent et qui peuvent atteindre des vitesses très supérieures à 400 km/h.
La plupart des actionneurs magnétiques actuellement disponibles n'utilisent la suspension magnétique que suivant un degré de liberté. C'est le cas d'un moteur électrique dans lequel seules les forces magnétiques permettant l'entraînement du rotor sont utilisées.
Dans le cas de la plupart de ces applications, il est particulièrement souhaitable de réduire au maximum les frottements existant de manière à diminuer les pertes d'énergie et la pollution sonore qu'ils engendrent, et il s'avère généralement nécessaire pour cela de devoir contrôler magnétiquement un objet selon plusieurs degrés de liberté.
Or, lorsque l'on cherche à maintenir un objet en suspension totale par l'utilisation de champs magnétiques, c'est-à-dire présentant les six degrés de liberté dans l'espace, sa stabilisation se révèle particulièrement difficile. En 1839, le scientifique S. Earnshaw a démontré qu'il était impossible de stabiliser une particule magnétiquement polarisée dans un champ statique. De ce fait, il est impossible de stabiliser un corps ferromagnétique en suspension magnétique à l'aide d'aimants permanents ou d'éléments ferromagnétiques.
Plusieurs solutions permettant de contourner la loi d'Earnshaw ont toutefois été 2882203 2 imaginées et sont actuellement utilisées pour stabiliser des objets en suspension magnétique.
Une première solution consiste à utiliser un matériau diamagnétique. Un tel matériau, contrairement à un matériau ferromagnétique qui possède une aimantation permanente, développe un champ magnétique en réaction à un champ magnétique extérieur auquel il est soumis. Ce champ magnétique induit tend à s'opposer au champ magnétique extérieur et, par conséquent, s'oppose en permanence aux variations de champs causés par l'objet en suspension quand celui-ci s'écarte de sa position d'équilibre. II existe donc une force de rappel qui maintient l'objet stable. C'est le cas de la suspension magnétique à l'aide de supraconducteurs. Cette solution est toutefois difficile à mettre en oeuvre car ces matériaux doivent généralement être refroidis à très basse température dans de l'azote liquide pour pouvoir développer un champ magnétique suffisamment intense. Par conséquent, cette méthode, bien que satisfaisante d'un point de vue théorique, demeure particulièrement délicate à mettre en pratique.
Une deuxième solution consiste à utiliser des électroaimants. En effet, de la même manière qu'un matériau diamagnétique développe en permanence un champ magnétique opposé au champ magnétique extérieur auquel il est sournis, il est possible de modifier le champ développé par un électroaimant de manière à ce qu'il s'oppose à un écart de l'objet en suspension par rapport à la position d'équilibre souhaitée. La loi d'Eamshaw n'est donc pas violée, la suspension magnétique restant impossible si les électroaimants sont parcourus par un courant électrique constant et développent donc un champ magnétique stable, mais contournée en ajustant le champ magnétique développé par les électroaimants qui est donc variable.
Une troisième solution consiste à utiliser des champs alternatifs générés par des bobines. Les variations de champs génèrent des courants induits, appelés courants de Foucault, dans un objet conducteur, ceux-ci créant alors une force de Laplace qui peut être suffisante pour le soulever.
Ces deuxième et troisième solutions présentent toutefois des inconvénients majeurs en raison de la puissance électrique nécessaire pour générer des champs magnétiques suffisamment intenses à l'aide d'électroaimants et de bobines. Par ailleurs, la nécessité de contrôler en permanence le champ magnétique développé par les électroaimants exige la mise en place d'un système de commande complexe, également 2882203 3 consommateur de courant électrique, qui doit posséder un temps de réponse extrêmement court. Cette contrainte est difficile à atteindre en raison de fonctions de transferts d'un tel système généralement non linéaires. Un tel mode de suspension est dit actif, par opposition à une suspension utilisant des aimants permanents, qui ne consomment pas d'énergie supplémentaire, et qui est donc appelée suspension passive.
Il convient de mentionner une quatrième solution qui permet de maintenir un objet possédant une aimantation permanente en suspension dans un champ également permanent. Cet objet est commercialisé sous la marque LEVITRON et se présente sous la forme d'une toupie apte à se maintenir en suspension dans un champ magnétique stable lorsqu'elle est mise en rotation. Contrairement aux apparences, cet objet ne viole pas la loi d'Earnshaw. En effet, l'instabilité inhérente à tout système en sustentation dans un champ stable est toujours présente, celle-ci étant toutefois compensée par un effet gyroscopique stabilisateur provenant de la rotation de la toupie. L'équilibre ainsi obtenu est cependant relativement instable et les conditions de stabilité sont particulièrement strictes. Ainsi, la masse de la toupie doit être très précisément ajustée, de même que sa vitesse de rotation et la direction du champ magnétique par rapport à la direction de la gravité.
Pour pallier plusieurs de ces inconvénients, il a été développé une cinquième solution reposant sur un système mixte utilisant à la fois des aimants permanents et des électroaimants, et qui permet ainsi de réduire légèrement la consommation électrique du système. Une telle suspension est dite partiellement passive. Ainsi, on connaît une suspension partiellement passive comprenant un rotor cylindrique en suspension entre deux aimants permanents aux terres rares développant un champ de 1,1 tesla et assurant uniquement une stabilité radiale. En l'absence de stabilisation complémentaire, le système présente donc une forte instabilité axiale. Pour ce faire, chaque aimant permanent est associé à un électroaimant asservi afin d'assurer la stabilisation axiale du rotor autour d'une position d'équilibre moyen. L'utilisation d'aimants permanents permet, d'une part, d'avoir une fonction de transfert du système linéaire, et d'autre part, d'assurer un centrage par réluctance même si les électroaimants ne sont pas alimentés, ces derniers n'étant utilisés que pour renforcer ou diminuer le champ permanent appliqué, et déplacer ainsi l'équilibre des forces s'appliquant sur le rotor. La consommation électrique d'un 2882203 4 tel système reste toutefois relativement élevée et nécessite toujours la mise en place d'un capteur associé à un système d'asservissement complexe et rapide.
En raison de ces contraintes techniques et économiques, cette technologie n'est utilisée que dans le cadre d'applications très spécifiques pour lequel le coût énergique n'entre presque pas en considération.
Une des principales applications actuelles de la sustentation magnétique sont Iles paliers magnétiques, notamment pour volants d'inertie et autres dispositifs en rotation. Les volants d'inertie sont utilisés pour stocker de l'énergie sous forme cinétique dans un volant en rotation dont l'axe est maintenu par des paliers magnétiques, afin de la restituer ensuite en cas de coupure de courant ou d'alimentation irrégulière. Lorsque la production électrique d'une éolienne, par exemple, est suffisante pour alimenter un système électrique, une partie de ce courant est utilisée pour entraîner le volant d'inertie au moyen d'un moteur-générateur et maintenir sa vitesse à plusieurs milliers de tours par minute. En cas de baisse de la production d'électricité par l'éolienne, la vitesse du volant d'inertie est transformée, grâce au même moteur-générateur fonctionnant alors en mode générateur, en électricité. Ceci permet d'assurer une alimentation électrique constante en attendant une rehausse de la production d'électricité. Afin d'optimiser le stockage de l'énergie, d'en minimiser les pertes par frottements, et de la restituer avec un rendement maximum sur la plus longue plage de temps possible, la suspension du volant doit être très précisément contrôlée et doit consommer le moins de courant électrique possible pour contrôler cette suspension. Comme expliqué précédemment, la plupart des solutions actuelles ne permettent pas d'atteindre ces objectifs, une suspension à l'aide d'aimants permanents, ne consommant donc pas d'énergie électrique, est impossible du fait de la loi d'Earnshaw, tandis qu'une suspension active nécessite notamment une énergie électrique trop importante. Ce problème peut également être appliqué aux trains à sustentation magnétique, pour lesquels le coût de fonctionnement, en plus d'un coût d'installation déjà élevé, est excessif par rapport à la rentabilité attendue, que la suspension soit assurée à l'aide de bobines requerrant une alimentation électrique très importante, ou qu'elle utilise des supraconducteurs devant généralement être maintenus dans un bain d'azote liquide.
La présente invention a pour but de remédier aux inconvénients précédemment évoqués, et consiste pour cela en un procédé de stabilisation 2882203 5 d'un objet en suspension magnétique soumis à au moins un champ magnétique constant, ledit objet étant stable selon au moins une direction et instable selon au moins une autre direction, caractérisé en ce qu'il comprend une étape de stabilisation, répétée aussi souvent que nécessaire, consistant à appliquer un courant électrique à travers au moins un élément conducteur soumis à un champ magnétique secondaire de manière à générer une force de Laplace compensatrice dans la direction d'instabilité.
Ainsi, grâce à l'application d'une force de Laplace compensatrice, il est possible de compenser facilement les instabilités magnétiques inhérentes 10 au système tout en minimisant sa consommation électrique.
En effet, un objet dans un champ magnétique stable possède une énergie potentielle de type harmonique, dont le Laplacien, somme des dérivées partielles secondes par rapport aux coordonnées spatiales, est nul. De ce fait, les dérivées partielles secondes de l'énergie potentielle par rapport à chacune des coordonnées spatiales ne peuvent toutes être négatives, comme le voudrait un équilibre parfaitement stable. Par conséquent, il existe toujours au moins une coordonnée par rapport à laquelle la dérivée partielle seconde est positive, donc pour laquelle il n'y a pas de position d'équilibre stable. Il a été constaté de manière surprenante que l'application d'une force de Laplace, dont le potentiel est quadratique, dans la direction de l'instabilité permet de conférer au système une énergie potentielle pour laquelle il existe des points de stabilité. De ce fait, il n'est plus nécessaire de recourir à des électroaimants puissants pour stabiliser un tel système et la consommation électrique globale s'en trouve considérablement réduite.
Le champ magnétique permettant la mise en suspension de l'objet pourra être généré par une ou plusieurs sources de champ magnétique selon la géométrie de l'objet. En effet, l'utilisation d'au moins deux sources magnétiques pour créer un champ magnétique selon la direction souhaitée peut s'avérer nécessaire afin de renforcer la stabilité de l'objet.
Avantageusement, l'étape de stabilisation vise à maintenir l'objet entre une borne supérieure et une borne inférieure autour d'une position d'équilibre moyen souhaité. En effet, selon le degré de stabilité souhaité il sera nécessaire d'exercer une force de Laplace plus ou moins importante. Plus l'équilibre doit être maintenu de manière très précise, plus il est nécessaire de compenser les instabilités du système en appliquant des forces compensatrices plus importantes. De manière avantageuse, on pourra prendre 2882203 6 une force de Laplace assurant environ 10% de la portance totale nécessaire à la mise en suspension de l'objet, les 90% restant étant assurés par les aimants permanents.
Avantageusement encore, le procédé selon l'invention comprend une étape de détection de la position de l'objet apte à commander et/ou interrompre le passage du courant électrique à travers l'élément conducteur. Ainsi, le courant électrique n'est appliqué que lorsque cela est nécessaire pour ramener l'objet vers sa position d'équilibre moyen, ce qui diminue encore la consommation. En acceptant une légère oscillation autour d'un point d'équilibre moyen souhaité, il est possible de réduire encore la consommation électrique du système.
La présente invention se rapporte également à un dispositif à sustentation magnétique comprenant un objet en suspension soumis à au moins un champ magnétique constant en interaction avec des moyens d'aimantation correspondants de l'objet suspendu, caractérisé en ce qu'il comprend, d'une part, des éléments magnétiques secondaires aptes à générer un champ magnétique secondaire, et d'autre part, au moins un élément conducteur soumis au champ magnétique secondaire, de façon à ce qu'une force de Laplace compensatrice soit générée sur l'objet suspendu, lorsque l'élément conducteur est traversé par un courant électrique.
II convient de noter que par moyens d'aimantation correspondants, on entend tout matériau sensible à un champ magnétique environnant. De tels matériaux sont bien sûrs les aimants, réagissant à un autre aimant, mais également les matériaux ferromagnétiques, non aimantés en soi mais s'orientant magnétiquement lorsque placés dans un champ magnétique.
Il doit être bien compris que le champ magnétique constant est généré par au moins une source de champ, la source de champ magnétique et les moyens d'aimantation correspondants pouvant être intervertis de manière telle que la source de champ est située sur l'objet et interagit avec un moyen d'aimantation correspondant externe.
De manière préférentielle, le champ magnétique développe, avec les moyens d'aimantation correspondants, une force d'attraction s'exerçant sur l'objet suspendu. II est également possible que le champ magnétique développe, avec les moyens d'aimantation correspondants, des forces d'attraction et des forces de répulsion s'exerçant sur l'objet suspendu.
2882203 7 Selon une variante de réalisation, le champ magnétique est généré par au moins deux sources de champ magnétique, les sources de champ magnétique et les moyens d'aimantation correspondants de l'objet suspendu possédant une orientation magnétique parallèle et de même sens. II s'agira, par exemple, dans le cas d'un système à symétrie de révolution de disposer deux bagues d'aimant permanent concentriques en interaction, l'une des bagues étant solidaire d'un stator, tandis que l'autre bague est solidaire de l'objet suspendu, par exemple d'un rotor.
Préférentiellement, l'élément conducteur est une bobine. De manière générale, un élément conducteur en argent sera préféré, ce métal étant un des meilleurs conducteurs actuellement connus. II pourra également être envisagé d'utiliser des nanotubes de carbone.
Préférentiellement encore, les sources de champ magnétique et/ou les moyens d'aimantation complémentaire et/ou les éléments magnétiques secondaires sont des aimants permanents. Avantageusement, les aimants permanents sont des aimants à base de néodyme fer bore.
Selon une variante de réalisation, les éléments magnétiques secondaires interagissent avec au moins un matériau ferromagnétique conformé de façon à permettre la réorientation le champ magnétique secondaire.
De manière préférentielle, le dispositif comprend au moins un capteur apte à commander ou interrompre le passage du courant à travers l'élément conducteur en fonction de la position de l'objet suspendu. Ainsi, il n'est pas nécessaire d'alimenter l'élément conducteur en permanence, ce qui permet de réduire encore la consommation électrique du système.
Avantageusement, le capteur comprend une pointe solidaire de l'objet suspendu et apte à venir au contact d'un interrupteur pour le fermer.
La mise en oeuvre de l'invention sera mieux comprise à l'aide de la description détaillée qui est exposée ci-dessous en regard du dessin annexé dans lequel: La figure 1 est une représentation schématique en coupe longitudinale d'un premier mode de réalisation d'un volant d'inertie stabilisé axialement selon le procédé de l'invention.
La figure 2 est une représentation schématique en coupe 35 longitudinale d'un deuxième mode de réalisation d'un volant d'inertie stabilisé radialement selon le procédé de l'invention.
2882203 8 La figure 3 est une représentation schématique en coupe longitudinale d'un troisième mode de réalisation d'un volant d'inertie stabilisé axialement selon le procédé de l'invention.
La figure 4 est une représentation schématique en coupe longitudinale d'un quatrième mode de réalisation d'un volant d'inertie stabilisé selon l'invention, et utilisant du fer doux pour réorienter les champs magnétiques.
La figure 5 est une vue du dessus en coupe du volant d'inertie de la figure 4.
Les figures 6 et 7 montrent deux variantes de réorientation de champ magnétique à l'aide de fer doux.
La figure 8 est une représentation schématique d'un premier mode de réalisation d'un détecteur d'instabilité.
La figure 9 est une représentation schématique d'un deuxième 15 mode de réalisation d'un détecteur d'instabilité.
La figure 10 est une vue du dessus du capteur de la figure 9.
La figure 11 est une représentation schématique d'une variante d'application du procédé de stabilisation selon l'invention à un train à sustentation magnétique.
Un volant d'inertie 1, tel que représenté à la figure 1, comprend un volant 2 cylindrique en suspension magnétique entre une source magnétique inférieure 3 et une source magnétique supérieure 4. Chaque source magnétique 3, 4 comporte respectivement un aimant circulaire 5, 6 faisant face à un aimant 7, 8 circulaire correspondant du volant 2.
Par ailleurs, le volant 2 présente une cavité inférieure 9 centrale et une cavité supérieure 10 centrale. La cavité inférieure 9 abrite deux paires d'aimants additionnels 11 a, 11 b, 12a, 12b superposées, le champ magnétique radial développé par l'une des deux paires d'aimants additionnels 11 a, 11 b, 12a, 12b étant opposé au champ développé par l'autre paire d'aimants additionnels 12a, 12b, 11 a, 11 b. De la même manière, la cavité supérieure 10 abrite deux paires d'aimants additionnels 13a, 13b, 14a, 14b superposées.
La cavité inférieure 9 et la cavité supérieure 10 sont chacune destinées à recevoir respectivement un ensemble de fils conducteurs 15a, 15b, 15c, 16a, 16b, 16c solidaires de la source magnétique 3, 4 correspondante et disposés perpencliculairement à l'axe du volant 2. Chaque ensemble de fils 2882203 9 conducteurs 15a, 15b, 15c, 16a, 16b, 16c est relié à un circuit d'alimentation électrique (non représenté).
L'orientation des pôles des aimants circulaires 5 à 8 est choisie de manière à ce que les aimants circulaires 5, 7, d'une part, et 6, 8, d'autre part, développent respectivement entre eux une force magnétique d'attraction. Les puissances des aimants circulaires 5 à 8 sont choisies de manière à ce que la force d'attraction tendant à rapprocher le volant 2 de la source supérieure 4 soit en équilibre avec la force d'attraction tendant à rapprocher le volant 2 de la source inférieure 3 augmentée de la force exercée par la gravité (symbolisée par une flèche), c"est-à-dire le poids du volant 2.
Par ailleurs, les aimants 5, 6 exercent sur le volant 2 une force de centrage importante, ceux-ci tendant à aligner l'axe magnétique des aimants correspondants 7, 8 avec le leur. Cette force de centrage est suffisante pour stabiliser radialement le volant.
Conformément à la loi d'Earnshaw, le volant 2 en suspension entre la source inférieure 3 et la source supérieure 4 ne peut être stable. En effet, la force de centrage des aimants 5 à 8 disposés en attraction étant particulièrement importante, celle-ci confère au volant 2 une stabilité radiale et impose un instabilité axiale. Ainsi en l'absence de toute régulation de champ complémentaire, le volant 2 a naturellement tendance à venir au contact de la source magnétique inférieure 3 ou de la source magnétique supérieure 4.
La stabilité axiale est assurée grâce aux interactions entre chacun des aimants additionnels 11 a à 14b et les ensembles de fils conducteurs 15a à 16c correspondants. En effet, lorsqu'un conducteur soumis à un champ magnétique perpendiculaire est parcouru par un courant électrique, il subit une force de Laplace formant, avec les vecteurs courant et champ, un repère ortho normal direct.
Ainsi, chacun des ensembles de fils conducteurs 15a à 16c parcourus par un courant électrique interagit avec les aimants additionnels 11 a à 14b correspondants. En l'espèce, l'orientation des paires d'aimants additionnels 11a à 14b et le sens du courant électrique parcourant les fils conducteurs 15a à 16c sont choisis de manière à ce que lorsque le volant 2 se rapproche de la source inférieure 3, la force de Laplace générée est dirigée axialement et tend à éloigner le volant 2 de la source inférieure 3.
Respectivement, lorsque le volant 2 se rapproche de la source supérieure 4, la 2882203 10 force de Laplace générée doit être dirigée axialement et tendre à éloigner le volant 2 de la source supérieure 4.
Selon la disposition de la figure 1, lorsque le volant 2 est à l'équilibre, une moitié des fils conducteurs 15a à 16c est soumise au champ magnétique radial des paires d'aimants additionnels 11 a, 11 b, 14a, 14b, tandis qu'une autre moitié des fils conducteurs 15a à 16c est soumise au champ magnétique radial des paires d'aimants additionnels 12a, 12b, 13a, 13b, de même direction mais de sens opposé au champ des paires d'aimants additionnels 11 a, 11 b, 14a, 14b. La force de Laplace résultant de cette double influence est donc nulle. En l'espèce, il a été considéré pour l'exemple que la puissance des aimants additionnels Ila à 14b était la même et que les fils conducteurs 15a à 16c étaient parcourus par la même intensité électrique. II est toutefois bien évidemment possible d'obtenir un tel équilibre avec des aimants de puissance d'aimants et des intensités électriques différentes.
Cependant, comme expliqué, le volant 2 est axialement instable et a tendance soit à se rapprocher de la source inférieure 3, soit de la source supérieure 4. Lorsque le volant 2 se rapproche de la source inférieure 3, les fils conducteurs 15a à 15c sont alors principalement soumis au champ magnétique de la paire d'aimants additionnels 12a, 12b, tandis que les fils conducteurs 16a à 16c sont principalement soumis au champ magnétique de la paire d'aimants additionnels 13a, 13b de même orientation magnétique que la paire d'aimants additionnels 12a, 12b. Le sens du courant électrique parcourant les fils conducteurs 15a à 16c est choisi de manière à ce que s'exerce sur le volant 2 une force de Laplace tendant à éloigner le volant 2 de la source inférieure 3 vers la source supérieure 4. Il convient de noter que ce cas est également applicable au volant avant sa mise en suspension, la force de Laplace ainsi créé participant à son décollage de la source magnétique inférieure 3.
De la même manière, lorsque le volant 2 se rapproche de la source supérieure 4, l'ensemble des fils conducteurs 15a à 15c est principalement soumis au champ de la paire d'aimants additionnels 11 a, 11 b tandis que les fils conducteurs 16a à 16c sont principalement soumis au champ de la paire d'aimants additionnels 14a, 14b de même orientation magnétique. L'orientation magnétique des paires 11 a, 11 b et 14a, 14b étant opposée à celle des paires 12a, 12b, d'une part, et 13a, 13b, d'autre part, la force de Laplace résultante possède donc un sens opposé et tend à éloigner le volant 2 de la source supérieure 4 pour le ramener vers sa position d'équilibre instable initiale.
2882203 11 De ce fait, le volant 2 est stabilisé axialement sans utiliser aucun capteur ni aucun système de régulation du courant électrique et oscille de part et d'autre d'une position d'équilibre moyen. Les expériences ont montré que l'intensité du courant électrique nécessaire pour stabiliser un volant 2 possédant une masse de 2,4 kg est d'environ 15 milliampères seulement.
Un volant d'inertie 20, tel que représenté sur la figure 2, comprend un volant 21 se distinguant du volant 2 principalement par le fait qu'il est soumis à une source magnétique inférieure 3a comprenant un aimant 5a circulaire interagissant avec un aimant 7a circulaire correspondant du volant 21, de manière à développer entre eux une force répulsive s'opposant à la chute du volant 21 par gravité (symbolisée par une flèche) . A l'inverse du volant 2 du volant d'inertie 1, le volant 21 est stable axialement mais présente une instabilité radiale, la source magnétique inférieure 3 tendant à repousser latéralement le volant 21. De ce fait, le volant 21 doit donc être stabilisé radialement grâce au procédé selon l'invention.
Pour ce faire, le volant 21 comprend une gorge 22 latérale périphérique comprenant des aimants additionnels supérieurs 23, 24 circulaires adjacents et inférieurs 25, 26, également circulaires et adjacents, ladite gorge latérale 22 étant destinée à recevoir un ensemble de fils conducteurs 27a, 27b, 27c formant des spires d'une bobine 27 parcourue par un courant électrique constant. Les aimants additionnels 23 et 25 sont situés en regard l'un de l'autre et possèdent une orientation magnétique identique. Les aimants additionnels 24 et 26 sont également situés en regard l'un de l'autre et possèdent une orientation magnétique identique mais opposée à l'orientation magnétique des aimants additionnels 23, 25.
Comme pour le volant d'inertie 1, lorsque le volant 20 est à l'équilibre, la bobine 27 possède autant de spires soumises au champ magnétique des aimants additionnels 23, 25 que de spires soumises au champ magnétique des aimants additionnels 24, 26, et la force de Laplace résultante est donc nulle. Lorsque le volant 21 s'écarte radialement, la bobine 27 est, dans la direction dans laquelle le volant 21 s'écarte et quelle que soit cette direction, principalement soumise au champ magnétique des aimants additionnels 24, 26, tandis que dans la direction diamétralement opposée, ladite bobine 27 est principalement soumise au champ magnétique desaimants additionnels 23, 25 opposé à celui des aimants additionnels 24, 26. Le sens du courant lparcourant la bobine 27 dans la direction selon laquelle le 2882203 12 volant 21 s'écarte, étant opposé à celui de la direction diamétralement opposée, la force de Laplace générée de part et d'autre du volant 21 possède une direction et un sens identique. Le sens du courant parcourant la bobine 27 et l'orientation des aimants additionnels 23 à 26 sont choisis de manière à ce que la force de Laplace s'exerçant selon la direction dans laquelle le volant 21 s'écarte soit centripète, rappelant ainsi le volant 21 vers sa position d'équilibre, la force de Laplace correspondant s'exerçant diamétralement à l'opposé étant alors centrifuge.
Ainsi, le volant 21 est stabilisé radialement et oscille autour de son 10 axe.
La figure 3 montre un troisième mode de réalisation d'un volant d'inertie stabilisé selon le procédé de l'invention. Ce volant d'inertie 30 comprend un volant 31 cylindrique possédant un axe 32 et mis en suspension magnétique entre une source magnétique inférieure 33 et une source magnétique supérieure 34. Chaque source magnétique comporte un aimant 35, 36 annulaire traversé par l'axe 32, les aimants 35, 36 possédant une orientation magnétique axiale et interagissant chacun avec un aimant 37, 38 concentrique correspondant situé sur l'axe 32 du volant 31 à la même hauteur que lesdits aimants 35, 36.
L'orientation des aimants 35 à 38 est choisie identique, les aimants 35, 37, d'une part, et 36, 38, d'autre part, développant respectivement entre eux une force magnétique opérant un centrage de l'axe 32. Le volant 31 est donc stable radialement et présente une instabilité axiale stabilisée par le procédé selon l'invention.
Pour ce faire, le volant 31 présente une gorge 39 périphérique supérieure abritant deux aimants additionnels extérieurs 40,41 circulaires superposés et deux aimants additionnels intérieurs 42, 43 superposés, ladite gorge 39 étant destinée à recevoir un ensemble de fils conducteurs 44a, 44b, 44c formant des spires d'une bobine 44 parcourue par un courant électrique constant. Les aimants additionnels 40 et 42 sont concentriques et possèdent une orientation magnétique identique. Les aimants additionnels 41 et 43 sont également concentriques et possèdent une orientation magnétique identique mais opposée à l'orientation magnétique des aimants additionnels 40, 42.
Comme pour les volants d'inertie 1 et 20, lorsque le volant 30 est à l'équilibre, la bobine 44 possède autant de spires soumises au champ magnétique des aimants additionnels 40, 42 que de spires soumises au champ 2882203 13 magnétique des aimants additionnels 41, 43, et la force de Laplace résultante est donc nulle. Lorsque le volant 30 s'écarte axialement et se rapproche de la source magnétique inférieure 33, la bobine 44 est alors principalement soumise au champ magnétique des aimants additionnels 41, 43. L'orientation des aimants additionnels 41, 43 et le sens du courant électrique parcourant la bobine 44 sont choisis de manière à ce que la force de Laplace générée tende à éloigner le volant 30 de la source inférieure 33 et le ramène vers sa position d'équilibre instable initiale. De la même manière, lorsque le volant 30 se rapproche de la source magnétique supérieure 34, la bobine 44 est alors principalement soumise au champ magnétique des aimants additionnels 40, 42. L'orientation cles aimants additionnels 40, 42 étant opposée à l'orientation des aimants 41, 43, la force de Laplace générée tend à éloigner le volant 30 de la source supérieure 34 et le ramène vers sa position d'équilibre instable initiale.
Ainsi, le volant 30 est stabilisé axialement et oscille autour d'une position d'équilibre moyen.
En variante il est possible d'utiliser moins d'aimants et d'en contrôler l'orientation du champ à l'aide de fer doux. Un volant d'inertie 50, tel que représenté à la figure 4, en constitue un exemple de réalisation.
Ce volant d'inertie 50 comprend un volant 52 cylindrique en suspension magnétique entre une source magnétique inférieure 53 et une source magnétique supérieure 54. Chaque source magnétique 53, 54 comporte respectivement un aimant circulaire 55, 56 faisant face à un aimant 57, 58 circulaire correspondant du volant 52.
Par ailleurs, le volant 52 présente une gorge 59 annulaire centrale dont le centre abrite un aimant additionnel 60 développant un champ magnétique axial, ladite gorge 59 présentant des parois recouvertes d'une couche de fer doux 61 pour réorienter le champ magnétique de l'aimant additionnel 60 selon une direction radiale. D'autres dispositions de fer doux au voisinage d'aimants additionnels sont représentées aux figures 6 et 7.
La gorge 59 est destinée à recevoir un ensemble de fils conducteurs 62a, 62b, 62c formant une bobine 62 solidaire de la source magnétique supérieure 64, la bobine 62 possédant un axe qui se confond avec l'axe du volant 52. La bobine 62 est reliée à un circuit d'alimentation électrique (non représenté).
2882203 14 Comme pour le volant d'inertie 1, l'orientation magnétique des aimants 55 à 58 est choisie de manière à ce que les aimants 55, 57, d'une part, et 56, 58, d'autre part, développent respectivement entre eux une force magnétique d'attraction. Les puissances des aimants 55 à 58 sont choisis de manière à ce que la force d'attraction tendant à rapprocher le volant 52 de la source supérieure 54 soit en équilibre avec la force d'attraction tendant à rapprochant le volant 52 de la source inférieure 53 augmentée de la force exercée par la gravité (symbolisée par une flèche), c'est-à-dire le poids du volant 52.
La stabilité axiale est assurée grâce aux interactions entre la bobine 62 et le champ magnétique développé par l'aimant additionnel 60 en générant une force de Laplace complémentaire.
Selon la disposition des figures 4 et 5, lorsque le volant 52 est à l'équilibre, aucune force de Laplace n'est générée et la bobine 62 n'est pas alimentée. Lorsque le volant 52 se rapproche de la source inférieure 53, on applique un courant électrique aux bornes de la bobine 62 dont le sens est choisi de manière à générer une force de Laplace dirigée axialement et tendant à éloigner le volant 52 de la source inférieure 53 pour le ramener vers sa position d'équilibre instable initiale. Lorsque le volant 52 se rapproche de la source supérieure 54, il est nécessaire de générer une force de Laplace tendant à éloigner le volant 52 de la source supérieure 54. Pour ce faire, le champ magnétique de l'aimant additionnel agissant sur la bobine 62 étant constant, il est nécessaire d'inverser le sens du courant parcourant ladite bobine 62.
En complément de ce dispositif, il est donc nécessaire de prévoir un capteur permettant de détecter si le volant 52 s'approche de la source inférieure 53 ou de la source supérieure 54 de manière à appliquer du courant selon le sens souhaité lorsque nécessaire. Contrairement aux dispositifs précédents, pour lesquels aucun capteur n'est nécessaire mais dans lesquels les conducteurs électriques sont alimentés en permanence, la bobine 62 du volant d'inertie 60 n'a pas besoin d'être alimentée en permanence, ce qui réduit encore la consommation électrique du dispositif. Elle nécessite en revanche le couplage du circuit d'alimentation à un capteur.
Des exemples de capteurs sont représentés aux figures 8 à 10.
La figure 8 représente un capteur 100 mécanique comprenant une pointe 101 possédant une pointe extrêmement fine et solide destinée à être 2882203 15 fixée au centre du volant 52. Un interrupteur 102 comprenant deux lames 103, 104 conductrices est fixé dans une partie immobile du volant d'inertie et relié à l'alimentation électrique. Plus précisément, la lame 104 est destinée à être en contact avec la pointe 101 et comprend à cette fin une plaque 105 extrêmement dure en rubis. Lorsque le volant 52 se rapproche de la source supérieure 53, la pointe vient exercer une pression contre la plaque 105 et pousse la lame 105 au contact de la lame 103, ce qui ferme le circuit électrique et permet le passage du courant. Ce faisant, la force de Laplace intervient pour éloigner le volant 52 de la source supérieure 54, ce qui éloigne la pointe 101 et rouvre le circuit électrique. Il en va de même, avec un deuxième capteur, pour la source inférieur 53.
Les figures 9 et 10 représentent un capteur 110 comprenant une boucle magnétique inférieure 111 et une boucle magnétique supérieure 112 située respectivement au dessus et en dessous du passage de deux aimants 114, 115 solidaires du volant 52 et pouvant avoir une orientation magnétique opposée. II est bien évidemment possible de disposer à intervalles réguliers plusieurs aimants semblables aux aimants 114, 115 sur la périphérie du volant 52, en alternant éventuellement leurs orientations magnétiques. Lorsque le volant est en rotation, les boucles magnétiques inférieure 111 et supérieure 112 sont soumises à un champ alternatif induisant des courants électriques alternatifs en opposition de phase dans lesdites boucles 111, 112. Ces courants induits sont additionnés par un comparateur 116 et le courant résultant est dirigé vers la bobine 62 pour l'alimenter. Il est éventuellement possible d'y ajouter un amplificateur opérationnel si l'intensité des courants induits est insuffisante. En effet, lorsque le volant 52 se rapproche de la source supérieure 54, la boucle magnétique supérieure 112 est soumise à un champ magnétique plus fort que la boucle magnétique inférieure 111, et génère donc un courant induit plus intense, la somme des courants induits est donc en faveur de la boucle supérieure 112 et la bobine 62 est alimentée par un courant circulant dans le sens correspondant. A l'inverse lorsque le volant 52 se rapproche de la source inférieure 53, la boucle magnétique supérieure 112 est soumise à un champ magnétique moins fort que la boucle magnétique inférieure 111, et génère donc un courant induit moins intense, la somme des courants induits est donc en faveur de la boucle inférieure 111 et la bobine 62 est alimentée par un courant circulant dans le sens inverse du précédent et génère une force de Laplace inversée.
2882203 16 Il convient de noter que les exemples cités décrivent des bobines ou fils conducteurs solidaires des sources supérieures et/ou inférieures tandis que les volants comprennent des aimants additionnels. II est bien évident que cette disposition peut être inversée, la bobine ou les fils conducteurs étant intégrés aux volant, tandis que les aimants additionnels sont intégrés aux sources supérieures et/ou inférieures, et que l'alimentation de la bobine ou des fils conducteurs est réalisée à l'aide d'un générateur interne au volant. Toutefois ce mode de réalisation est plus difficile à mettre en oeuvre et on préférera les dispositions telles que décrites précédemment.
La figure 11 montre une variante d'application du procédé selon l'invention à un train 200 à sustentation magnétique. Ce train 200 est mis en suspension entre un rail inférieur 201 et un rail supérieur 202 au moyen d'aimants 203, 204 coopérant chacun avec un aimant 205, 206 du train de manière à ce que l'aimant 203 du rail inférieur 201 développe avec l'aimant 205 correspondant du train 200 une force de répulsion, tandis que l'aimant 204 du rail supérieur 202 développe avec l'aimant 206 correspondant du train 200 une force d'attraction. Conformément à la loi d'Earnshaw, le train est instable latéralement et doit être stabilisé à l'aide du procédé selon l'invention. Pour ce faire, le train 200 est équipé de rails latéraux 207 en fer doux comprenant un aimant additionnel 208 possédant une magnétisation verticale. Ce rail 207 est destiné à recevoir un rail complémentaire 209 fixe, solidaire d'une voie 210 le long de laquelle le train se déplace. Ce rail complémentaire 209 est parcouru de fils conducteurs 211 alimentés en courant électrique et soumis au champ magnétique développé par l'aimant additionnel 208. Il est donc possible de générer une force de Laplace s'exerçant sur le train 200 et permettant de corriger ses instabilités magnétiques.
Bien que l'invention ait été décrite en liaison avec des exemples particuliers de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims (1)

17 REVENDICATIONS
1. Procédé de stabilisation d'un objet (2, 21, 31, 32, 52, 200) en suspension magnétique soumis à au moins un champ magnétique constant, ledit objet étant stable selon au moins une direction et instable selon au moins une autre direction, caractérisé en ce qu'il comprend une étape de stabilisation, répétée aussi souvent que nécessaire, consistant à appliquer un courant électrique à travers au moins un élément conducteur (15a à 16c, 27, 44, 62, 211) soumis à un champ magnétique secondaire de manière à générer une force de Laplace compensatrice dans la direction d'instabilité.
2. Procédé selon la revendication 1, caractérisé en ce que l'étape de stabilisation vise à maintenir l'objet (2, 31, 32, 52, 200) entre une borne supérieure et une borne inférieure autour d'une position d'équilibre moyen souhaité.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce qu'il comprend une étape de détection de la position de l'objet (2, 21, 31, 52, 200) apte à commander et/ou interrompre le passage du courant électrique à travers l'élément conducteur (15a à 16c, 27, 44, 62, 211).
4. Dispositif (1, 20, 30, 50) à sustentation magnétique comprenant un objet (2, 21, 31, 32, 52, 200) en suspension soumis à au moins un champ magnétique constant apte à interagir avec des moyens d'aimantation correspondants (7, 8, 7a, 37, 38, 57, 58, 205, 206) de l'objet suspendu, caractérisé en ce qu'il comprend, d'une part, des éléments magnétiques secondaires (11a à 14b, 23 à 26, 40 à 43, 60 à 62, 207, 208) aptes à générer un champ magnétique secondaire, et d'autre part, au moins un élément conducteur (15a à 16c, 27, 44, 62, 211) soumis au champ magnétique secondaire, de façon à ce qu'une force de Laplace compensatrice soit générée sur l'objet suspendu, lorsque l'élément conducteur est traversé par un courant électrique.
5. Dispositif (1, 20, 50) selon la revendication 4, caractérisé en ce que le champ magnétique développe, avec les moyens d'aimantation (7, 8, 57, 2882203 18 58, 206) correspondants, une force d'attraction s'exerçant sur l'objet (2, 21, 52, 200) suspendu.
6. Dispositif (30) selon la revendication 4, caractérisé en ce que le champ magnétique est généré par au moins deux sources (33, 34) de champ magnétique, les sources de champ magnétique et les moyens d'aimantation (37, 38) complémentaires de l'objet suspendu (31, 32) possèdent une orientation magnétique parallèle et de même sens.
7. Dispositif (20, 30, 50) selon l'une quelconque des revendications 4 à 6, caractérisé en ce que l'élément conducteur est une bobine.
8. Dispositif (1, 20, 30, 50) selon l'une quelconque des revendications 4 à 7, caractérisé en ce que les sources (3, 4, 3a, 33, 34, 53, 54, 201, 202) de champ magnétique et/ou les moyens d'aimantation complémentaires (7, 8, 7a, 37, 38, 57, 58, 205, 206) et/ou les éléments magnétiques secondaires (11a à 14b, 23 à 26, 40 à 43, 60 à 62, 207, 208) sont des aimants permanents.
9. Dispositif (50) selon l'une quelconque des revendications 4 à 8, caractérisé en ce que les éléments magnétiques secondaires (60) interagissent avec au moins un matériau ferromagnétique (61, 62) conformé de façon à permettre la réorientation le champ magnétique secondaire.
10. Dispositif (50) selon l'une quelconque des revendications 4 à 9, caractérisé en ce qu'il comprend au moins un capteur (100, 110) apte à commander ou interrompre le passage du courant à travers l'élément conducteur (62, 211) en fonction de la position de l'objet (52, 200) suspendu.
11. Dispositif (50) selon la revendication 10, caractérisé en ce que le capteur (100) comprend une pointe (101) solidaire de l'objet (52) suspendu et apte à venir au contact d'un interrupteur (102) pour le fermer.
FR0501514A 2005-02-15 2005-02-15 Procede de stabilisation d'un objet en suspension dans un champ magnetique Active FR2882203B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
FR0501514A FR2882203B1 (fr) 2005-02-15 2005-02-15 Procede de stabilisation d'un objet en suspension dans un champ magnetique
EP06709318A EP1848896A1 (fr) 2005-02-15 2006-02-15 Procede de stabilisation d'un objet en sustentation magnetique
CNA2006800042582A CN101115930A (zh) 2005-02-15 2006-02-15 稳定磁悬浮物体的方法
RU2007133582/11A RU2007133582A (ru) 2005-02-15 2006-02-15 Способ стабилизации объекта, находящегося в состоянии магнитной левитации
PCT/FR2006/000340 WO2006087463A1 (fr) 2005-02-15 2006-02-15 Procede de stabilisation d'un objet en sustentation magnetique
US11/816,216 US20080122308A1 (en) 2005-02-15 2006-02-15 Method for Stabilizing a Magnetically Levitated Object
JP2007554607A JP2008537872A (ja) 2005-02-15 2006-02-15 磁気的に浮上される物体を安定化させるための方法
CA002597560A CA2597560A1 (fr) 2005-02-15 2006-02-15 Procede de stabilisation d'un objet en sustentation magnetique
IL184935A IL184935A0 (en) 2005-02-15 2007-07-30 Method for stabilising a magnetically levitated object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0501514A FR2882203B1 (fr) 2005-02-15 2005-02-15 Procede de stabilisation d'un objet en suspension dans un champ magnetique

Publications (2)

Publication Number Publication Date
FR2882203A1 true FR2882203A1 (fr) 2006-08-18
FR2882203B1 FR2882203B1 (fr) 2007-06-22

Family

ID=34982464

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0501514A Active FR2882203B1 (fr) 2005-02-15 2005-02-15 Procede de stabilisation d'un objet en suspension dans un champ magnetique

Country Status (9)

Country Link
US (1) US20080122308A1 (fr)
EP (1) EP1848896A1 (fr)
JP (1) JP2008537872A (fr)
CN (1) CN101115930A (fr)
CA (1) CA2597560A1 (fr)
FR (1) FR2882203B1 (fr)
IL (1) IL184935A0 (fr)
RU (1) RU2007133582A (fr)
WO (1) WO2006087463A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111651A2 (fr) 2013-01-15 2014-07-24 Levisys Dispositif électrique pour le stockage d'électricité par volant d'inertie
WO2018009279A1 (fr) 2016-07-05 2018-01-11 Lawrence Livermore National Security, Llc Système générateur électrostatique utilisant une répulsion magnétique
US11121604B2 (en) 2016-07-05 2021-09-14 Lawrence Livermore National Security, Llc Electrostatic generator electrode-centering and seismic-isolation system for flywheel-based energy storage modules

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20054704D0 (no) * 2005-10-13 2005-10-13 Sway As Fremgangsmate og metode for vindkraftverk og fremdriftssystem med magnetisk stabilt hovedlager og lastkontrollsystem
US7469604B2 (en) * 2005-10-21 2008-12-30 Stoneridge Control Devices, Inc. Sensor system including a magnetized shaft
JP2009258195A (ja) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp プロキシミティ露光装置、プロキシミティ露光装置の基板移動方法、及び表示用パネル基板の製造方法
DE102008036702A1 (de) * 2008-08-01 2010-02-04 Rothe Erde Gmbh Magnetlager und Verfahren zu dessen Betrieb
DE102009054549A1 (de) 2008-12-11 2010-06-17 Carl Zeiss Smt Ag Gravitationskompensation für optische Elemente in Projektionsbelichtungsanlagen
EP2275697A1 (fr) * 2009-04-23 2011-01-19 Koninklijke Philips Electronics N.V. Roulement magnétique, niveau rotatif, et appareil de lithographie de faisceau à électrons réflectifs
DE102009042972A1 (de) 2009-09-16 2011-03-24 Technische Universität Ilmenau Vorrichtung und Verfahren zum Manipulieren einer levitierten elektrisch leitfähigen Substanz
EP2494187A4 (fr) 2009-10-29 2013-07-10 Oceana Energy Co Systèmes et procédés de conversion d'énergie
US8368271B2 (en) * 2009-12-15 2013-02-05 Empire Technology Development Llc Magnetically suspended flywheel energy storage system with magnetic drive
KR100986151B1 (ko) * 2010-04-01 2010-10-08 유영실 자기력 평형 전기발생장치
DE202010017611U1 (de) * 2010-05-05 2012-03-22 Mecatronix Gmbh Elektromagnetisches Axiallager
US8633625B2 (en) * 2010-09-14 2014-01-21 The Texas A&M University System Shaft-less energy storage flywheel
DE102011018675A1 (de) 2011-04-18 2012-10-18 Technische Universität Ilmenau Vorrichtung und Verfahren zum aktiven Manipulieren einer elektrisch leitfähigen Substanz
CN102638201A (zh) * 2012-05-11 2012-08-15 李晓桓 多层磁悬浮惯性飞轮高压气能发电机
CN103151969B (zh) * 2013-02-05 2015-11-18 江苏磁谷科技股份有限公司 可开关永磁磁悬浮导轨
JP2014166131A (ja) * 2013-02-26 2014-09-08 Toru Nagaike 推力モーター及び移動体への取り付け方法
US9148077B2 (en) * 2013-03-15 2015-09-29 Arx Pax, LLC Magnetic levitation of a stationary or moving object
NL2011095C2 (en) * 2013-07-04 2015-01-06 S4 Energy B V Inertial energy accumulating device.
CN103591139B (zh) * 2013-11-22 2015-08-12 江苏理工学院 用于高速转子的被动径向永磁轴承
KR101552350B1 (ko) 2014-05-02 2015-09-09 한국기계연구원 편향력 보상용 쓰러스트 자기 베어링
US9590469B2 (en) * 2015-02-20 2017-03-07 Lawrence Livermore National Security, Llc Transverse-displacement stabilizer for passive magnetic bearing systems
CN104895921B (zh) * 2015-05-13 2017-08-04 北京石油化工学院 一种两自由度洛伦兹力外转子球面磁轴承
JP6577300B2 (ja) * 2015-08-27 2019-09-18 国立大学法人茨城大学 磁気浮上姿勢制御装置
DE102015116767B4 (de) * 2015-10-02 2020-06-18 Rubotherm GmbH Lager, insbesondere für eine Magnetschwebeanordnung
WO2017083984A1 (fr) * 2015-11-20 2017-05-26 Kelso Energy Ltd. Construction de volant d'inertie à aimant en creux pour éoliennes à axe vertical
CN105540766A (zh) * 2015-12-07 2016-05-04 山东永春堂集团有限公司 一种利用磁化和低频共振水生产化妆品和日化品的装置
CN105857647B (zh) * 2016-03-25 2018-06-29 西北工业大学 低速自旋空间非磁化金属碎片的加速消旋磁场的产生方法
US10393173B2 (en) * 2016-06-13 2019-08-27 Lawrence Livermore National Security, Llc Halbach-array levitating passive magnetic bearing configuration
TWI709689B (zh) * 2017-05-22 2020-11-11 李受勳 交通載具的風力發電設備
DE102017212773A1 (de) 2017-07-25 2019-01-31 Carl Zeiss Smt Gmbh Gewichtskraftkompensationseinrichtung
CN110015349A (zh) * 2018-01-10 2019-07-16 李仕清 一种履带
CN110406313A (zh) * 2018-04-27 2019-11-05 长春市苏伟磁悬浮技术研究所 一种磁悬浮车轮
CN208061578U (zh) * 2018-05-10 2018-11-06 京东方科技集团股份有限公司 支撑装置和显示设备
JP7160494B2 (ja) * 2018-07-06 2022-10-25 スピンレクトリックス, インコーポレイテッド 電気機械バッテリ
KR20200006334A (ko) * 2018-07-10 2020-01-20 이종훈 중력을 회전운동 모드로 변경하여 전기를 발생시키는 발전 장치
CN109158802B (zh) * 2018-10-16 2021-02-26 宁夏吴忠市好运电焊机有限公司 用于焊接机器人的磁悬浮减震稳定连接器
CN109582023B (zh) * 2018-12-21 2019-10-11 费子偕 一种新型载人工具以及适用其的控制方法
CN110165822A (zh) * 2019-06-12 2019-08-23 大连亨利科技有限公司 一种气体悬浮飞轮电池控制装置
EP3984117A1 (fr) * 2019-06-14 2022-04-20 Indiv Srl Dispositif de stockage d'énergie dynamique
CN111115636B (zh) * 2020-01-10 2022-09-30 昆明理工大学 一种用于冶金级硅电磁悬浮处理的电磁悬浮线圈和方法
CN111762028A (zh) * 2020-07-23 2020-10-13 苏州英磁新能源科技有限公司 一种磁悬浮列车***及其悬浮轨道
KR102429302B1 (ko) * 2020-09-04 2022-08-04 한국생산기술연구원 직선형 능동자기베어링
CN112712827B (zh) * 2020-12-22 2021-12-10 杭州职业技术学院 磁悬浮飞轮储能式低加速时间的机械硬盘
CN115102428B (zh) * 2022-08-03 2023-04-28 成都理工大学 一种扁平磁悬浮装置
CN115837841B (zh) * 2023-01-03 2023-04-28 西南交通大学 一种高温超导磁悬浮***及其线圈尺寸的计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812694A (en) * 1974-09-12 1989-03-14 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Contact free magnetic bearing
DE4210741A1 (de) * 1992-04-01 1993-10-14 Forschungszentrum Juelich Gmbh Magnetische Lagerung für schwebenden Körper
US6154353A (en) * 1995-09-02 2000-11-28 Magnetic Patent Holdings Limited Magnetic suspension system
US6293901B1 (en) * 1997-11-26 2001-09-25 Vascor, Inc. Magnetically suspended fluid pump and control system
US20040135450A1 (en) * 2001-05-18 2004-07-15 Hideki Kanebako Magnetic levitation motor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700094A (en) * 1984-12-17 1987-10-13 The Charles Stark Draper Laboratory, Inc. Magnetic suspension system
US5928131A (en) * 1997-11-26 1999-07-27 Vascor, Inc. Magnetically suspended fluid pump and control system
JP2002021850A (ja) * 2000-07-05 2002-01-23 Yoji Okada 磁気軸受
JP2002257135A (ja) * 2001-02-27 2002-09-11 Koyo Seiko Co Ltd 磁気軸受装置
JP2002257136A (ja) * 2001-02-27 2002-09-11 Koyo Seiko Co Ltd 磁気軸受
JP3949916B2 (ja) * 2001-09-26 2007-07-25 日本電産サンキョー株式会社 磁気浮上モータ、及び磁気軸受装置
JP2003097555A (ja) * 2001-09-27 2003-04-03 Canon Inc ボイスコイル型スラスト磁気軸受
JP2003199288A (ja) * 2001-12-28 2003-07-11 Sankyo Seiki Mfg Co Ltd 磁気浮上モータ、及び磁気軸受装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812694A (en) * 1974-09-12 1989-03-14 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Contact free magnetic bearing
DE4210741A1 (de) * 1992-04-01 1993-10-14 Forschungszentrum Juelich Gmbh Magnetische Lagerung für schwebenden Körper
US6154353A (en) * 1995-09-02 2000-11-28 Magnetic Patent Holdings Limited Magnetic suspension system
US6293901B1 (en) * 1997-11-26 2001-09-25 Vascor, Inc. Magnetically suspended fluid pump and control system
US20040135450A1 (en) * 2001-05-18 2004-07-15 Hideki Kanebako Magnetic levitation motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111651A2 (fr) 2013-01-15 2014-07-24 Levisys Dispositif électrique pour le stockage d'électricité par volant d'inertie
WO2018009279A1 (fr) 2016-07-05 2018-01-11 Lawrence Livermore National Security, Llc Système générateur électrostatique utilisant une répulsion magnétique
EP3482489A4 (fr) * 2016-07-05 2020-04-01 Lawrence Livermore National Security, LLC Système générateur électrostatique utilisant une répulsion magnétique
US11121604B2 (en) 2016-07-05 2021-09-14 Lawrence Livermore National Security, Llc Electrostatic generator electrode-centering and seismic-isolation system for flywheel-based energy storage modules

Also Published As

Publication number Publication date
JP2008537872A (ja) 2008-09-25
EP1848896A1 (fr) 2007-10-31
US20080122308A1 (en) 2008-05-29
CN101115930A (zh) 2008-01-30
IL184935A0 (en) 2007-12-03
WO2006087463A1 (fr) 2006-08-24
CA2597560A1 (fr) 2006-08-24
RU2007133582A (ru) 2009-03-27
FR2882203B1 (fr) 2007-06-22

Similar Documents

Publication Publication Date Title
FR2882203A1 (fr) Procede de stabilisation d'un objet en suspension dans un champ magnetique
EP1875480B1 (fr) Actionneur electromagnetique polarise bistable a actionnement rapide
EP2817870B1 (fr) Actionneur inertiel magnetohydrodynamique
FR2536473A1 (fr) Pompe turbomoleculaire
EP2492528A1 (fr) Dispositif tournant avec butée à roulement et suspension magnétique pour l'allègement de la butée, notamment pour volant d'inertie
FR2581003A1 (fr) Suspension magnetique pour moyen de transport
FR2954961A1 (fr) Paliers magnetique passif
EP0642704B1 (fr) Actionneur electromagnetique monophase rotatif
FR2732734A1 (fr) Palier magnetique miniature a au moins un axe actif
EP1727998A1 (fr) Palier magnetique actif a auto-detection de position
WO2001084693A1 (fr) Systeme de support magnetique a levitation totale dote de paliers magnetiques radiaux passifs
EP2880744A1 (fr) Actionneur comprenant deux moteurs paliers magnétiques
KR20030076769A (ko) 복합 베어링을 사용한 초전도 플라이휠 에너지 저장장치
FR2849712A1 (fr) Actionneur rotatif bistable monophase hybride
FR2618616A1 (fr) Machine electrique a couple d'entrainement et/ou de positionnement eleve
JPH08296645A (ja) 磁気軸受装置
CA2897891C (fr) Dispositif electrique pour le stockage d'electricite par volant d'inertie
JP7064728B2 (ja) フライホイール装置及び回転電機
EP3728881B1 (fr) Ensemble rotatif a palier magnétique
JP3385771B2 (ja) 超電導磁気軸受装置
EP0890033A1 (fr) Dispositif de detection des deplacements d'un rotor monte sur des paliers magnetiques actifs
JPH06313427A (ja) 酸化物超電導軸受
FR2993726A1 (fr) Volant d'inertie avec un arbre de rotation comprenant deux moteur paliers magnetiques
BE447983A (fr)
FR2756660A1 (fr) Actionneur electromagnetique pour le deplacement en rotation d'un organe mobile sur une course limitee

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 16

PLFP Fee payment

Year of fee payment: 17

PLFP Fee payment

Year of fee payment: 18

PLFP Fee payment

Year of fee payment: 19