FR2469206A1 - Alumina transition metal catalyst prodn. for use in water gas reaction - by dissolving metal or cpd. in melt of aluminium cpd. and thermal decomposition - Google Patents

Alumina transition metal catalyst prodn. for use in water gas reaction - by dissolving metal or cpd. in melt of aluminium cpd. and thermal decomposition Download PDF

Info

Publication number
FR2469206A1
FR2469206A1 FR7927796A FR7927796A FR2469206A1 FR 2469206 A1 FR2469206 A1 FR 2469206A1 FR 7927796 A FR7927796 A FR 7927796A FR 7927796 A FR7927796 A FR 7927796A FR 2469206 A1 FR2469206 A1 FR 2469206A1
Authority
FR
France
Prior art keywords
sep
catalyst
cpd
metal
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR7927796A
Other languages
French (fr)
Other versions
FR2469206B1 (en
Inventor
Michel Delfin
Jean-Claude Clement
Gilbert Germaine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Francaise SA
Original Assignee
Shell Francaise SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Francaise SA filed Critical Shell Francaise SA
Priority to FR7927796A priority Critical patent/FR2469206A1/en
Priority to CA000361592A priority patent/CA1151135A/en
Priority to ZA00806928A priority patent/ZA806928B/en
Priority to AU64228/80A priority patent/AU538346B2/en
Priority to DE19803042326 priority patent/DE3042326A1/en
Publication of FR2469206A1 publication Critical patent/FR2469206A1/en
Application granted granted Critical
Publication of FR2469206B1 publication Critical patent/FR2469206B1/fr
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

In the prodn. of a catalyst contg. an Al oxide and transition metal(s) and used in the water gas reaction (prodn. of H2 and CO2 from steam and CO), a thermally decomposable Al cpd. is melted and the metal(s), as element(s) or cpd(s)., is dissolved in the melt. The mixt. is decomposed by heating, then cooled and brought into a form suitable for catalysis. The melt pref. also contains alkali metal(s) (K) or soluble cpd(s). (carbonates and/or nitrates). The Al cpd. is the nitrate. The transition metal is Cr, Mo, W, Fe and/or esp. Co and/or Ni. The catalyst can be (partly) sulphided. The catalyst has a number of active (metal) sites, which are better distributed, and excellent resistance to sulphur and mechanical stress.

Description

La présente invention a pour objet un procédé pour la prSparstion d'un catalyseur pour effectuer la réaction du gas à l'eau d'après l'équstion:

Figure img00010001
The present invention relates to a process for the preparation of a catalyst for carrying out the reaction of gas with water according to the equation:
Figure img00010001

Le catalyseur contient les composants suivants s i) de l'alumine, et 2) au moins un métal de transition. Il est déjà connu de préparer de tels catalyseurs par impregnation avec des solutions de sels de métaux de transition sur des support s a alumine.  The catalyst contains the following components: i) alumina, and 2) at least one transition metal. It is already known to prepare such catalysts by impregnation with solutions of transition metal salts on alumina supports.

Les catalyseurs ainsi préparés offrent le désavantage qu'ils sont sensibles au soufre, ça veut dire au H2S contenu souvent dans les mélanges de CO, H2O en C02 obtenus par gasification de houille ou de résidus lourds de pétrole brut, par exemple. De même, ils ne montrent pas une bonne efficacité à basse température, ce qui aurait #té favorable du point de vue équilibre thermodynamique. The catalysts thus prepared have the disadvantage that they are sensitive to sulfur, that is to say to the H2S often contained in mixtures of CO, H2O in CO2 obtained by gasification of coal or heavy residues of crude oil, for example. Likewise, they do not show good efficacy at low temperature, which would have been favorable from the point of view of thermodynamic equilibrium.

n outre, la préparation mentionnée est un peu laborieuse, surtout a'il faut préparer grandes quantités de catalyseur, et on ne sait jamais exactement, combien de métaux on va déposer à partir d'une solution d'une concentration definie, ni si les métaux seront distribués de façon homogène dans l'alumine. Moreover, the preparation mentioned is a little laborious, especially when large quantities of catalyst have to be prepared, and it is never known exactly how many metals will be deposited from a solution of a definite concentration, or whether the metals will be homogeneously distributed in alumina.

Or on a trouvé qu'on peut éviter ces désavantages, lorsqu'on fond un composé d'aluminium thermiquement décomposable, qu'on y dissout le métal ou les métaux, sous forme d'élément(s) ou de compos(s), qu'on décompose par chauffage le composé d'aluminium et puis qu'on refroidit le mélange et qu'on le met en forme propre à la catalyse.However, it has been found that these disadvantages can be avoided when melting a thermally decomposable aluminum compound, dissolving the metal or metals in the form of element (s) or compound (s), The aluminum compound is decomposed by heating and then the mixture is cooled and shaped into catalysis.

Donc l'invention se rapporte à un procédé pour la préparation d'un catalyseur pour effectuer la réaction du gaz à l'eau, contenant 1) de l'alumine et 2) au moins un métal de transition, caractérisé en ce qu'on fond un composé d'aluminium thermiquement aécomposable, qu'on y dissout le métal ou les métaux, sons forme d'élément(s) ou de composé(s), qu'on décompose le mélange et qu'on le met en forme propre à la catalyse. Thus, the invention relates to a process for the preparation of a catalyst for carrying out the reaction of the gas with water, containing 1) alumina and 2) at least one transition metal, characterized in that a thermally decomposable aluminum compound, dissolving the metal or metals in the form of an element (s) or compound (s), decomposing the mixture and forming it into clean form to catalysis.

En général, les catalyseurs ainsi préparés n'offrent plus les désavantages mentionnés, mais aussi ils possèdent plus de sites actifs (métaux) quiJ en outressont mieux distribués. La résistance au soufre est excellente, ainsi que la résistance mécanique. Si on veut améliorer cette dernière, on peut lteffectuer par addition de liants hydrauliques, du ciment par exemple. In general, the catalysts thus prepared no longer offer the disadvantages mentioned, but also they have more active sites (metals) which are in fact better distributed. The sulfur resistance is excellent, as is the mechanical strength. If we want to improve the latter, it can be done by adding hydraulic binders, cement for example.

On ne sait pas exactement en quel état les métaux sont distribués dans le catalyseur, comme des atomes ou des ions, complexés ou non, etc., mais cela ne fait rien à l'invention. It is not known in what state the metals are distributed in the catalyst, such as atoms or ions, complexed or not, etc., but this does nothing to the invention.

D'habitude on parle d'oxydes ou sulfures, mais surtout en présence des composants réactifs de la réaction du gaz à l'eau, des composé plus complexes sont possibles.Usually we speak of oxides or sulphides, but especially in the presence of the reactive components of the reaction of the gas with water, more complex compounds are possible.

De préférence on fond le composé d'aluminium pendant 5 à 120 minutes à une température de 75 à 8000C, le cas échéant en atmosphère oxygéné, sous un pression de 0,2 à 20 bars. Décisive est la température de fusion, ainsi que la température de décomposition. Si on prend par exemple le nitrate d'aluminium (point de fusion 73,5 C, point de décomposition 1500C) on chauffe pendant 10 - 20 minutes a'-- 80 - 9000.  The aluminum compound is preferably melted for 5 to 120 minutes at a temperature of 75 to 8000 ° C., optionally in an oxygenated atmosphere, at a pressure of 0.2 to 20 bar. Decisive is the melting temperature, as well as the decomposition temperature. If, for example, aluminum nitrate (melting point 73.5 ° C., decomposition point 1500 ° C.) is used, the mixture is heated for 10-20 minutes to 9000 ° C.

Puis on dissout le métal ou les métaux de transition,et on continue à chauffer pendant 1 - 4 heures à 250 - 800 C, de préférence à 450 - 5500C,pour décomposer le composé d'aluminium et les antres composés dissous en tant que décomposables. Then the metal or transition metals are dissolved, and heating is continued for 1-4 hours at 250-800C, preferably at 450-5500C, to decompose the aluminum compound and the other dissolved compounds as decomposable. .

De préférence on dissout aussi au moins un métal alcalin ou un composé d'un métal alcalin, parce que ceux-ci sont efficaces comme en tant qu'activants, ça veut dire que des activants ne sont pas des catalyseurs eux-mmes, mais, ajoutés à à un catalyseur, ils augmentent l'efficacité de ce catalyseur. Presque toujours on dissout le métal alcalin sous forme de composé, notamment comme oxyde, ou comme sel, thermiquement décomposable ou non. On préfère les composes qui fondent à la température du compose d'aluminium fondu, au point de vue de leur distribution homogène optimale. Preferably at least one alkali metal or an alkali metal compound is also dissolved, because these are effective as activators, it means that activators are not catalysts themselves, but, added to a catalyst, they increase the efficiency of this catalyst. Almost always the alkali metal is dissolved in the form of a compound, especially as oxide, or as salt, thermally decomposable or not. Compounds which melt at the temperature of the molten aluminum compound are preferred from the point of view of their optimum homogeneous distribution.

On peut utiliser p.e. des acetates, des formiates, des oxalates, des carbonates, des nitrates, des nitrites, qui se décomposent en oxydes, parmi lesouelles les carbonates et les nitrates son préférés. aussi bien on peut utiliser des autres sels, comme des halogénures ou des sulfures, -ou des sels ou des osides mixtes avec les métaux de transition, comme p.e. du permanganate, du molybdate, du dichromate, du tungstènate, du manganate, du (meta)-aluminate, du oxaloferrate, du ruthenate, qui offrent l'avantage aJouté d'introduire en meme temps un métal alcalin et un métal de transition, ou de l'aluminium. Mais pas dans tous les casla proportion est deja correcte d'avance. Essentiellement on peut prendre aussi des sels doubles, acides ou basiques. It is possible to use acetates, formates, oxalates, carbonates, nitrates, nitrites, which are decomposed into oxides, among which carbonates and nitrates are preferred. other salts, such as halides or sulfides, or mixed salts or osides with the transition metals, may be used, such as permanganate, molybdate, dichromate, tungstenate, manganate, meta ) -aluminate, oxaloferrate, ruthenate, which offer the advantage of introducing at the same time an alkali metal and a transition metal, or aluminum. But not in all cases the proportion is already correct in advance. Essentially one can also take double salts, acidic or basic.

En utilisant des sels doubles, on peut introduire aussi des métaux de transition en même temps, p.e. au moyen de l'iridium ou de l'osmyloxalate de potassium. Des métaux alcalins (Li,Na,X,Rb, Cs)le potassium donne les meilleurs résultats.By using double salts, transition metals can also be introduced at the same time, for example by means of iridium or potassium osmyloxalate. Alkali metals (Li, Na, X, Rb, Cs) give the best results.

De préférence on prend 0,01 - 12% de métal alcalin, calculé comme métal, rapporté au poids du catalyseur fini. Preferably, 0.01-12% of alkali metal, calculated as metal, based on the weight of the finished catalyst is used.

Particulièrement on préfère des quantités de 0,1 - 1,0% et de 9 - 11%. L'efficacité d'un catalyseur à 2 - 8% environ est inférieure d'un cinquième environ, mais tout de meme pas inférieure à I'efficacité d'un catalyseur sans métal alcalin.Particularly, amounts of 0.1 - 1.0% and 9 - 11% are preferred. The effectiveness of a catalyst at about 2-8% is about one-fifth less, but still not less than the efficiency of a catalyst without an alkali metal.

Quant au composé d'aluminium, il faut prendre un composé thermiquement décomposable, le produit de décomposi- tion étant l'alumine. As for the aluminum compound, it is necessary to take a thermally decomposable compound, the decomposition product being alumina.

Utilisables sont donc le bromate, le bromure, le perchlorate, le tristearate, etc., mais surtout le nitrate, à cause de sa température de fusion basse (73,5 C). Les observations générales, faites chez les composés du métal alcalin, sont applicables aussi ici.  Bromate, bromide, perchlorate, tristearate, etc., but especially nitrate, because of its low melting point (73.5 C), are suitable. General observations, made in alkali metal compounds, are also applicable here.

Les métaux de transition peuvent être ajoutés sous fo-rme élémentaire, comme-poudre, limaille, filets, laine, granules, etc., ou sous forme d'un composé. Un exemple d'un composé favorisé est le paramolybdate d'ammonium ((NH4) Mo7 024. The transition metals may be added as elemental, such as powder, filings, fillets, wool, granules, etc., or as a compound. An example of a favored compound is ammonium paramolybdate ((NH4) Mo7 024.

4 H20, point de décomposition 190 C), le cas échéant dissout en ammoniaque concentrée. Il est déjà connu que les métaux du groupe VI B du Système Périodique (Cr,No,W) et du groupe de fer -(Be, Co, Ni) effectuent la réaction du gaz a l'eau.4 H20, decomposition point 190 C), if necessary dissolved in concentrated ammonia. It is already known that the metals of group VI B of the Periodic System (Cr, No, W) and of the iron group - (Be, Co, Ni) perform the reaction of the gas with water.

Parmi ceux-ci, le fer (Fe2 03.H20) et spécialement le fer pourvu d'une quantité activante de chrome (Cr2 03) satisfont, pourvu qu'il n'y ait pas de soufre dans le gaz alimentaire.Of these, iron (Fe 2 O 3 .H 2 O) and especially iron with an activating amount of chromium (Cr 2 O 3) satisfy, provided there is no sulfur in the feed gas.

En présence de soufre les catalyseurs connus s'émiettent. In the presence of sulfur, the known catalysts crumble.

Cela ne se passera pas si on utilise un catalyseur préparé selon l'invention, de préférence contenant du molybdène avec du cobalt ou avec du nickel sous forme d-'oxydes ou de sulfures, et contenant aussi une quantité presque négligeable de métal alcalin. On peut prendre au lieu de molybdène aussi du tungstène, ou du chrome.This will not happen if a catalyst prepared according to the invention is used, preferably containing molybdenum with cobalt or with nickel in the form of oxides or sulfides, and also containing an almost negligible amount of alkali metal. Instead of molybdenum, tungsten or chromium can be used.

D'habitude on utilise 1 - 15% (rapportés au poids du catalyseur fini) de métal de transition, en particulier 1-3% Co, ou 5-10% Ni et 4-15% No.  Usually 1 - 15% (based on the weight of the finished catalyst) of transition metal, in particular 1-3% Co, or 5-10% Ni and 4-15% No.

Après la décomposition du composé de l'aluminium, et des autres composes dissous en tant que décomposables, on continue à chauffer pour sécher le mélange, et le precalciner.  After decomposition of the aluminum compound and other dissolved compounds as decomposable, heating is continued to dry the mixture and precalcine.

finalement on laisse refroidir ou on refroidit le mélange.finally, the mixture is allowed to cool or cool.

Comme d'habitude chez les préparations de catalyseurs, on peut calciner le catalyseur obtenu. De préférence on active le catalyseur par calcination pendant 1-3 heures à t50-550 C
On obtient un catalyseur pierreux, qu'on broie.
As usual in catalyst preparations, the catalyst obtained can be calcined. The catalyst is preferably activated by calcination for 1 hour at 50.degree.-50.degree.
A stony catalyst is obtained which is ground.

Par broyage et tamisage on obtient des particules catalytiques de dimension 0,2-0,6 mm êe.pre'frence (pcur des installatons à l'échelle industrielle 1,5-10 mm est la dimension p~éférée).  By grinding and sieving, catalytic particles of size 0.2-0.6 mm are obtained. (For industrial scale installations, 1.5-10 mm is the preferred size).

Les particules peuvent entre mises en forme propre à la catalyse par des opérations subséquentes, mais souvent elles sont déjà utilisables biles queutes On peut transformer le catalyseur en pastilles, corps extrudés, anneaux, billes ou autres corps. The particles can be converted into catalysis by subsequent operations, but often they are already usable. The catalyst can be converted into pellets, extruded bodies, rings, beads or other bodies.

Exemples Exemple I
On prépare des catalyseurs par impregnation et selon l'invention (dissolution de Ni, Co et Mo métalliques dans Âl(N03)3 fondu) pour démontrer l'effet technique.
Examples Example I
Catalysts are prepared by impregnation and according to the invention (dissolution of Ni, Co and Mo metals in melted Al (NO 3) 3) to demonstrate the technical effect.

Initialement les composants sont principalement sous forme d'oxydes.Initially the components are mainly in the form of oxides.

On charge 4 ml de particules de catalyseur (dimension 0,2 - 0,6 mm) dans un réacteur et on les soumet à un mélange de gaz comprenant 45% v CO, 5% v C02, 49,6% v H2, et 0,4% v H2 S. On injecte de l'eau ou de la vapeur avec le gaz, et on analyse la composition des gaz avant et après la réaction par chromatographie en phase gazeuse. ainsi on calcule le degré de conversion du CO, en pourcents (volume, molaire, ou poids). On applique les conditions suivantes: pression 30 bars vitesse spatiale 3300 Nl/lh proportion molaire (gaz sec/vapeur )1,35 température 2200C prétraitement aucun durée 20 heures. 4 ml of catalyst particles (size 0.2-0.6 mm) are charged to a reactor and subjected to a gas mixture comprising 45% CO 2, 5% CO 2, 49.6% v H 2, and 0.4% v H2 S. Water or steam is injected with the gas, and the composition of the gases is analyzed before and after the reaction by gas chromatography. thus the degree of conversion of CO in percent (volume, molar, or weight) is calculated. The following conditions are applied: pressure 30 bar space velocity 3300 Nl / lh molar proportion (dry gas / steam) 1.35 temperature 2200C pretreatment no duration 20 hours.

Après 20 heures on mesure la proportion de CO converti.  After 20 hours the proportion of converted CO is measured.

A. 2,5 CoO/9 MoO3/88,5 Al2O3 , ou contenant 2,0% p Go et
6,0% p Mo.

Figure img00060001
A. 2.5 CoO / 9 MoO3 / 88.5 Al2O3, or containing 2.0% p GB and
6.0% p Mo.
Figure img00060001

<tb><Tb>

<SEP> préparation <SEP> alcination <SEP> surface <SEP> conversion
<tb> <SEP> impregnation <SEP> (produit <SEP>
<tb> <SEP> de <SEP> commerce) <SEP> 279 <SEP> 29
<tb> <SEP> nitrate <SEP> fondu <SEP> 600 <SEP> 326 <SEP> 30
<tb> B. <SEP> 4 <SEP> CoO/12 <SEP> MoO3/84 <SEP> Al2O3, <SEP> ou <SEP> contenant <SEP> 3,2% <SEP> Co <SEP> et
<tb> <SEP> 8,0% <SEP> p <SEP> Mo. <SEP>
<tb>
<SEP> preparation <SEP> alkaline <SEP> surface <SEP> conversion
<tb><SEP> impregnation <SEP> (product <SEP>
<tb><SEP> of <SEP> Trade) <SEP> 279 <SEP> 29
<tb><SEP> nitrate <SEP> melted <SEP> 600 <SEP> 326 <SEP> 30
<tb> B. <SEP> 4 <SEP> CoO / 12 <SEP> MoO3 / 84 <SEP> Al2O3, <SEP> or <SEP> containing <SEP> 3.2% <SEP> Co <SEP> and
<tb><SEP> 8.0% <SEP> p <SEP> MB. <SEP>
<Tb>

<SEP> impregnation <SEP> 650 <SEP> 229 <SEP> 19
<tb> <SEP> nitrate <SEP> fondu <SEP> 500 <SEP> 449 <SEP> 38
<tb> <SEP> " <SEP> " <SEP> 650 <SEP> 284 <SEP> 26
<tb> C. <SEP> 10 <SEP> NiO/20 <SEP> MoO3/70 <SEP> val203, <SEP> ou <SEP> contenant <SEP> 7,7% <SEP> p <SEP> Xi <SEP> et
<tb> <SEP> 13,3% <SEP> p <SEP> No. <SEP>
<tb>
<SEP> impregnation <SEP> 650 <SEP> 229 <SEP> 19
<tb><SEP> melted <SEP> nitrate <SEP> 500 <SEP> 449 <SEP> 38
<tb><SEP>"<SEP>"<SEP> 650 <SEP> 284 <SEP> 26
<tb> C. <SEP> 10 <SEP> NiO / 20 <SEP> MoO3 / 70 <SEP> val203, <SEP> or <SEP> containing <SEP> 7.7% <SEP> p <SEP> Xi <SEP> and
<tb><SEP> 13.3% <SEP> p <SEP> No. <SEP>
<Tb>

<SEP> impregnation <SEP> 650 <SEP> 170 <SEP> 26
<tb> <SEP> nitrate <SEP> fondu <SEP> 500 <SEP> 463 <SEP> 68
<tb> <SEP> 650 <SEP> n <SEP> 650 <SEP> 226 <SEP> 46
<tb>
On voit que les catalyseurs préparés selon l'invention sont plus efficaces.
<SEP> impregnation <SEP> 650 <SEQ> 170 <SEP> 26
<tb><SEP> nitrate <SEP> melted <SEP> 500 <SEQ> 463 <SEP> 68
<tb><SEP> 650 <SEP> n <SEP> 650 <SEP> 226 <SEP> 46
<Tb>
It can be seen that the catalysts prepared according to the invention are more effective.

Exemple II
Pour comparer la résistance au soufre on soumet des catalyseurs du type utilisé dans l'exemple I Â aux différentes concentrations de soufre, chaque expérience exécutée en cinq étapes consécutives, correspondants à différentes concentrations de H2S: v v H2S O 0,4 1 3 O durée d'étape
(heures) 24 24 24 24 8
On maintient la concentration de (H2 + H2S) à 50 % v.
Example II
In order to compare the sulfur resistance, catalysts of the type used in Example I are subjected to the different concentrations of sulfur, each experiment carried out in five consecutive stages, corresponding to different concentrations of H 2 S: vv H2S O 0.4 1 3 O duration step
(hours) 24 24 24 24 8
The concentration of (H2 + H2S) is maintained at 50% v.

Les autres conditions sont identiques à celles de l'exemple I, sauf le volume du lit catalytique, comprenant maintenant 8,5 ml.

Figure img00070001
The other conditions are identical to those of Example I, except the volume of the catalytic bed, now comprising 8.5 ml.
Figure img00070001

<tb> <SEP> . <SEP> préparation <SEP> surface <SEP> conversion <SEP> (%)
<tb> (m/g) <SEP> dans <SEP> les <SEP> 5 <SEP> étapes
<tb> A. <SEP> nitrate <SEP> fondu <SEP> 420 <SEP> 0-10-18-30-23
<tb> B <SEP> 302 <SEP> 0-9-16-26-22
<tb> <SEP> ex <SEP> 8,3% <SEP> <SEP> <SEP> 213 <SEP> 0-7-28-30-64
<tb> D. <SEP> w <SEP> " <SEP> ,+ <SEP> 8,3% <SEP> p <SEP> K <SEP> 237 <SEP> 1-23-33-38-76
<tb> <SEP> ex <SEP> K2CO3
<tb>
<tb><SEP>.<SEP> preparation <SEP> surface <SEP> conversion <SEP> (%)
<tb> (m / g) <SEP> in <SEP><SEP> 5 <SEP> steps
<tb> A. <SEP> nitrate <SEP> melted <SEP> 420 <SEP> 0-10-18-30-23
<tb> B <SEP> 302 <SEP> 0-9-16-26-22
<tb><SEP> ex <SEP> 8.3% <SEP><SEP><SEP> 213 <SEP> 0-7-28-30-64
<tb> D. <SEP> w <SEP>"<SEP>, + <SEP> 8.3% <SEP> p <SEP> K <SEP> 237 <SEP> 1-23-33-38-76
<tb><SEP> ex <SEP> K2CO3
<Tb>

On voit que tous les catalyseurs Co-Mo-Al2O3 devont être sulfurés afin de convertir le C0. Après avoir été testé sous forme de sulfures, les catalyseurs  et B sont moins efficaces lorsqu'on supprime le conten-ant de R2S. Mais l'addition de potassium (+ 10% K2O rapportés au poids du catalyseur sans K) et la sulfuration consécutive sont très favorables: l'efficacité augmente lorsqu'on supprime la teneur: en H2S.-
Exemple III
Pour déterminer la meilleure source du métal alcalin on prépare, selon l'invention des catalyseurs du type utilisé dans l'exemple IC en ajoutant 10% p K2O, donc contenant 7,1 % Ni, 12,1 % p Mo. et 8,3% p K, rapportés au poids du catalyseur fini.On fond AI (NO3)3 (8000) et on y dissout du Ni métallique et un composé de potassium, et puis le paramolybdate d'ammonium en remuant continument. On sèche ce mélange gélatineux à 2000C jusqu'à la sublimation complète du-nitrate d'ammonium, et puis on calcine pendant deux heures à 500 C. Auprès refroidissement on broie et on tamise le catalyseur pierreux obtenu.
It is seen that all Co-Mo-Al2O3 catalysts will have to be sulfided in order to convert CO. After being tested as sulfides, the Ā and B catalysts are less effective when removing the R2S container. But the addition of potassium (+ 10% K2O relative to the weight of the catalyst without K) and the subsequent sulphurization are very favorable: the efficiency increases when the content of H2S is suppressed.
Example III
In order to determine the best source of the alkali metal, according to the invention catalysts of the type used in example IC are prepared by adding 10% p K 2 O, thus containing 7.1% Ni, 12.1% p Mo. and 8, 3% p K, based on the weight of the finished catalyst. Base AI (NO 3) 3 (8000) and dissolved therein Ni metal and a potassium compound, and then ammonium paramolybdate stirring continuously. This gelatinous mixture is dried at 2000 ° C. until complete sublimation of the ammonium nitrate is obtained, and then it is calcined for two hours at 500 ° C. After cooling, the stony catalyst obtained is ground and sieved.

L'expérience est identique à l'exemple I sauf qu'on soumet le catalyseur à un prétraitemente 1) élévation dela température jusqu'à 220 C pendant une
heure sous N2 2) injection du charge seche à 22000/30 min/30 bars 3) commencement du test avec injection de vapeur d'eau à
220 C.
The experiment is identical to Example I except that the catalyst is subjected to a pre-treatment (1) raising the temperature to 220 ° C. for a period of
hour under N2 2) injection of the dry charge at 22000/30 min / 30 bar 3) beginning of the test with injection of water vapor at
220 C.

catalyseur source de K conversion de CO (%) Ni-No-Âl203 - 67
Ni-Mo-Al2O3-K KNO3 93
n K2 S04 57
ECl 77
ZMnO4 76
E2No04 71
K2Cr207 68
K2CO3 87
XOH 80
On soit que sauf le sulfate tous les composés de potassium améliorent l'efficacité du catalyseur de base. Le nitrate et le carbonate sont les plus favorables.
K-source catalyst CO conversion (%) Ni-No-Al2O3 - 67
Ni-Mo-Al2O3-K KNO3 93
n K2 S04 57
ECl 77
ZMnO4 76
E2No04 71
K2Cr207 68
K2CO3 87
XOH 80
It is possible that, except for sulphate, all the potassium compounds improve the effectiveness of the base catalyst. Nitrate and carbonate are the most favorable.

Exemple IY
Pour déterminer la teneur optimale de potassium ex
KNO3, on prépare selon l'exemple III plusieurs catalyseurs à différentes concentrations de potassium dans la même composition de base (10 Ni40/20 MoO3/70 Al2O3). Les conditions de l'expérience sont identiques à celles de l'exemple III.
Example IY
To determine the optimal content of potassium ex
KNO3, several catalysts with different potassium concentrations in the same base composition (10 Ni40 / 20 MoO3 / 70 Al2O3) are prepared according to Example III. The conditions of the experiment are identical to those of Example III.

Le poids du potassium ajouté est calculé en K2O et se rapporte au poids du catalyseur de base.The weight of added potassium is calculated in K 2 O and refers to the weight of the base catalyst.

contenant de K2O (%) conversion de CO (%)
0 67
0,1 83
1,0 72
2,0 72
5,0 65
10,0 93
Donc il est favorable que le catalyseur contienne soit une quantité-minimale (0,1%) soit une quantité considérable (10%) de potassium.
containing K2O (%) CO conversion (%)
0 67
0.1 83
1.0 72
2.0 72
5.0 65
10.0 93
Therefore, it is favorable for the catalyst to contain either a minimum amount (0.1%) or a considerable amount (10%) of potassium.

Claims (10)

BEVENDICATIONSBEVENDICATIONS 1. Procédé pour la préparation d'un catalyseur pour effectuer la réaction du gaz à l'eau, contenant 1) de l'alumine et 2) au moins un métal de transition, caracterisé en ce qu'on fond un composé d'aluminium thermiquement décomposable, qu'onydissout le métal ou les métaux, sous forme d'élément(s) ou de composé(s), qu'on décompose par chauffage le composé d'aluminium et puis qu'on refroidit le mélange et qu'on le met en forme propre à la catalyse.A process for the preparation of a catalyst for carrying out the reaction of the gas with water, containing 1) alumina and 2) at least one transition metal, characterized in that an aluminum compound is melted thermally decomposable, which is dissolved metal or metals, in the form of element (s) or compound (s), which is decomposed by heating the aluminum compound and then cooling the mixture and that puts it in shape proper to catalysis. 2. Procédé selon la revendication 1, caracterisé en ce qu'on dissout aussi au moins un métal alcalin ou.un composé soluble d'un métal alcalin.2. Process according to claim 1, characterized in that at least one alkali metal or a soluble alkali metal compound is also dissolved. 3. Procédé selon la revendication 2, caracterisé en ce que le composé soluble d'un métal alcalin est un carbonate et/ou un nitrate.3. Method according to claim 2, characterized in that the soluble compound of an alkali metal is a carbonate and / or a nitrate. 4. Procédé selon les revendications 2 ou 3, caracterisé en ce que le composé soluble est au moins un sel de potassium.4. Method according to claims 2 or 3, characterized in that the soluble compound is at least one potassium salt. 5. Procédé selon l'une ou plusieurs des revendications 1-4, caracterisé en ce qu'on utilise comme composé d'aluminium le nitrate d'aluminium.5. Process according to one or more of claims 1-4, characterized in that the aluminum compound used is aluminum nitrate. 6. Procédé selon l'une ou plusieurs des revendications 1-5, caracterisé en ce qu'on utilise comme métal ou métaux l'un ou plusieurs desmétaux du groupe comprenant du chrome, du molybdène, du tungstbne, du fer, du cobalt, et du nickel.Process according to one or more of claims 1-5, characterized in that one or more metals from the group consisting of chromium, molybdenum, tungsten, iron, cobalt and the like are used as metal or metals. and nickel. 7. Procédé selon la revendication 6, caracterisé en ce qu'on utilise du molybdène avec du cobalt ou avec du nickel.7. Process according to claim 6, characterized in that molybdenum is used with cobalt or with nickel. 8. Procédé selon l'une ou plusieurs. des revendications 1-7, caracterisé en ce qu'on sulfure le catalyseur au moins partiellement.8. Process according to one or more. Claims 1-7, characterized in that the catalyst is at least partially sulfided. 9. Catalyseur pour effectuer la réaction du gaz à l'eau, contenant 1) de l'alumine, 2) au moins un métal de transition, caracterisé en ce qu'on le prépare selon l'une ou plusieurs des revendications 1-8.Catalyst for effecting the reaction of the gas with water, containing 1) alumina, 2) at least one transition metal, characterized in that it is prepared according to one or more of claims 1-8. . 10. Procédé pour la préparation de l'hydrogène et le dioxyde de carbone à partir du vapeur et le monoxyde de carbone w présence d'un catalyseur, caracterisé en ce qu'un catalyseur selon la revendication 9 est présent. 10. Process for the preparation of hydrogen and carbon dioxide from steam and carbon monoxide in the presence of a catalyst, characterized in that a catalyst according to claim 9 is present.
FR7927796A 1979-11-12 1979-11-12 Alumina transition metal catalyst prodn. for use in water gas reaction - by dissolving metal or cpd. in melt of aluminium cpd. and thermal decomposition Granted FR2469206A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR7927796A FR2469206A1 (en) 1979-11-12 1979-11-12 Alumina transition metal catalyst prodn. for use in water gas reaction - by dissolving metal or cpd. in melt of aluminium cpd. and thermal decomposition
CA000361592A CA1151135A (en) 1979-11-12 1980-10-06 Process for the preparation of a catalyst
ZA00806928A ZA806928B (en) 1979-11-12 1980-11-10 A process for the preparation of a catalyst
AU64228/80A AU538346B2 (en) 1979-11-12 1980-11-10 Catalyst and water gas shift reaction
DE19803042326 DE3042326A1 (en) 1979-11-12 1980-11-10 METHOD FOR PRODUCING A CATALYST, CORRESPONDING CATALYST AND ITS USE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7927796A FR2469206A1 (en) 1979-11-12 1979-11-12 Alumina transition metal catalyst prodn. for use in water gas reaction - by dissolving metal or cpd. in melt of aluminium cpd. and thermal decomposition

Publications (2)

Publication Number Publication Date
FR2469206A1 true FR2469206A1 (en) 1981-05-22
FR2469206B1 FR2469206B1 (en) 1983-10-07

Family

ID=9231553

Family Applications (1)

Application Number Title Priority Date Filing Date
FR7927796A Granted FR2469206A1 (en) 1979-11-12 1979-11-12 Alumina transition metal catalyst prodn. for use in water gas reaction - by dissolving metal or cpd. in melt of aluminium cpd. and thermal decomposition

Country Status (5)

Country Link
AU (1) AU538346B2 (en)
CA (1) CA1151135A (en)
DE (1) DE3042326A1 (en)
FR (1) FR2469206A1 (en)
ZA (1) ZA806928B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062912A1 (en) * 1981-04-14 1982-10-20 United Catalysts, Inc. Process for the catalytic conversion of carbon monoxide and sulfactive CO conversion catalyst
US4452854A (en) * 1981-04-14 1984-06-05 United Catalysts, Inc. Catalyst and process for carbon monoxide conversion in sour gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594335A (en) * 1984-05-11 1986-06-10 The Dow Chemical Company Transition metal aluminates
AU2012397688B2 (en) * 2012-12-28 2016-05-26 Mitsubishi Heavy Industries Engineering, Ltd. CO shift catalyst, CO shift reactor, and method for purifying gasification gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2075404A5 (en) * 1970-01-12 1971-10-08 Grace W R Ltd
FR2086782A5 (en) * 1970-03-06 1971-12-31 Cherkasov Geny
FR2106636A5 (en) * 1970-09-18 1972-05-05 Azote & Prod Chim Complex metal oxide catalysts - from decomposition of molten nitrates in hot gas
FR2226357A1 (en) * 1973-04-17 1974-11-15 Shell Int Research
FR2252285A1 (en) * 1973-11-23 1975-06-20 Exxon Research Engineering Co

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1525711A (en) * 1975-06-27 1978-09-20 British Petroleum Co Desulphurisation catalysts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2075404A5 (en) * 1970-01-12 1971-10-08 Grace W R Ltd
FR2086782A5 (en) * 1970-03-06 1971-12-31 Cherkasov Geny
FR2106636A5 (en) * 1970-09-18 1972-05-05 Azote & Prod Chim Complex metal oxide catalysts - from decomposition of molten nitrates in hot gas
FR2226357A1 (en) * 1973-04-17 1974-11-15 Shell Int Research
FR2252285A1 (en) * 1973-11-23 1975-06-20 Exxon Research Engineering Co

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062912A1 (en) * 1981-04-14 1982-10-20 United Catalysts, Inc. Process for the catalytic conversion of carbon monoxide and sulfactive CO conversion catalyst
US4452854A (en) * 1981-04-14 1984-06-05 United Catalysts, Inc. Catalyst and process for carbon monoxide conversion in sour gas

Also Published As

Publication number Publication date
FR2469206B1 (en) 1983-10-07
DE3042326A1 (en) 1981-05-21
ZA806928B (en) 1981-10-28
DE3042326C2 (en) 1989-10-26
CA1151135A (en) 1983-08-02
AU6422880A (en) 1981-05-21
AU538346B2 (en) 1984-08-09

Similar Documents

Publication Publication Date Title
US4320030A (en) Process for making high activity transition metal catalysts
EP0611183B1 (en) Process for eliminating mercury in hydrocarbons by passing on presulphurised catalyst
CA2136938A1 (en) Gas fluoration with crystallized catalysts
JPH01119341A (en) Catalyst for ammonia decomposition
JPH0273023A (en) Production of alcohol and olefin from h2 and co2 using iron carbide base catalyst
FR2517296A1 (en) CATALYTIC SYSTEM AND PROCESS FOR THE PRODUCTION OF METHANOL MIXTURES AND HIGHER ALCOHOLS
EP0050068B1 (en) Process for the preparation of catalysts based on oxides of molybdenum and/or tungsten and on oxides of other metals
FR2469206A1 (en) Alumina transition metal catalyst prodn. for use in water gas reaction - by dissolving metal or cpd. in melt of aluminium cpd. and thermal decomposition
GB2472298A (en) Re-processing waste cobalt-molybdenum mixed oxide catalysts
CA1148136A (en) Process for preparing catalysts containing molybdenum and/or tungsten oxides and other metallic oxides
EP0483201A1 (en) Zeolite y-based catalytic composition which can be used in treating oxygenated effluent containing nitrogen oxides, its preparation and process for use.
CA2671762A1 (en) Concentration of active catalyst slurry
JPH10182122A (en) Synthesis of stabilized vanadium carbide and chromium carbide phase
CA2670501A1 (en) Decomposition of waste products formed in slurry catalyst synthesis
US7955588B2 (en) Metal sulfide catalysts and methods of making same
JP3163374B2 (en) Catalyst for methanol synthesis
DE2546587A1 (en) CATALYST AND PROCESS FOR THE REDUCTION OF CARBON MONOXYDE
EP0611182A1 (en) Process for eliminating mercury from hydrocarbons by passing on presulphurized adsorbers
EP0053532B1 (en) Process for the preparation of catalysts containing molybdenum oxide and/or tungsten oxide and oxides of other metals
CN113499787A (en) Catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method and application thereof
FR2567866A1 (en) Process for the preparation of a gas rich in hydrogen
FR2546175A1 (en) Process for the production of a catalyst for hydrodemetallation of heavy crudes and residues
CN1245737A (en) High-activity ommonia decomposition catalyst
CA1175796A (en) Process and catalyst for the preparation of a gas mixture having a high content of lower olefins and process for the preparation of the catalyst
BE385357A (en)

Legal Events

Date Code Title Description
ST Notification of lapse