EP0611182A1 - Process for eliminating mercury from hydrocarbons by passing on presulphurized adsorbers - Google Patents

Process for eliminating mercury from hydrocarbons by passing on presulphurized adsorbers Download PDF

Info

Publication number
EP0611182A1
EP0611182A1 EP94400193A EP94400193A EP0611182A1 EP 0611182 A1 EP0611182 A1 EP 0611182A1 EP 94400193 A EP94400193 A EP 94400193A EP 94400193 A EP94400193 A EP 94400193A EP 0611182 A1 EP0611182 A1 EP 0611182A1
Authority
EP
European Patent Office
Prior art keywords
sulfur
metal
mass
organic
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94400193A
Other languages
German (de)
French (fr)
Other versions
EP0611182B1 (en
Inventor
Charles Cameron
Jean Cosyns
Partick Sarrazin
Jean-Paul Boitiaux
Philippe Courty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0611182A1 publication Critical patent/EP0611182A1/en
Application granted granted Critical
Publication of EP0611182B1 publication Critical patent/EP0611182B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03

Definitions

  • the present invention relates to the removal of arsenic from hydrocarbons. More particularly, the invention relates to the pretreatment of an arsenic capture mass allowing its capture with very high efficiency from the initial start-up period of the process.
  • liquid condensates byproducts of gas production
  • certain crude oils can contain many metallic compounds in trace amounts and often in the form of organometallic complexes. These metal compounds are very often poisons from the catalysts used during the transformation of these cuts into commercial products.
  • the applicant's processes have good performances for the demercurization and the de-arsenification of liquid hydrocarbons serving as feedstocks of various treatment processes.
  • the patent US Pat. No. 4,911,825 clearly shows the advantage of carrying out a capture of mercury and possibly arsenic in a two-step process where the first step consists in bringing the charge in contact in the presence of hydrogen with a catalyst containing at least one metal from the group consisting of nickel, cobalt, iron and palladium.
  • the mercury is not (or very little) captured by the catalyst but is captured, in a second step, by a mass containing sulfur or sulfur-containing compounds.
  • US Pat. No. 4,046,674 describes a process for removing arsenic (in an amount greater than 2 ppm) with a capture mass containing at least one nickel compound (which is at least a sulfide) in an amount of 30-70% by weight NiO , and at least one molybdenum compound (which is at least one sulfide) in an amount 2-20% by weight Mo O3.
  • This mixed absorbent sulfide requires, in order not to desulfurize, the presence of large amounts of sulfur (greater than 0.1%) in the feed and high operating temperatures (of the order of 288 and 343 ° C. in the examples ).
  • the present invention overcomes these drawbacks.
  • the object of the present invention is a method for removing arsenic in which the capture mass is pretreated before being brought into contact with the charge to be purified.
  • a mixture of the charge with hydrogen is brought into contact with a presulfurized capture mass containing at least one metal from the group formed by iron, nickel, cobalt, molybdenum, tungsten, chromium and palladium where at least 5% of the metal is in the sulphide state, and in general at most 50%.
  • the capture mass used in the composition of the present invention consists of at least one metal M chosen from the group formed by iron, nickel, cobalt, molybdenum, tungsten and palladium and a support.
  • the metal M must be in sulphide form for at least 5% of its totality and for at most, in general, 50%.
  • nickel or the combination of nickel with palladium is used.
  • the solid mineral dispersant (support) can be chosen from the group formed by alumina, silica-aluminas, silica, zeolites, activated carbon, clays and aluminous cements. It will preferably have a large surface, a sufficient pore volume and an adequate average pore diameter.
  • the BET surface should be greater than 50 m2 / g and preferably between approximately 100 and 350 m2 / g.
  • the preparation of a solid (or precursor of the capture mass) containing at least one metal M in metallic form or in the form of supported metal oxide is sufficiently known to those skilled in the art not to be described in the context of the present invention.
  • the content of metal M in the mass (calculated in oxide form) is preferably at least 5% by weight and at most 60% by weight, and even more advantageously at most 30%.
  • the case of palladium is particular, we can have at most 0.2% by weight of palladium (calculated as metal).
  • the addition of sulfur can be done, off-site, by impregnating the precursor of the capture mass either with ammonium sulphide and / or a colloidal suspension of sulfur in water or with a sulfur-containing agent. say sulfur and / or one or more sulfur compounds, in an organic solution.
  • a reducing agent is for example, formaldehyde, acetaldehyde, hydrazine, methyl formate, formic acid, etc.
  • the collection mass Before being brought into contact with the load to be treated, the collection mass is, if necessary, reduced by hydrogen or by a gas containing hydrogen at a temperature of 120 to 600 ° C. and preferably of 140 to 400 ° C.
  • the solid thus prepared, presulfurized then reduced constitutes the capture mass, in its active form, of the present invention.
  • the capture mass can be used in a temperature range which can range from 120 to 250 ° C, more advantageously from 130 to 220 ° C or even 130-200 ° C, preferably 140-190 ° C and even more preferred from 140 to 180 ° C.
  • the operating pressures will preferably be chosen from 1 to 40 bars and more advantageously from 5 to 35 bars.
  • the spatial velocities calculated with respect to the capture mass can be from 1 to 50 h -1 and more particularly from 1 to 30 h -1 (volume of liquid per volume of mass per hour).
  • the hydrogen flow rate relative to the capture mass is for example between 1 and 500 volumes (gas under normal conditions) per volume of the mass per hour.
  • the charges to which the invention applies more particularly contain from 0 to 1000 milligrams of sulfur per kilogram of charge and from 10 ⁇ 3 to 5 milligrams of arsenic per kilogram of charge.
  • Capture mass A Fifteen kilograms of a macroporous alumina support in the form of beads 1.5-3 mm in diameter and having a specific surface of 160 m2 / g, a total pore volume of 1.05 cm3 / g and a macroporous volume (diameter> 0.1 ⁇ m) of 0.4 cm3 / g are impregnated with 20% by weight of nickel in the form of an aqueous nitrate solution. After drying at 120 ° C for 5 h and thermal activation at 450 ° C for 2 h under air sweep, beads containing 25.4% by weight of nickel oxide are obtained.
  • Capture mass B Five kilograms of mass A are dry impregnated with a solution containing 175 g of DEODS diethanoldisulfide (including 74 g of sulfur) in 5150 cm3 of a 15% methyl formate solution in a white spirit. The catalyst thus prepared is activated at 150 ° C for 1 h.
  • the capture mass A was reduced to 400 ° C. under a flow rate of 20 l / h of hydrogen at 2 bar of pressure for 4 h. Then, the reactor was cooled to the reaction temperature 180 ° C. A heavy condensate of liquefied gas with hydrogen is then passed over the collection mass. The charge flow rate is 400 cm3 / h and that of hydrogen is 3.5 l / h. The test is carried out under a pressure of 35 bars.
  • the condensate used during this test (condensate A) has the following characteristics: initial boiling point: 21 ° C final boiling point: 470 ° C arsenic content: 65 ⁇ g / kg sulfur content: 237 mg / kg
  • a second arsenic uptake test was carried out using a condensate (condensate B) having the following characteristics: initial boiling point: 21 ° C final boiling point: 491 ° C arsenic content 80: ⁇ g / kg sulfur content: 117 mg / kg
  • Example 1 The pre-reduction and operating conditions are identical to those of the test of Example 1. It is noted, as in Example 1, of arsenic contents in the effluents, from 5 to 10 ⁇ g / kg, during the 240 first hours of warm-up.
  • the reactor was loaded with 50 cm3 of capture mass B, presulfurized as described above. All the other test conditions are identical to those indicated in Example 1 including the charge (condensate A). The arsenic content remains below the detection limit ( ⁇ 5 ⁇ g / kg) throughout the test.
  • the capture mass B was reduced to 300 ° C under a flow rate of 20 l / h of hydrogen at 2 bar of pressure for 6 h before cooling it to the reaction temperature 180 ° C. It is also noted that the content of arsenic in the effluent is below the detection limit ( ⁇ 5 ⁇ g / kg) throughout the test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Process for removing arsenic from hydrocarbons, in which the solid scavenger is pretreated before being placed in contact with the feedstock to be purified. The solid scavenger contains at least one element chosen from the group made up of iron, nickel, cobalt, molybdenum, tungsten, palladium and chromium and at least 5 % by weight of the said element(s) is in sulphide form. The pretreatment consists of impregnation with a sulphur compound, performed simultaneously with reduction. The process for the removal of arsenic takes place between 120 and 250@C in the presence of 0-1000 mg of sulphur/kg of feedstock.

Description

La présente invention concerne l'élimination d'arsenic dans des hydrocarbures. Plus particulièrement l'invention concerne le prétraitement d'une masse de captation d'arsenic permettant la captation de celui-ci avec une très grande efficacité dès la période initiale de démarrage du procédé.The present invention relates to the removal of arsenic from hydrocarbons. More particularly, the invention relates to the pretreatment of an arsenic capture mass allowing its capture with very high efficiency from the initial start-up period of the process.

Il est connu que les condensats liquides (sous produits de la production du gaz) et certains pétroles bruts peuvent contenir de nombreux composés métalliques à l'état de traces et souvent sous forme de complexes organométalliques. Ces composés métalliques sont très souvent des poisons des catalyseurs utilisés lors des transformations de ces coupes en produits commerciaux.It is known that liquid condensates (byproducts of gas production) and certain crude oils can contain many metallic compounds in trace amounts and often in the form of organometallic complexes. These metal compounds are very often poisons from the catalysts used during the transformation of these cuts into commercial products.

Il est donc avantageux d'épurer les charges destinées à être envoyées dans des procédés de transformation de condensats ou de bruts pour éviter un entraînement d'arsenic. L'épuration de la charge en amont des procédés de traitement permet de protéger l'ensemble de l'installation.It is therefore advantageous to purify the charges intended to be sent in condensate or crude transformation processes to avoid entrainment of arsenic. The purification of the load upstream of the treatment processes makes it possible to protect the entire installation.

Des procédés de la demanderesse présentent de bonnes performances pour la démercurisation et la désarsenification des hydrocarbures liquides servant comme charges de diverses procédés de traitement. Le brevet US 4,911,825 de la demanderesse montre clairement l'avantage d'effectuer une captation de mercure et éventuellement d'arsenic dans un procédé en deux étapes où la première étape consiste à mettre en contact la charge en présence d'hydrogène avec un catalyseur renfermant au moins un métal du groupe constitué par le nickel, le cobalt, le fer et le palladium. Le mercure n'est pas (ou très peu) capté par le catalyseur mais est capté, dans une deuxième étape, par une masse renfermant du soufre ou des composés soufrés.The applicant's processes have good performances for the demercurization and the de-arsenification of liquid hydrocarbons serving as feedstocks of various treatment processes. The patent US Pat. No. 4,911,825 clearly shows the advantage of carrying out a capture of mercury and possibly arsenic in a two-step process where the first step consists in bringing the charge in contact in the presence of hydrogen with a catalyst containing at least one metal from the group consisting of nickel, cobalt, iron and palladium. The mercury is not (or very little) captured by the catalyst but is captured, in a second step, by a mass containing sulfur or sulfur-containing compounds.

La demande de brevet WO 90/10.684 de la demanderesse décrit un procédé d'élimination du mercure et éventuellement d'arsenic présent dans des hydrocarbures liquides. Cette invention concerne des catalyseurs ayant la propriété de résister à l'empoisonnement par le soufre (thiorésistance). Ces nouveaux catalyseurs permettent la captation du mercure et d'arsenic dans des conditions trop sévères pour les catalyseurs décrits dans l'art antérieur.The patent application WO 90 / 10.684 of the applicant describes a process for the removal of mercury and possibly arsenic present in liquid hydrocarbons. This invention relates to catalysts having the property of resisting sulfur poisoning (thioresistance). These new catalysts allow the capture of mercury and arsenic under conditions that are too severe for the catalysts described in the prior art.

Ce procédé est particulièrement utile pour l'épuration de charges difficiles comme, par exemple, des gasoils provenant d'un fractionnement du pétrole brut dans lequel la teneur en soufre est souvent entre 0,4 et 1,0 % poids. Par contre, le procédé décrit dans le brevet US 4,911,825 est plus performant pour des charges ayant des teneurs en soufre moins élevées, par exemple inférieures à 0,15 % poids.This process is particularly useful for the purification of difficult loads such as, for example, gas oils coming from a fractionation of crude oil in which the sulfur content is often between 0.4 and 1.0% by weight. On the other hand, the process described in US Pat. No. 4,911,825 is more efficient for feedstocks having lower sulfur contents, for example less than 0.15% by weight.

Mais on a constaté qu'avec certaines charges ayant de faibles teneurs en soufre, par exemple inférieures à 0,07 % poids, I'efficacité de captation d'arsenic au début de la mise en oeuvre du procédé de désarsenification est plus faible dans les premières centaines d'heures de mise en régime que par la suite. Il a été aussi trouvé que l'efficacité de captation d'arsenic est moins bonne pour des charges très pauvres en soufre, par exemple inférieures à 0,02 % pds. Dans ce dernier cas, il est nécessaire d'augmenter la température de fonctionnement du réacteur de plusieurs dizaines de degrés et/ou le débit d'hydrogène pour permettre une captation suffisante d'arsenic.However, it has been found that with certain charges having low sulfur contents, for example less than 0.07% by weight, the efficiency of arsenic capture at the start of the implementation of the de-arsenification process is lower in first hundreds of hours of diet only thereafter. It has also been found that the arsenic capture efficiency is less good for very low sulfur loads, for example less than 0.02% wt. In the latter case, it is necessary to increase the operating temperature of the reactor by several tens of degrees and / or the hydrogen flow rate to allow sufficient capture of arsenic.

Le brevet US-4,046,674 décrit un procédé d'élimination d'arsenic (en quantité supérieure à 2 ppm) avec une masse de captation contenant au moins un composé du nickel (qui est au moins un sulfure) en quantité 30-70% poids NiO, et au moins un composé du molybdène (qui est au moins un sulfure) en quantité 2-20% poids Mo O₃. Ce sulfure mixte absorbant nécessite, pour ne pas se désulfurer, la présence de grandes quantités de soufre (supérieures à 0,1%) dans la charge et des températures élevées de fonctionnement (de l'ordre de 288 et 343°C dans les exemples).US Pat. No. 4,046,674 describes a process for removing arsenic (in an amount greater than 2 ppm) with a capture mass containing at least one nickel compound (which is at least a sulfide) in an amount of 30-70% by weight NiO , and at least one molybdenum compound (which is at least one sulfide) in an amount 2-20% by weight Mo O₃. This mixed absorbent sulfide requires, in order not to desulfurize, the presence of large amounts of sulfur (greater than 0.1%) in the feed and high operating temperatures (of the order of 288 and 343 ° C. in the examples ).

La présente invention permet de s'affranchir de ces inconvénients.The present invention overcomes these drawbacks.

Il a en effet été découvert que le prétraitement des masses de captation d'arsenic par un agent soufré en présence d'un agent réducteur, conduit à une réduction importante de la durée de mise en régime du procédé et à une bonne efficacité de captation d'arsenic même avec une charge très pauvre en soufre, et à des températures basses (inférieures ou égales à 250°C).It has in fact been discovered that the pretreatment of the arsenic capture masses with a sulfur-containing agent in the presence of a reducing agent, leads to a significant reduction in the duration of setting in process of the process and to a good efficiency of capture of 'arsenic even with a very low sulfur load, and at low temperatures (less than or equal to 250 ° C).

L'objet de la présente invention est un procédé d'élimination d'arsenic dans lequel la masse de captation est prétraitée avant d'être mise en contact avec la charge à épurer. Selon ce procédé, un mélange de la charge avec de l'hydrogène est mis en contact avec une masse de captation présulfurée renfermant au moins un métal du groupe formé par le fer, le nickel, le cobalt, le molybdène, le tungstène, le chrome et le palladium où au moins 5 % du métal est à l'état de sulfure, et en général au plus 50%.The object of the present invention is a method for removing arsenic in which the capture mass is pretreated before being brought into contact with the charge to be purified. According to this process, a mixture of the charge with hydrogen is brought into contact with a presulfurized capture mass containing at least one metal from the group formed by iron, nickel, cobalt, molybdenum, tungsten, chromium and palladium where at least 5% of the metal is in the sulphide state, and in general at most 50%.

La masse de captation entrant dans la composition de la présente invention est constituée d'au moins un métal M choisi dans le groupe formé par le fer, le nickel, le cobalt, le molybdène, le tungstène et le palladium et d'un support. Le métal M doit se trouver sous forme sulfure pour au moins 5 % de sa totalité et pour au plus, en général, 50%. On utilise de préférence le nickel ou l'association du nickel avec le palladium.The capture mass used in the composition of the present invention consists of at least one metal M chosen from the group formed by iron, nickel, cobalt, molybdenum, tungsten and palladium and a support. The metal M must be in sulphide form for at least 5% of its totality and for at most, in general, 50%. Preferably nickel or the combination of nickel with palladium is used.

Le dispersant minéral solide (support) peut être choisi dans le groupe formé par l'alumine, les silices-alumines, la silice, les zéolithes, le charbon actif, les argiles et les ciments alumineux. Il présentera de préférence une grande surface, un volume poreux suffisant et un diamètre moyen des pores adéquat. La surface BET devra être supérieure à 50 m2/g et de préférence entre environ 100 et 350 m2/g. Le support devra posséder un volume poreux, mesuré par désorption d'azote, d'au moins 0,5 cm3/g et de préférence entre 0,6 et 1,2 cm3/g et un diamètre moyen des pores au moins égal à 70 nm et de préférence supérieur à 80 nm (1 nm = 10⁻⁹m).The solid mineral dispersant (support) can be chosen from the group formed by alumina, silica-aluminas, silica, zeolites, activated carbon, clays and aluminous cements. It will preferably have a large surface, a sufficient pore volume and an adequate average pore diameter. The BET surface should be greater than 50 m2 / g and preferably between approximately 100 and 350 m2 / g. The support must have a pore volume, measured by nitrogen desorption, of at least 0.5 cm3 / g and preferably between 0.6 and 1.2 cm3 / g and an average pore diameter at least equal to 70 nm and preferably greater than 80 nm (1 nm = 10⁻⁹m).

La préparation d'un solide (ou précurseur de la masse de captation) contenant au moins un métal M sous forme métallique ou sous forme d'oxyde métallique supporté est suffisamment connue de l'homme de métier pour ne pas être décrite dans le cadre de la présente invention. La teneur en métal M dans la masse (calculée sous forme oxyde) est de préférence d'au moins 5 % en poids et d'au plus 60 % en poids, et encore plus avantageusement au plus 30%. Le cas du palladium est particulier, on pourra avoir au plus 0,2% en poids de palladium (calculé forme métal).The preparation of a solid (or precursor of the capture mass) containing at least one metal M in metallic form or in the form of supported metal oxide is sufficiently known to those skilled in the art not to be described in the context of the present invention. The content of metal M in the mass (calculated in oxide form) is preferably at least 5% by weight and at most 60% by weight, and even more advantageously at most 30%. The case of palladium is particular, we can have at most 0.2% by weight of palladium (calculated as metal).

Le procédé de présulfuration est décrit dans le brevet EP-466.568 (dont l'enseignement est ci-inclus).
Le précurseur de la masse renfermant le(s) métal (métaux) supporté(s) sous forme métallique et/ou oxyde, est

  • a) dans une première étape, imprégné par une solution aqueuse ou organique ou une suspension aqueuse ou organique renfermant d'une part au moins un agent réducteur organique , et d'autre part au moins un agent sulfuré choisi dans le groupe constitué par :
    • · au moins un polysulfure organique en mélange avec du soufre élémentaire,
    • · au moins un disulfure organique éventuellement en mélange avec du soufre élémentaire,
    • · au moins un sulfure organique ou minéral éventuellement en mélange avec du soufre élémentaire,
    • · le soufre élémentaire,
  • b) dans une seconde étape, on traite thermiquement le précurseur ainsi imprégné. La température est par exemple entre 100-200°C, généralement entre 130-170°C et plus particulièrement autour de 150°C. La durée de traitement est de 30 mn à 3 h.
The presulfurization process is described in patent EP-466,568 (the teaching of which is included).
The precursor of the mass containing the metal (s) supported (s) in metallic and / or oxide form, is
  • a) in a first step, impregnated with an aqueous or organic solution or an aqueous or organic suspension containing on the one hand at least one organic reducing agent, and on the other hand at least one sulfurized agent chosen from the group consisting of:
    • · At least one organic polysulfide mixed with elemental sulfur,
    • · At least one organic disulfide optionally mixed with elemental sulfur,
    • · At least one organic or inorganic sulfide optionally mixed with elemental sulfur,
    • · Elemental sulfur,
  • b) in a second step, the precursor thus impregnated is heat treated. The temperature is for example between 100-200 ° C, generally between 130-170 ° C and more particularly around 150 ° C. The duration of treatment is from 30 min to 3 h.

L'addition du soufre peut se faire, hors site, en imprégnant le précurseur de la masse de captation soit par le sulfure d'ammonium et/ou une suspension colloïdale de soufre dans l'eau soit par un agent soufré, c'est à dire le soufre et/ou un ou plusieurs composés soufrés, dans une solution organique. Un agent réducteur est par exemple, le formaldéhyde, I'acétaldéhyde, l'hydrazine, le formiate de méthyle, l'acide formique, etc...The addition of sulfur can be done, off-site, by impregnating the precursor of the capture mass either with ammonium sulphide and / or a colloidal suspension of sulfur in water or with a sulfur-containing agent. say sulfur and / or one or more sulfur compounds, in an organic solution. A reducing agent is for example, formaldehyde, acetaldehyde, hydrazine, methyl formate, formic acid, etc.

Avant d'être mise au contact de la charge à traiter, la masse de captation est, si nécessaire, réduite par de l'hydrogène ou par un gaz renfermant de l'hydrogène à une température de 120 à 600°C et de préférence de 140 à 400°C.Before being brought into contact with the load to be treated, the collection mass is, if necessary, reduced by hydrogen or by a gas containing hydrogen at a temperature of 120 to 600 ° C. and preferably of 140 to 400 ° C.

Le solide ainsi préparé, présulfuré puis réduit constitue la masse de captation, dans sa forme active, de la présente invention.The solid thus prepared, presulfurized then reduced constitutes the capture mass, in its active form, of the present invention.

La masse de captation peut être employée dans un domaine de température pouvant aller de 120 à 250°C, plus avantageusement de 130 à 220°C ou encore 130-200°C, de façon préférée 140-190°C et de façon encore plus préférée de 140 à 180°C. Les pressions opératoires seront choisies de préférence de 1 à 40 bars et plus avantageusement de 5 à 35 bars. Les vitesses spatiales calculées par rapport à la masse de captation peuvent être de 1 à 50 h-1 et plus particulièrement de 1 à 30 h-1 (volume de liquide par volume de masse par heure).The capture mass can be used in a temperature range which can range from 120 to 250 ° C, more advantageously from 130 to 220 ° C or even 130-200 ° C, preferably 140-190 ° C and even more preferred from 140 to 180 ° C. The operating pressures will preferably be chosen from 1 to 40 bars and more advantageously from 5 to 35 bars. The spatial velocities calculated with respect to the capture mass can be from 1 to 50 h -1 and more particularly from 1 to 30 h -1 (volume of liquid per volume of mass per hour).

Le débit d'hydrogène rapporté à la masse de captation est compris par exemple entre 1 et 500 volumes (gaz aux conditions normales) par volume de la masse par heure.The hydrogen flow rate relative to the capture mass is for example between 1 and 500 volumes (gas under normal conditions) per volume of the mass per hour.

Les charges auxquelles s'appliquent plus particulièrement l'invention renferment de 0 à 1000 milligrammes de soufre par kilogramme de charge et de 10⁻³ à 5 milligrammes d'arsenic par kilogramme de charge.The charges to which the invention applies more particularly contain from 0 to 1000 milligrams of sulfur per kilogram of charge and from 10⁻³ to 5 milligrams of arsenic per kilogram of charge.

Les exemples qui suivent précisent le procédé à titre indicatif sans toutefois en limiter la portée.The examples which follow specify the process for information only, without however limiting its scope.

EXEMPLESEXAMPLES

Masse de captation A : Quinze kilogrammes d'un support d'alumine macroporeux sous forme de billes de 1,5-3 mm de diamètre et présentant une surface spécifique de 160 m²/g, un volume poreux total de 1,05 cm³/g et un volume macroporeux (diamètre > 0,1 µm) de 0,4 cm³/g sont imprégnés par 20 % en poids de nickel sous forme d'une solution aqueuse de nitrate. Après séchage à 120°C durant 5 h et activation thermique à 450°C pendant 2 h sous balayage d'air, on obtient des billes contenant 25,4 % en poids d'oxyde de nickel.Capture mass A: Fifteen kilograms of a macroporous alumina support in the form of beads 1.5-3 mm in diameter and having a specific surface of 160 m² / g, a total pore volume of 1.05 cm³ / g and a macroporous volume (diameter> 0.1 μm) of 0.4 cm³ / g are impregnated with 20% by weight of nickel in the form of an aqueous nitrate solution. After drying at 120 ° C for 5 h and thermal activation at 450 ° C for 2 h under air sweep, beads containing 25.4% by weight of nickel oxide are obtained.

Masse de captation B : Cinq kilogrammes de la masse A sont imprégnés à sec par une solution renfermant 175 g de DEODS diéthanoldisulfure (dont 74 g de soufre) dans 5150 cm³ d'une solution de formiate de méthyle à 15 % dans un white spirit. Le catalyseur ainsi préparé est activé à 150°C pendant 1 h.Capture mass B: Five kilograms of mass A are dry impregnated with a solution containing 175 g of DEODS diethanoldisulfide (including 74 g of sulfur) in 5150 cm³ of a 15% methyl formate solution in a white spirit. The catalyst thus prepared is activated at 150 ° C for 1 h.

La masse de captation (50 cm³) travaille dans tous les exemples ci-dessous à 180 °C et en flux ascendant. Les tests de captation ont duré 21 jours. Les résultats sont rassemblés sur la Figure 1.The collection mass (50 cm³) works in all the examples below at 180 ° C and in upward flow. The capture tests lasted 21 days. The results are collated in Figure 1.

EXEMPLE 1 (comparatif)EXAMPLE 1 (comparative)

La masse de captation A a été réduit à 400°C sous un débit de 20 l/h de d'hydrogène à 2 bars de pression pendant 4 h. Ensuite, le réacteur a été refroidi à la température de réaction 180°C. On fait ensuite passer sur la masse de captation un condensat lourd de gaz liquéfié avec de l'hydrogène. Le débit de la charge est de 400 cm³/h et celui de l'hydrogène de 3,5 l/h. Le test est effectué sous une pression de 35 bars.The capture mass A was reduced to 400 ° C. under a flow rate of 20 l / h of hydrogen at 2 bar of pressure for 4 h. Then, the reactor was cooled to the reaction temperature 180 ° C. A heavy condensate of liquefied gas with hydrogen is then passed over the collection mass. The charge flow rate is 400 cm³ / h and that of hydrogen is 3.5 l / h. The test is carried out under a pressure of 35 bars.

Le condensat utilisé pendant ce test (condensat A) possède les caractéristiques suivantes :
   point d'ébullition initial : 21°C
   point d'ébullition final : 470°C
   teneur en arsenic : 65 µg/kg
   teneur en soufre : 237 mg/kg
The condensate used during this test (condensate A) has the following characteristics:
initial boiling point: 21 ° C
final boiling point: 470 ° C
arsenic content: 65 µg / kg
sulfur content: 237 mg / kg

Une quantité d'arsenic, de 5 à 10 µg/kg, a été détectée dans les échantillons de l'effluent prélevés pendant les 72 premières heures.An amount of arsenic, from 5 to 10 µg / kg, was detected in the effluent samples taken during the first 72 hours.

EXEMPLE 2 (comparatif)EXAMPLE 2 (comparative)

Un deuxième test de captation d'arsenic a été effectué utilisant un condensat (condensat B) ayant les caractéristiques suivantes :
   point d'ébullition initial : 21°C
   point d'ébullition final : 491°C
   teneur en arsenic 80 : µg/kg
   teneur en soufre : 117 mg/kg
A second arsenic uptake test was carried out using a condensate (condensate B) having the following characteristics:
initial boiling point: 21 ° C
final boiling point: 491 ° C
arsenic content 80: µg / kg
sulfur content: 117 mg / kg

Les conditions de préréduction et d'opération sont identiques à celles du test de l'exemple 1. On note, comme dans l'exemple 1, de teneurs d'arsenic dans les effluents, de 5 à 10 µg/kg, pendant les 240 premières heures de mise en régime.The pre-reduction and operating conditions are identical to those of the test of Example 1. It is noted, as in Example 1, of arsenic contents in the effluents, from 5 to 10 μg / kg, during the 240 first hours of warm-up.

EXEMPLE 3 (selon l'invention)EXAMPLE 3 (according to the invention)

Le réacteur a été chargé de 50 cm³ de la masse de captation B, présulfuré comme décrit ci-dessus. Toutes les autres conditions de test sont identiques à celles indiquées dans l'exemple 1 incluant la charge (condensat A). La teneur en arsenic reste inférieure à la limite de détection (< 5 µg/kg) pendant tout le test.The reactor was loaded with 50 cm³ of capture mass B, presulfurized as described above. All the other test conditions are identical to those indicated in Example 1 including the charge (condensate A). The arsenic content remains below the detection limit (<5 µg / kg) throughout the test.

EXEMPLE 4 (selonEXAMPLE 4 (according to l'invention)the invention)

Cette fois ci, la masse de captation B a été réduite à 300°C sous un débit de 20 l/h de d'hydrogène à 2 bars de pression pendant 6 h avant de le refroidir à la température de réaction 180°C. On note aussi que la teneur d'arsenic dans l'effluent est inférieure à la limite de détection (< 5 µg/kg) pendant tout le test.This time, the capture mass B was reduced to 300 ° C under a flow rate of 20 l / h of hydrogen at 2 bar of pressure for 6 h before cooling it to the reaction temperature 180 ° C. It is also noted that the content of arsenic in the effluent is below the detection limit (<5 µg / kg) throughout the test.

Les résultats des tests sont reportés sur la figure 1.The results of the tests are shown in Figure 1.

Les valeurs au-dessous de la ligne indiquent des concentrations inférieures à la limite de détection. Les symboles sont décalés uniquement pour faciliter leur visualisation et ne représentent pas les valeurs réelles.Values below the line indicate concentrations below the detection limit. Symbols are offset only for easy viewing and do not represent actual values.

Claims (12)

1. Procédé d'élimination d'arsenic dans une charge hydrocarbonée contenant de 0 à 1000 mg de soufre/kg, caractérisé en ce que la charge avec de l'hydrogène est mise au contact à une température de 120-250°C, une pression de 1-40 bars et une vitesse spatiale de 1 à 50h-1, avec une masse de captation renfermant un support et au moins un métal choisi dans le groupe formé par le fer, le nickel, le cobalt, le molybdène, le tungstène, le chrome et le palladium, 5-50% en poids dudit ou desdits métaux étant combiné à l'état de sulfure, et que la masse est obtenue par imprégnation du précurseur renfermant ledit ou lesdits métaux supporté, sous forme métallique et/ou oxyde, à l'aide d'une solution aqueuse ou organique ou une suspension aqueuse ou organique renfermant d'une part au moins un agent réducteur et d'autre part au moins un agent sulfuré choisi dans le groupe constitué par : · au moins un polysulfure organique en mélange avec du soufre élémentaire, · au moins un disulfure organique éventuellement en mélange avec du soufre élémentaire, · au moins un sulfure organique ou minéral éventuellement en mélange avec du soufre élémentaire, · le soufre élémentaire ledit précurseur imprégné étant ensuite traité thermiquement. 1. A method of removing arsenic from a hydrocarbon feed containing 0 to 1000 mg of sulfur / kg, characterized in that the feed with hydrogen is brought into contact at a temperature of 120-250 ° C, a pressure of 1-40 bar and a space speed of 1 to 50 h-1 , with a collection mass containing a support and at least one metal chosen from the group formed by iron, nickel, cobalt, molybdenum, tungsten, chromium and palladium, 5-50% by weight of said metal or metals being combined in the sulphide state, and the mass is obtained by impregnation of the precursor containing said supported metal or metals, in metallic form and / or oxide, using an aqueous or organic solution or an aqueous or organic suspension containing on the one hand at least one reducing agent and on the other hand at least one sulfurized agent chosen from the group consisting of: · At least one organic polysulfide mixed with elemental sulfur, · At least one organic disulfide optionally mixed with elemental sulfur, · At least one organic or inorganic sulfide optionally mixed with elemental sulfur, · Elemental sulfur said impregnated precursor then being heat treated. 2. Procédé selon la revendication 1 caractérisé en ce que le débit d'hydrogène est compris entre 1 et 500 volume de gaz par volume de masse de captation et par heure. 2. Method according to claim 1 characterized in that the hydrogen flow rate is between 1 and 500 volume of gas per volume of capture mass and per hour. 3. Procédé selon l'une des revendications précédentes, caractérisé en ce que la charge renferme 10⁻³ à 5 mg de mercure par kg de charge. 3. Method according to one of the preceding claims, characterized in that the load contains 10⁻³ to 5 mg of mercury per kg of load. 4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le métal est le nickel. 4. Method according to one of the preceding claims, characterized in that the metal is nickel. 5. Procédé selon l'une des revendications précédentes, caractérisé en ce que les métaux sont le nickel et le palladium. 5. Method according to one of the preceding claims, characterized in that the metals are nickel and palladium. 6 Procédé selon l'une des revendications précédentes, caractérisé en ce que le support est choisi dans le groupe constitué par l'alumine, les silice-alumines, la silice, les zéolithes, le charbon actif, les argiles et les ciments alumineux. 6 Method according to one of the preceding claims, characterized in that the support is chosen from the group consisting of alumina, silica-aluminas, silica, zeolites, activated carbon, clays and aluminous cements. 7. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'état de sulfure est obtenu par imprégnation, hors du réacteur, du précurseur de la masse de captation, à l'aide d'au moins un liquide contenant du soufre choisi dans le groupe constitué par le sulfure d'ammonium, une suspension colloïdal de soufre dans l'eau, une solution organique de soufre, une solution organique de composé(s) soufré(s). 7. Method according to one of the preceding claims, characterized in that the state of sulphide is obtained by impregnation, outside the reactor, of the precursor of the capture mass, using at least one liquid containing sulfur. chosen from the group consisting of ammonium sulfide, a colloidal suspension of sulfur in water, an organic solution of sulfur, an organic solution of sulfur compound (s). 8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la charge est mise au contact de la masse à une température de 130-200°C. 8. Method according to one of the preceding claims, characterized in that the load is brought into contact with the mass at a temperature of 130-200 ° C. 9 Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en métal dans la masse (calculée en oxyde de métal) est d'au plus 30% en poids, le métal n'étant pas le palladium. 9 Method according to one of the preceding claims, characterized in that the metal content in the mass (calculated as metal oxide) is at most 30% by weight, the metal not being palladium. 10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en palladium (calculée en métal) est d'au plus 0,2%. 10. Method according to one of the preceding claims, characterized in that the palladium content (calculated as metal) is at most 0.2%. 11. Procédé selon l'une des revendications précédentes, caractérisé en ce que le précurseur est réduit sous hydrogène à 120-600°C avant d'être mis en contact de la charge. 11. Method according to one of the preceding claims, characterized in that the precursor is reduced under hydrogen at 120-600 ° C before being brought into contact with the charge. 12. Procédé selon l'une des revendications précédentes, caractérisé en ce que le précurseur est traité thermiquement entre 100 et 200°C dans la seconde étape. 12. Method according to one of the preceding claims, characterized in that the precursor is heat treated between 100 and 200 ° C in the second step.
EP94400193A 1993-02-08 1994-01-28 Process for eliminating arsenic from hydrocarbons by passing on presulphurized adsorbers Expired - Lifetime EP0611182B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9301442A FR2701269B1 (en) 1993-02-08 1993-02-08 Process for the elimination of arsenic in hydrocarbons by passage over a presulfurized capture mass.
FR9301442 1993-02-08

Publications (2)

Publication Number Publication Date
EP0611182A1 true EP0611182A1 (en) 1994-08-17
EP0611182B1 EP0611182B1 (en) 1999-06-09

Family

ID=9443891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400193A Expired - Lifetime EP0611182B1 (en) 1993-02-08 1994-01-28 Process for eliminating arsenic from hydrocarbons by passing on presulphurized adsorbers

Country Status (7)

Country Link
US (1) US5531886A (en)
EP (1) EP0611182B1 (en)
JP (1) JP3486756B2 (en)
KR (1) KR100285674B1 (en)
CN (1) CN1048036C (en)
DE (1) DE69418911T2 (en)
FR (1) FR2701269B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037884A1 (en) * 2004-10-06 2006-04-13 Institut Francais Du Petrole Method for selectively removing arsenic in sulphur-and olefin-rich gasolines
WO2019197352A1 (en) 2018-04-11 2019-10-17 IFP Energies Nouvelles Method for removing arsenic using a removal mass made of nickel oxide particles
WO2019197351A1 (en) 2018-04-11 2019-10-17 IFP Energies Nouvelles Mass for removing arsenic made of nickel sulphide nanoparticles
FR3116828A1 (en) 2020-11-27 2022-06-03 IFP Energies Nouvelles Process for capturing organometallic impurities using a capture mass based on cobalt and molybdenum and containing carbon

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091796C (en) * 1999-07-17 2002-10-02 巴陵石化鹰山石油化工厂 Process for sulphurating nickel-molybdenum series catalysts for hydrogenation desulfurization and dearsenication
CN100392046C (en) * 2003-08-07 2008-06-04 上海化工研究院 Dearsenicating agent for removing high boiling point arsonium compound in liquid-state petroleum hydrocarbon at low temperature and normal temperature
GB0611316D0 (en) * 2006-06-09 2006-07-19 Johnson Matthey Plc Improvements in the removal of metals from fluid streams
US20140291246A1 (en) 2013-03-16 2014-10-02 Chemica Technologies, Inc. Selective Adsorbent Fabric for Water Purification
FR3104460A1 (en) 2019-12-17 2021-06-18 IFP Energies Nouvelles Organometallic impurity capture mass prepared by the molten salt route

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046674A (en) * 1976-06-25 1977-09-06 Union Oil Company Of California Process for removing arsenic from hydrocarbons
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
EP0332526A1 (en) * 1988-03-10 1989-09-13 Institut Français du Pétrole Process for removing mercury and, optionally, arsenic from hydrocarbons
WO1990010684A1 (en) * 1989-03-16 1990-09-20 Institut Français Du Petrole Process for eliminating mercury and possibly arsenic in hydrocarbons
EP0466568A1 (en) * 1990-07-13 1992-01-15 EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) Method for pretreating a catalyst by a mixture of a sulphurised agent and an organic reducing agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804750A (en) * 1972-12-22 1974-04-16 Atlantic Richfield Co Shale oil treatment
US4853110A (en) * 1986-10-31 1989-08-01 Exxon Research And Engineering Company Method for separating arsenic and/or selenium from shale oil
DZ1209A1 (en) * 1987-05-26 2004-09-13 Inst Francais Du Petrole Process for the preparation and regeneration of a solid mass for the capture of mercury containing copper.
DE3822132C2 (en) * 1987-07-02 1997-11-20 Inst Francais Du Petrole Use of a catalyst for removing arsenic and / or phosphorus from liquid hydrocarbons containing them
EP0357873B1 (en) * 1988-08-10 1992-08-26 Jgc Corporation Method for removing mercury from hydrocarbons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069140A (en) * 1975-02-10 1978-01-17 Atlantic Richfield Company Removing contaminant from hydrocarbonaceous fluid
US4046674A (en) * 1976-06-25 1977-09-06 Union Oil Company Of California Process for removing arsenic from hydrocarbons
EP0332526A1 (en) * 1988-03-10 1989-09-13 Institut Français du Pétrole Process for removing mercury and, optionally, arsenic from hydrocarbons
WO1990010684A1 (en) * 1989-03-16 1990-09-20 Institut Français Du Petrole Process for eliminating mercury and possibly arsenic in hydrocarbons
EP0466568A1 (en) * 1990-07-13 1992-01-15 EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) Method for pretreating a catalyst by a mixture of a sulphurised agent and an organic reducing agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037884A1 (en) * 2004-10-06 2006-04-13 Institut Francais Du Petrole Method for selectively removing arsenic in sulphur-and olefin-rich gasolines
US7901567B2 (en) 2004-10-06 2011-03-08 IFP Energies Nouvelles Process for selective capture of arsenic in gasolines rich in sulphur and olefins
WO2019197352A1 (en) 2018-04-11 2019-10-17 IFP Energies Nouvelles Method for removing arsenic using a removal mass made of nickel oxide particles
WO2019197351A1 (en) 2018-04-11 2019-10-17 IFP Energies Nouvelles Mass for removing arsenic made of nickel sulphide nanoparticles
FR3116828A1 (en) 2020-11-27 2022-06-03 IFP Energies Nouvelles Process for capturing organometallic impurities using a capture mass based on cobalt and molybdenum and containing carbon

Also Published As

Publication number Publication date
CN1048036C (en) 2000-01-05
DE69418911D1 (en) 1999-07-15
JP3486756B2 (en) 2004-01-13
FR2701269A1 (en) 1994-08-12
EP0611182B1 (en) 1999-06-09
FR2701269B1 (en) 1995-04-14
KR940019837A (en) 1994-09-15
CN1091767A (en) 1994-09-07
DE69418911T2 (en) 1999-09-30
US5531886A (en) 1996-07-02
KR100285674B1 (en) 2001-05-02
JPH06256772A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
EP0611183B1 (en) Process for eliminating mercury in hydrocarbons by passing on presulphurised catalyst
EP1923452B1 (en) Method of deep sulphur removal from cracked petrol with minimum loss of octane number
EP0332526B1 (en) Process for removing mercury and, optionally, arsenic from hydrocarbons
EP0628337B1 (en) Process for the removal of arsenic from a fluid in presence of a captation mass
EP0484233B1 (en) Process for preparing a solid mercury sorbent mass
EP0463044B1 (en) Process for eliminating mercury and possibly arsenic in hydrocarbons
EP2816093B1 (en) Method for removing arsenic from a hydrocarbon feedstock
EP0611182B1 (en) Process for eliminating arsenic from hydrocarbons by passing on presulphurized adsorbers
EP0599702A1 (en) Process for removing mercury and optionally arsenic from hydrocarbons
EP0302771B1 (en) Process for the simultaneous removal of arsenic and carbon oxysulfide from a cut of unsaturated hydrocarbons in the liquid phase
EP0570261B1 (en) Process for the removal of mercury and arsenic from a hydrocarbon fraction
BE1012739A3 (en) Mass for disposal of arsenic and mercury in petroleum nickel support.
FR2937045A1 (en) USE OF ZINC FERRITE-BASED SOLIDS IN A PROCESS FOR THE DEEP DEULFURIZATION OF OXYGENIC LOADS
FR2857276A1 (en) PROCESS FOR REMOVING SULFUR COMPOUNDS BY DIRECT OXIDATION
CA1094294A (en) Production of sulfur
FR2762004A1 (en) Elimination of arsenic in liquid hydrocarbon feed
EP0169828B1 (en) Process for the removal of carbonyl sulfide from liquid olefinic hydrocarbon charges
WO2023117552A1 (en) Method for regenerating trapping masses for trapping heavy metals
FR2512830A1 (en) HYDROCARBON SOFTENING PROCESS
EP4251716A1 (en) Method for capturing organometallic impurities in the presence of a capture mass on a mesoporous-macroporous support
FR3130635A1 (en) METHOD FOR CAPTURING HEAVY METALS BY CO-FEEDING A SULFURIZING FLUX
FR2808532A1 (en) Removal of mercury from a hydrocarbon feed, e.g. natural gas condensate, comprises flashing the feed to transfer mercury from sludge to vapor
FR2788452A1 (en) Capturing material for eliminating arsenic in hydrocarbons
FR2720957A1 (en) Process for vapour phase selective hydrogenation of 2-3C acetylenic hydrocarbons
LU85308A1 (en) PROCESS FOR REMOVING CARBONYL SULFIDE FROM LIQUID HYDROCARBON FEEDSTOCKS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19950217

17Q First examination report despatched

Effective date: 19961220

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APBJ Interlocutory revision of appeal recorded

Free format text: ORIGINAL CODE: EPIDOS IRAPE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 69418911

Country of ref document: DE

Date of ref document: 19990715

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69418911

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130128

Year of fee payment: 20

Ref country code: FR

Payment date: 20130222

Year of fee payment: 20

Ref country code: DE

Payment date: 20130304

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130121

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69418911

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140128

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140127

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140129