FI91422C - Process and apparatus for supplying liquid reagents to a chemical reactor - Google Patents

Process and apparatus for supplying liquid reagents to a chemical reactor Download PDF

Info

Publication number
FI91422C
FI91422C FI922852A FI922852A FI91422C FI 91422 C FI91422 C FI 91422C FI 922852 A FI922852 A FI 922852A FI 922852 A FI922852 A FI 922852A FI 91422 C FI91422 C FI 91422C
Authority
FI
Finland
Prior art keywords
liquid
evaporator
porous material
reagents
reagent
Prior art date
Application number
FI922852A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI922852A (en
FI91422B (en
FI922852A0 (en
Inventor
Pekka Soininen
Tuomo Suntola
Markku Tammenmaa
Sven Lindfors
Vesa Lujala
Original Assignee
Mikrokemia Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikrokemia Oy filed Critical Mikrokemia Oy
Priority to FI922852A priority Critical patent/FI91422C/en
Publication of FI922852A0 publication Critical patent/FI922852A0/en
Priority to FR9307243A priority patent/FR2692597A1/en
Publication of FI922852A publication Critical patent/FI922852A/en
Publication of FI91422B publication Critical patent/FI91422B/en
Application granted granted Critical
Publication of FI91422C publication Critical patent/FI91422C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Description

9142291422

Menetelmå ja laitteisto nestemaisten reagenssien syottauisek-si kemialliseen reaktoriin 5 Esillå oleva keksinto koskee patenttivaatimuksen 1 johdannon mukaista menetelmåå nestemaisten reagenssien syottåmiseksi kemialliseen reaktoriin, jossa reagenssit ovat kaasufaasissa.The present invention relates to a method according to the preamble of claim 1 for feeding liquid reagents to a chemical reactor in which the reagents are in the gas phase.

Tållaisen menetelman mukaan ainakin yhden reagenssin ennalta 10 valittu måårå (materiaalivuo) syotetåan hoyrystimeen, jossa sen annetaan hoyrystyå, minkå jalkeen hoyry johdetaan kemialliseen reaktoriin, jossa reagenssi saatetaan reagoimaan reaktor issa olevan substraatin tai muiden låhtoaineiden kanssa.According to such a method, a preselected amount (material flow) of at least one reagent is fed to an evaporator, where it is allowed to evaporate, after which the steam is passed to a chemical reactor where the reagent is reacted with a substrate or other starting materials in the reactor.

15 Keksinto koskee myos patenttivaatimuksen 9 johdannon mukaista laitteistoa nestemaisten reagenssien hoyryståmiseksi ja annostelemiseksi kemialliseen reaktoriin.The invention also relates to an apparatus according to the preamble of claim 9 for evaporating and dosing liquid reagents into a chemical reactor.

Ohutkalvoja valmistetaan kemiallisissa reaktoreissa, joissa 20 reagenssit tuodaan kaasufaasissa reaktiotilaan ja saatetaan reagoimaan tasomaisen substraatin kanssa. Usein reagensseina kaytetaan huoneenlampotilassa nestemåisia aineita, jotka hoyrystetaan erillisessa hoyrystimessa ennen kuin ne johdetaan reaktoriin.Thin films are prepared in chemical reactors in which the reagents are introduced into the reaction space in the gas phase and reacted with a planar substrate. Often, reagents use liquid substances at room temperature, which are evaporated in a separate evaporator before being introduced into the reactor.

2525

Tunnetun tekniikan mukaisista hoyrystysmenetelmistå mainitta-koon erityisesti CVD-ohutkalvoprosessien (Chemical Vapor Deposition) yhteydesså sovellettava kuplitusmenetelma. Sano-tussa menetelroassa kaytetaan lahdetta, jossa vakiolampotilas-30 sa olevan nesteen låpi kuplitetaan kantajakaasua vakiona tilavuusvirtauksena. Tåmån tyyppista lahdetta kåytettåesså hallitaan annostelua nesteen låmpotilalla, joka mååråå hoy-rynpaineen, sekå kantajakaasun tilavuusvirtauksella, jolla mååritetåån siirtonopeus.Among the evaporation methods according to the prior art, mention is made in particular of the bubbling method applied in connection with CVD (Chemical Vapor Deposition) processes. Said method uses a source in which a carrier gas is bubbled through a constant volume flow through a liquid in a constant lamp state. When using this type of source, the dosing is controlled by the temperature of the liquid, which determines the vapor pressure, and by the volume flow of the carrier gas, at which the transfer rate is determined.

35 Tåhån tunnettuun tekniikkaan liittyy kuitenkin eråitå epåkoh-tia. Niinpå jotta annostelu olisi esitetyn kaltaisella kupli-tuslåhteellå tarkkaa, on nesteen låmpotila kyettåvå pitåmåån vakiona halutussa låmpotilassa. Samoin on kantajakaasun 2 tilavuusvirtaus on såadettåva tarkasti. Vaikka nåmå paramet-rit olisivatkin kunnossa, jåå siirtyvåån ainemååråån keskei-sesti vaikuttavaksi, mutta vaikeasti hallittavaksi tekijaksi kuplittajasta poistuvan kantajakaasun kyllåisyysaste. Siihen 5 vaikuttavat mm. kuplakoko ja kuplan matka nesteen sisåsså, siis låhteen tåyttoaste. Lisåksi låhteeseen syotetyn kantajakaasun låmpotila on pidettåvå vakiona, jotta kyllåisyysaste pysyisi vakiona. Muutettaessa lahteen parametreja, ei kyllai-syysasteen muutosta pystyta tarkasti ennakolta arvioimaan, 10 joten låhteestå poistuvaa ainemååråån haluttuja muutoksia ei voi hallita tarkasti ilman låhteen laajaa ja perusteellista karakterisointia.35 However, there are some drawbacks to this prior art. Thus, in order for the dosing to be accurate with a bubbling source as shown, the temperature of the liquid must be able to be kept constant at the desired temperature. Likewise, the volume flow of the carrier gas 2 must be accurately determined. Even if these parameters are in order, the degree of saturation of the carrier gas leaving the bubbler remains a key factor in the amount of material transferred, but it is difficult to control. It is influenced by 5 e.g. bubble size and the distance of the bubble within the liquid, i.e. the degree of filling of the spring. In addition, the temperature of the carrier gas fed to the source must be kept constant in order to keep the saturation constant. When changing the parameters of a source, it is not possible to accurately estimate the change in saturation level in advance, 10 so the desired changes in the amount of material leaving the source cannot be precisely controlled without extensive and thorough characterization of the source.

wo-hakemusjulkaisusta 91/19017 tunnetaan edella esitetystå 15 poikkeava ratkaisu nestemaisten reagenssien hoyrystamiseksi.WO 91/19017 discloses a solution for evaporating liquid reagents which differs from the above.

Tunnetun tekniikan mukainen menetelma pitåa sisallaan sen, etta reagenssit johdetaan hallittuna ja virtausnopeudeltaan tarkkaan såadettyna nestevirtana paisuntaventtiiliin, jossa nestemainen reagenssi hoyrystyy, minka jalkeen muodostunut 20 hdyry johdetaan alipaineessa pidettyyn reaktoriin. Paisunta- venttiilin suuttimen koko on talloin såadettavisså nestemåi-sen reagenssin paineen mukaan nestevirtauksessa esiintyvien vaihteluiden poistamiseksi ja kaasufaasivirran yhtenåisyyden parantamiseksi. Tåmåkåan ratkaisu ei kuitenkaan toimi hyvin 25 mikali nestesyotossa on suuria ja åkillisia vaihteluita.The prior art method involves directing the reagents in a controlled and precisely controlled liquid flow to an expansion valve where the liquid reagent evaporates, after which the formed hydride is fed to a reactor maintained under reduced pressure. The size of the nozzle of the expansion valve is then available according to the pressure of the liquid reagent to eliminate variations in the liquid flow and to improve the uniformity of the gas phase flow. However, this solution does not work well either, as there are large and sudden fluctuations in fluid intake.

Lisaksi paisuntaventtiilin suutinaukko on tukkeutumisaltis ja liikkuvana osana herkkS toimintahairioille.In addition, the nozzle opening of the expansion valve is prone to clogging and as a moving part sensitive to operating disturbances.

Esilla olevan keksinnon tarkoituksena on poistaa tunnettuun 30 tekniikkaan liittyvSt epSkohdat ja saada aikaan aivan uuden- lainen ratkaisu nestemaisten reagenssien syottamiseksi kaasu-faasissa olevia reagensseja kayttaviin kemiallisiin reakto-reihin.The object of the present invention is to obviate the drawbacks of the prior art and to provide a completely new solution for feeding liquid reagents to chemical reactors using gas-phase reagents.

35 Keksinnon yhteydessa on todettu, etta ohutkalvojen valmis- tuksessa tarvittavien nestekemikaalien maaråt ovat niin pienia, etta niiden pumppaaminen hoyrystimeen tasaisena 3 91422 virtauksena on pisaroita muodostavien pintajånnitysvoimien vuoksi vaikeaa.In connection with the invention, it has been found that the amounts of liquid chemicals required in the manufacture of thin films are so small that it is difficult to pump them to the evaporator in a constant flow of 3 91422 due to the surface tension forces forming the droplets.

Tasta syysta esillå olevan keksinnon mukainen ratkaisu perus-5 tuu siihen ajatukseen, ettå kaytetaan hoyrystintå, joka kykenee toimimaan hoyrystettåvån nesteen puskurivarastona nestevirran syotosså esiintyvien virtausvaihteluiden tasoit-tamiseksi. Keksinnon mukainen hoyrystin koostuu tålloin ainakin osittain huokoisesta, kostuvasta materiaalista, joka 10 estaå pisaranmuodostumisen imemalla nesteen itseenså.For this reason, the solution according to the present invention is based on the idea of using an evaporator capable of acting as a buffer reservoir of the liquid to be evaporated in order to smooth out the flow variations in the liquid stream feed. The evaporator according to the invention then consists at least in part of a porous, wettable material which prevents the formation of droplets by absorbing the liquid itself.

Tåsmållisemmin sanottuna keksinnon mukaiselle menetelmålle on paaasiallisesti tunnusomaista se, mika on esitetty patentti-vaatimuksen 1 tunnusmerkkiosassa.More specifically, the method according to the invention is mainly characterized by what is set forth in the characterizing part of claim 1.

1515

Keksinnon mukaiselle laitteistolle on puolestaan tunnusomaista se, mika on esitetty patenttivaatimuksen 9 tunnusmerkkiosassa.The apparatus according to the invention, in turn, is characterized by what is set forth in the characterizing part of claim 9.

20 Tamån hakemuksen puitteissa tarkoitetaan huokoisella, kostu- valla materiaalilla sellaista ainetta, jonka huokoskoko on niin pieni, etta nesteen ja huokosten valiset voimat (esim. kapillaarivoimat ja koheesiovoimat) ovat nesteen pintajånni-tysta suuremmat, jolloin neste paasee tunkeutumaan huokosten 25 sisaan ja leviamåan aineen låpi. Huokosten maksimikoot vaih- televat kåytettåvån reagenssin mukaan, mutta ovat tyypilli-sesti 0,1 nm.,.100 nm, edullisesti noin 1...30 nm. Sopivimmin huokoinen materiaali on valmistettu epåorgaanisesta aineesta, joka on inertti reagenssin suhteen, kuten keraamisesta tai 30 mineraalisesta aineesta. Tyypillisinå esimerkkeina mainitta- koon erilaiset silikaattipohjaiset materiaalit. Huokoinen kappale voidaan myos valmistaa grafiitista, jonka kyky johtaa låmpoå on monessa suhteessa edullista keksinnon mukaan toi-mittaessa. Huokoisen materiaalin valmistusaineista mainitta-35 koon vielå erilaiset karbidit, kuten piikarbidi.20 For the purposes of this application, a porous, wettable material is a substance whose pore size is so small that the forces between the liquid and the pores (e.g. capillary forces and cohesive forces) are greater than the surface tension of the liquid, allowing the liquid to penetrate the pores and låpi. The maximum pore sizes vary depending on the reagent used, but are typically 0.1 nm, 100 nm, preferably about 1 to 30 nm. Preferably, the porous material is made of an inorganic material that is inert to the reagent, such as a ceramic or mineral material. Typical examples are various silicate-based materials. The porous body can also be made of graphite, the ability to conduct heat of which is advantageous in many respects when supplied according to the invention. Among the ingredients of the porous material, various carbides, such as silicon carbide, are mentioned.

Huokoinen materiaali voi olla muotoiltu mihin tahansa sopi- 4 vaan geometriseen muotoon. Materiaalin pinta/tilavuus-suhde valitaan sen mukaan, miten suurta puskurivarastoa tarvitaan hoyrystettMvaa ainetta vårten, eli miten paljon vaihteluita nestesyotosså esiintyy. Tavallisesti, kuten alia låhemmin 5 esitetåån, hoyrystimeen syotettåva nestevirtaus pyritåan pitMmaan erittain tasaisena, jolloin huokoisen materiaalin pinta sopivimmin on varsin suuri. Alla esitettavåssa esimer-kisså hoyrystavå materiaali on muotoiltu sauvamaiseksi, jolloin sen poikkileikkaus nesteen syottosuunnassa on ympyran 10 muotoinen. Haluttaessa huokoinen materiaali voidaan kuitenkin myos muotoilla esim. levymaiseksi, kartiomaiseksi tai pallo-maiseksi. Huomautettakoon viela, ettS kasitteellS "pinta" tarkoitetaan huokoisen materiaalin muodostaman kappaleen geometrista pintaa, nk. verhopintaa.The porous material can be shaped into any suitable geometric shape. The surface area / volume ratio of the material is selected according to how large a buffer stock is required for the vaporizing agent, i.e. how much variation occurs in the liquid feed. Usually, as will be shown below, the tendency for the liquid flow to be fed to the evaporator is to be kept very even, whereby the surface of the porous material is preferably quite large. In the example cat below, the vaporizing material is shaped like a rod, so that its cross-section in the direction of liquid intake is circular. However, if desired, the porous material can also be shaped, e.g., plate-shaped, conical or spherical. It should also be noted that the term "surface" refers to the geometric surface of a body of porous material, the so-called curtain surface.

1515

Imeytetty reagenssi hoyrystetaan huokoisesta materiaalista siirtåmållå siihen tarvittavaa hdyrystysenergiaa. Tavallisesti ja edullisesti tåma tapahtuu siten, etta huokoiseen ainee-seen tuodaan sopivasta lampolahteesta lampoenergiaa. Tasainen 20 ja tehokas lammontuonti hoyrystimeen on tårkeåå, koska rea- genssi sitoo hoyrystyessaån runsaasti lampoå, ja se voidaan saada aikaan kayttamålla vakiolampotilassa pidettåvåa lampo-lahdetta.The absorbed reagent is vaporized from the porous material by transferring the necessary evaporation energy. Usually and preferably this is done by introducing thermal energy into the porous material from a suitable heat source. Steady 20 and efficient heat input to the evaporator is important because the reagent binds a large amount of heat upon evaporation and can be accomplished by using a constant temperature lamp source.

25 Keksinnon edullisessa sovellutusmuodossa hoyrystyksen ai- kaansaamiseksi huokoisen materiaalin ymparille on jårjestetty lammityselimia, jotka kohdistavat lampoenergiaa materiaaliin, josta se siirtyy nesteeseen. Lampoenergian vaikutuksesta neste hoyrystyy huokoista materiaalia ymparoivaan tilaan, 30 josta se kuljetetaan edelleen reaktoriin esim. kantajakaasun avulla. Lampoenergiaa tuodaan hoyrystimeen niin paljon, etta neste saadaan hoyrystymaan oleellisesti tasaisena kaasuvirta-na huokoisesta materiaalista.In a preferred embodiment of the invention, in order to provide evaporation, heating means are arranged around the porous material, which apply thermal energy to the material from which it is transferred to the liquid. As a result of the lamp energy, the liquid evaporates into the space surrounding the porous material, from where it is further conveyed to the reactor, e.g. by means of a carrier gas. So much of the lamp energy is introduced into the evaporator that the liquid is made to evaporate as a substantially uniform gas flow from the porous material.

35 Låmmityselimina voidaan esimerkiksi kayttåa erilaisia såtei- lylammittimia, kuten såhkovastuslåmmittimiå. Låmmittimet voidaan myos jårjeståå huokoisen materiaalin sisåan muodosta- 5 91422 malla siihin aukkoja tai reikiå, joihin låmmityselimet si-joitetaan. Kuten yllå mainittiin, lammityselimiå pidetåån edullisesti vakiolåmpotilassa.As the heating means, for example, various radiant heaters can be used, such as electric resistance heaters. The heaters can also be arranged inside the porous material by forming openings or holes in which the heating members are placed. As mentioned above, the heating member is preferably maintained at a constant temperature.

5 Eråån edullisen sovellutusmuodon mukaan huokoinen inateriaali muodostetaan sylinterivaipan muotoisen keskeisen ensimmåisen esim. sauvamaisen låmmity se limen ympårille, josta låmmitys-elimestå lampo siirtyy johtumalla huokoiseen materiaaliin. Sylinterivaipan ulkopuolelle jarjestetaan hoyryn virtauksen 10 tarvitsema sola ja tåmån toiselle puolelle sylinterivaipan muotoinen toinen låmmityselin, josta lampo siirtyy såteile-mållå huokoiseen materiaaliin. Tåsså sovellutusmuodossa on sopivimmin huolehdittava siitå, ettå toisen låmmityselimen avulla tuodaan niin paljon lampoenergiaa hoyrystimen ulko-15 vaippaan, ettå hoyryn kondensoituminen vaipan sisåpintaan estyy.According to a preferred embodiment, the porous material is formed around a central first, e.g. rod-shaped, heated lime in the form of a cylindrical jacket, from which heating the lamp is transferred to the porous material. Outside the cylinder jacket, a gap required for the steam flow 10 is arranged, and on the other side of this there is a second heating element in the form of a cylinder jacket, from which the lamp radiates to the porous material. In this embodiment, care must preferably be taken to ensure that the second heating element supplies so much thermal energy to the outer casing 15 of the evaporator that condensation of the steam on the inner surface of the casing is prevented.

Låmmitys voidaan myos jårjeståå siten, ettå huokoista materi-aalia ympåroivåån tilaan (hoyrynvirtaussolaan) tuodaan låm-20 mintå kaasua, esim. låmmitettyå kantajakaasua, jolla hoyryt kuljetetaan reaktoriin.The heating can also be arranged in such a way that a warm gas is introduced into the space surrounding the porous material (steam flow cell), e.g. a heated carrier gas, with which the vapors are conveyed to the reactor.

Muodostamalla hoyrystin yhtenåiseksi kappaleeksi kemiallisen reaktorin syottosuutinten kanssa lampoenergiaa siirtyy hoy-25 rystimeen suuttimesta myos johtumalla. Koska kemiallisen reaktorin syottosuuttimet usein pidetaan vakiolampotilassa, on osoittautunut edulliseksi kåyttåå suuttimesta vapautuvaa hukkalåmpoå hoyrystimen låmmittåmiseen.By forming the evaporator in one piece with the feed nozzles of the chemical reactor, the thermal energy is also transferred to the hoy-25 grate by conduction from the nozzle. Since the feed nozzles of a chemical reactor are often kept at a constant lamp temperature, it has proven advantageous to use the waste heat released from the nozzle to heat the evaporator.

30 Edellå mainittiin, ettå hoyry viedåån keksinnon eråån edulli sen sovellutusmuodon mukaan reaktoriin kantajakaasun avulla. Keksinnon edullisessa sovellutusmuodossa hoyrystin toimii samassa paineessa kuin kemiallinen reaktori. Niinpå yhdistet-tynå alla esitettåvån esimerkin mukaiseen CVD-laitteistoon, 35 jota kåytetåan normaali-ilmanpafneessa, hoyrystin toimii ilmakehån paineessa, jolloin seka reagenssi ettå kantajakaasu tuodaan siihen samassa paineessa.It was mentioned above that according to an embodiment of the invention, the steam is introduced into the reactor by means of a carrier gas. In a preferred embodiment of the invention, the evaporator operates at the same pressure as the chemical reactor. Thus, in combination with the CVD apparatus 35 used in a normal air purifier according to the example shown below, the evaporator operates at atmospheric pressure, whereby both the reagent and the carrier gas are introduced into it at the same pressure.

66

Haluttaessa hoyrystetyn nesteen kuljetus voidaan myos jarjes-tåa yhdiståmållå hdyrystin suoraan kåyttokohteeseen eli kemialliseen reaktoriin ja pitåmålla tåta samassa paineessa kuin hoyrystin, jolloin reagenssihoyryt siirtyvåt vapaasti 5 reaktoriin, tai pitåmallå reaktoria hoyrystinta alemmassa paineessa, jolloin hdyrystynyt reagenssi imetåån reaktoriin.If desired, the transport of the vaporized liquid can also be arranged by connecting the vaporizer directly to the application, i.e. the chemical reactor, and maintaining it at the same pressure as the vaporizer, whereby the reagent vapors move freely to the reactor,

Neste voidaan syottåa mihin kohtaan huokoista ainetta tahan-sa. Edullisesti huokoinen materiaali on kuitenkin jårjestetty 10 ainakin oleellisesti pystysuoraan asentoon, jolloin neste tuodaan sen ylaosaan, josta se leviaa alaspain painovoiman vaikutuksesta ja sivuille kapillaari- ja koheesiovoimien sekå muiden sentapaisten fysikaalisten voimien vaikutuksesta. Alla esitettavåsså esimerkisså huokoinen materiaali on pysty-15 suoraan jårjestetty sauva, jonka ylapaatyyn on muodostettu keskiakselin suuntainen aukko, johon neste voidaan syottaa. Syottamalla neste keskiakselin suuntaisesti saadaan aikaan nesteen tasainen leviaminen sauvan poikkileikkauksen yli, jolloin nestetta hoyrystyy tasaisesti ympåri sauvan.The liquid can be introduced at any point in the porous material. Preferably, however, the porous material is arranged at least in a substantially vertical position, whereby the liquid is introduced into its upper part, from where it spreads downwards by gravity and laterally by capillary and cohesive forces and other similar physical forces. In the example below, the porous material is a vertically-arranged rod, the upper end of which is formed with a central axis opening into which the liquid can be fed. By feeding the liquid along the central axis, a uniform spread of the liquid over the cross-section of the rod is achieved, whereby the liquid evaporates evenly around the rod.

2020

Annostelun maara ja sen tarkkuus on ensisijassa riippuvainen syotetyn nesteen virtausnopeudesta. Hoyrystettåvaa ja hoyryna reaktoriin syotettavaa reagenssimaåråå kontrolloidaan såStå-malla pumppausnopeutta, jolla nestemåistå reagenssia annos-25 tellaan hoyrystinelementtiin. Pumpun pitaa olla sellainen, etta silla saadaan tuotetuksi tasainen ja hallittu nestevir-taus, joka ei ole riippuvainen vastapaineesta. Taman tyyppi-sia pumppuja ovat esim. manta- ja letkupumput, joiden kapa-siteetti muuttuu lineaarisesti pumpun kierrosluvun funktiona, 30 jolloin nestemaaran tarkka annostelu on mahdollista pumpun tehoa muuttamalla.The rate of dosing and its accuracy are primarily dependent on the flow rate of the liquid fed. The amount of reagent to be evaporated and fed to the reactor as steam is controlled by controlling the pumping rate at which the liquid reagent is metered into the evaporator element. The pump must be such as to produce a uniform and controlled flow of liquid which is not dependent on the back pressure. Pumps of this type are, for example, manta and hose pumps, the capacity of which changes linearly as a function of the speed of the pump, whereby accurate dosing of the liquid volume is possible by changing the power of the pump.

Kuten edellisesta on kaynyt ilmi, huokoinen materiaali toimii nestemaisen reagenssin puskurivarastona, poistaa nesteen 35 syoton epatasaisuudet ja estaa nain pisaranmuodostuksen aiheuttamasta vaihtelua hoyrystimen ulostuloon. Keksinnon mukaan hoyrystavaa materiaalia operoidaan jatkuvuustilassa 7 91422 (steady state -tilassa). TStå kasitettå selostetaan tarkemmin seuraavassa:As can be seen from the foregoing, the porous material acts as a buffer reservoir for the liquid reagent, eliminates the inertities of the liquid 35, and thus prevents variation in the evaporator outlet caused by droplet formation. According to the invention, the vaporizing material is operated in a continuity state of 7,91422 (steady state state). This case is described in more detail below:

Neste muuttuu keksinnon mukaisessa hoyrystinelementissa 5 hoyryksi ja poistuu kantajakaasun mukana samalla nopeudella kuin sita pumppaamalla syotetaån. Jatkuvatoimisessa tilassa huokoisen materiaalin sisåån syntyy tålloin pituus- ja sa-teettåissuuntaiset "markyys"-gradientit, jotka riippuvat toisaalta pumppausnopeudesta ja toisaalta hoyrystimen lampo-10 tilasta tai oikeammin siita låmpovuosta, joka siirtyy hoyrys- timen ulkopuolisesta lammittimesta hoyrystavåan huokoiseen materiaaliin. Jatkuvuustilassa huokoinen materiaali sisaltaa puskurivaraston hoyrystettavaa nestetta. Sen maara riippuu nesteen pumppausnopeudesta, lammittimen lampotilasta, seka 15 huokoisen materiaalin geometrisista mitoista. Puskuri-varasto tasoittaa tehokkaasti lyhytaikaiset muutokset nesteen syotos-sa, joten pumppauksen tasaisuusvaatimukset lieventyvåt oleel-lisesti.In the evaporator element 5 according to the invention, the liquid is converted into vapor and leaves with the carrier gas at the same rate as it is pumped. In the continuous state, longitudinal and linear "markius" gradients are then generated inside the porous material, which depend on the pumping rate on the one hand and the lamp-10 state of the evaporator on the other hand, In the continuity state, the porous material contains the vaporizable liquid from the buffer storage. Its amount depends on the pumping speed of the liquid, the temperature of the heater, and the geometric dimensions of the 15 porous material. The buffer storage effectively compensates for short-term changes in the liquid intake, so the uniformity requirements for pumping are substantially relaxed.

20 Hoyrystimen tyoskentelyalue on maariteltåvissa seuraavasti: Μώ j = M^g jatkuvuustilassa20 The working range of the evaporator can be defined as follows: Μώ j = M ^ g in the continuity state

Mi», < 25Mi », <25

Mlt > 0 jossa: 30 Μ»,, = hoyrystimeen pumpatun nesteen massavirta Μαη,ί = hoyrystimesta ulostulevan hoyryn massavirtaMlt> 0 where: 30 Μ »,, = mass flow rate of liquid pumped into the evaporator Μαη, ί = mass flow rate of vapor leaving the evaporator

Min,.max(T) = maksimi nesteen massavirta, jonka tietty hoyrystin 35 pystyy lammittimen lampotilassa T hoyrystamaan.Min, .max (T) = the maximum mass flow of liquid that a particular evaporator 35 can vaporize in the heater temperature T.

M„ = hoyrystimen sisåltSmS nesteen maSra jatkuvuustilassa (st = steady state).M „= content of evaporator liquid mass in steady state.

40 Jos Μ»,, on suurempi kuin Μ^,^ίΤ) , ei koko hoyrystimeen pum- δ40 If Μ »,, is greater than Μ ^, ^ ίΤ), not the entire evaporator pumped δ

pattu nestemåårå ehdi haihtua, vaan hoyrystimeen alkaa muo-dostua nestepisaroita. riippuu paitsi låmpotilasta Tthe pattu liquid has time to evaporate, but liquid droplets begin to form in the evaporator. depends not only on the temperature T

myos hoyrystimen dimensioista ja rakenteesta, tarkemmin sanoen siitå låmpovuosta, joka siirtyy låmmittimestå hbyrys-5 timen huokoisen materiaalin kautta hoyrystettavaån nestee- seen.also on the dimensions and structure of the evaporator, more specifically on the heat flux that passes from the heater through the porous material of the heater to the liquid to be evaporated.

Kuviossa 3 on esimerkkinå esitetty alla kuvattavan sovellu-tusesimerkin mukaisen rakenteen omaavan hoyrystimen kokeel-10 lisesti mååritetyt Μ^,,^ίΤ) kayråt vedelle ja etanolille ja naiden seoksille.Figure 3 shows, by way of example, the experimentally determined curves of an evaporator having the structure according to the embodiment described below for water and ethanol and mixtures thereof.

Hoyrystimen tyoskentelyalue on kåyrån ja låmpotila-akselin rajoittama alue. Tyoskentelypistettå valittaessa tulee huo-15 lehtia siitå, ettå pysytåån kåyrån alapuolella ja riittåvalla etaisyydella siitå.The working area of the evaporator is the area delimited by the curve and the temperature axis. When choosing a working point, there should be 15 pages to keep you below the curve and at a sufficient distance from it.

Ellei hoyrystettåvå aine sinånså termisen stabiiliutensa puolesta aseta rajoituksia låmpotilalle, voidaan hoyrystimen 20 kapasiteettia suurentaa korottamalla yksinkertaisesti låmmit- timen låmpotilaa.Unless the substance to be vaporized itself imposes limitations on the temperature due to its thermal stability, the capacity of the vaporizer 20 can be increased by simply increasing the temperature of the heater.

Ååritilanteessa, jossa M„ = 0, hdyrystyy neste sitå mukaan kun se pumpataan hbyrystimen ylåpååhån huokoisen materiaalin 25 pysyesså kuivana. Tålloin ei muodostu lainkaan hoyrystimen sisåistå puskuria, eikå hoyrystin tasoita pumppauksessa tapahtuvia lyhytaikaisia vaihteluita. Hoyrystimen kayttopis-teeksi on tåstå syystå edullista valita låmpotila, jossa M* on sopivan suuri. Kun låmmittimen låmpotilaa muutetaan pump-30 pausnopeuden pysyesså vakiona, hakeutuu hoyrystin uuteen jatkuvatoimiseen tilaan, joka poikkeaa ensimmåisestå sikåli ettå M„(T2) & M„(T,), edellyttåen, ettå pysytåån hoyrystimen tyoskentelyalueella. Muutosvaiheen aikana & M*,,. Mst muuttuu myos muutettaessa pumppausnopeutta vakiolåmpotilassa, 3 5 kunnes uusi jatkuvatoiminen tila on saavutettu, eli: Μ,,ίΜ^) M,, (Myj,,) · Mst:n mukana muuttuu efektiivinen haihduttava pinta.In the extreme situation where M „= 0, the liquid evaporates accordingly when it is pumped upwards of the hybridizer while the porous material 25 remains dry. In this case, no buffer is formed inside the evaporator at all, and the evaporator does not compensate for short-term fluctuations in pumping. For this reason, it is advantageous to select the temperature at which the M * is suitably large as the operating point of the evaporator. When the temperature of the heater is changed while the pump-30 break rate remains constant, the evaporator enters a new continuous state that differs from the first in that M „(T2) & M„ (T,), provided that the working range of the evaporator is maintained. During the change phase & M * ,,. Mst also changes when the pumping rate is changed at constant temperature, 3 5 until a new continuous mode is reached, ie: Μ ,, ίΜ ^) M ,, (Myj ,,) · Mst changes with the effective evaporating surface.

9 914229 91422

Jatkuvuustilan erityisenå etuna on se, etta koska kaikki syotettåva neste menee kaasufaasiin, tislautumista ei tapah-du. Niinpå keksinnon mukaisesti toimittaessa voidaan kaasu-faasiseoksia saada aikaan sekoittamalla vastaavat nesteet 5 keskenåån ja haihduttamalla seos. Jatkuvuustilan ansiosta hoyryn koosturnus on sama kuin nesteseoksen myos siina tapauk-sessa, etta kyseessa ei ole atseotrooppinen nesteseos. Tama antaa tunnettua tekniikkaa huomattavasti suuremmat vaihtelu-mahdollisuudet ohutkalvojen valmistuksessa.A particular advantage of the continuity mode is that since all the liquid to be fed enters the gas phase, no distillation takes place. Thus, in carrying out the invention, gas-phase mixtures can be obtained by mixing the respective liquids and evaporating the mixture. Due to the state of continuity, the co-rot of the steam is the same as that of the liquid mixture, except that it is not an azeotropic liquid mixture. This gives the prior art much greater variability in the production of thin films.

1010

Keksintoa ryhdytaan seuraavassa lahemmin tarkastelemaan oheisten piirustusten avulla, jolloin kuviossa 1 on esitetty keksinnon mukaisen annostelulaitteen periaatekaavio, 15 kuviossa 2 on sivukuvantona esitetty keksinnosså kaytettavån hoyrystimen halkileikkaus, kuviossa 3 on esitetty kuvion 1 mukaisen hoyrystimen kokeel-lisesti maaritetyt ^^„(T) kåyrat vedelle ja etanolille ja naiden seoksille, 20 kuviossa 4 on esitetty normaali-ilmanpaineessa (atmosfaåri- sessa paineessa) toimivan CVD-laitteiston kaaviokuva ja kuviossa 5 on esitetty kaavio, josta kåy ilmi, miten APCVD-laitteen suuttimiin syotetaån reagensseja keksinnon mukaisen menetelmån avulla.The invention will now be examined in more detail with the aid of the accompanying drawings, in which Fig. 1 shows a schematic diagram of a dispensing device according to the invention, Fig. 2 shows a side view of a evaporator used in the invention, Fig. 3 shows experimentally configured evaporators and ethanol and mixtures thereof, Fig. 4 is a schematic diagram of a normal air pressure (atmospheric pressure) CVD apparatus, and Fig. 5 is a diagram showing how reagents are fed to the nozzles of an APCVD apparatus by the method of the invention.

2525

Kuviossa 1 on esitetty keksinnon mukaiseen annostelu- ja hoyrystysjarjestelmaan kuuluvat osat: kaasunsyottojårjestelma 1 kantajakaasulle, astia 2 nestemåiselle reagenssille, tark-kaan annosteluun yltava pumppu 3 seka hoyrystin 4.Figure 1 shows the components of a dosing and evaporation system according to the invention: a gas intake system 1 for a carrier gas, a vessel 2 for a liquid reagent, a pump 3 for precise dosing and an evaporator 4.

3030

Kantajakaasuna kaytetaan samaa kaasua kuin reaktiossa, edullisesti jotain hoyrystettavan reagenssin suhteen inerttia kaasua, kuten typpea tai argonia, tai ilmaa.The carrier gas used is the same gas as in the reaction, preferably a gas inert to the reagent to be vaporized, such as nitrogen or argon, or air.

Soveltuen voidaan myos kSyttaa reagenssikaasua, kuten 35 happea. Kaasu johdetaan hoyrystimeen 4, johon se voidaan syottåå alipaineisena tai normaali-ilmanpaineessa. Edullisesti kaasu syotetaan hoyrystimeen samassa paineessa, joka 10 vallitsee reaktorissa. Tarvittaessa nestemaisen reagenssin astia 2 pidetåan inertin kaasun ilmakehån alla reagenssin hapettumisen estamiseksi.If appropriate, a reagent gas such as 35 oxygen can also be used. The gas is led to the evaporator 4, to which it can be fed under reduced pressure or at normal atmospheric pressure. Preferably, the gas is fed to the evaporator at the same pressure prevailing in the reactor. If necessary, the liquid reagent vessel 2 is kept under an atmosphere of inert gas to prevent oxidation of the reagent.

5 Annostelusysteemin kontrolli perustuu siihen, ettå jatkuvuus- tilassa hbyrystimesta 4 poistuu sama maårå ainetta hoyrynå, kuin mitå siihen nesteena pumpataan. Pumpun 3 såådettåvyys ja tarkkuus ovat reagenssisyoton perusparametrejå. Pumppuna 3 kåytetaån edullisesti peristalttista pumppua tai måntåpump-10 pua, jonka pumppausnopeutta saåtamållS voidaan kontrolloida hoyrystettåvan ja hoyryna reaktoriin syotettåvån reagenssin -mååråa. Syottamalla samanaikaisesti nestetta kahdesta tai useammasta nestelåhteestå ja yhdiståmållå nestevirrat ennen hoyrystinta nesteseokseksi voidaan pumppujen avulla varsin 15 tarkkaan saataa muodostuvan nesteseoksen - ja siten hoy- ryseoksen - koostumus.5 The control of the dosing system is based on the fact that in the continuity state the same amount of substance is removed from the hybridizer 4 as steam as what is pumped into it as a liquid. The controllability and accuracy of pump 3 are basic parameters of the reagent supply. As the pump 3, a peristaltic pump or a piston pump-10 is preferably used, the pumping speed of which can be controlled by controlling the amount of reagent to be vaporized and fed to the reactor as vapor. By simultaneously feeding liquid from two or more liquid sources and combining the liquid streams before the evaporator into a liquid mixture, the composition of the resulting liquid mixture - and thus the vapor mixture - can be obtained quite accurately by means of pumps.

Neste muuttuu jatkuvuustilassa (steady state) olevassa hoy-rystinelementissS 4 hoyryksi ja poistuu kantajakaasun mukana 20 samalla nopeudella kuin sita pumppaamalla syotetåån. Hoyryn koostumus on sama kuin nesteen. Tåssa ratkaisussa annostelun rnaara ja sen tarkkuus on riippuvainen syotetyn nesteen vir-tausnopeudesta. Mahdolliset vaihtelut virtauksessa voidaan tasoittaa.In the steady state, the liquid is converted to vapor in the steady state element 4 and exits with the carrier gas 20 at the same rate as it is pumped. Hoyry has the same composition as a liquid. In this solution, the dosing line and its accuracy depend on the flow rate of the introduced liquid. Any variations in flow can be smoothed out.

2525

Kuviossa 2 on esitetty hoyrystimen eras edullinen sovellutus-muoto. Hoyrystin kåsittaa putkenomaisen hoyrystystilan 5, jonka ylaosaan on muodostettu nesteen syottoyhde 6 ja eril-lisena haarana kantajakaasun syottoyhde 7. Hoyrystystilan 30 alaosaan on sovitettu hbyrystetyn reagenssin poistoyhde 8.Figure 2 shows a preferred embodiment of an evaporator. The evaporator comprises a tubular evaporation space 5, in the upper part of which a liquid supply connection 6 is formed and as a separate branch a carrier gas supply connection 7. A lowering connection 8 of the hybridized reagent is arranged in the lower part of the evaporation space 30.

Hoyrystystilaan 5 on samankeskisesta jårjestetty sintraamat-tomasta keraamisesta materiaalista, kuten borosilikaattila-sista, valmistettu kappale 9, joka alaosastaan on tuettu hoyrystystilan 5 sisapintaa vasten ja ylaosastaan on yhdis-35 tetty nesteen syottoyhteeseen 6 sovitettuun syottoputkeen 10.A body 9 made of a concentric non-sintered ceramic material, such as a borosilicate glass, is arranged in the vapor space 5, the lower part of which is supported against the inner surface of the vapor space 5 and is connected at its top to an inlet pipe 10 arranged in the liquid supply connection 6.

Kappale 9 on rakenteeltaan huokoinen ja sen huokosten koko on noin 10 nm. Syottoputki on sovitettu huokoisen sauvan yla- 11 91422 pååtyyn muodostettuun aukkoon.Body 9 is porous in structure and has a pore size of about 10 nm. The inlet pipe is fitted in an opening formed in the upper end of the porous rod.

Tåsså hoyrystinmallissa hoyrystettåvå neste pumpataan huokoi-seen materiaaliin 9, johon se imeytyy. Kantajakaasu syotetaan 5 yhteen 7 kautta hoyrystystilaan, jossa se virtaa huokoisen materiaalin ohi ja kuljettaa hoyrystetyn aineen mukanaan kåyttokohteeseen. Jatkuvatoimisessa tilassa syntyy huokoisen materiaalin sisåan pituus- ja såteettåissuuntaiset "mårkyys" gradientit, kuten ylla selostettiin.In this evaporator model, the liquid to be evaporated is pumped into the porous material 9, into which it is absorbed. The carrier gas is fed 5 through 7 to the evaporation space, where it flows past the porous material and transports the vaporized substance with it to the application. In the continuous state, longitudinal and radial "wetness" gradients are generated inside the porous material, as described above.

1010

Hoyrystystilan 5 ympårille on jårjestetty såhkovastuslåmmit-timet 12 låmpoenergian tuomiseksi jårjestelmåån. Låmmittimet on sovitettu låmmittamaån huokoisen sauvakappaleen 9 sen koko matkalta. Tavoitteena on, etta kappaleeseen siirrettåisiin 15 riiittava maåra lampoenergiaa nestemaisen reagenssin hoyrys- tamiseksi.Electric resistance heaters 12 are arranged around the evaporation space 5 to introduce thermal energy into the system. The heaters are adapted to heat the porous rod piece 9 along its entire path. The aim is to transfer a sufficient amount of thermal energy to the body to vaporize the liquid reagent.

Esimerkki 20 Seuraavassa tarkastellaan keksinnon mukaisen menetelmån soveltamista lapinåkyvan johdeohutkalvon, fluorilla seostetun tinaoksidin (Sn02;F) , kasvatukseen APCVD-prosessilla (Atmospheric Pressure Chemical Vapor Deposition). Prosessissa kaytetyt nestemaiset reagenssit ovat tinatetrakoridi (SnCl4) , 25 metanoli (CH30H) ja vesi (H20) . Prosessissa kåytetaan lisaha- pettimena happea (02) ja kaasuseoksen laimentamiseen sekå kantajakaasuna typpea (N2). Fluoriseostukseen kåytetaan triklorobromometaanikaasua (CF3Br) .Example 20 The application of the method according to the invention to the growth of a flattening conductive thin film, fluorine-doped tin oxide (SnO 2; F), by the APCVD (Atmospheric Pressure Chemical Vapor Deposition) process is considered below. The liquid reagents used in the process are tin tetrachloride (SnCl4), methanol (CH3OH) and water (H2O). The process uses oxygen (O 2) as an additional oxidant and nitrogen (N 2) as a carrier gas to dilute the gas mixture. Trichlorobromomethane gas (CF3Br) is used for the fluorine doping.

30 Kuviossa 4 on esitetty APCVD-laitteisto kaaviomaisesti. Lait- teen pååosat ovat kuljetinhihna 21, jonka påålle kasvatus-alustat 22 ladotaan, uunikammio 23 ja lammittimet 24 sekå reagenssisuuttimet 25, joilla kaasumaiset låhtoaineet tuodaan kontaktiin kasvatusalustojen 22 kanssa. Ohutkalvon kasvu 35 tapahtuu suuttimien alla.Figure 4 schematically shows the APCVD apparatus. The main parts of the device are a conveyor belt 21 on which the growing media 22 is stacked, an oven chamber 23 and heaters 24, as well as reagent nozzles 25 for contacting the gaseous starting materials with the growing media 22. The growth of the thin film 35 takes place under the nozzles.

APCVD-laitteessa kuljetushihnalle 21 ladotut lasisubstraatit 12 22 liikkuvat hiljalleen reagenssisuuttimien 25 ohi uunissa 24, jonka låmpotila on tyypillisesti n. 500 °C. Tinaoksidin APCVD-kasvatuksessa nåitå suuttimia 25 on tavallisesti kaksi, jolloin ohutkalvon ominaisuuksien råatalointimahdollisuudet 5 lisaåntyvåt, koska suuttimissa voidaan ajaa erilaisia kasva- tusprosesseja. Laitteen kapasiteetti on myos suurempi kahdel-la suuttimella.In the APCVD, the glass substrates 12 22 stacked on the conveyor belt 21 slowly move past the reagent nozzles 25 in an oven 24, which typically has a temperature of about 500 ° C. In the APCVD growth of tin oxide, there are usually two of these nozzles 25, which increases the possibilities of improving the properties of the thin film, since different growth processes can be run in the nozzles. The capacity of the device is also higher with two nozzles.

Hihnan 21 etenemisnopeus on tyypillisesti n. 25 cm/min.The forward speed of the belt 21 is typically about 25 cm / min.

10 Syotettyjen kemikaalien maåråt ovat esimerkin luonteisesti:10 The levels of chemicals introduced are exemplary:

Suutin 1 SnCl4 15 ml/h H20 3 0 ml/h CHjOH 25 ml/h 15 02 150 Sl/h N2 200 sl/hNozzle 1 SnCl4 15 ml / h H 2 O 3 0 ml / h CH 2 OH 25 ml / h 15 02 150 Sl / h N2 200 sl / h

Suutin 2 SnCl4 60 ml/h H2o 30 ml/h 2 0 02 2 0 0 sl/h CF3Br 60 sl/h N2 200 sl/hNozzle 2 SnCl4 60 ml / h H2o 30 ml / h 2 0 02 2 0 0 sl / h CF3Br 60 sl / h N2 200 sl / h

Kantajakaasuna ja reagenssiseoksen laimentamiseen tarvittavan 25 typen maara riippuu uunin 24 geometriasta ja dimensioista.The amount of nitrogen required as a carrier gas and to dilute the reagent mixture depends on the geometry and dimensions of the furnace 24.

Ylla olevilla reagenssisyotoilla kasvaa 500 °C:ssa 30 cm:n levyiselle alustalle 1 μιη:η paksuinen Sn02;F-kalvo n. 25 cm:n matkalle minuutissa. Kalvon neliovastus on 10 - 20 Ω/nelid ja pinnan voimakkaan tekstuurin vuoksi se sirottaa tehokkaasti 30 valoa nayttåen visuaalisesti maitomaisen samealta.With the above reagent feeds, a 1 μιη: η thick SnO 2; F film grows at 500 ° C on a 30 cm wide substrate at a distance of about 25 cm per minute. The film has a square resistivity of 10 to 20 Ω / nelid and, due to the strong texture of the surface, effectively scatters 30 lights, visually displaying a milky haze.

Kuviossa 5 on kaavamaisesti esitetty miten yo. prosessi on toteutettu edullisesti kayttaen hyvaksi keksinnon mukaista nestemaisten kemikaalien hoyrystys- ja annostelumenetelmåå.Figure 5 schematically shows how yo. the process is preferably carried out utilizing the method of evaporation and dosing of liquid chemicals according to the invention.

Ylla olevat nestekemikaalimaarat ovat niin pieniå, ettå niiden pumppaaminen hoyrystimeen tasaisena virtauksena on 35 13 91422 pisaroita muodostavien pintajånnitysvoimien vuoksi vaikeaa. Edella kuvatussa hoyrystimessa 5-12, jota kuviossa 5 on merkitty viitenumerolla 26, kaytetty huokoinen materiaali 8 imee nesteen itseensa ja estaa nain pisaranmuodostuksen ja 5 nesteen låpivirtauksen aiheuttamasta vaihtelua hoyrystimen ulostuloon.The above liquid chemical amounts are so small that it is difficult to pump them into the evaporator in a constant flow due to the surface tension forces forming the droplets. The porous material 8 used in the evaporator 5-12 described above, denoted by reference numeral 26 in Fig. 5, absorbs the liquid itself and thus prevents variation in the evaporator outlet caused by the formation of droplets and the flow of liquid 5.

Toteutukseen tarvitaan enimmillåan 5 annostelupumppua 27, 5 hoyrystinelementtia 26, 8 virtausmittaria 28 tai massavir-10 tasåadinta ja 3 kemikaalisailiota 29; lisåksi tietysti sopi- vat letkut kaasuille ja nestemaisille aineille. Suuttimia on kaksi (31 ja 32). Jos suuttimeen 31 pumpataan erillisten vesi- ja metanolilShteiden sijasta niiden sopivassa suhteessa olevaa seosta, voidaan jarjestelmasta poistaa 1 hdyrystin, 1 15 typpivirtausmittari/massavirtasaadin. Tama on mahdollista tehdå, koska hoyrystin toimii jatkuvuustilassa, jossa tislau-tumisilmiot eivat muuta ulostulevan seoksen koostumusta verrattuna sisaansyotettyyn.A maximum of 5 dosing pumps 27, 5 evaporator elements 26, 8 flow meters 28 or mass flow 10 rectifiers and 3 chemical containers 29 are required for implementation; in addition, of course, hoses for gases and liquids are suitable. There are two nozzles (31 and 32). If a mixture of water and methanol in a suitable ratio is pumped into the nozzle 31 instead of separate water and methanol sources, 1 evaporator, 1 15 nitrogen flow meter / mass flow precipitate can be removed from the system. This is possible because the evaporator operates in a continuity state where the distillation phenomena do not change the composition of the effluent mixture compared to that introduced.

20 On edullista jårjeståå keksinnon mukainen hoyrystin CVD- laitteiston kaasunsyottosuuttimen integroiduksi osaksi, koska talloin vakiolampoisen suuttimen hukkalampoenergiaa voidaan kohdistaa huokoiseen materiaaliin nestemaisen reagenssin hoyryståmiseksi. TSlla ratkaisulla voidaan korvata hoyrys-25 timen erilliset låmmityselimet.It is advantageous to provide the evaporator according to the invention as an integrated part of the gas intake nozzle of the CVD apparatus, since the waste lamp energy of the constant-lamp nozzle can then be applied to the porous material to evaporate the liquid reagent. This solution can replace the separate heating elements of the hoist-25 timmer.

Claims (12)

1. Forfarande for matning av våtskeformiga reagenser till en 5 kemisk reaktor, i vilken reagenserna befinner sig i ångfas, enligt vilket forfarande ett på forhånd valt materialflode av reagensen inmatas i en evaporator (4), i vilken reagensen forångas, och dårefter 10. leds ångan till en kemisk reaktor, dår reagensen omsåtts med det substrat eller andra utgångsåmnen som finns i reaktorn, kånnetecknat av att man låter reagensen sugas upp i ett porost material 15 (9) i evaporatorn och tillfor reagensen i det porosa materialet det erforderliga ångbildningsvårmet, forångningsanordningen (4) opereras i stationårt tillstånd (steady state -tillstånd), varvid våtskans volymflode och den mångd ångbildningsvårme som till-20 fors det porosa materialet anpassas till varandra, så att det forångas åtminstone i genomsnitt lika mycket åmne från det porosa materialet som det tillfors denna och evaporatorn (4) tillfors en våtskeblandning bestående 25 av åtminstone två reagenser, varvid man med evapora torn, som fungerar i stationårt tillstånd, producerar en ånga som till sammansåttningen åtminstone våsentli-gen motsvarar sammansåttningen hos våtskebiandningen.A process for feeding liquid reagents to a chemical reactor in which the reagents are in the vapor phase, according to which a preselected material flow of the reagents is fed into an evaporator (4), in which the reagents are evaporated, and then 10 is conducted. the vapor of a chemical reactor, when the reagents are reacted with the substrate or other starting substances contained in the reactor, characterized by allowing the reagents to be sucked up into a porous material (9) in the evaporator and to the reagents in the porous material the required vaporization heat, the evaporator; (4) is operated in a stationary state, the liquid flow volume and the amount of vapor heat supplied to the porous material being adapted to each other so that at least as much vapor is evaporated from the porous material as it is supplied. this and the evaporator (4) are supplied with a liquid mixture of at least t Wave reagents, whereby with evapora towers operating in stationary state, produce a vapor which at least substantially corresponds to the composition of the liquid mixture. 2. Forfarande enligt krav 1, kånnetecknat av att volymflådet hos den våtskeformiga reagensen anpassas att åtminstone approximativt motsvara den mångd forångad reagens som per tidsenhet matas in i reaktorn. 352. A method according to claim 1, characterized in that the volume area of the liquid reagent is adapted to at least approximately correspond to the amount of vaporized reagent fed into the reactor per unit time. 35 3. F6rfarande enligt krav 1 eller 2, kånneteck nat av att volymen hos det porosa materialet (9) våljs på sådant sått, att något genomflode av den tillforda våtskan 18 inte kommer åt att ske vid ifrågavarande temperatur.Process according to Claim 1 or 2, characterized in that the volume of the porous material (9) is selected in such a way that no throughput of the required liquid 18 will occur at the temperature in question. 4. Forfarande enligt krav 3, kånnetecknat av att kapaciteten hos det porosa materialet (9) okas genom 5 okning av vårmeflodet som riktas mot materialet.4. A method according to claim 3, characterized in that the capacity of the porous material (9) is increased by increasing the heat flow directed towards the material. 5. Forfarande enligt något av de foregående kraven, vid vilket man anvånder ett porost material som år utformat till ett långstråckt stycke, kånnetecknat av att det 10 porosa materialet (9) hålles våsentligen i lodråt stållning, varvid våtskeflddet fors till materialets ovre del och får sprida sig genom materialet under inverkan av tyngdkraften respektive de fysikaliska krafter som verkar mellan våtskan och det porosa materialet. 15A method according to any one of the preceding claims, wherein a porous material formed into an elongate piece is used, characterized in that the porous material (9) is held substantially in vertical position, whereby the liquid field is fed to the upper part of the material and allowed spread through the material under the influence of gravity and the physical forces acting between the liquid and the porous material. 15 6. Forfarande enligt något av de foregående kraven, kånnetecknat av att såsom porost material (9) anvånds ett osintrat keramiskt material eller grafit.Process according to one of the preceding claims, characterized in that as porous material (9) an unsintered ceramic material or graphite is used. 7. Anordning for matning av våtskeformiga reagenser till en kemisk reaktor, i vilken reagenserna befinner sig i ångfas, omfattande åtminstone en kålla (2) for en vatskeformig reagens, en till sagda kålla ansluten pump (3) for uppsug- 25 ning av onskad mångd våtskeformig reagens från kållan, en till trycksidan av pumpen (3) ansluten evaporator (4) for forångning av våtskeflodet från pumpen, vilken evaporator år ansluten till den kemiska reaktorn for inmatning av reagenserna i ångfas i reaktorn, 30 kånnetecknad av att evaporatorn (4) omfattar ett forångningsrum (5), som år forsett med ett inlopp (6) for den våtskeformiga reagensen, ett inlopp (7) for en bårargas samt ett utlopp (8) for den forångade reagensen, 35. ett i forångningsrummet (5) anordnat stycke (9) av ett våtbart, porost material, vilket står i kontakt med den våtskeformiga reagensens inlopp (6), och 19 91422 en vårmeenergikålla (12) anordnad i samband med for-ångningsrummet (5) for overforing av varme till det porosa stycket for forångning av den våskeformiga reagens som letts till stycket. 5Apparatus for supplying liquid reagents to a chemical reactor, wherein the reagents are in the vapor phase, comprising at least one cold (2) for a liquid reagent, a said cold connected pump (3) for aspirating the desired amount liquid reagent from the cold, an evaporator (4) connected to the pressure side of the pump (3) for evaporation of the liquid flow from the pump, which evaporator is connected to the chemical reactor for feeding the vapor phase reagents into the reactor, characterized by the evaporator (4) comprises a vaporization chamber (5) provided with an inlet (6) for the liquid reagent, an inlet (7) for a carrier gas and an outlet (8) for the vaporized reagent, a piece arranged in the vapor chamber (5) (9) of a wettable porous material which contacts the inlet (6) of the liquid reagent and a heat energy source (12) arranged in conjunction with the evaporator compartment (5) applying heat to the porous piece to evaporate the liquid reagent which has been passed to the piece. 5 8. Anordning enligt krav 7, i vilken evaporatorn (4) år fo-renad med en kålla (1) for bårargas, varvid gas kan inmatas från kållan till evaporatorn, så att den forångade reagensen kan foras vidare från evaporatorn till en kemisk reaktor 10 (21 - 25), kånnetecknad av att det porosa styc ket (9) år anordnat i forångningsrummet på sådant sått, att det mellan stycket (9) och forångningsrummets (5) vågg bildas en i forbindelse med gasutloppet stående gasflodeskanal, till vilken den reagens som forångas från sagda stycke (9) strom-15 mar.Apparatus according to claim 7, in which the evaporator (4) is provided with a cold (1) for carrier gas, wherein gas can be fed from the cold to the evaporator, so that the evaporated reagent can be passed from the evaporator to a chemical reactor. (21 - 25), characterized in that the porous piece (9) is arranged in the evaporation chamber in such a way that a gas-flow channel adjacent the gas outlet (5) is formed between the piece (9) and the evaporation chamber (5). evaporated from said piece (9) streams. 9. Anordning enligt krav 7 eller 8, kånnetecknad av att det porosa stycket (9) består av ett keramiskt eller ett mineraliskt material eller grafit, med en porstorlek på 20 0,1 till 100 nm, fortrådesvis ca 1 till 30 nm.Device according to claim 7 or 8, characterized in that the porous piece (9) consists of a ceramic or a mineral material or graphite, with a pore size of 0.1 to 100 nm, preferably about 1 to 30 nm. 10. Anordning enligt något av kraven 7-9, kånnetecknad av att det porosa stycket år utformat till en långstråckt stav (9), som uppvisar ett våsentligen cirkulårt 25 tvårsnitt och vårs långdaxel år inråttad i åtminstone appro- ximativt lodråt stållning, varvid inloppet (6) for den våts-keformiga reagensen år forenad med den ovre ånden av stycket.Device according to any one of claims 7-9, characterized in that the porous piece is formed into an elongated rod (9) which has a substantially circular cross-section and the longitudinal axis of the spring is inclined in at least approximate vertical steel, wherein the inlet ( 6) for the liquid reagent is associated with the upper spirit of the piece. 11. Anordning enligt något av kraven 7-10, kånne- 30 tecknad av att vårmeenergikållan består av vårmemot- stånd (12) anordnade omkring forångningsrummet (5).Device according to any one of claims 7-10, characterized in that the heat energy source consists of heat resistors (12) arranged around the evaporation chamber (5). 12. Anordning enligt något av kraven 7-10, kånnetecknad av att evaporatorn (4) år integrerad med 35 gasmatningsmynstyckena hos en CVD-anlåggning, varvid vår- meenergin från munstyckena kan riktas mot det porosa materialet .12. Device according to any of claims 7-10, characterized in that the evaporator (4) is integrated with the gas supply nozzles of a CVD system, whereby the heat energy from the nozzles can be directed towards the porous material.
FI922852A 1992-06-18 1992-06-18 Process and apparatus for supplying liquid reagents to a chemical reactor FI91422C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FI922852A FI91422C (en) 1992-06-18 1992-06-18 Process and apparatus for supplying liquid reagents to a chemical reactor
FR9307243A FR2692597A1 (en) 1992-06-18 1993-06-16 Introducing liq. phase reactants into reaction chamber - by passing liq. into vaporiser contg. microporous packing then transporting vapour to reactor using carrier gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI922852A FI91422C (en) 1992-06-18 1992-06-18 Process and apparatus for supplying liquid reagents to a chemical reactor
FI922852 1992-06-18

Publications (4)

Publication Number Publication Date
FI922852A0 FI922852A0 (en) 1992-06-18
FI922852A FI922852A (en) 1993-12-19
FI91422B FI91422B (en) 1994-03-15
FI91422C true FI91422C (en) 1994-06-27

Family

ID=8535501

Family Applications (1)

Application Number Title Priority Date Filing Date
FI922852A FI91422C (en) 1992-06-18 1992-06-18 Process and apparatus for supplying liquid reagents to a chemical reactor

Country Status (2)

Country Link
FI (1) FI91422C (en)
FR (1) FR2692597A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6195504B1 (en) 1996-11-20 2001-02-27 Ebara Corporation Liquid feed vaporization system and gas injection device
US6635114B2 (en) 1999-12-17 2003-10-21 Applied Material, Inc. High temperature filter for CVD apparatus
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6765178B2 (en) 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6951804B2 (en) 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6660126B2 (en) 2001-03-02 2003-12-09 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6734020B2 (en) 2001-03-07 2004-05-11 Applied Materials, Inc. Valve control system for atomic layer deposition chamber
US7211144B2 (en) 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
US6916398B2 (en) 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US6729824B2 (en) 2001-12-14 2004-05-04 Applied Materials, Inc. Dual robot processing system
US6620670B2 (en) 2002-01-18 2003-09-16 Applied Materials, Inc. Process conditions and precursors for atomic layer deposition (ALD) of AL2O3
US6998014B2 (en) 2002-01-26 2006-02-14 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US7279432B2 (en) 2002-04-16 2007-10-09 Applied Materials, Inc. System and method for forming an integrated barrier layer
KR100877020B1 (en) * 2005-03-29 2009-01-07 가시오게산키 가부시키가이샤 Vaporizing device and liquid absorbing member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076866A (en) * 1975-03-30 1978-02-28 Massachusetts Institute Of Technology Method of growing films by flash vaporization
JPS58143522A (en) * 1982-02-19 1983-08-26 Matsushita Electric Ind Co Ltd Liquid gasifying apparatus
DE8910733U1 (en) * 1989-09-08 1990-04-12 Hussla, Ingo, Dr., 6450 Hanau, De
US5204314A (en) * 1990-07-06 1993-04-20 Advanced Technology Materials, Inc. Method for delivering an involatile reagent in vapor form to a CVD reactor

Also Published As

Publication number Publication date
FI922852A (en) 1993-12-19
FR2692597A1 (en) 1993-12-24
FI91422B (en) 1994-03-15
FI922852A0 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
FI91422C (en) Process and apparatus for supplying liquid reagents to a chemical reactor
US7497420B2 (en) Safe liquid source containers
KR101691374B1 (en) Method and apparatus for gas delivery
US11926894B2 (en) Reactant vaporizer and related systems and methods
US6123767A (en) Method and apparatus for feeding a gas for epitaxial growth
US7201942B2 (en) Coating method
CN106661719B (en) For generating the device and method of steam for CVD PVD device
CN103930589B (en) Gas-phase depositing materials source and manufacture method thereof
JP2003514992A (en) Apparatus and method for transporting precursor vapor from low vapor pressure liquid source to CVD chamber
NO311290B1 (en) Method and apparatus for continuous sterilization of surfaces
WO2003047735A1 (en) High flow rate bubbler system and method
CN101352660A (en) Device for formulating low concentration gas and formulating method
CN103732786A (en) Vapor deposition system and supply head
JP2005522869A (en) Supply of raw material gas
KR20010028415A (en) Bubbler
JP2005520687A (en) Thin film deposition process and apparatus on a substrate
CN2539749Y (en) Evaporator for chemical vapour-phase deposition proplastid
JP2005065882A (en) Vaporizer of sterilizing liquid
JP2002346372A (en) Apparatus and method for evaporating and feeding liquid
WO2006009872A1 (en) Direct injection chemical vapor deposition method
US7488452B2 (en) System for performing experiments, in particular for high throughput experimentation
JP2008212884A (en) Liquid concentrator
CN211412037U (en) Precursor conveying device suitable for chemical vapor deposition method
CN110643975B (en) Evaporation and transportation device for metal organic chemical source liquid
CN205188435U (en) Chemical vapor deposition device

Legal Events

Date Code Title Description
BB Publication of examined application
MM Patent lapsed