FI124819B - Menetelmä ja laite sähkökäyttöjärjestelmän energiatehokkuuden maksimoimiseksi - Google Patents

Menetelmä ja laite sähkökäyttöjärjestelmän energiatehokkuuden maksimoimiseksi Download PDF

Info

Publication number
FI124819B
FI124819B FI20126222A FI20126222A FI124819B FI 124819 B FI124819 B FI 124819B FI 20126222 A FI20126222 A FI 20126222A FI 20126222 A FI20126222 A FI 20126222A FI 124819 B FI124819 B FI 124819B
Authority
FI
Finland
Prior art keywords
torque
motor
parameter
data points
electric drive
Prior art date
Application number
FI20126222A
Other languages
English (en)
Swedish (sv)
Other versions
FI20126222A (fi
Inventor
Jukka Kalevi Tolvanen
Original Assignee
Abb Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Oy filed Critical Abb Oy
Priority to FI20126222A priority Critical patent/FI124819B/fi
Priority to DK13193407.7T priority patent/DK2736162T3/da
Priority to EP13193407.7A priority patent/EP2736162B1/en
Priority to US14/086,559 priority patent/US9216662B2/en
Priority to CN201310594336.0A priority patent/CN103840734B/zh
Publication of FI20126222A publication Critical patent/FI20126222A/fi
Application granted granted Critical
Publication of FI124819B publication Critical patent/FI124819B/fi

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Description

METHOD AND APPARATUS FOR MAXIMISING ENERGY EFFICIENCY OF AN ELECTRIC DRIVE SYSTEM
FIELD OF THE INVENTION
The present invention relates to electric drive systems, particularly to maximising energy efficiency of an electric drive system.
BACKGROUND INFORMATION
Manufacturers of present-day frequency converters can utilise various techniques in controlling behaviour of a torque of a motor in respect to a rotational speed of the motor in an electric drive application.
The applications can, for example, be divided into two groups on the basis of the behaviour of the load: linear torque/speed ratio applications and quadratic torque/speed ratio applications. In linear (torque/speed ratio) applications, the torque applied to the load is directly proportional to the rotational speed. In quadratic (torque/speed ratio) applications, the torque is proportional to the square of the rotational speed.
Some linear applications, such as constant-torque loads typically found in industrial applications, may require high dynamic performance. In order to be able to maintain a full torque output from the motor at various motor speeds, the drive provides the motor with a nominal flux.
However, in some quadratic applications, such as pump or fan applications, the dynamic performance requirements may not be as demanding as in linear applications. In such applications, the flux applicable by the drive can be limited, allowing thus more economic performance. On the other hand, this approach may result in a reduced dynamic performance of the drive, as there is a more limited flux capability available than with the nominal flux.
In some frequency converters, one of the above approaches, i.e. a more dynamic performance or a more economic performance, may be selected as the default performance approach, and the other may be selected by the user. The user does not, however, always select the more appropriate approach for the application in question.
BRIEF DISCLOSURE
An object of the present invention is to provide a method and an apparatus for implementing the method so as to alleviate the above disadvantages. The objects of the invention are achieved by a method and an arrangement which are characterized by what is stated in the independent claims. The preferred embodiments of the invention are disclosed in the dependent claims.
The disclosed method allows automatised selection of the operating mode, i.e. a dynamic performance mode where a nominal flux is used or an economic performance mode where the flux is limited in order to achieve energy savings.
The disclosed method first gathers a set of data points of torques at different rotational speeds. Then, the method calculates with which behaviour of the load, i.e. the linear behaviour or the quadratic behaviour, the data points have better correlation. On the basis of the result of this calculation, one of the two torque/speed behaviours is selected to represent the torque characteristics of the system, and the motor is controlled on the basis of the selected behaviour. As the behaviour is automatically determined, selecting a more appropriate operating mode does not have to rely on user input.
BRIEF DESCRIPTION OF THE DRAWINGS
In the following the invention will be described in greater detail by means of preferred embodiments with reference to the attached drawings, in which
Figure 1 illustrates linear and quadratic behaviour of a torque in respect to a rotational speed;
Figure 2 illustrates a flowchart of an exemplary implementation of the disclosed method; and
Figure 3 illustrates an apparatus for maximising energy efficiency of an electric drive system comprising an electric motor and a load.
DETAILED DISCLOSURE
The present disclosure discloses a method for maximising energy efficiency of an electric drive system comprising an electric motor and a load. The disclosed method allows automatic detection of different behaviours of torque of the motor in respect to a rotational speed of the motor, i.e. detection of different torque/speed ratios.
In the disclosed method, the torque characteristics of the system may be selected from two types of behaviour: linear behaviour and quadratic behaviour of the torque in respect to the rotational speed.
Figure 1 illustrates the linear and quadratic system behaviour of a torque in respect to a rotational speed. The linear behaviour (dotted line) represents a situation where the torque T is directly proportional to the rotational speed f
Figure FI124819BD00041
(1) where a is a coefficient which represents the relation between the torque and the rotational speed, and b represents a constant torque which is independent from the rotational speed.
The quadratic behaviour (dashed line) represents a situation where the torque is proportional to the square of the rotational speed f
Figure FI124819BD00042
(2)
Again, a represents the relation between the torque and the rotational speed, and b represents a constant torque which is independent from the rotational speed.
In order to be able to maximise the energy efficiency, the disclosed method automatically determines torque characteristics of the system in question, i.e. which of Equations (1) and (2) better describes the system. The motor can then be controlled on the basis of the determined torque characteristics.
Determining torque characteristics may, for example, comprise first determining the torque of the motor and the rotational speed of the motor. The torque and rotational speed may be directly measured, or they may also be estimated, for example, by a frequency converter controlling the motor. If information on how much power is supplied to the motor is available, the torque can be calculated from the power. The rotational speed may be determined from the output frequency of the frequency converter.
The disclosed method may then gather a plurality of data points, where each data point represents the torque of the motor at a rotational speed of the motor.
On the basis of the data points, a value for a first parameter may be calculated. The first parameter represents how much the data points deviate from the quadratic behaviour. A value for a second parameter is also calculated on the basis of the data points. The second parameter, in turn, represents how much the data points deviate from the linear behaviour. Then, the first parameter may be compared with the second parameter, and the torque characteristics may be determined on the basis of the comparison.
When the torque characteristics have been determined, the motor may be controlled on the basis of the determined torque characteristics. On the basis of the torque characteristics, the operating mode, i.e. the dynamic performance mode where the flux is not limited or the economic performance mode where the flux is limited in order to improve energy efficiency, can be chosen.
If the electric drive system is controlled on the basis of a torque reference, and if the electric drive can initially bet set to the economic performance mode, determining the torque characteristics can also be accomplished by monitoring the rate of change of the torque reference or the difference between the torque reference and the actual torque.
For example, the magnitude of the rate of change of the torque reference may first be determined. The magnitude may then be compared with a set limit, and if the magnitude exceeds the set limit, the electric drive can be set to the dynamic performance mode.
Alternatively, the torque of the motor may first be determined. The difference between the torque reference and the determined torque may then be determined and compared with a set limit. If the difference exceeds the set limit, the electric drive is set to the dynamic performance mode.
Figure 2 illustrates a flowchart of an exemplary implementation of the disclosed method. In the first step 21 the torque and the rotational speed are measured and data points are gathered.
In the second step 22, the value for a first parameter is calculated. Two equations are formed on the basis of two data points, for example (/,/) and (/2,/2). For each data point, the torque is represented by the square of the rotational speed multiplied by a first coefficient and incremented by a second coefficient. The equations for the two data points (/, /) and (/, /2) have the same coefficients asq and bsq:
Figure FI124819BD00051
(3) (4)
The values of the coefficients asq and bsq may then be solved as follows:
Figure FI124819BD00061
(5) (6)
On the basis of the coefficients asq and bsq and the rotational speed /3 at a third data point, an expected torque T3sq for the rotational speed in the third data may be calculated.
Figure FI124819BD00062
(7)
The difference between the expected torque T3sq and the torque T3 at the third data point may then be calculated, and the magnitude |J3 -T3sq\ of the difference may be used as the value of the first parameter.
In the third step 23, the value for a second parameter is calculated. Calculating the value for the second parameter in the third step 23 can be performed in a similar manner to that in the second step 22. Two equations are formed on the basis of two data points, for example {Thfi) and (Γ2,/2). For both data points, the torque is represented by the rotational speed multiplied by a first coefficient and incremented by a second coefficient. The equations for the two data points (Γι,/i) and (Γ2,/2) have the same coefficients aUn and bUn.
Figure FI124819BD00063
(8) (9)
Values of the coefficients aUn and bUn may be solved as follows:
Figure FI124819BD00064
(10) (11)
An expected torque T3!m for a rotational speed at the third data point is calculated on the basis of the coefficients aUn and bUn and the rotational speedf3 at the third data point:
Figure FI124819BD00071
(12)
The difference between the expected torque Τ3Ηη and the torque T3 at the third data point may then be calculated, and the magnitude |J3 -T3Un\ of the difference may be used as the value of the second parameter.
In the fourth step 24 in Figure 1, the first parameter is compared with the second parameter and the torque characteristics of the system are determined on the basis of the comparison. The behaviour, i.e the linear or quadratic torque/speed ratio, which better fits the data points may be selected as the system torque characteristics.
Finally, in fifth step 25, the motor is controlled on the basis of the determined torque characteristics.
Calculation of the first and the second parameter is not, however, limited to the above examples. In some applications, where accurate measurements are not easily obtained, the method of least squares may, for example, be used. For example, the data points may be fitted to Equations (1) and (2) by using the method of least squares and the torque characteristics to be used may then be selected on the basis of the best fit. On the other hand, the method of least squares is computationally somewhat more complex than the three-point curve fitting as disclosed in Equations (3) to (12).
Figure 3 illustrates an apparatus 31 for maximising energy efficiency of an electric drive system comprising an electric motor 32 and a load 33. The load 33 in Figure 3 is a fan which is rotated by the motor 32. The apparatus 31 in Figure 3 is a frequency converter which controls the motor 32 and implements the disclosed method. The frequency converter 31 automatically selects appropriate torque characteristics to be used, depending on the application. The torque characteristics in the frequency converter 31 may be selected from two types of behaviour: linear and quadratic behaviour of a torque of the motor in respect to a rotational speed of the motor.
The frequency converter 31 acts as means for determining a torque of the motor and a rotational speed of the motor. In Figure 3, it has internal estimates of said variables. The frequency converter 31 gathers a plurality of data points to its internal memory. Each data point represents the torque of the motor at a rotational speed of the motor.
The frequency converter 31 in Figure 3 comprises computing means, such as a microprocessor, a DSP, an FPGA, or an ASIC, which are used for calculating the value for a first and a second parameter on the basis of the data points. The first parameter represents how much the data points deviate from the quadratic behaviour of the torque, and the second parameter represents how much the data points deviate from the linear behaviour of the torque. The calculation of the values for the first parameter and the second parameter can, for example, be performed as disclosed in the exemplary implementation of Figure 2.
After calculating the first and the second parameter, the computing means of the frequency converter 31 compare the first parameter with the second parameter, and determine the torque characteristics on the basis of the comparison. The frequency converter 31 then controls the motor by using determined torque characteristics.
The apparatus for maximising the energy efficiency may also be an external device attached to a frequency converter. The apparatus may determine the behaviour of the system as disclosed above and may then set the frequency converter to an appropriate operating mode, i.e. the dynamic performance mode or the economic performance mode.
It will be obvious to a person skilled in the art that the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.

Claims (8)

1. Menetelmä sähkömoottorin (32), kuorman (33) ja moottoria oh¬jaavan taajuusmuuttajan (31) käsittävän sähkökäyttöjärjestelmän energia-tehokkuuden maksimoimiseksi, tunnettu siitä, että menetelmä käsittäävaiheet, joissa Käytetään taajuusmuuttajaa (31) määrittämään järjestelmän vään-tömomentin ominaiskäyrä, jossa vääntömomentin ominaiskäyrä valitaan kah¬desta käyttäytymistyypistä: moottorin (32) vääntömomentin lineaarinen tai neli-öllinen käyttäytyminen moottorin (32) pyörimisnopeuden suhteen, valitaan toimintatila määritetyn vääntömomentin ominaiskäyrän pe¬rusteella ja ohjataan moottoria (32) valitussa toimintatilassa.
2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä,että vääntömomentin ominaiskäyrän määrittämisvaihe käsittää vaiheet, joissa määritetään moottorin (32) vääntömomentti ja pyörimisnopeus,kerätään useita datapisteitä, jossa kukin datapiste kuvaa moottorin(32) vääntömomenttia moottorin (32) pyörimisnopeudella, lasketaan arvo ensimmäiselle parametrille datapisteiden perusteel¬la, jossa ensimmäinen parametri kuvaa kuinka paljon datapisteet poikkeavatvääntömomentin neliöllisestä käyttäytymisestä, lasketaan arvo toiselle parametrille datapisteiden perusteella, jossatoinen parametri kuvaa kuinka paljon datapisteet poikkeavat vääntömomentinlineaarisesta käyttäytymisestä, verrataan ensimmäistä parametria toiseen parametriin jamääritetään vääntömomentin ominaiskäyrä vertailun perusteella.
3. Patenttivaatimuksen 2 mukainen menetelmä, tunnettu siitä,että ensimmäisen parametrin arvon laskeminen käsittää vaiheet, joissa muodostetaan kaksi yhtälöä kahden datapisteen perusteella, jossavääntömomentti on kunkin datapisteen osalta pyörimisnopeuden neliö kerrot¬tuna ensimmäisellä vakiolla ja lisättynä toisella vakiolla, ja jossa molemmillayhtälöillä on samat vakiot, ratkaistaan vakioiden arvot, lasketaan oletettu vääntömomentti pyörimisnopeudelle kolmannes¬sa datapisteessä vakioiden ja kolmannen pisteen pyörimisnopeuden perusteel¬la, lasketaan oletetun vääntömomentin ja kolmannen datapisteenvääntömomentin välinen ero, käytetään eroa ensimmäisen parametrin arvona, jajossa toisen parametrin arvon laskeminen käsittää vaiheet, joissa muodostetaan kaksi yhtälöä kahden datapisteen perusteella, jossavääntömomentti on kunkin datapisteen osalta pyörimisnopeus kerrottuna en¬simmäisellä vakiolla ja lisättynä toisella vakiolla, ja jossa molemmilla yhtälöilläon samat vakiot, ratkaistaan vakioiden arvot, lasketaan oletettu vääntömomentti pyörimisnopeudelle kolmannes¬sa datapisteessä vakioiden ja kolmannen pisteen pyörimisnopeuden perusteel¬la, lasketaan oletetun vääntömomentin ja kolmannen datapisteenvääntömomentin välinen ero, käytetään eroa toisen parametrin arvona.
4. Patenttivaatimuksen 2 tai 3 mukainen menetelmä, tunnettusiitä, että vääntömomentti lasketaan määritetystä moottorille (32) syötetystätehosta.
5. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä,että sähkökäyttöjärjestelmää säädetään vääntömomentin perusteella, jossasähkökäyttö alustavasti laitetaan taloudellisen suorituskyvyn toimintatilaan,jossa vuota rajoitetaan energiasäästöjen aikaan saamiseksi, ja jossa vääntö-momentin määrittäminen käsittää vaiheet, joissa määritetään vääntömomenttiohjeen muutosnopeuden suuruus,verrataan muutosnopeuden suuruutta asetettuun raja-arvoon, ja jossuuruus ylittää asetetun raja-arvon, asetetaan sähkökäyttö dynaamisen suorituskyvyn toimintatilaan,jossa vuota ei rajoiteta.
6. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä,että sähkökäyttöjärjestelmää säädetään vääntömomentin perusteella, jossasähkökäyttö alustavasti laitetaan taloudellisen suorituskyvyn toimintatilaan,jossa vuota rajoitetaan energiatehokkuuden parantamiseksi, ja jossa vääntö-momentin määrittäminen käsittää vaiheet, joissa määritetään moottorin vääntömomentti, määritetään vääntömomenttiohjeen ja määritetyn vääntömomentinvälinen ero, verrataan eroa asetettuun raja-arvoon, ja jos suuruus ylittää asete¬tun raja-arvon, asetetaan sähkökäyttö dynaamisen suorituskyvyn toimintatilaan,jossa vuota ei rajoiteta.
7. Laite sähkömoottorin (32), kuorman (33) ja moottoria (32) ohjaa¬van taajuusmuuttajan (31) käsittävän sähkökäyttöjärjestelmän energiatehok¬kuuden maksimoimiseksi, tunnettu siitä, että laite käsittää välineet (31) järjestelmän vääntömomentin ominaiskäyrän määrit¬tämiseksi, jossa vääntömomentin ominaiskäyrä valitaan kahdesta käyttäyty-mistyypistä: moottorin vääntömomentin lineaarinen tai neliöllinen käyttäytymi¬nen moottorin pyörimisnopeuden suhteen ja välineet (31) toimintatilan valitsemiseksi määritetyn vääntömomentinominaiskäyrän perusteella.
8. Patenttivaatimuksen 7 mukainen laite, tunnettu siitä, että vä¬lineet (31) vääntömomentin ominaiskäyrän määrittämiseksi käsittävät välineet moottorin vääntömomentin ja pyörimisnopeuden määrittä¬miseksi, välineet useiden datapisteiden keräämiseksi, jossa kukin datapistekuvaa moottorin vääntömomenttia moottorin pyörimisnopeudella, välineet arvon laskemiseksi ensimmäiselle parametrille datapistei¬den perusteella, jossa ensimmäinen parametri kuvaa kuinka paljon datapisteetpoikkeavat vääntömomentin neliöllisestä käyttäytymisestä, välineet arvon laskemiseksi toiselle parametrille datapisteiden pe¬rusteella, jossa toinen parametri kuvaa kuinka paljon datapisteet poikkeavatvääntömomentin lineaarisesta käyttäytymisestä, välineet ensimmäisen parametrin vertaamiseksi toiseen parametriin,välineet vääntömomentin ominaiskäyrän määrittämiseksi vertailunperusteella ja välineet moottorin ohjaamiseksi määritetyn vääntömomentin omi¬naiskäyrän perusteella.
FI20126222A 2012-11-21 2012-11-21 Menetelmä ja laite sähkökäyttöjärjestelmän energiatehokkuuden maksimoimiseksi FI124819B (fi)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FI20126222A FI124819B (fi) 2012-11-21 2012-11-21 Menetelmä ja laite sähkökäyttöjärjestelmän energiatehokkuuden maksimoimiseksi
DK13193407.7T DK2736162T3 (da) 2012-11-21 2013-11-19 Fremgangsmåde og apparat til maksimisering af energieffektivitet af et elektrisk drivsystem
EP13193407.7A EP2736162B1 (en) 2012-11-21 2013-11-19 Method and apparatus for maximising energy efficiency of an electric drive system
US14/086,559 US9216662B2 (en) 2012-11-21 2013-11-21 Method and apparatus for maximizing energy efficiency of an electric drive system
CN201310594336.0A CN103840734B (zh) 2012-11-21 2013-11-21 使电驱动***的能量效率最大化的方法和设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20126222 2012-11-21
FI20126222A FI124819B (fi) 2012-11-21 2012-11-21 Menetelmä ja laite sähkökäyttöjärjestelmän energiatehokkuuden maksimoimiseksi

Publications (2)

Publication Number Publication Date
FI20126222A FI20126222A (fi) 2014-05-22
FI124819B true FI124819B (fi) 2015-02-13

Family

ID=49619822

Family Applications (1)

Application Number Title Priority Date Filing Date
FI20126222A FI124819B (fi) 2012-11-21 2012-11-21 Menetelmä ja laite sähkökäyttöjärjestelmän energiatehokkuuden maksimoimiseksi

Country Status (5)

Country Link
US (1) US9216662B2 (fi)
EP (1) EP2736162B1 (fi)
CN (1) CN103840734B (fi)
DK (1) DK2736162T3 (fi)
FI (1) FI124819B (fi)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106627254B (zh) * 2016-12-14 2019-03-22 大连民族大学 兼顾动力与能效的四轮独立驱动电动汽车力矩分配方法
CN107826119B (zh) * 2017-11-15 2019-11-22 康明斯天远(河北)科技有限公司 一种驾驶行为的全方位监控和评价方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239251A (en) 1989-06-30 1993-08-24 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Brushless doubly-fed motor control system
US5272429A (en) 1990-10-01 1993-12-21 Wisconsin Alumni Research Foundation Air gap flux measurement using stator third harmonic voltage and uses
JP2000217208A (ja) * 1999-01-21 2000-08-04 Tcm Corp モ―タ駆動式産業用車両のアクセル制御構造および制御方法
JP3818086B2 (ja) 2001-06-01 2006-09-06 株式会社日立製作所 同期モータの駆動装置
JP3864950B2 (ja) * 2003-11-18 2007-01-10 日産自動車株式会社 ハイブリッド変速機
US7192374B2 (en) * 2004-06-14 2007-03-20 Caterpillar Inc System and method for controlling a continuously variable transmission
KR100815307B1 (ko) * 2006-08-08 2008-03-19 현대자동차주식회사 하이브리드 차량의 동력전달 장치
US8138703B2 (en) 2007-11-04 2012-03-20 GM Global Technology Operations LLC Method and apparatus for constraining output torque in a hybrid powertrain system
JP5252372B2 (ja) 2008-10-01 2013-07-31 株式会社安川電機 同期電動機制御装置とその制御方法
JP5407322B2 (ja) * 2008-12-22 2014-02-05 トヨタ自動車株式会社 交流電動機の制御システム
US8232760B2 (en) * 2009-06-11 2012-07-31 Easton Corporation System and method of dynamic regulation of real power to a load
JP5623757B2 (ja) * 2010-02-23 2014-11-12 山洋電気株式会社 モータの制御方法及び装置
US8648555B2 (en) * 2011-02-28 2014-02-11 Deere & Company Method and system for controlling an electric motor at or near stall conditions

Also Published As

Publication number Publication date
US9216662B2 (en) 2015-12-22
DK2736162T3 (da) 2020-02-24
EP2736162A2 (en) 2014-05-28
EP2736162A3 (en) 2017-09-06
US20140142794A1 (en) 2014-05-22
EP2736162B1 (en) 2019-11-13
CN103840734B (zh) 2016-08-24
CN103840734A (zh) 2014-06-04
FI20126222A (fi) 2014-05-22

Similar Documents

Publication Publication Date Title
US9709444B2 (en) Motor controller, electric vehicle, and heat stress estimation method for switching element
CN102201777B (zh) 感应电动机的控制装置和控制方法
CN103931096B (zh) 用温度补偿控制电动机的方法和***
US8744794B2 (en) Method and apparatus for characterizing an interior permanent magnet machine
CN101783646A (zh) 感应电机定子电阻及温度参数辨识方法
US10030591B2 (en) Operating an internal combustion engine coupled to a generator
CN105048891B (zh) 电动机控制装置
CN103227604A (zh) 一种感应电机无速度传感器矢量控制方法
FI124819B (fi) Menetelmä ja laite sähkökäyttöjärjestelmän energiatehokkuuden maksimoimiseksi
CN106059423A (zh) 一种基于fc和smo的无速度传感器控制***
CN105122634B (zh) 用于调节发电机组的方法
CN103835820A (zh) 基于旋挖钻机发动机扭矩感应的控制方法、装置和***
CN112787495B (zh) 变频控制器及其控制方法、变频电器以及电子设备
TWI426698B (zh) Intelligent control model for adaptive control of sensors without sensor control method
CN108457709A (zh) 汽动给水泵发电机组的控制方法和***
CN105298816B (zh) 一种全封闭变频制冷压缩机转速的控制方法
CN106374788B (zh) 用于永磁激励的同步电动机的控制装置
US20200028462A1 (en) Apparatus and method for controlling inverter for driving motor
US9964984B2 (en) System for controlling load sharing
CN102638218B (zh) 根据电源特性限制电动机的输出的电动机驱动控制装置
CN112524853B (zh) 变频空调器中压缩机的控制方法与变频空调器
CN114665783A (zh) 电机控制方法及控制装置、电机控制器、存储介质
CN104410347B (zh) 一种驱动压缩机的方法及驱动压缩机的装置
CN103490702A (zh) 电机带负载弱磁运行时控制速度的***及方法
CN102857169A (zh) 基于无速度传感器的单逆变器对双感应电动机的控制方法

Legal Events

Date Code Title Description
FG Patent granted

Ref document number: 124819

Country of ref document: FI

Kind code of ref document: B

PC Transfer of assignment of patent

Owner name: ABB SCHWEIZ AG