ES2606140T3 - Métodos para predecir la progresión y tratar una enfermedad renal crónica en un paciente - Google Patents

Métodos para predecir la progresión y tratar una enfermedad renal crónica en un paciente Download PDF

Info

Publication number
ES2606140T3
ES2606140T3 ES11764183.7T ES11764183T ES2606140T3 ES 2606140 T3 ES2606140 T3 ES 2606140T3 ES 11764183 T ES11764183 T ES 11764183T ES 2606140 T3 ES2606140 T3 ES 2606140T3
Authority
ES
Spain
Prior art keywords
lcn2
mice
ngal
expression
ckd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES11764183.7T
Other languages
English (en)
Inventor
Fabiola Terzi
Amandine VIAU
Clément NGUYEN
Martine BURTIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de la Sante et de la Recherche Medicale INSERM
Original Assignee
Institut National de la Sante et de la Recherche Medicale INSERM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de la Sante et de la Recherche Medicale INSERM filed Critical Institut National de la Sante et de la Recherche Medicale INSERM
Application granted granted Critical
Publication of ES2606140T3 publication Critical patent/ES2606140T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/122Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/34Genitourinary disorders
    • G01N2800/347Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Plant Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Un método para predecir la progresión de una enfermedad renal crónica (ERC) o para el seguimiento de una terapia de ERC en un paciente, que comprende las siguientes etapas: a. proporcionar una muestra de orina de dicho paciente que padece ERC, b. determinar el nivel de expresión del gen de la lipocalina asociada con gelatinasa de neutrófilos (NGAL), en donde dicho nivel de expresión del gen de NGAL se expresa como la relación de niveles de expresión de NGAL frente a creatinina en nanogramos por miligramo (ng/mg), y en donde dicho nivel de expresión del gen de NGAL se determina midiendo la concentración de proteína NGAL en una muestra de orina obtenida a partir de dicho paciente, y c. correlacionar el nivel de expresión del gen de NGAL con la predicción de la progresión de ERC.

Description

imagen1
imagen2
imagen3
imagen4
imagen5
imagen6
imagen7
5
10
15
20
25
30
35
40
45
50
55
ejemplo, por Winter (documento de patente de EE.UU. nº 5.225.539) y Boss (Celltech, documento de patente de EE.UU. nº 4.816.397).
A continuación, después de producir los anticuerpos dirigidos contra la NGAL, como se ha descrito anteriormente, el experto en la técnica puede seleccionar fácilmente los que bloquean la actividad de NGAL.
En otra realización, el antagonista de NGAL es un aptámero dirigido contra NGAL. Los aptámeros son una clase de molécula que representa una alternativa a los anticuerpos en términos de reconocimiento molecular. Los aptámeros son secuencias de oligonucleótidos o de oligopéptidos con la capacidad de reconocer virtualmente cualquier clase de molécula diana con alta afinidad y especificidad. Tales ligandos se pueden aislar a través de enriquecimiento exponencial en presencia del ligando (SELEX) de una genoteca de secuencias aleatorias, como se describe en Tuerk C. y Gold L., 1990. La genoteca de secuencias aleatorias se puede obtener mediante síntesis química combinatoria de ADN. En esta genoteca, cada miembro es un oligómero lineal, eventualmente modificado químicamente, de una secuencia única. Posibles modificaciones, usos y ventajas de esta clase de moléculas han sido revisados por Jayasena S.D., 1999. Los aptámeros peptídicos consisten en una región variable de anticuerpo limitada por la conformación que se presenta en una proteína soporte, tal como la tiorredoxina A de E. coli, que se seleccionan a partir de genotecas combinatorias a través de dos métodos híbridos (Colas et al., 1996). A continuación, después de producir aptámeros dirigidos contra la NGAL como se ha descrito anteriormente, el experto en la técnica puede seleccionar fácilmente los que bloquean la actividad de NGAL.
En todavía otra realización, el antagonista de NGAL puede ser un antagonista de bajo peso molecular, por ejemplo, una molécula orgánica pequeña. La expresión "molécula orgánica pequeña" se refiere a una molécula de un tamaño comparable a las moléculas orgánicas que se utilizan generalmente en productos farmacéuticos. La expresión excluye macromoléculas biológicas (por ejemplo, proteínas, ácidos nucleicos, etc.). Las moléculas orgánicas pequeñas preferidas varían en tamaño hasta aproximadamente 5000 Da, más preferiblemente hasta 2000 Da y lo más preferiblemente hasta aproximadamente 1000 Da.
El inhibidor de la expresión del gen de NGAL o el antagonista de NGAL se pueden administrar en forma de una composición farmacéutica. Preferiblemente, dicho inhibidor o antagonista se administra en una cantidad terapéuticamente eficaz.
Por una "cantidad terapéuticamente eficaz" se entiende una cantidad suficiente del antagonista o el inhibidor de NGAL para tratar y/o prevenir la enfermedad renal crónica (ERC) en una proporción razonable de beneficio/riesgo, aplicable a cualquier tratamiento médico.
Se entenderá que el uso diario total de los compuestos y composiciones de la presente invención será decidido por el médico asistente dentro del alcance del juicio médico. El nivel de dosis terapéuticamente eficaz, específico para cualquier paciente particular, dependerá de una variedad de factores que incluyen el trastorno a tratar y la gravedad del trastorno; la actividad del compuesto específico empleado; la composición específica empleada, la edad, el peso corporal, la salud general, el sexo y la dieta del paciente; el tiempo de administración, la vía de administración y la tasa de excreción del compuesto específico empleado; la duración del tratamiento; los fármacos utilizados en combinación o coincidentes con el polipéptido específico empleado; y factores similares que son bien conocidos en las técnicas médicas. Por ejemplo, los expertos en la técnica comienzan con dosis del compuesto a niveles inferiores a las requeridas para lograr el efecto terapéutico deseado y aumentar gradualmente la dosificación hasta que se consiga el efecto deseado. Sin embargo, la dosificación diaria de los productos puede variar en un amplio intervalo de 0,01 a 1.000 mg por adulto por día. Preferiblemente, las composiciones contienen 0,01, 0,05, 0,1, 0,5, 1,0, 2,5, 5,0, 10,0, 15,0, 25,0, 50,0, 100, 250 y 500 mg del ingrediente activo para el ajuste sintomático de la dosificación al paciente que se va a tratar. Un medicamento normalmente contiene desde aproximadamente 0,01 mg a aproximadamente 500 mg del ingrediente activo, preferiblemente desde 1 mg a aproximadamente 100 mg del ingrediente activo. Una cantidad eficaz del fármaco se suministra ordinariamente a un nivel de dosificación desde 0,0002 mg/kg a aproximadamente 20 mg/kg de peso corporal por día, especialmente desde aproximadamente 0,001 mg/kg a 7 mg/kg de peso corporal por día.
Composiciones farmacéuticas:
El inhibidor de la expresión del gen de NGAL o el antagonista de NGAL para uso en la prevención o el tratamiento de la enfermedad renal crónica (ERC) como se ha definido anteriormente, se puede combinar con excipientes farmacéuticamente aceptables y, opcionalmente, con matrices de liberación sostenida, tales como polímeros biodegradables, para formar composiciones terapéuticas.
En las composiciones farmacéuticas de la presente invención, el principio activo, solo o en combinación con otro principio activo, se pueden administrar en una forma de administración unitaria, como una mezcla con soportes farmacéuticos convencionales, a animales y seres humanos. Las formas de administración unitarias adecuadas comprenden formas para vía oral tales como comprimidos, cápsulas de gel, polvos, gránulos y suspensiones o soluciones orales, formas de administración sublingual y bucal, aerosoles, implantes, formas de administración subcutánea, transdérmica, tópica, intraperitoneal, intramuscular, intravenosa, subdérmica, transdérmica, intratecal e intranasal y formas de administración rectal.
10
15
20
25
30
35
40
45
50
55
Preferiblemente, las composiciones farmacéuticas contienen vehículos que son farmacéuticamente aceptables para una formulación capaz de ser inyectada. Estas pueden ser, en particular, soluciones isotónicas, estériles, salinas (fosfato monosódico o disódico, cloruro de sodio, potasio, calcio o magnesio y similares, o mezclas de tales sales), o composiciones secas, especialmente liofilizadas que tras la adición de agua esterilizada o solución salina fisiológica, dependiendo del caso, permiten la constitución de soluciones inyectables.
Las formas farmacéuticas adecuadas para uso inyectable incluyen soluciones acuosas estériles o dispersiones; formulaciones que incluyen aceite de sésamo, aceite de cacahuete o propilenglicol acuoso; y polvos estériles para la preparación extemporánea de soluciones o dispersiones inyectables estériles. En todos los casos, la forma debe ser estéril y debe ser fluida en la medida en que exista una inyectabilidad sencilla. Debe ser estable en las condiciones de fabricación y almacenamiento y se debe proteger contra la acción contaminante de microorganismos, tales como bacterias y hongos.
Las soluciones que comprenden compuestos de la invención como base libre o sales farmacológicamente aceptables, se pueden preparar en agua mezclada de forma adecuada con un tensioactivo, tal como hidroxipropilcelulosa. Las dispersiones también se pueden preparar en glicerol, polietilenglicoles líquidos, y mezclas de los mismos y en aceites. En condiciones ordinarias de almacenamiento y uso, estas preparaciones contienen un conservante para evitar el crecimiento de microorganismos.
El inhibidor de la expresión del gen de NGAL o el antagonista de NGAL de la invención se pueden formular en una composición en una forma neutra o salina. Las sales farmacéuticamente aceptables incluyen las sales de adición de ácido (formadas con los grupos amino libres de la proteína) y que se forman con ácidos inorgánicos tales como, por ejemplo, ácidos clorhídrico o fosfórico, o ácidos orgánicos tales como acético, oxálico, tartárico, mandélico y similares. Las sales formadas con los grupos carboxilo libres también se pueden obtener a partir de bases inorgánicas, tales como, por ejemplo, sodio, potasio, amonio, calcio o hidróxidos férricos, y bases orgánicas tales como isopropilamina, trimetilamina, histidina, procaína y similares.
El vehículo también puede ser un disolvente o un medio de dispersión que contiene, por ejemplo, agua, etanol, poliol (por ejemplo, glicerol, propilenglicol y polietilenglicol líquido, y similares), mezclas adecuadas de los mismos y aceites vegetales. La fluidez apropiada se puede mantener, por ejemplo, con el uso de un revestimiento, tal como lecitina, mediante el mantenimiento del tamaño de partícula requerido en el caso de dispersión y mediante el uso de tensioactivos. La prevención de la acción de los microorganismos puede estar provocada por varios agentes antibacterianos y antifúngicos, por ejemplo, parabenos, clorobutanol, fenol, ácido sórbico, timerosal y similares. En muchos casos, será preferible incluir agentes isotónicos, por ejemplo, azúcares o cloruro de sodio. Una absorción prolongada de las composiciones inyectables puede estar provocada en las composiciones por el uso de agentes que retrasan la absorción, por ejemplo, monoestearato de aluminio y gelatina.
Las soluciones inyectables estériles se preparan incorporando los polipéptidos activos en la cantidad requerida en el disolvente apropiado, con varios de los otros ingredientes mencionados anteriormente, según se requiera, seguido de esterilización por filtración. Generalmente, las dispersiones se preparan incorporando los diversos ingredientes activos esterilizados en un vehículo estéril que contiene el medio de dispersión básico y los otros ingredientes requeridos de los mencionados anteriormente. En el caso de polvos estériles para la preparación de soluciones inyectables estériles, los métodos preferidos de preparación son técnicas de secado al vacío y liofilización que producen un polvo del ingrediente activo, más cualquier ingrediente deseado adicional a partir de una solución previamente esterilizada por filtración de la misma.
Después de la formulación, las soluciones se administrarán de una manera compatible con la formulación de dosificación y en una cantidad tal que sea terapéuticamente eficaz. Las formulaciones se administran fácilmente en una variedad de formas de dosificación, tales como el tipo de soluciones inyectables descritas anteriormente, pero también se pueden emplear cápsulas de liberación de fármaco y similares.
Para la administración parenteral en una solución acuosa, por ejemplo, la solución debe estar adecuadamente tamponada si es necesario y el diluyente líquido primero se vuelve isotónico con solución salina o glucosa suficiente. Estas soluciones acuosas particulares son especialmente adecuadas para una administración intravenosa, intramuscular, subcutánea e intraperitoneal. A este respecto, los medios acuosos estériles que se pueden emplear serán conocidos por los expertos en la técnica de cara a la presente descripción. Por ejemplo, una dosificación se puede disolver en 1 ml de solución isotónica de NaCl y se añade a 1000 ml de fluido de hipodermoclisis o se inyecta en el sitio de infusión propuesto. Alguna variación en la dosificación tendrá lugar necesariamente, dependiendo del estado del sujeto que está siendo tratado. La persona responsable de la administración, en cualquier caso, determina la dosis apropiada para el sujeto individual.
El inhibidor de la expresión del gen de NGAL o el antagonista de NGAL de la invención se puede formular dentro de una mezcla terapéutica para que comprenda aproximadamente 0,0001 a 1,0 miligramos, o aproximadamente 0,001 a 0,1 miligramos, o aproximadamente 0,1 a 1,0 o incluso aproximadamente 10 miligramos por dosis, más o menos. También se pueden administrar dosis múltiples.
Además de los compuestos de la invención formulados para una administración parenteral, tal como inyección intra
10
15
20
25
30
35
40
45
50
55
venosa o intramuscular, otras formas farmacéuticamente aceptables incluyen, por ejemplo, comprimidos u otros sólidos para administración oral; formulaciones liposómicas; cápsulas de liberación prolongada; y cualquier otra forma utilizada actualmente.
La invención se ilustra adicionalmente mediante las siguientes figuras y ejemplos. Sin embargo, estos ejemplos y figuras no se deben interpretar de ninguna manera como limitantes del alcance de la presente invención.
EJEMPLO:
Materiales y Métodos
Animales: Los ratones utilizados para estos estudios eran ratones FVB/N, C57BL/6 y C57BL/6xDBA2/F1 (B6D2F1) (Charles River), el mutante jck que tenía una mutación Nek8 (Jackson Laboratories), el transgénico EGFR-M que expresaba una isoforma dominante negativa de EGFR bajo el control del promotor de g-glutamil transpeptidasa de tipo 1 específico de riñón (26) y ratones Lcn2-/-(19). Los ratones Lcn2-/-sobre un fondo genético FVB/N se obtuvieron utilizando una estrategia congénica de velocidad asistida por marcadores. Noventa y tres marcadores de microsatélites que incluían cada cromosoma autosómico (distancia promedio de 14,2 cM) se utilizaron para discriminar los alelos C57BL/6 y FVB/N (http://www.cidr.jhmi.edu/mouse). Ratones heterocigóticos C57BL/6 Lcn2+/-se criaron con ratones jck heterocigóticos para obtener ratones transgénicos doblemente homocigotos Lcn2-/-/jck. Todos los experimentos se realizaron con hembras de 9 semanas de edad, excepto para los ratones jck que se estudiaron 3 semanas después del nacimiento. Los animales fueron alimentados a voluntad y se alojaron a temperatura ambiente constante con un ciclo de luz de 12 horas. Los procedimientos con los animales fueron aprobados por el Director del Departamento de "Servicios veterinarios de la prefectura de policía de París" y por el comité de ética de la Universidad Descartes de París.
Los ratones se sometieron a una nefrectomía del 75% (Nx) o a una operación simulada (controles), como se ha descrito previamente (26). Después de la cirugía, los ratones fueron alimentados con una dieta definida que contenía 30% de caseína y 0,5% de sodio. Varios grupos de ratones fueron investigados en estudios complementarios. Para los estudios de micromatrices, 6 y 9 ratones de cada cepa fueron sometidos a una operación simulada o a Nx, respectivamente. Para el análisis a lo largo del tiempo de Lcn2, 5-6 ratones con operación simulada y 4-8 ratones Nx fueron estudiados en cada momento. Los estudios transgénicos emplearon ratones EGFR-M o Lcn2-/-y compañeros de camada de tipo silvestre (WT); para cada grupo, 4-6 ratones fueron sometidos a una operación simulada y 10-16 ratones a una reducción de nefronas. Para los experimentos de quelación con hierro, 5 ratones con operación simulada y 6 ratones Nx fueron inyectados con 100 mg/kg/d de desferroxamina (DFO, Sigma) mediante minibombas osmóticas subcutáneas (2004, Alzet) durante 2 meses. Para los experimentos con Hypoxyprobe, 6 ratones con operación simulada y 6 ratones Nx fueron inyectados por vía intraperitoneal con 60 mg/kg de pimonidazol (Chemicon) 2 horas antes de sacrificarlos. Riñones post-isquémicos (2 horas de pinzamiento del pedículo renal) se utilizaron como controles hipóxicos positivos.
Los ratones se sacrificaron 2 meses después de la operación quirúrgica. Además, para el estudio a lo largo del tiempo de Lcn2, los ratones fueron sacrificados también 4 y 6 semanas después de la operación quirúrgica. Una semana antes de sacrificarlos, la presión sanguínea se registró en los ratones operados de forma simulada (n = 3) y los ratones nefrectomizados de forma subtotal (n = 6) Lcn2+/+ y Lcn2-/-, despiertos durante 2 días consecutivos, usando pletismografía con manguito en la cola y el programa informático PowerLab/4SP (AD Instruments). También se recogieron muestras de orina, usando jaulas metabólicas, a partir de 6 ratones de cada grupo experimental a lo largo de 24 horas. En el momento del sacrificio, se extirpó el riñón para estudios morfológicos, de proteínas y ARNm.
Muestras clínicas: El estudio se realizó en 87 sujetos con enfermedad renal poliquística autosómica dominante (ER-PAD) (40 M, 47 H, con una media de edad de 52,4 años, intervalo 24,7 -79,2 años). El nivel medio de creatinina sérica de los pacientes era de 252 ± 169,9 mmol/l y el eGFR (determinado mediante la fórmula MDRD (53)) era de 33 ± 20 ml/min/1,73 m2. De los pacientes, 76 de los 87 pacientes eran hipertensos con el tratamiento. La disminución de la función renal se evaluó de forma retrospectiva durante más de 6 años, después los pacientes se dividieron en dos grupos: progresores lentos (disminución de eGFR <4,5 ml/min/1,73 m2 por año, media = 2,4 ± 0,1, n = 52) o progresores rápidos (disminución de eGFR >4,5 ml/min/1,73 m2 por año, media = 6,0 ± 0,2, n = 35).
Los riñones de pacientes con ERPAD (n = 9), oligomeganefronia (n = 11) y nefropatía por IgA (n = 12) se analizaron para la expresión de LCN2. Los riñones normales no utilizados para el trasplante o el polo exento de tumores de riñones extirpados para el carcinoma, se utilizaron como controles (n = 9).
Este protocolo fue aprobado por el Plan hospitalario para el Programa de Investigación Clínica (PHRC) del Ministerio de Sanidad francés. Se obtuvo un consentimiento por escrito antes de la inscripción.
Células: Para los experimentos de transfección de ARNsi, una inactivación transitoria de la expresión de Hif-1α en las células mIMCD-3 se obtuvo usando siRNA SMARTpool® de Dharmacon, de acuerdo con las recomendaciones del fabricante. Las células se transfectaron con ARNsi (100 nM) usando el reactivo de transfección de ARNsi Dhar-maFECT®4 (Thermo Fisher Scientific). Ocho horas después de la transfección, las células fueron privadas de suero durante 12 horas y después se trataron con 40 ng/ml de EGF (R&D Systems) en medio carente de suero durante 48 horas.
10
15
20
25
30
35
40
45
50
55
Para las transfecciones de ARNhc, las células mIMCD-3 se transfectaron de forma estable con el vector pSuppressor Retro (Imgenex) que contenía un ARNhc para Lcn2 o un oligonucleótido desorganizado (Dharmacon). La secuencia de ARNhc de Lcn2 contiene o bien los nucleótidos de clonación 5'-ggaaatatgcacaggtatc-3' (SEQ ID NO: 1) o 5'-gctactggatcagaacatt-3' (SEQ ID NO: 2), seguidos de un bucle de 9 bases y la secuencia de clonación invertida. En la secuencia desorganizada, la secuencia de clonación se sustituye por 5'-gagcgtaccagattaaagt-3' (SEQ ID NO: 3) o 5'-gattcgaccagacatgtat-3' (SEQ ID NO: 4). Las células transfectadas de forma estable se mantuvieron en medio DMEM/HamF12 que contenía 10% de FBS.
Para los experimentos de EGF, las células se privaron de suero durante 18 horas y después se trataron con 40 ng/ml de EGF en medio carente suero durante 24-96 horas. Las células se recogieron a las 24 horas para el ensayo de Lcn2 y los experimentos de apoptosis y a las 24-96 horas para los experimentos de proliferación.
Micromatriz de ADNc: Los ARNs se obtuvieron a partir de riñones completos de 9 ratones Nx de cada cepa, usando el kit RNeasy Midi (Qiagen) de acuerdo con el protocolo del fabricante. Los ARNs se transcribieron de forma inversa y se marcaron con cianina Cy-3 o Cy-5. Los ADNc de FVB/N Cy3 y de B6D2F1 Cy5 (y a la inversa, los ADNc de FVB/N Cy5 y B6D2F1 Cy3) se cohibridaron sobre micromatrices de ADNc de ratón que contenían 5579 ADNc que incluían marcadores de secuencias expresadas (Genopole®). Las preparaciones de ARN, ADNc y la hibridación se realizaron de acuerdo con el protocolo de Genopole® (http://www.genopole.org/html/en/home/index.php). Se hibridaron seis matrices. Para cada matriz, se agruparon los ARN de 3 ratones. Las micromatrices hibridadas fueron escaneadas y las imágenes se analizaron utilizando el programa informático Genepix Pro 4.0 a través de la instalación de micromatrices de Genopole®.
RT-PCR en tiempo real: El ARNm de Lcn2 se detectó en riñones de ratones y células mIMCD-3 mediante RT-PCR en tiempo real, utilizando un sistema de detección de secuencias ABI PRISM 7700 (Applied Biosystems). Gadpdh y Sdha se utilizaron como controles de normalización en los riñones y las células, respectivamente.
Función renal y morfología: Para las muestras de ratones, se midió la proteinuria y nitrógeno ureico en la sangre (BUN) usando un analizador multiparamétrico de Olympus (Instrumentation Laboratory), mientras que la creatinina sérica se evaluó mediante cromatografía líquida de alto rendimiento (HPLC). Para las muestras de humanos, la creatininuria y la albuminuria se midieron usando un analizador Hitachi 917 (Roche Diagnostics).
Los riñones se fijaron en paraformaldehído al 4%, se incluyeron en parafina y secciones de 4 µm se tiñeron con PAS, Tricrómico de Masson, H&E, rojo picro-sirius. Los depósitos de hierro férrico se evidenciaron mediante una tinción con azul de Prusia de acuerdo con la reacción de Perls. El grado de lesiones glomerulares e intersticiales se evaluó utilizando una metodología de puntuación semicuantitativa como se ha descrito previamente (7). El grado de lesiones tubulares se cuantificó de forma automática, utilizando una cámara digital Nikon Dx/m/1200 y el programa informático Lucia (Laboratory Imaging Ltd). Se puntuaron diez campos microscópicos seleccionados al azar (X200). Para los ratones jck, toda la sección se cuantificó de forma automática con 100 aumentos. La puntuación tubular se expresó como la relación entre la superficie de dilatación tubular y el área total de la sección.
Hibridación in situ: La hibridación in situ se llevó a cabo en secciones de 8 µm de riñones de ratón incluidos en parafina, utilizando una ribosonda marcada con digoxigenina que correspondía a los nucleótidos 80 a 641 de la secuencia de Lcn2 de ratón (NM_008491). La ribosonda se sintetizó utilizando reactivos de Roche, de acuerdo con las instrucciones del fabricante.
Transferencia Western: Las transferencias Western se realizaron como se ha descrito previamente (12), utilizando un anticuerpo de cabra para Lcn2 de ratón (R&D Systems) a 1:1.000 en 1% de leche/TBST o un anticuerpo de conejo para Hif-1α o Hif-2α de ratón (Novus Biologicals) a 1:500 y 1:200, respectivamente, en 5% de leche/TBST, seguido por un anticuerpo de conejo anti-cabra conjugado con rábano picante a 1:10.000 (Dako) o un anticuerpo de burro anti-conejo conjugado con peroxidasa de rábano picante a 1:2000 (Amersham). Un anticuerpo monoclonal de ratón α-tubulina (Sigma-Aldrich) se utilizó como control. Los extractos de proteína procedentes de riñones de ratones Lcn2-/-se utilizaron para confirmar la especificidad del anticuerpo.
Inmunohistoquímica: Para las muestras de ratón, secciones de 4 µm de riñones incluidos en parafina, se incubaron con un anticuerpo de cabra anti-Lcn2 de ratón (R&D Systems) a 1:300, seguido por un anticuerpo biotinilado de conejo anti-cabra (Dako) a 1:200. Los anticuerpos biotinilados se detectaron utilizando estreptavidina marcada con HRP (Dako) a 1:500 y revelado con tetrahidrocloruro de 3-3’-diamino-bencidina (DAB).
Para los experimentos de colocalización, Lotus Tetragonolobus lectina (LTL) se detectó utilizando un LTL biotinilado (Vector) a 1:50, seguido por una estreptavidina marcada con HRP a 1:500. Para la tinción con Tamm-Horsfall, las secciones de riñón de ratón se incubaron con un anticuerpo de cabra anti-Tamm-Horsfall (Biogenesis) diluido 1:200, seguido por un anticuerpo de cabra biotinilado (DAKO) a 1:500 y una estreptavidina marcada con HRP a 1:500. Para la tinción con Acuaporina 2, las secciones se incubaron con un anticuerpo de conejo anti-acuaporina 2 (SIGMA) 1:400, seguido por un anticuerpo de burro anti-conejo conjugado con HRP (Amersham) a 1:300. La tinción fue revelada con DAB.
Para la tinción con hypoxyprobe, secciones de 4 µm de riñones incluidos en parafina fueron tratadas con pronasa al 0,01%, después se incubaron con un anticuerpo de aducto anti-hypoxyprobe (Chemicon) 1:200, seguido por un
5
10
15
20
25
30
35
40
45
50
55
anticuerpo de ratón biotinilado (DAKO) a 1:500, una estreptavidina marcada con HRP a 1:500 y revelado con DAB.
Para muestras humanas, secciones de 4 µm de riñón incluidos en parafina, se incubaron con un anticuerpo de cabra anti-LCN2 humano (R&D Systems) a 1:100, seguido por un anticuerpo de conejo anti-cabra marcado con HRP (Dako) a 1:100 y revelado con DAB.
Ensayo de proliferación celular: Las células proliferativas se detectaron en el riñón de ratón usando antígeno nuclear de células en proliferación (PCNA) o inmunotinción con Ki-67. Para la tinción con PCNA, secciones de 4 µm de riñones incluidos en parafina se incubaron con un anticuerpo de ratón anti-PCNA (DAKO) a 1:50, seguido por un anticuerpo de oveja anti-ratón conjugado con HRP (Amersham) a 1:100. Para la tinción con Ki-67, secciones de riñón de 4 µm se incubaron con un anticuerpo de ratón anti-Ki-67 humano (BD Pharmingen), seguido por un anticuerpo de ratón biotinilado (Vector) a 1:400 y una estreptavidina marcada con HRP a 1:1000. La tinción se reveló con DAB. El índice de proliferación tubular (IP) se calculó como el número de núcleos positivos para PCNA (o Ki-67) para el número total de núcleos tubulares en 10 campos seleccionados al azar. El índice de proliferación glomerular se calculó como el número de glomérulos con al menos un núcleo positivo para PCNA para el número total de glomérulos. La proliferación in vitro se evaluó mediante el recuento del número de células o mediante el uso del reactivo de proliferación celular CellTiter 96® AQueous (Promega) según las instrucciones del fabricante.
Ensayo de apoptosis: La apoptosis se detectó en secciones de 4 µm de riñones incluidos en parafina mediante un ensayo de tipo TUNEL utilizando el kit de detección in situ de muerte celular (Roche) de acuerdo con el protocolo del fabricante. Se determinó el número de células apoptóticas como el número de núcleos positivos para TUNEL por túbulo en 20 campos seleccionados al azar. El índice apoptótico glomerular se calculó como el número de glomérulos con al menos un núcleo positivo para TUNEL para el número total de glomérulos. In vitro, las células apoptóticas se detectaron mediante tinción con DAPI y el índice de apoptosis se calculó como el número de núcleos positivos para la apoptosis para el número total de núcleos en 10 campos seleccionados al azar.
Medición de LCN2 urinaria: La orina fresca se recogió con inhibidores de proteasa, se centrifugó a 2.000 rpm a 4°C durante 5 minutos y el material sobrenadante se retiró y se almacenó a -80°C. LCN2 se midió utilizando ELISA (AntibodyShop). Especímenes, patrones y reactivos se prepararon de acuerdo con las instrucciones del fabricante. Los niveles de LCN2 se expresaron como nanogramos por miligramo de creatinina. Todos los experimentos se realizaron por duplicado.
Análisis de datos y estadísticas: Los datos se expresaron como medias ± SEM. Las diferencias entre los grupos experimentales se evaluaron mediante ANOVA, seguida cuando era significativa (P <0,05) por la prueba de Tukey-Kramer. Cuando solo se compararon dos grupos, se utilizaron las pruebas de Mann-Whitney o Wilcoxon. El coeficiente de correlación de Pearson se utilizó para someter a ensayo la correlación entre las variables. Para los experimentos con micromatrices, los resultados se expresan como un Log2 de la relación Cy5/Cy3. Los genes con una tasa de falsos descubrimiento (FDR) <0,05 (utilizando el procedimiento de Benjamini-Hochberg) y un factor de cambio (FC)> 1,5, se consideraron significativos. El análisis estadístico se realizó utilizando el programa informático Graph Prism.
Resultados
Perfil génico: Para esclarecer las vías moleculares de la progresión de la ERC, realizamos un perfil imparcial de la expresión génica en riñones remanentes de dos cepas de ratón que reaccionan de manera diferente frente a la reducción de nefronas. Con el empleo de micromatrices que contenían 5579 ADNc, encontramos 70 genes cuyos niveles de expresión diferían significativamente dos meses después de la reducción de nefronas (P <0,05). Entre estos transcritos, 44 estaban regulados al alza y 26 estaban regulados a la baja en los riñones FVB/N dañados, en comparación con los riñones bien conservados de B6D2F1. Con la agrupación de estos resultados mediante una categoría de ontología génica, observamos una serie de funciones para los 70 transcritos, aunque muchos de los ARNm regulados a la baja (38%) regulaban procesos metabólicos. El gen que se sometió a una inducción transcripcional máxima (cambio múltiplo de 9,95, P = 0,008) en la cepa FVB/N propensa a la lesión, era lipocalina 2 (Lcn2 o lipocalina asociada a la gelatinasa de neutrófilos, NGAL; también conocida como siderocalina, 24p3 o uterocalina).
Lcn2 se correlaciona con la progresión de lesiones en ratón y ser humano con ERC: Lcn2 es un miembro de la superfamilia de la lipocalina (13), una familia de proteínas que transportan moléculas hidrófobas tales como retinoides, ácidos grasos y formadores de quelatos orgánicos de hierro (14). La RT-PCR en tiempo real confirmó que el ARNm de Lcn2 se incrementaba 10 veces, dos meses después de la reducción de nefronas en ratones FVB/N, pero no en ratones B6D2F1, mientras que era casi indetectable en los animales control. La hibridación in situ e inmunohistoquímica corroboraron estas observaciones y mostraron un marcado aumento del ARNm y la proteína de Lcn2 en riñones dañados de ratones FVB/N. Lcn2 se encontraba predominantemente en los túbulos proximales y en unas pocas ramas ascendentes de las asas de Henle y los conductos colectores. Con gran aumento se reveló que Lcn2 se encontraba principalmente en los gránulos citoplasmáticos en la zona subapical. Mediante una combinación de la hibridación in situ e inmunohistoquímica en secciones en serie, se encontró que una proporción de Lcn2 se debía haber obtenido a partir del filtrado glomerular, ya que en algunos túbulos proximales el ARNm de Lcn2 era negativo, aunque una tinción anti-Lcn2 era marcadamente positiva (in situ-y anticuerpo+). Por otro lado, la mayoría de los epitelios proximales que se habían sometido a dilatación y transformación quística mostraban tanto mensajero de
imagen8
imagen9
10
15
20
25
30
35
40
45
50
55
60
bición de esta vía a través de la inactivación del gen Lcn2 o mediante la expresión de una isoforma de EGFR dominante negativa, ha impedido el desarrollo de lesiones en los ratones transgénicos. Por el contrario, la hiperexpresión de Lcn2 se correlacionaba significativamente con una hiperproliferación y una progresión de la ERC en ratones y seres humanos. Además hemos identificado Hif-1α como un intermediario crucial entre EGFR y la regulación al alza de Lcn2. En conjunto, estos resultados explican una nueva vía molecular para la progresión de la ERC y muestran que Lcn2 actúa como un factor que favorece el crecimiento, cuya hiperexpresión identifica pacientes con una progresión rápida de la ERC.
Lcn2, al igual que todos los miembros de la superfamilia de lipocalina, se une a ligandos hidrófobos; el ligando es para definir la función de la proteína. Lcn2 se une a enteroquelina (20), parabactina (20) y carboximicobactina (30), que son sideróforos producidos por bacterias con el fin de unirse al hierro. La propiedad quelante de los sideróforos de Lcn2 hace que sea un agente bacteriostático (20). Por tanto, los ratones Lcn2 mutantes tienen un defecto profundo en la defensa contra E. coli (19, 31) y M. tuberculosis (32). No obstante, la expresión de Lcn2 aumenta drásticamente con varios estados patológicos asépticos, tales como cánceres (33), enfermedades inflamatorias (34) o lesión renal aguda (24), lo que sugiere que Lcn2 puede tener otras funciones. Hasta la fecha, sus actividades no infecciosas se han centrado en sus efectos sobre la proliferación celular y/o la apoptosis (24), pero una prueba de las mismas en un entorno fisiológico in vivo no ha sido posible. Incluso en el caso de lesión renal aguda, una enfermedad que está relacionada con la ERC, no queda claro si Lcn2 es un mediador decisivo en los cambios tubulares (19). Por lo tanto, nuestro trabajo es la primera demostración clara de que Lcn2 in vivo tiene una función decisiva en un estado patológico que no sea una infección, es decir, que actúa como un regulador del crecimiento que media en la progresión de la ERC. Nuestros resultados en ratones y seres humanos se pueden aplicar generalmente a muchas formas de ERC, porque Lcn2 también se expresa en la uropatía obstructiva (16), la nefropatía diabética (16) y en riñones dañados de pacientes con nefropatía por IgA (17) o nefropatía asociada al VIH (18).
Nuestro estudio muestra que Lcn2, que es inducida por EGFR, controla el crecimiento aberrante de los túbulos renales y los quistes. En particular, hemos demostrado que la inactivación del gen Lcn2 inhibía la proliferación de las células tubulares lo que daba lugar a una marcada disminución de la formación de quistes en los ratones. En general, identificamos los epitelios tubulares quísticos como la principal fuente de producción de Lcn2. Estos datos sugerían que Lcn2 podía actuar como un factor tubulogénico que controla el crecimiento celular. Esto se respalda en una evidencia adicional: primero, Lcn2 inducía el desarrollo tubular en ensayos in vitro en la rata (35); segundo, una infusión de Lcn2 favorecía la regeneración tubular después de una lesión isquémica en ratones (36); tercero, niveles elevados de Lcn2 se asociaron con un mayor crecimiento quístico en los seres humanos (37). Esta propiedad no se limitaba a las células de mamíferos: Lpr-1, un miembro de la familia de la lipocalina recientemente identificado, controlaba el desarrollo de tubos unicelulares en el sistema excretor de Caenorhabditis elegans (38). Nuestros datos también sugieren que Lcn2 puede modular la forma tubular mediante el control de la proliferación celular y la apoptosis. De hecho, el efecto beneficioso de la inactivación del gen Lcn2 en ratones mutantes estaba acompañado por una disminución de la apoptosis tubular, de acuerdo con una observación previa en un túbulo proximal que carecía de Pkd1, un gen asociado a la enfermedad quística (39). Sin embargo, este efecto puede ser indirecto ya que el silenciamiento de Lcn2 in vitro no afectaba al número de células tubulares apoptóticas. Si el efecto promotor del crecimiento de Lcn2 tiene lugar por la unión de Lcn2 a un receptor único, lo que induce una cascada de señalización, o alternativamente por la movilización de hierro, como se sugiere por los experimentos de DFO, esto queda por esclarecer.
En el presente estudio observamos que la inactivación del gen Lcn2 protegía frente a una glomeruloesclerosis y fibrosis intersticial, después de una reducción de nefronas, a pesar del hecho de que Lcn2 se expresaba solo en los túbulos. Se desconoce el mecanismo para esta observación. Puede ser consecuencia de la perfusión y la filtración de Lcn2 sérica que encontramos por inmunotinción en los túbulos. Por otra parte, dado que las lesiones de las células tubulares, es decir, la proteinuria, dan como resultado la expresión de citocinas tubulares y factores de crecimiento que, en última instancia, conducen a una proliferación de las células mesangiales y síntesis de matriz (40), es tentador sugerir una interferencia entre las células renales tubulares y las células renales circundantes. Estudios en ratones transgénicos apoyan firmemente esta idea. Por ejemplo, se ha observado que los ratones que hiperexpresan VEGF de forma selectiva en los túbulos, desarrollaban fibrosis intersticial y enfermedad glomerular (41). Y, hemos observado anteriormente que la hiperexpresión de una isoforma dominante negativa de EGFR en los túbulos proximales impedía el desarrollo de lesiones glomerulares e intersticiales después de una reducción de nefronas (26). Por otro lado, se ha observado que la cicatrización intersticial daba lugar a una pérdida de microvasos que, a su vez, impactaba en los glomérulos adyacentes no afectados (42). Es digno de destacar que la síntesis de mediadores paracrinos puede aumentar la proliferación de células tubulares (43). Por lo tanto, especulamos que mediante la inhibición de la proliferación de las células tubulares, Lcn2 podría proteger a los glomérulos y al intersticio frente al desarrollo de lesiones.
La activación de EGFR se ha implicado en el desarrollo de la ERC. La hiperexpresión de una forma de EGFR activo, el receptor c-erb-B2, induce hiperplasia tubular y el desarrollo de quistes renales en ratones transgénicos (44). Por el contrario, la expresión de una isoforma de EGFR dominante negativa inhibe la proliferación celular que conduce a una reducción de las dilataciones tubulares después de una reducción de nefronas (26). Otros enfoques genéticos y farmacológicos han confirmado el papel clave de EGFR y la proliferación celular en las enfermedades renales poliquísticas (45, 46), y se ha observado una hiperexpresión y un error de localización de EGFR en los epitelios quísticos de ratones jck (15). Por otra parte, hemos establecido previamente que EGFR actúa como un integrador central
imagen10
imagen11
10
15
20
25
30
35
40
36.
Mori, K., Lee, H.T., Rapoport, D., Drexler, I.R., Foster, K., Yang, J., Schmidt-Ott, K.M., Chen, X., Li, J.Y., Weiss, S., et al. 2005. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610-621.
37.
Bolignano, D., Coppolino, G., Campo, S., Aloisi, C., Nicocia, G., Frisina, N. y Buemi, M. 2007. Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant polycystic kidney disease. Am J Nephrol 27:373-378.
38.
Stone, C.E., Hall, D.H. y Sundaram, M.V. 2009. Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system. Dev Biol 329:201-211.
39.
Wei, F., Karihaloo, A., Yu, Z., Marlier, A., Seth, P., Shibazaki, S., Wang, T., Sukhatme, V.P., Somlo, S. y Cantley,
L.G. 2008. Neutrophil gelatinase-associated lipocalin suppresses cyst growth by Pkd1 null cells in vitro and in vivo. Kidney Int 74:1310-1318.
40.
Tang, S., Leung, J.C., Tsang, A.W., Lan, H.Y., Chan, T.M. y Lai, K.N. 2002. Transferrin up-regulates chemokine synthesis by human proximal tubular epithelial cells: implication on mechanism of tubuloglomerular communication in glomerulopathic proteinura. Kidney Int 61:1655-1665.
41.
Hakroush, S., Moeller, M.J., Theilig, F., Kaissling, B., Sijmonsma, T.P., Jugold, M., Akeson, A.L., Traykova-Brauch, M., Hosser, H., Hahnel, B., et al. 2009. Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. Am J Pathol 175:1883-1895.
42.
Fine, L.G. y Norman, J.T. 2008. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74:867-872.
43.
Strutz, F., Zeisberg, M., Hemmerlein, B., Sattler, B., Hummel, K., Becker, V. y Muller, G.A. 2000. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int 57:1521-1538.
44.
Stocklin, E., Botteri, F. y Groner, B. 1993. An activated allele of the c-erbB-2 oncogene impairs kidney and lung function and causes early death of transgenic mice. J Cell Biol 122:199-208.
45.
Richards, W.G., Sweeney, W.E., Yoder, B.K., Wilkinson, J.E., Woychik, R.P. y Avner, E.D. 1998. Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J Clin Invest 101:935-939.
46.
Sweeney, W.E., Chen, Y., Nakanishi, K., Frost, P. y Avner, E.D. 2000. Treatment of polycystic kidney disease with a novel tyrosine kinase inhibitor. Kidney Int 57:33-40.
47.
Lautrette, A., Li, S., Alili, R., Sunnarborg, S.W., Burtin, M., Lee, D.C., Friedlander, G. y Terzi, F. 2005. Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 11:867-874.
48.
Leng, X., Ding, T., Lin, H., Wang, Y., Hu, L., Hu, J., Feig, B., Zhang, W., Pusztai, L., Symmans, W.F., et al. 2009. Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res 69:8579-8584.
49.
Nickolas, T.L., Barasch, J. y Devarajan, P. 2008. Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens 17:127-132.
50.
Lemley, K.V. 2007. An introduction to biomarkers: applications to chronic kidney disease. Pediatr Nephrol 22:1849-1859.
51.
Shepard, H.M., Brdlik, C.M. y Schreiber, H. 2008. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J Clin Invest 118:3574-3581.
52.
Devarajan, P. 2007. Neutrophil gelatinase-associated lipocalin: new paths for an old shuttle. Cancer Ther 5:463
470.
53. Levey, A.S., Bosch, J.P., Lewis, J.B., Greene, T., Rogers, N. y Roth, D. 1999. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461-470.

Claims (1)

  1. imagen1
ES11764183.7T 2010-10-01 2011-10-03 Métodos para predecir la progresión y tratar una enfermedad renal crónica en un paciente Active ES2606140T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10306077 2010-10-01
EP10306077 2010-10-01
PCT/EP2011/067236 WO2012042061A1 (en) 2010-10-01 2011-10-03 Methods for predicting the progression and treating a chronic kidney disease in a patient

Publications (1)

Publication Number Publication Date
ES2606140T3 true ES2606140T3 (es) 2017-03-22

Family

ID=44514192

Family Applications (1)

Application Number Title Priority Date Filing Date
ES11764183.7T Active ES2606140T3 (es) 2010-10-01 2011-10-03 Métodos para predecir la progresión y tratar una enfermedad renal crónica en un paciente

Country Status (4)

Country Link
US (2) US20140079769A1 (es)
EP (1) EP2622095B1 (es)
ES (1) ES2606140T3 (es)
WO (1) WO2012042061A1 (es)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149962A1 (en) 2010-05-24 2011-12-01 The Trustees Of Columbia University In The City Of New York Mutant ngal proteins and uses thereof
WO2014081980A2 (en) 2012-11-21 2014-05-30 The Trustees Of Columbia University In The City Of New York Mutant ngal proteins and uses thereof
US10871495B2 (en) 2014-08-04 2020-12-22 Genzyme Corporation Biomarkers of polycystic kidney disease and uses thereof
EP3224625B1 (en) * 2014-11-25 2020-07-29 F. Hoffmann-La Roche AG Biomarkers of fast progression of chronic kidney disease
US10531837B1 (en) * 2015-09-25 2020-01-14 Cerner Innovation, Inc. Predicting chronic kidney disease progression
KR20180083902A (ko) 2015-11-18 2018-07-23 젠자임 코포레이션 다낭성 신장병의 바이오마커 및 그의 용도
EP3184116B1 (en) 2015-12-23 2020-09-16 National Taiwan Normal University Neutrophil gelatinase-associated lipocalin for use in prevention or treatment of polycystic kidney disease
TWI581802B (zh) 2015-12-23 2017-05-11 國立臺灣師範大學 嗜中性白血球膠原蛋白質酶相關疏水性蛋白質之製藥用途
CN106018826A (zh) * 2016-05-29 2016-10-12 孟繁好 一种用于肾小管细胞损伤检测的试剂盒
CN109180789B (zh) * 2018-09-27 2022-08-19 上海揽微赛尔生物科技有限公司 一种寡肽及制药应用
CN109096374B (zh) * 2018-09-27 2022-11-18 深圳乐土沃森精准医疗有限公司 一种抑制肺癌转移的合成寡肽
CN109206485B (zh) * 2018-09-27 2022-04-08 山东聚胜生物科技有限公司 一种防治肺癌转移的寡肽
CN109096373B (zh) * 2018-09-27 2022-06-21 江苏亨瑞生物医药科技有限公司 合成寡肽及其用途
CN110538323A (zh) * 2019-09-29 2019-12-06 南京鼓楼医院 抗lcn2抗体在制备治疗狼疮性肾炎的药物中的应用
CN115963269A (zh) * 2021-10-09 2023-04-14 北京大学第一医院 尿调蛋白Sda抗原水平在预测早期肾损伤中的应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8308235D0 (en) 1983-03-25 1983-05-05 Celltech Ltd Polypeptides
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
AUPP249298A0 (en) 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
US6566131B1 (en) 2000-10-04 2003-05-20 Isis Pharmaceuticals, Inc. Antisense modulation of Smad6 expression
US6410323B1 (en) 1999-08-31 2002-06-25 Isis Pharmaceuticals, Inc. Antisense modulation of human Rho family gene expression
US6107091A (en) 1998-12-03 2000-08-22 Isis Pharmaceuticals Inc. Antisense inhibition of G-alpha-16 expression
US5981732A (en) 1998-12-04 1999-11-09 Isis Pharmaceuticals Inc. Antisense modulation of G-alpha-13 expression
US6046321A (en) 1999-04-09 2000-04-04 Isis Pharmaceuticals Inc. Antisense modulation of G-alpha-i1 expression
GB9927444D0 (en) 1999-11-19 2000-01-19 Cancer Res Campaign Tech Inhibiting gene expression
JP2003526367A (ja) 2000-03-16 2003-09-09 ジェネティカ インコーポレイテッド Rna干渉の方法とrna干渉組成物
US6365354B1 (en) 2000-07-31 2002-04-02 Isis Pharmaceuticals, Inc. Antisense modulation of lysophospholipase I expression
US6566135B1 (en) 2000-10-04 2003-05-20 Isis Pharmaceuticals, Inc. Antisense modulation of caspase 6 expression
CA2565701A1 (en) * 2004-05-06 2005-11-17 Jonathan M. Barasch Ngal for reduction and amelioration of ischemic and nephrotoxic injuries
US7645616B2 (en) * 2006-10-20 2010-01-12 The University Of Hong Kong Use of lipocalin-2 as a diagnostic marker and therapeutic target
US8592170B2 (en) * 2008-03-12 2013-11-26 The Trustees Of Columbia University In The City Of New York High molecular weight Ngal as a biomarker for chronic kidney disease
US8030097B2 (en) * 2008-04-30 2011-10-04 Versitech Limited and R & C Biogenius Limited Lipocalin-2 as a prognostic and diagnostic marker for heart and stroke risks
ES2603963T3 (es) * 2008-10-17 2017-03-02 Vectus Biosystems Limited Composiciones y métodos para el tratamiento de trastornos renales

Also Published As

Publication number Publication date
EP2622095B1 (en) 2016-09-14
WO2012042061A1 (en) 2012-04-05
US20140079769A1 (en) 2014-03-20
US20160244764A1 (en) 2016-08-25
EP2622095A1 (en) 2013-08-07
US10337008B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
ES2606140T3 (es) Métodos para predecir la progresión y tratar una enfermedad renal crónica en un paciente
Viau et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans
Lan et al. MicroRNA-494 reduces ATF3 expression and promotes AKI
Huang et al. Urinary Xist is a potential biomarker for membranous nephropathy
ES2911505T3 (es) Método para el diagnóstico, pronóstico y tratamiento de la metástasis de cáncer de mama
Lai et al. ATF3 protects against LPS‐induced inflammation in mice via inhibiting HMGB1 expression
ES2906586T3 (es) Método para el diagnóstico, pronóstico y tratamiento de metástasis de cáncer de próstata
Staloch et al. Gremlin is a key pro-fibrogenic factor in chronic pancreatitis
Li et al. Human kallistatin administration reduces organ injury and improves survival in a mouse model of polymicrobial sepsis
Li et al. Kallistatin treatment attenuates lethality and organ injury in mouse models of established sepsis
JP2005531321A (ja) マーカー遺伝子
Marincola Smith et al. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice
Hayase et al. Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury
Hao et al. MLN4924 protects against interleukin-17A-induced pulmonary inflammation by disrupting ACT1-mediated signaling
Liu et al. Pharmacological inhibition of SETD7 by PFI-2 attenuates renal fibrosis following folic acid and obstruction injury
Wolf et al. Comparative transcriptome analysis of human and murine choroidal neovascularization identifies fibroblast growth factor inducible-14 as phylogenetically conserved mediator of neovascular age-related macular degeneration
JP2014512008A (ja) 炎症性腸疾患の処置のためのスクリーニング法および薬学的組成物
US20110110939A1 (en) Methods and compositions for the treatment and diagnosis of systemic anthrax infection
ES2873377T3 (es) Procedimientos y composiciones farmacéuticas para el tratamiento de cáncer de pulmón
US20140170158A1 (en) Compositions and methods for treating or preventing lung diseases
JP2012523819A (ja) Htra1変異と家族性虚血性脳小血管病との関連
JP2016520570A (ja) A型インフルエンザウイルス感染の治療又は予防に使用するためのpar−4アンタゴニスト
US20150247855A1 (en) Methods and Pharmaceutical Compositions for the Treatment of Cardiovascular Fibrosis
US10316319B2 (en) Composition for diagnosis of liver metastasis of colorectal cancer and the use thereof
Inoue et al. Effects of cell-type-specific expression of a pan-caspase inhibitor on renal fibrogenesis