ES2314981T3 - Receptor gps y procedimiento para el procesamiento de señales gps. - Google Patents

Receptor gps y procedimiento para el procesamiento de señales gps. Download PDF

Info

Publication number
ES2314981T3
ES2314981T3 ES96939443T ES96939443T ES2314981T3 ES 2314981 T3 ES2314981 T3 ES 2314981T3 ES 96939443 T ES96939443 T ES 96939443T ES 96939443 T ES96939443 T ES 96939443T ES 2314981 T3 ES2314981 T3 ES 2314981T3
Authority
ES
Spain
Prior art keywords
signal
data
gps
satellite
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES96939443T
Other languages
English (en)
Inventor
Norman F. Krasner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SnapTrack Inc
Original Assignee
SnapTrack Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/612,669 external-priority patent/US5663734A/en
Application filed by SnapTrack Inc filed Critical SnapTrack Inc
Application granted granted Critical
Publication of ES2314981T3 publication Critical patent/ES2314981T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/254Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to Doppler shift of satellite signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0027Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • G01S5/0054Transmission from base station to mobile station of actual mobile position, i.e. position calculation on base station
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/06Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3805Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving with built-in auxiliary receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/008Transmission of position information to remote stations using a mobile telephone network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2111Location-sensitive, e.g. geographical location, GPS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/161Multiple-frequency-changing all the frequency changers being connected in cascade
    • H03D7/163Multiple-frequency-changing all the frequency changers being connected in cascade the local oscillations of at least two of the frequency changers being derived from a single oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/11Cellular receiver, e.g. GSM, combined with a GPS receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B2001/3894Waterproofing of transmission device

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Circuits Of Receivers In General (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

EN UNA EJECUCION, UN RECEPTOR GPS INCLUYE UNA ANTENA QUE RECIBE SEÑALES GPS EN UNA FRECUENCIA RF DE SATELITES A LA VISTA; UN CONVERTIDOR REDUCTOR ACOPLADO A LA ANTENA PARA REDUCIR LA FRECUENCIA RF DE LAS SEÑALES GPS RECIBIDAS A UNA FRECUENCIA INTERMEDIA (IF); UN DIGITALIZADOR ACOPLADO AL CONVERTIDOR REDUCTOR Y MUESTREO DE LAS SEÑALES GPS DE IF A UNA VELOCIDAD PREDETERMINADA PARA PRODUCIR SEÑALES GPS DE IF MUESTREADAS; UNA MEMORIA ACOPLADA AL DIGITALIZADOR QUE ALMACENA LAS SEÑALES GPS DE IF MUESTREADAS (UNA INSTANTANEA DE LAS SEÑALES GPS); Y UN PROCESADOR DE SEÑALES DIGITAL (DSP) ACOPLADO A LA MEMORIA Y QUE FUNCIONA BAJO LAS INSTRUCCIONES ALMACENADAS, REALIZANDO DE ESTE MODO OPERACIONES DE TRANSFORMACION RAPIDA FOURIER (FFT) EN LAS SEÑALES GPS DE IF MUESTREADAS PARA PROPORCIONAR INFORMACION DE PSEUDOGAMA. ESTAS OPERACIONES INCLUYEN TAMBIEN NORMALMENTE PREPROCESAMIENTO Y POSTPROCESAMIENTO DE LAS SEÑALES GPS. DESPUES DE QUE SE TOME UNA INSTANTANEA DE LOS DATOS, SE DESACTIVA EL EXTREMO FRONTALDEL RECEPTOR. EN UNA EJECUCION, EL RECEPTOR GPS INCLUYE TAMBIEN OTRAS CARACTERISTICAS DE ADMINISTRACION DE ENERGIA E INCLUYE, EN OTRA EJECUCION, LA CAPACIDAD PARA CORREGIR ERRORES EN SU OSCILADOR LOCAL, LO QUE SE UTILIZA PARA MUESTREAR LAS SEÑALES GPS. LA VELOCIDAD DE CALCULO DE LAS PSEUDOGAMAS Y SENSIBILIDAD DE FUNCIONAMIENTO SE MEJORAN MEDIANTE LA TRANSMISION DE LAS DESVIACIONES DE FRECUENCIA DOPPLER DE LOS SATELITES A LA VISTA AL RECEPTOR DE UNA FUENTE EXTERNA, COMO POR EJEMPLO UNA ESTACION BASE, EN UNA EJECUCION DEL INVENTO.

Description

Receptor GPS y procedimiento para el procesamiento de señales GPS.
Antecedentes de la invención Solicitudes relacionadas
La presente solicitud se refiere a dos solicitudes de patente presentadas por el mismo inventor en la misma fecha de esta solicitud; siendo estas dos solicitudes: "An Improved GPS Receiver Utilizing a Communication Link" ("Receptor GPS mejorado que utiliza un enlace de comunicaciones" (número de serie 08/612.582, presentada el 8 de marzo de 1996); "An Improved GPS Receiver Having Power Management" ("Receptor GPS mejorado que presenta gestión de potencia", número de serie 08/613.966, presentada el 8 de marzo de 1996).
La presente solicitud está relacionada asimismo con una solicitud de patente provisional (y por la presente se reivindica el beneficio de su fecha de presentación) del mismo inventor, Norman F. Krasner, cuya solicitud se titula "Low Power, Sensitive Pseudorange Measurement Apparatus and Method for Global Positioning Satellites Systems" ("Aparato y procedimiento para la medición sensible de baja potencia de pseudodistancias para sistemas de satélites de posicionamiento global"), número de serie 60/005.318, presentada el 9 de octubre de 1995.
Una parte de la descripción de la presente memoria de patente contiene material sujeto a protección de protección de los derechos de autor. El propietario de los derechos de autor no se opone a que cualquier persona realice una reproducción facsímil del documento de patente o de la descripción de la patente, tal como aparece en los archivos o registros de patentes de la Oficina de Patentes y Marcas, aunque por otro lado se reserva todos los derechos de autor de cualquier tipo.
Campo de la invención
La presente invención se refiere a unos receptores capaces de determinar una información de la posición de unos satélites y, en particular, se refiere a aquellos receptores que encuentran aplicación en sistemas de posicionamiento global vía satélite (GPS).
Antecedentes de la técnica
Los receptores GPS normalmente determinan su posición calculando los instantes relativos de llegada de unas señales transmitidas simultáneamente desde una serie de satélites GPS (o NAVSTAR). Estos satélites transmiten, como parte de su mensaje, tanto los datos de posición del satélite como los datos de sincronización del reloj, los así denominados datos de "las efemérides". El procedimiento de búsqueda y adquisición de señales GPS, leyendo los datos de las efemérides para una serie de satélites y calculando la posición del receptor a partir de estas informaciones requiere mucho tiempo, habitualmente varios minutos. En muchos casos, este tiempo de procesamiento es inaceptable y, adicionalmente, limita en gran medida la duración de la batería en aplicaciones portátiles micro-miniaturizadas.
Otra limitación de los receptores GPS actuales es que su funcionamiento está limitado a situaciones en las cuales varios satélites están claramente a la vista, sin obstáculos, y en las que se ha dispuesto una antena de buena calidad de manera apropiada para recibir tales señales. Como tal, normalmente no se pueden utilizar en aplicaciones portátiles montadas sobre un cuerpo sólido; en áreas donde existe mucha vegetación, o una obstaculización de la comunicación producida por la presencia de edificios; y en aplicaciones en interior de edificios.
Existen dos funciones principales en los sistemas receptores GPS: (1) cálculo de las pseudodistancias a los diferentes satélites GPS, y (2) cálculo de la posición de la plataforma receptora utilizando estos datos de las pseudodistancias, de sincronización de los satélites y de las efemérides. Las pseudodistancias son simplemente los retardos de tiempo medidos entre la señal recibida desde cada satélite y el reloj local. Los datos de las efemérides y de sincronización del satélite son extraídos de la señal GPS una vez ésta ha sido adquirida y se ha habilitado su seguimiento continuo. Tal como se ha indicado anteriormente, la recolección de esta información lleva normalmente un tiempo relativamente largo (de 30 segundos a varios minutos) y debe ser realizada con un buen nivel de señal recibida para alcanzar tasas de error bajas.
Casi todos los receptores GPS conocidos utilizan procedimientos de correlación para calcular pseudodistancias. Estos procedimientos de correlación son realizados en tiempo real, a menudo mediante dispositivos hardware "correlacionadores". Las señales GPS contienen unas señales repetitivas de tasa elevada denominadas secuencias pseudoaleatorias (PN). Los códigos disponibles para aplicaciones civiles se denominan códigos C/A, y presentan una tasa de inversión de fase binaria, o tasa de "chipping", de 1,023 MHz y un periodo de repetición de 1.023 chips para un periodo de código de 1 milisegundo. Las secuencias de código pertenecen a una familia denominada códigos Gold. Cada satélite GPS emite una señal con un código Gold unívoco.
Para una señal recibida desde un satélite GPS dado, siguiendo un procedimiento de desmodulación a banda base, un receptor de tipo correlador realiza la multiplicación de la señal recibida con una réplica del código Gold adecuado contenido en su memoria local, y a continuación integra, o filtra basa-bajas, el producto para obtener una indicación de la presencia de la señal. Este procedimiento se denomina una operación de "correlación". Mediante el ajuste secuencial de la sincronización relativa de esta réplica almacenada asociada a la señal recibida, y observando la salida de la correlación, el receptor puede determinar el retardo de tiempo entre la señal recibida y un reloj local. La determinación inicial de la presencia de una salida de este tipo se denomina "adquisición". Una vez ha tenido lugar la adquisición, el procedimiento entra en la fase de "seguimiento continuo" en la cual se ajusta la sincronización de la referencia local en pequeñas cantidades para mantener una salida elevada de la correlación. La salida de la correlación durante la fase de seguimiento continuo puede entenderse como la señal GPS con el código pseudoaleatorio eliminado, o, expresado en terminología común, "desexpandida". Esta señal es de banda estrecha, con un ancho de banda proporcional al de una señal de datos binaria de 50 bits/seg modulada por desplazamiento de fase superpuesta a la forma de onda
GPS.
El procedimiento de adquisición por correlación requiere mucho tiempo, especialmente si las señales recibidas son de baja intensidad. Para mejorar el tiempo de adquisición, la mayoría de los receptores GPS utilizan una serie de correladores (típicamente hasta 12) que permiten una búsqueda en paralelo de picos de correlación.
Algunos receptores GPS anteriores han utilizado técnicas FFT para determinar la frecuencia Doppler de la señal GPS recibida. Estos receptores utilizan operaciones de "correlación" convencionales para desexpandir la señal GPS y proporcionar una señal de banda estrecha con un ancho de banda típicamente dentro del intervalo de 10 kHz a 30 kHz. A continuación, la señal de banda estrecha resultante experimenta un análisis de Fourier utilizando unos algoritmos FFT para determinar la frecuencia portadora. La determinación de dicha portadora proporciona simultáneamente una indicación de que la referencia PN local está ajustada con la fase correcta de la señal recibida y proporciona una medición precisa de la frecuencia portadora. A continuación, se puede utilizar esta frecuencia en la operación de seguimiento continuo de los receptores.
La patente US nº 5.420.592 de Johnson discute el empleo de unos algoritmos FFT para calcular unas pseudodistancias en un emplazamiento central de procesamiento en lugar de en una unidad móvil. Según ese procedimiento, el receptor GPS recoge una copia instantánea de los datos y a continuación son transmitidos por un enlace de datos hacia un receptor remoto donde experimentan el procesamiento FFT. Sin embargo, el procedimiento que se da a conocer en la misma calcula sólo una única Transformada Rápida de Fourier directa e inversa (correspondiente a cuatro periodos PN) para realizar el conjunto de correlaciones.
Tal como se pondrá claramente de manifiesto a partir de la descripción siguiente, se puede alcanzar una mayor sensibilidad y una mayor velocidad de procesamiento mediante la ejecución de un número elevado de operaciones FFT conjuntamente con unas operaciones especiales de preprocesamiento y de postprocesamiento.
En esta patente, se utilizan con frecuencia los términos correlación, convolución y filtrado adaptado. El término "correlación", cuando se aplica a dos series de números, significa la multiplicación término por término de los miembros correspondientes de las dos series seguida de la suma de las series. Algunas veces ésta se designa como "correlación en serie" y da como resultado una salida de un único número. En algunas circunstancias, se realiza una sucesión de operaciones de correlación sobre grupos sucesivos de datos.
El término "convolución" aplicado a dos series de números es el mismo que el utilizado comúnmente en la técnica y es equivalente a filtrar la segunda serie de longitud m con un filtro, correspondiente a la primera serie, que presenta una respuesta impulsional de longitud n. El resultado es una tercera serie de longitud m+n-1. El término "filtrado adaptado" se refiere a una operación de convolución (o de filtrado) en la cual el filtro mencionado anteriormente presenta una respuesta impulsional que es la versión complejo-conjugada e invertida en el tiempo de la primera serie. El término "convolución rápida" se utiliza para indicar una serie de algoritmos que calculan la operación de correlación de una manera eficiente.
Algunos autores utilizan los términos correlación y convolución de forma indistinta; para facilitar la comprensión, sin embargo, en esta patente, el término "correlación" siempre se refiere a la operación de correlación en serie descrita anteriormente.
Sumario de la invención
La presente invención propone un procedimiento para la calibración de un oscilador local en un receptor GPS móvil según la reivindicación 1.
A partir de la reivindicación 2 a 8 se exponen aspectos adicionales y no limitativos de dicho procedimiento.
Además, la invención propone un receptor GPS móvil según la reivindicación 9. A partir de la reivindicación 10 a 15 se exponen aspectos adicionales y no limitativos de dicho receptor GPS.
Breve descripción de los dibujos
La presente invención está ilustrada, a título de ejemplo y de forma no limitativa, en las figuras de los dibujos adjuntos en los que unas referencias designan partes similares, y en las que:
la figura 1A es un diagrama de bloques de los componentes principales de un receptor remoto, o sistema receptor GPS móvil, que utiliza el procedimiento de la invención, y representa los enlaces de datos que pueden existir entre una estación base y el receptor remoto;
la figura 1B es un diagrama de bloques de una unidad GPS móvil alternativa;
la figura 1C es un diagrama de bloques de otra unidad GPS móvil alternativa;
las figuras 2A y 2B dan a conocer dos alternativas para las partes de RF y de IF de un receptor;
la figura 3 representa un diagrama de flujo de las operaciones principales (por ejemplo, operaciones de software) realizadas por el procesador DSP programable;
la figura 4 representa las formas de onda del procesamiento de señal en diferentes etapas de procesamiento;
la figura 5A representa un sistema de estación base;
la figura 5B representa un sistema de estación base alternativo;
la figura 6 representa una unidad GPS móvil que presenta, de acuerdo con la presente invención, calibración o corrección del oscilador local; y,
la figura 7 es un diagrama de flujo que representa un procedimiento de gestión de potencia para una unidad móvil.
Descripción detallada de la invención
La presente invención se refiere a unos aparatos y unos procedimientos para calcular la posición de un objeto móvil, o remoto, de forma que se obtiene el resultado de que el hardware remoto presenta una disipación de potencia muy baja y se obtiene la capacidad de funcionar con niveles de señal recibida muy bajos. Es decir, que se reduce el consumo de potencia a la vez que se aumenta la sensibilidad del receptor. Esto es posible mediante la implementación de las funciones de recepción remota, tal como se representa en la figura 1A, así como mediante la transmisión de una información Doppler desde una estación base 10 ubicada separadamente hacia la unidad GPS móvil o remota 20.
Debe tenerse en cuenta que se pueden utilizar las pseudodistancias para calcular la posición geográfica de la unidad remota de varias maneras diferentes. Tres ejemplos son:
1.
Procedimiento 1: mediante la retransmisión de los mensajes de datos del satélite hacia la unidad remota 20 desde la estación base 10, la unidad remota 20 combina esta información con las mediciones de la pseudodistancia para calcular su posición. Véase, por ejemplo, la patente US nº 5.365.450. Típicamente, la unidad remota 20 realiza el cálculo de la posición en la unidad remota 20. La patente US nº 5.365.450 discute además diferentes procedimientos para utilizar una información de almanaque contenida en una señal de satélite. Particularmente, en la sección de antecedentes de la patente US nº 5.365.450 (por ejemplo, Columna 1, línea 15), se afirma que "La mayoría de los receptores GPS modernos utilizan el almanaque del satélite GPS y una información aproximada del instante y posición actual para tratar de adquirir unas señales de satélites GPS visibles...". La patente US nº 5.365.450 prosigue discutiendo diferentes procedimientos para utilizar la información de almanaque;
2.
Procedimiento 2: la unidad remota 20 puede recoger los datos de las efemérides del satélite a partir de la recepción de señales GPS de la forma normal que se practica comúnmente en la técnica. Estos datos, que típicamente son válidos para una o dos horas, se pueden combinar con las mediciones de la pseudodistancia para completar, típicamente en la unidad remota, el cálculo de la posición; y,
3.
Procedimiento 3: la unidad remota 20 puede transmitir las pseudodistancias a través de un enlace de comunicaciones 16 hacia la estación base 10 que puede combinar esta información con los datos de las efemérides del satélite para completar el cálculo de la posición. Véase, por ejemplo, la patente US nº 5.225.842.
En las soluciones (o procedimientos) 1 y 3, se supone que la estación base 10 y la unidad remota 20 presentan una visión común de todos los satélites de interés y están ubicadas suficientemente cerca una de la otra como para resolver una ambigüedad temporal asociada con la tasa de repetición de los códigos GPS pseudoaleatorios. Esto se cumplirá para una cobertura de alcance entre la estación base 10 y la unidad remota 20 de la mitad de la velocidad de la luz multiplicado por el periodo de repetición PN (1 milisegundo), o de 150 km aproximadamente.
Para explicar la presente invención, se supone que se utiliza el procedimiento 3 para completar el cálculo de la posición. Sin embargo, después de la revisión de esta memoria, se apreciará por parte de expertos en la materia que los diferentes aspectos y formas de realización de la presente invención se podrían utilizar con cualquiera de los tres procedimientos anteriores así como con otras soluciones. Por ejemplo, en una variación del Procedimiento 1, se pueden transmitir datos de información del satélite tales como datos representativos de las efemérides del satélite mediante una estación base hacia una unidad remota, y se pueden combinar estos datos de información del satélite con las pseudodistancias, calculadas a partir de señales GPS almacenadas, para proporcionar una latitud y una longitud (y en muchos casos además una altitud) de la unidad remota. Se apreciará que la información de posición recibida desde la unidad remota puede estar limitada a la latitud y la longitud o puede ser una información extendida que incluye latitud, longitud, altitud, velocidad y disposición de la unidad remota. Además, en esta variación del Procedimiento 1 se puede utilizar la corrección del oscilador local y/o la gestión de potencia. Adicionalmente, se puede transmitir la información Doppler a la unidad remota 20 y ser utilizada por la unidad remota 20.
De acuerdo con el Procedimiento 3, la estación base 10 ordena a la unidad remota 20 la realización de una medición mediante un mensaje transmitido a través de un enlace de comunicaciones de datos 16 tal como se representa en la figura 1A. La estación base 10 envía además dentro de este mensaje una información Doppler para los satélites que están a la vista, la cual es una forma de datos de información del satélite. Esta información Doppler está típicamente en el formato de una información de frecuencia, y el mensaje además especificará típicamente una identificación de los satélites particulares que están a la vista u otros datos de inicio. Este mensaje es recibido por un módem individual 22 que forma parte de la unidad remota 20, y se almacena en una memoria 30 conectada a un microprocesador de baja potencia 26. El microprocesador 26 gestiona la transferencia de datos de información entre los elementos procesadores de la unidad remota 32 a 48 y el módem 22, y controla las funciones de gestión de potencia dentro del receptor remoto 20, tal como se pondrá claramente de manifiesto en la discusión posterior. Normalmente, el microprocesador 26 establece la mayor parte o casi todo el hardware de la unidad remota 20 a baja potencia, o estado de potencia desactivada, excepto cuando se realizan el cálculo de la pseudodistancia y/u otros cálculos GPS, o cuando se dispone de una fuente de potencia alternativa. Sin embargo, la parte receptora del módem es activada por lo menos periódicamente (a potencia total) para determinar si la estación base 10 ha enviado una orden para determinar la posición de la unidad remota.
Esta información Doppler mencionada anteriormente es muy corta de duración debido a que la precisión requerida para dicha información Doppler no es elevada. Por ejemplo, si se requiere una precisión de 10 Hz y la frecuencia Doppler máxima es de \pm7 kHz aproximadamente, entonces una palabra de 11 bits será suficiente para cada satélite visionado. Si 8 satélites están a la vista, entonces se necesitarán 88 bits para especificar todas las frecuencias Doppler. El uso de esta información elimina el requisito de que la unidad remota 20 busque dicha frecuencia Doppler, reduciendo así su tiempo de procesamiento por encima de un factor de 10. El uso de la información Doppler permite además que la unidad GPS móvil 20 procese más rápidamente una muestra de señales GPS, y esto tiende a reducir la cantidad de tiempo en el que el procesador 32 debe recibir toda la potencia para calcular una información de posición. Esto por sí mismo reduce la potencia consumida por la unidad remota 20 y contribuye a mejorar la sensibilidad. Se puede enviar una información adicional hacia la unidad remota 20, comprendiendo las etapas de tiempo de los datos en el mensaje GPS.
La señal recibida del enlace de datos utiliza una frecuencia portadora de precisión. El receptor remoto 20 puede utilizar, tal como se representa en la figura 6, que se describe a continuación, un bucle de control automático de frecuencia (AFC) para engancharse a esta portadora y así calibrar además su propio oscilador de referencia. Un tiempo de transmisión de mensaje de 10 milisegundos, con una relación de señal recibida/ruido de 20 dB, permitirá normalmente la medición de la frecuencia mediante un AFC hasta una precisión de 10 Hz o más elevada. Típicamente, esto será más que adecuado para los requisitos de la presente invención. Esta característica mejorará además la precisión de los cálculos de la posición que se realizan, o bien de manera convencional, o bien utilizando los procedimientos de convolución rápida de la presente invención.
En una forma de realización de la invención, el enlace de comunicaciones 16 es un medio de comunicación por radiofrecuencia de pequeño ancho de banda comercialmente disponible, tal como un sistema de radiobúsqueda de 2 canales. Este sistema se puede utilizar en formas de realización en las que la cantidad de datos transmitidos entre la unidad remota 20 y la estación base 10 es relativamente pequeña. La cantidad de datos requerida para la transmisión de los datos Doppler y otros datos (por ejemplo, los datos de inicio tales como las identidades de los satélites visionados) es relativamente pequeña y de manera similar la cantidad de datos requerida para la información de posición (por ejemplo, las pseudodistancias) es relativamente pequeña. Esto es diferente de aquellos sistemas que requieren la transmisión de grandes cantidades de datos durante un periodo de tiempo corto; estos sistemas pueden requerir un medio de comunicación por radiofrecuencia con un ancho de banda mayor.
Una vez que la unidad remota 20 recibe una orden (por ejemplo, desde la estación base 10) para el procesamiento GPS conjuntamente con la información Doppler, el microprocesador 26 activa el Conversor de RF a IF 42, el Conversor Analógico a Digital 44, y la Memoria de Copia Instantánea Digital 46 mediante un circuito de Batería y Regulador de Potencia y Conmutadores de Potencia 36 (y unas líneas controladas de potencia 21a, 21b, 21c y 21d), suministrando de este modo toda la potencia a estos componentes.
Esto hace que la señal procedente del satélite GPS que se recibe mediante la antena 40 sea desmodulada a una frecuencia IF, a partir de donde es digitalizada posteriormente. A continuación, se almacena un conjunto contiguo de dichos datos, típicamente correspondiente a una duración de 100 milisegundos a 1 segundo (o incluso mayor), en una Memoria de Copia Instantánea 46. Se puede controlar la cantidad de datos almacenados mediante el microprocesador 26 de tal manera que se pueden almacenar más datos en la memoria 46 (para obtener una mejor sensibilidad) en aquellas situaciones en las que ahorrar potencia no es tan importante como obtener una mejor sensibilidad, y se pueden almacenar menos datos en aquellas situaciones en las que ahorrar potencia es más importante que la sensibilidad. Típicamente, la sensibilidad es más importante cuando las señales GPS se pueden ver parcialmente obstaculizadas, y el ahorro de potencia es menos importante cuando se disponga de una fuente de potencia abundante (por ejemplo, una batería de automóvil). El direccionamiento de esta memoria 46 para almacenar estos datos está controlado por un circuito integrado de Matriz de Puertas Programables In-situ 48. La desmodulación de la señal GPS se realiza utilizando un sintetizador de frecuencia 38 que proporciona una señal de oscilador local 39 al conversor 42 tal como se discute adicionalmente a continuación.
Cabe destacar que todo este tiempo (mientras se llena la memoria de copia instantánea 46 con las señales GPS digitalizadas procedentes de los satélites visionados), se debe mantener al microprocesador 32 en un estado de potencia baja. El Conversor de RF a IF 42 y el Conversor Analógico a Digital 44 sólo son activados típicamente durante un periodo de tiempo corto, suficiente para recoger y almacenar los datos requeridos para el cálculo de la pseudodistancia. Tras finalizar la recolección de los datos, se desactivan estos circuitos conversores o bien se reduce el consumo mediante unas líneas controladas de potencia 21b y 21c (mientras la memoria 46 continúa recibiendo toda la potencia), no contribuyendo de esta manera a una disipación adicional de potencia durante el cálculo de la pseudodistancia real. El cálculo de la pseudodistancia se realiza a continuación, en una forma de realización, utilizando un circuito integrado programable de procesamiento digital de señal (DSP) de propósito general 32, como por ejemplo un circuito integrado TMS320C30 de Texas Instruments. Este DSP 32 es puesto en un estado de potencia activada mediante el microprocesador 26 y el circuito 36, mediante una línea controlada de potencia 21e, antes de realizar dichos cálculos.
Este DSP 32 difiere de otros utilizados en algunas unidades GPS remotas en que es programable y de propósito general, a diferencia de otros circuitos que son circuitos integrados a medida de procesamiento digital de señal especializados. Adicionalmente, el DSP 32 hace posible la utilización de un algoritmo de Transformada Rápida de Fourier (FFT), que permite un cálculo muy rápido de las pseudodistancias mediante una realización rápida de un gran número de operaciones de correlación entre una referencia generada de forma local y las señales recibidas. Típicamente se requieren 2.046 de dichas correlaciones para completar la búsqueda de las etapas de tiempo para cada señal GPS recibida. El algoritmo de Transformada Rápida de Fourier permite una búsqueda paralela y simultánea de todas dichas posiciones, acelerando de esta manera el procedimiento de cálculo requerido en un factor de 10 a 100 por encima de las soluciones convencionales.
Una vez que el DSP 32 completa su cálculo de las pseudodistancias para cada uno de los satélites visionados, transmite esta información al microprocesador 26 mediante un bus de interconexión 33. En ese momento el microprocesador 26 puede hacer que el DSP 32 y la memoria 46 entren de nuevo en un estado de potencia baja enviando una señal de control adecuada al circuito de Batería y Regulador de Potencia 36. A continuación, el microprocesador 26 utiliza el módem 22 para transmitir los datos de pseudodistancia a través de un enlace de datos 16 hacia la estación base 10 para el cálculo final de la posición. Además de los datos de la pseudodistancia, se puede transmitir simultáneamente una marca de tiempo hacia la estación base 10 que indica el tiempo transcurrido desde la recolección inicial de los datos en la memoria de almacenamiento temporal 46 hasta el instante de transmisión de los datos a través del enlace de datos 16. Esta marca de tiempo mejora la capacidad de la estación base para realizar los cálculos de la posición, debido a que permite el cálculo de las posiciones de los satélites GPS en el instante de la recolección de los datos. Como alternativa, de acuerdo con el Procedimiento 1 anterior, el DSP 32 puede calcular la posición (por ejemplo, latitud y longitud o latitud, longitud y altitud) de la unidad remota y enviar estos datos al microprocesador 26, que de manera similar retransmite estos datos a la estación base 10 mediante el módem 22. En este caso, el DSP simplifica el cálculo de la posición manteniendo el tiempo transcurrido desde la recepción de los mensajes de datos del satélite igual hasta el tiempo en el que comienza la recolección de los datos en la memoria de almacenamiento temporal. Esto mejora la capacidad de la unidad remota para realizar el cálculo de la posición, debido a que permite el cálculo de las posiciones de los satélites GPS en el instante de la recolección de los datos.
Tal como se representa en la figura 1A, el módem 22 utiliza una antena individual 24 para transmitir y recibir mensajes a través de un enlace de datos 16. Se apreciará que el módem 22 comprende un receptor de comunicaciones y un transmisor de comunicaciones que están conectados de forma alternada a la antena 24. De manera similar, una estación base 10 puede utilizar una antena individual 14 para transmitir y recibir unos mensajes del enlace de datos, permitiendo de esta manera una recepción continua de las señales GPS mediante la antena GPS 12 de la estación base 10.
Se ha previsto, en un ejemplo típico, que los cálculos de la posición en el DSP 32 requerirán menos de unos pocos segundos de tiempo, dependiendo de la cantidad de datos almacenados en la memoria de copia instantánea digital 46 y de la velocidad del DSP o de los varios DSPs.
Debería resultar evidente a partir de la discusión anterior, que la unidad remota 20 sólo necesita activar sus circuitos de consumo elevado de potencia durante una fracción de tiempo pequeña, en el caso de que las órdenes para el cálculo de la posición procedentes de la estación base 10 sean poco frecuentes. Obsérvese a modo de anticipo que, por lo menos en muchas situaciones, dichas órdenes darán como resultado la activación de los dispositivos remotos en su estado de potencia disipada elevada sólo durante aproximadamente el 1% del tiempo o menos.
Esto permite, en consecuencia, que la batería dure 100 veces más tiempo de lo que sería posible de otro modo. Las instrucciones de programa necesarias para la realización de la operación de la gestión de potencia se almacenan en la EEPROM 28 u otros medios de almacenamiento adecuados. Esta estrategia de gestión de potencia se debe poder adaptar a diferentes situaciones de disponibilidad de potencia. Por ejemplo, cuando se dispone de la potencia primaria, la determinación de la posición puede tener lugar de un modo continuado.
Tal como se ha indicado anteriormente, la memoria de copia instantánea digital 46 captura un registro que corresponde a un periodo de tiempo relativamente largo. El procesamiento eficiente de este amplio bloque de datos utilizando procedimientos de convolución rápida facilita el procesamiento de señales a niveles de recepción bajos (por ejemplo, cuando la recepción es débil a causa de una obstaculización parcial provocada por edificios, árboles, etc.). Todas las pseudodistancias de los satélites GPS visibles calculadas utilizan estos mismos datos almacenados temporalmente. Esto proporciona un funcionamiento mejorado comparado con los receptores GPS de seguimiento continuo en situaciones (tales como bajo condiciones de obstaculización urbana) en las cuales la amplitud de la señal cambia rápidamente.
En la figura 1B, se representa una forma de realización ligeramente diferente que prescinde del microprocesador 26 y sus periféricos (RAM 30 y EEPROM 28) y substituye su funcionalidad con circuitos adicionales contenidos dentro de un FPGA (matriz de puertas programables in-situ) 49 más complejo. En este caso el FPGA 49, un dispositivo de baja potencia, sirve para poner en marcha el chip DSP 32a a partir de una actividad de detección realizada desde el módem 22 a través de la interconexión 19. La interconexión 19 conecta el módem al DSP 32a y al FPGA 19. El chip DSP 32a, cuando se ha puesto en marcha, transmite y recibe directamente datos desde el módem. El DSP 32a realiza además unas operaciones de control de la potencia a través de su interconexión 18 que está conectada al circuito de Batería y Regulador de Potencia y Conmutadores de Potencia 36 para enviar unas órdenes de activación/desactivación al circuito 36. El DSP 32a activa de forma selectiva o reduce la potencia suministrada a diferentes componentes, según un procedimiento de gestión de potencia tal como el representado en la figura 7, mediante las órdenes de activación/desactivación enviadas a través de la interconexión 18 hacia el circuito 36. El circuito 36 recibe estas órdenes y suministra potencia (o reduce potencia), de forma selectiva, a los diferentes componentes. El circuito 36 pone en marcha el DSP 32a a través de la interconexión 17. El circuito 36 suministra potencia de forma selectiva a los diferentes componentes conmutando la potencia de forma selectiva mediante unas líneas elegidas de entre las líneas controladas de potencia 21a, 21b, 21c, 21d y 21f. De esta manera, por ejemplo, para suministrar potencia al conversor 42 y al conversor 44, se suministra la potencia a estos conversores a través de las líneas 21b y 21c. De manera similar, se suministra potencia al módem a través de la línea controlada de potencia 21f.
Un oscilador de baja frecuencia de cristal 47 está conectado a la memoria y al circuito de gestión de potencia FPGA 49. En una forma de realización, la memoria y el circuito de gestión de potencia FPGA 49 contienen un temporizador de baja potencia que comprende el oscilador de baja frecuencia 47. Cuando el temporizador del FPGA 49 expira, el FPGA 49 envía una señal de puesta en marcha al DSP 32a a través de la interconexión 17, y a continuación el DSP 32a puede poner en marcha otros circuitos enviando unas órdenes de activación/desactivación al circuito de Batería y Regulador de Potencia y Conmutadores de Potencia 36. Se suministra potencia a los otros circuitos a través de las líneas controladas de potencia 21a, 21b, 21c, 21d y 21f bajo el control del circuito 36, para realizar una operación de determinación de la posición (por ejemplo, determinar una información de posición tal como una pseudodistancia o una latitud y longitud). Después de la operación de determinación de la posición, el DSP 32A reestablece el temporizador FPGA y reduce su propia potencia, y el circuito 36 reduce también la potencia suministrada a los otros componentes, según el procedimiento representado en la figura 7. Se apreciará que una batería o una serie de baterías suministrarán potencia a todos los circuitos de potencia controlada a través de todas las líneas controladas de potencia que están controladas por la memoria y el circuito de gestión de potencia FPGA 49 y el DSP 32a. Se apreciará también que, en lugar de reducir directamente la potencia mediante las líneas controladas de potencia (tales como la 21b) suministrada a un componente, la potencia consumida por un componente se puede reducir indicándole al componente (como en el caso del DSP 32a a través de la interconexión 17 de la figura 1B) que reduzca la potencia o que se ponga en marcha a potencia total. A menudo esto es posible cuando un componente, tal como un circuito integrado, presenta una entrada para controlar el estado de potencia del componente, y el componente presenta la lógica interna necesaria para controlar el consumo de potencia (por ejemplo, una lógica para reducir la potencia suministrada a varios bloques lógicos del componente). La memoria y el circuito de gestión de potencia FPGA 49 proporcionan control y gestión de la memoria, comprendiendo operaciones de direccionamiento cuando los datos están siendo almacenados en la memoria 46 desde los conversores 44 o cuando el componente DSP 32a está leyendo datos desde la memoria 46. Además, el FPGA 49 puede controlar otras funciones de la memoria, tales como refresco de la memoria en caso de necesidad.
La figura 1C representa otra unidad GPS móvil que contiene muchos de los mismos componentes que las unidades GPS móviles representadas en las figuras 1A y 1B. Además, la unidad GPS móvil representada en la figura 1C comprende unos reguladores de potencia 77 que están conectados para recibir potencia desde una serie de baterías 81 así como una entrada opcional para una fuente de potencia externa 83 y unas células solares 79. El regulador de potencia 77 suministra potencia a todos los circuitos bajo el control de las líneas controladas de potencia que están gestionadas por el chip DSP 32a y la memoria y el circuito de gestión de potencia FPGA 49 representados en la figura 1C. Las células solares 79 pueden recargar dichas baterías utilizando tecnología de recarga convencional. Adicionalmente, las células solares 79 pueden suministrar potencia a la unidad GPS móvil además de recargar las baterías. En la forma de realización representada en la figura 1C, el FPGA 49 proporciona una señal de puesta en marcha a través de la interconexión 75 al chip DSP 32a; esta señal dispone de nuevo al chip DSP al estado de potencia total para realizar las diferentes funciones descritas para el chip DSP 32a. Además, se puede activar el chip DSP al estado de potencia total a través de una orden externa desde el módem 22 que está conectado directamente al chip DSP a través de la interconexión 19.
La figura 1C representa además una característica que permite que la unidad GPS móvil intercambie sensibilidad a cambio de ahorro de potencia. Tal como se ha descrito en este caso, se puede aumentar la sensibilidad de la unidad GPS móvil aumentando la cantidad de señales GPS almacenadas que son guardadas en la memoria 46. Esto se realiza mediante la adquisición y la digitalización de más señales GPS y almacenando estos datos en la memoria 46. Aunque este mayor almacenamiento provoca un mayor consumo de potencia, mejora la sensibilidad de la unidad GPS móvil. Se puede seleccionar esta modalidad de sensibilidad mejorada mediante un conmutador de modalidad de potencia 85 sobre la unidad GPS que está conectada al bus 19, para enviar una orden al chip DSP 32a para entrar en una modalidad con sensibilidad mejorada. De forma alternativa, se puede hacer que este conmutador de modalidad de potencia 85 envíe una orden al chip DSP 32a para ahorrar más potencia y proporcionar menos sensibilidad mediante la adquisición de una copia instantánea más reducida de las señales GPS y almacenando así una cantidad inferior de señales GPS en la memoria 46. Se apreciará que esta selección de modalidad de potencia también se puede producir a través de una señal enviada desde la estación base al módem 22, el cuál comunica a continuación esta orden a través de la interconexión 19 al chip DSP 32a.
En la figura 2A, se muestra un ejemplo representativo de un conversor de frecuencia RF a IF y de un sistema de digitalización para la unidad GPS móvil. Se pasa la señal de entrada a 1.575,42 MHz a través de un filtro limitador de banda (BPF) 50 y un amplificador poco ruidoso (LNA) 52 y se envía hacia una etapa de conversión de frecuencia. El oscilador local (LO) 56 utilizado en esta etapa está enganchado en fase (a través de un PLL 58) a un oscilador de cristal con compensación de temperatura (TCXO) 60 de 2,048 MHz (o a un harmónico de la misma). En una forma de realización preferida, la frecuencia LO sería de 1.531,392 MHz, que es 2.991 x 0,512 MHz. La señal IF resultante es centrada a 44,028 MHz. Esta IF es deseable debido a la disponibilidad de componentes de bajo coste que trabajan cerca de los 44 MHz. En particular, los filtros de onda acústica de superficie (SAW), que se utilizan abundantemente en aplicaciones de televisión, están disponibles fácilmente. Por supuesto, se pueden utilizar otros dispositivos de limitación de banda en lugar de los dispositivos SAW.
La señal GPS recibida se mezcla con la señal LO en el mezclador 54 para producir la señal IF. Esta señal IF se pasa a través de un filtro SAW 64 para limitarla en banda de forma precisa a 2 MHz de ancho de banda, y se envía a continuación hacia un desmodulador I/Q 68 que traslada la señal cerca de banda base (nominalmente a 4 kHz de frecuencia central). La frecuencia del oscilador local para este desmodulador 68 se obtiene a partir del TCXO de 2,048 MHz 60 como el harmónico número 43 de 1,024 MHz, es decir 44,032 MHz.
El desmodulador I/Q 68 está disponible de forma comercial, por lo general, como componente RF. Típicamente consiste de dos mezcladores y filtros pasabajas. En casos de este tipo, los puertos de entrada de un mezclador reciben la señal IF y la señal LO y los puertos de entrada del otro mezclador reciben la misma señal IF y la señal LO desplazada en fase en 90º. Las salidas de los dos mezcladores son filtradas pasabajas para eliminar acoples y otros productos de distorsión.
Tal como se representa en la figura 2A, los amplificadores 62 y 66 se pueden utilizar antes y después de la operación de limitación de banda según se requiera.
Las dos salidas del desmodulador I/Q 68 son enviadas a los dos conversores A/D adaptados 44 que muestrean las señales a 2,048 MHz. Una forma de realización alternativa substituye los conversores A/D 44 por comparadores (no representados), cada uno de los cuales produce a su salida una secuencia de datos bivaluada (un bit) en función de la polaridad de la señal entrante. Se conoce bien que esta solución produce una pérdida de 1,96 dB aproximadamente en la sensibilidad del receptor respecto a un conversor A/D multinivel. Sin embargo, se puede conseguir un ahorro substancial con el uso de los comparadores respecto a los conversores A/D, así como en el requisito de memoria reducida en la memoria de copia instantánea 46 posterior.
En la figura 2B se muestra una forma de realización alternativa del desmodulador y del sistema A/D que utiliza un procedimiento de muestreo de la banda de paso. El TCXO 70 utilizado trabaja a la frecuencia de 4,096 MHz (o en un harmónico de la misma). Se puede utilizar la salida del TCXO a modo de reloj de muestreo para el conversor A/D 44 (o comparador); éste funciona para trasladar la señal a 1,028 MHz. Esta frecuencia es la diferencia entre el harmónico número 11 de 4,096 MHz y la frecuencia IF de entrada de 44,028 MHz. La IF de 1,028 MHz resultante es casi una cuarta parte de la tasa de muestreo, lo que se conoce como casi ideal para minimizar las distorsiones del tipo debidas al muestreo. Comparado con el muestreo I/Q de la figura 2A, este muestreador único proporciona un canal de datos en lugar de dos, pero con tasa doble. Además, los datos están efectivamente a una IF de 1,028 MHz. La conversión de frecuencia I/Q a casi 0 MHz sería implementada a continuación mediante unos medios digitales en el siguiente procesamiento que se va a describir. Los aparatos de la figura 2A y 2B son competitivos en coste y complejidad; a menudo, la disponibilidad de los componentes determina la solución preferida. Sin embargo, se pondrá claramente de manifiesto para los expertos en la materia que se pueden utilizar otras configuraciones de receptor para obtener resultados similares.
Para simplificar la siguiente discusión, ésta supone que se utiliza el muestreo I/Q de la figura 2A y que la memoria de copia instantánea 46 contiene dos canales de datos digitalizados a 2,048 MHz.
Se pueden apreciar detalles del procesamiento de la señal realizado en el DSP 32 con la ayuda del diagrama de flujo de la figura 3 y de los dibujos de las figuras 4A, 4B, 4C, 4D y 4E. Se pondrá claramente de manifiesto para los expertos en la materia que el código máquina, u otro código adecuado, para realizar el procesamiento de la señal que se va a describir se almacena en la EPROM 34. Se pueden utilizar otros dispositivos de memoria no-volátil. El objetivo del procesamiento es determinar la sincronización de la forma de onda recibida con respecto a la forma de onda generada localmente. Adicionalmente, para obtener una sensibilidad elevada, se procesa una parte muy larga de dicha forma de onda, típicamente de 100 milisegundos a 1 segundo.
Para comprender el procesamiento primero se debe observar que cada señal GPS recibida (modalidad C/A) está compuesta de un patrón pseudoaleatorio repetitivo (PN) de 1.023 símbolos de tasa alta (1 MHz), denominados comúnmente "chips". Estos "chips" se parecen a la forma de onda representada en la figura 4A. Sobre este patrón se han superpuesto adicionalmente unos datos de tasa baja, transmitidos desde el satélite a 50 baudios. Todos estos datos se reciben con una relación de señal/ruido muy baja ya que esta se mide en un ancho de banda de 2 MHz. Si la frecuencia portadora y todas las tasas de datos son conocidas con una precisión elevada, y no existen datos, entonces se puede mejorar la relación de señal/ruido en gran medida, y la cantidad de datos se puede reducir en gran medida, sumando entre sí tramas sucesivas. Por ejemplo, existen 1.000 tramas PN durante un periodo de 1 segundo. La primera de dichas tramas puede ser sumada de forma coherente a la siguiente trama, el resultado sumado a la siguiente trama, etc. El resultado puede ser una señal que presenta una duración de 1.023 chips. A continuación, la fase de esta secuencia se puede comparar a una secuencia de referencia local para determinar la sincronización relativa entre las dos, estableciendo de esta manera la así denominada pseudodistancia.
El procedimiento anterior se debe realizar por separado para cada satélite visionado a partir del mismo conjunto de datos recibidos almacenados en la memoria de copia instantánea 46, debido a que, en general, las señales GPS procedentes de satélites diferentes presentan frecuencias Doppler diferentes y los patrones PN difieren entre sí.
El procedimiento anterior se complica por el hecho de que la frecuencia portadora puede ser desconocida en un exceso de 5 kHz debido a incertidumbres sobre la señal debida al efecto Doppler. Estas incertidumbres debidas al efecto Doppler son eliminadas mediante la transmisión de esta información desde una estación base 10 que supervisa simultáneamente todas las señales GPS de los satélites visionados. De esta manera, se evita la búsqueda Doppler en la unidad remota 20. Además, la incertidumbre del oscilador local se reduce en gran medida (a quizás 50 Hz) mediante la operación AFC realizada utilizando la señal de comunicación que va de la base hasta la unidad remota, tal como se representa en la figura 6.
La presencia de datos a 50 baudios superpuestos sobre la señal GPS limita aún la suma coherente de las tramas PN a un periodo superior a 20 milisegundos. Es decir, como máximo se pueden sumar de forma coherente 20 tramas antes de que las inversiones de signo de los datos impidan una ganancia de procesamiento adicional. Se puede obtener ganancia de procesamiento adicional mediante el filtrado adaptado y la suma de las magnitudes (o cuadrados de las magnitudes) de las tramas, tal como se detalla en los siguientes párrafos.
El diagrama de flujo de la figura 3 comienza en la etapa 100 con una orden procedente de la estación base 10 para iniciar la operación de procesamiento GPS (etiquetada como "Fix Command", o "orden de determinación de la posición" en la figura 3). Esta orden comprende el envío, a través un enlace de comunicaciones 16, de los desplazamientos Doppler para cada satélite visionado y de la identificación de esos satélites. En la etapa 102, la unidad remota 20 calcula su deriva del oscilador local enganchando en frecuencia con la señal transmitida desde la estación base 10. Una alternativa, que no forma parte de la presente invención, es utilizar un oscilador de cristal compensado en temperatura de muy alta calidad en la unidad remota. Por ejemplo, los TCXOs controlados digitalmente, así denominados DCXOs, pueden alcanzar actualmente una precisión de 0,1 partes por millón aproximadamente, o un error de 150 Hz aproximadamente para la señal GPS L1.
En la etapa 104, el microprocesador 26 de la unidad remota activa el suministro de potencia para la entrada del receptor 42, para los Conversores Analógico a Digital 44 y para la memoria de copia instantánea digital 46, y recoge una copia instantánea de datos de duración K veces una trama PN del código C/A, en la que K está comprendida típicamente entre 100 a 1.000 (correspondiendo a una duración de tiempo de 100 milisegundos a 1 segundo). Cuando ya ha sido recogida una cantidad de datos suficiente, el microprocesador 26 desactiva el conversor de RF a IF 42 y los conversores A/D 44.
Se calcula la pseudodistancia de cada satélite por turnos tal como sigue. En primer lugar, en la etapa 106, para la señal de satélite GPS dada que se debe procesar, se recupera el correspondiente código pseudoaleatorio (PN) desde la EPROM 34. Tal como se discutirá enseguida, el formato preferido de almacenamiento del código PN es realmente la transformada de Fourier de este código PN, muestreada a una tasa de 2.048 muestras para los 1.023 bits del código PN.
Los datos en la memoria de copia instantánea 46 son procesados en bloques de N tramas PN consecutivas, es decir, bloques de 2.048N muestras complejas (N es un entero comprendido típicamente en el intervalo de 5 a 10). Se realizan operaciones similares sobre cada bloque tal como se representa en el bucle inferior (etapas 108 a 124) de la figura 3. Es decir, se realiza este bucle un total de K/N veces para cada señal GPS que se debe procesar.
En la etapa 108, las 2.048N palabras de datos del bloque son multiplicadas por una exponencial compleja que elimina los efectos del efecto Doppler sobre la portadora de señal, así como los efectos de la deriva del oscilador local del receptor. A modo de ejemplo, supóngase que la frecuencia Doppler transmitida desde la estación base 10 más las desviaciones del oscilador local corresponde a f_{e} Hz. A continuación, la premultiplicación de los datos puede tomar la forma de la función e^{-j2\pi f}_{e}^{nT}, n = [0, 1, 2,..., 2.048N -1] + (B-1) x 2.048N, en la que T = 1/2,048 MHz es el periodo de muestreo, y el número de bloques B está comprendido en el intervalo de 1 a K/N.
A continuación, en la etapa 110, los grupos adyacentes de N (típicamente 10) tramas de datos dentro del bloque son sumadas de forma coherente entre sí. Es decir, se suman entre sí las muestras 0, 2.048, 4.096,... 2.048(N-1) -1 son sumadas entre sí, a continuación se suman entre sí las muestras 1, 2.049, 4.097,... 2.048(N-1), etc. En este punto, el bloque contiene únicamente 2.048 muestras complejas. Un ejemplo de la forma de onda producida por una operación de suma de este tipo se representa en la figura 4B para el caso de 4 tramas PN. Se puede considerar esta operación de suma como una operación de preprocesamiento que antecede a las operaciones de convolución rápida.
A continuación, en las etapas 112 a 118, cada una de las tramas promediadas experimenta una operación de filtrado adaptado, cuyo fin es determinar la sincronización relativa entre el código PN recibido contenido dentro del bloque de datos y una señal de referencia PN generada localmente. De manera simultánea, los efectos del efecto Doppler sobre los instantes de muestreo quedan adicionalmente compensados. Estas operaciones se ven aceleradas en gran medida, en una forma de realización, mediante la utilización de unas operaciones de convolución rápida tales como unos algoritmos de Transformada Rápida de Fourier utilizados de una manera tal que se realiza una convolución circular, tal como se describirá a continuación.
Con el fin de simplificar la discusión, la compensación Doppler mencionada anteriormente será ignorada en un principio.
La operación básica que se debe realizar es una comparación de los datos del bloque que se está procesando (2.048 muestras complejas) con un bloque PN de referencia similar almacenado localmente. La comparación se hace realmente mediante la multiplicación (compleja) de cada elemento del bloque de datos por el elemento de referencia correspondiente y sumando los resultados. Esta comparación se denomina una "correlación". Sin embargo, sólo se realiza una correlación individual para un instante de inicio particular del bloque de datos, mientras que existen 2.048 posiciones posibles que pueden producir una coincidencia mayor. El conjunto de todas las operaciones de correlación para todas las posiciones de inicio posibles se denomina una operación "de filtrado adaptado". En una forma de realización preferida se requiere la operación de filtrado adaptado completa.
Los otros instantes del bloque PN se pueden comprobar desplazando circularmente la referencia PN y realizando la misma operación. Es decir, si el código PN se indica como p(0) p(1)... p(2.047), entonces un desplazamiento circular de una muestra es p(1) p(2)... p(2.047) p(0). Esta secuencia modificada permite realizar una comprobación para determinar si el bloque de datos contiene una señal PN que comience con la muestra p(1). De manera similar, el bloque de datos puede comenzar con las muestras p(2), p(3), etc., y se puede comprobar cada una mediante el desplazamiento circular de la referencia PN y realizando las comprobaciones de nuevo. Se debería poner claramente de manifiesto que un conjunto completo de comprobaciones puede requerir 2.048 x 2.048 = 4.194.304 operaciones, requiriendo cada una de ellas una multiplicación compleja y una suma.
Se puede utilizar un procedimiento matemáticamente equivalente más eficiente, empleando la Transformada Rápida de Fourier (FFT), que únicamente requiere 12 x 2.048 multiplicaciones complejas y el doble de sumas, aproximadamente. En este procedimiento, se toma la FFT del bloque de datos, en la etapa 112, y para el bloque PN. La FFT del bloque de datos se multiplica por la FFT conjugada compleja de la referencia, en la etapa 114, y a los resultados se les aplica la transformada inversa de Fourier en la etapa 118. Los datos resultantes obtenidos de ese modo presentan una longitud de 2.048 y contienen el conjunto de correlaciones del bloque de datos y el bloque PN para todas las posibles posiciones. Cada operación FFT directa o inversa requiere P/2 log_{2} P operaciones, expresión en la que P es la longitud de los datos que se han transformado (suponiendo que se utiliza un algoritmo FFT de radio 2). Para el caso de interés, B = 2.048, de manera que cada FFT requiere 11 x 1.024 multiplicaciones complejas. Sin embargo, si la FFT de la secuencia PN se almacena previamente en la EPROM 34, tal como ocurre en una forma de realización preferida, entonces no se necesita calcular su FFT durante el procedimiento de filtrado. De esta manera, el número total de multiplicaciones complejas para la FFT directa, FFT inversa y el producto de las FFTs es (2 x 11 + 2) x 1.024 =
24.576, lo que representa un ahorro de un factor de 171 con respecto a la correlación directa. La figura 4C representa la forma de onda producida por esta operación de filtrado adaptado.
El procedimiento preferido utiliza una tasa de muestreo tal que se toman 2.048 muestras de datos durante el periodo PN de 1.023 chips. Esto permite la utilización de unos algoritmos FFT de longitud 2.048. Se conoce que los algoritmos FFT que son potencia de 2 ó 4, son normalmente mucho más eficientes que aquellos de otras longitudes (y 2.048 = 2^{11}). Por lo tanto, la tasa de muestreo escogida de esta manera mejora significativamente la velocidad de procesamiento. Es preferible que el número de muestras de la FFT sea igual al número de muestras de una trama PN, de manera que se pueda obtener una convolución circular adecuada. Es decir, esta condición permite la comparación del bloque de datos frente a todas las versiones desplazadas circularmente del código PN, tal como se ha discutido anteriormente. Se pueden utilizar un conjunto de procedimientos alternativos conocidos en la técnica como convolución de "ahorro de solapado" o "solapado añadido" si se escoge una longitud de la FFT que produce un número de muestras diferente de la longitud de una trama PN. Estas soluciones requieren aproximadamente el doble de número de cálculos que lo descrito para la forma de realización preferida.
Se pondrá claramente de manifiesto para un experto en la materia la forma en que se puede modificar el procedimiento anterior, mediante la utilización de una variedad de algoritmos FFT de diferentes longitudes conjuntamente con una variedad de tasas de muestreo, para proporcionar operaciones de convolución rápida. Además, existe un conjunto de algoritmos de convolución rápida que presentan además la propiedad de que el número de cálculos requeridos es proporcional a B log_{2}B, en lugar de B^{2} tal como se requiere en una correlación directa. Muchos de estos algoritmos son enumerados en referencias estándar, por ejemplo, H.J. Nussbaumer, "Fast Fourier Transform and Convolution Algorithms" ("Transformada Rápida de Fourier y Algoritmos de Convolución"), New York, Springer-Verlag, C1982. Ejemplos importantes de tales algoritmos son el Algoritmo Agarwal-Cooley, el algoritmo de anidado dividido, el algoritmo de anidado polinómico recursivo, y el algoritmo de Winograd-Fourier, los tres primeros de los cuales se utilizan para realizar convoluciones y el último para realizar una transformada de Fourier. Se pueden utilizar estos algoritmos en substitución del procedimiento preferido presentado anteriormente.
A continuación, se explica el procedimiento de la compensación de tiempo Doppler utilizado en la etapa 116. En la forma de realización preferida, la tasa de muestreo utilizada puede no corresponder exactamente a 2.048 muestras para cada trama PN debido a los efectos Doppler sobre la señal GPS recibida así como debido a inestabilidades del oscilador local. Por ejemplo, se conoce que el desplazamiento Doppler puede contribuir a un error de retardo de \pm2.700 nseg/seg. Con el fin de compensar este efecto, los bloques de datos procesados en la descripción anterior necesitan ser desplazados en el tiempo para compensar este error. A modo de ejemplo, si la longitud del bloque procesado corresponde a 5 tramas PN (5 milisegundos), entonces el desplazamiento en el tiempo desde un bloque al otro puede ser como mucho de \pm13,5 nseg. Desplazamientos en el tiempo inferiores producen inestabilidad del oscilador local. Estos desplazamientos pueden ser compensados mediante el desplazamiento en el tiempo de los bloques de datos sucesivos en múltiplos del desplazamiento en el tiempo requerido para un bloque único. Es decir, si el desplazamiento Doppler en el tiempo por bloque es d, entonces los bloques son desplazados en el tiempo según nd, n = 0, 1, 2,...
En general estos desplazamientos en el tiempo son fracciones de una muestra. Realizar estas operaciones directamente utilizando procedimientos de procesamiento digital de señal implica la utilización de unos procedimientos de interpolación no integral de señal y provocan una carga de cálculo elevada. Una solución alternativa es incorporar el procesamiento dentro de las funciones de transformada rápida de Fourier. Se conoce bien que un desplazamiento en el tiempo de d segundos es equivalente a multiplicar la transformada de Fourier de una función por e^{-j2\pi fd}, expresión en la que f es la variable de frecuencia. De esta manera, se puede obtener el desplazamiento en el tiempo multiplicando la FFT del bloque de datos por e^{-j2\pi nd/T}_{f} para n = 0, 1, 2,..., 1.023 y por e^{-j2\pi (n-2.048)d/T}_{f} para n = 1.024, 1.025,..., 2.047, expresión en la que T_{f} es la duración de la trama PN (1 milisegundo). Esta compensación añade únicamente un 8% aproximadamente al tiempo de procesamiento asociado al procesamiento FFT. La compensación se divide en dos mitades para garantizar la continuidad de la compensación de fase sobre 0 Hz.
Después de que termine la operación de filtrado adaptado, en la etapa 120 se calculan las magnitudes, o los cuadrados de las magnitudes, de los números complejos del bloque. Cualquiera de las dos opciones funcionará igual de bien. Esta operación elimina los efectos de las inversiones de fase de 50 Hz de los datos (tal como se representa en la figura 4D) y los errores de la portadora a baja frecuencia que queden. A continuación, se suma el bloque de 2.048 muestras a la suma de los bloques previos procesados en la etapa 122. Se puede considerar la etapa 122 como una operación de postprocesamiento que sigue a la operación de convolución rápida proporcionada por las etapas 112 a 118. Esto sigue hasta que se procesan todos los K/N bloques, tal como se representa con el bloque de decisión en la etapa 124, momento en el que queda un bloque de 2.048 muestras a partir del cual se calcula una pseudodistancia. La figura 4E representa la forma de onda resultante después de la operación de suma.
La determinación de la pseudodistancia se produce en la etapa 126. Se busca un pico por encima de un nivel de ruido calculado localmente. Si se encuentra un pico de este tipo, su instante de aparición con respecto al inicio del bloque representa la pseudodistancia asociada con el código PN particular del satélite GPS asociado.
Se utiliza una rutina de interpolación en la etapa 126 para determinar el emplazamiento del pico con una precisión mucho mayor que la asociada con la tasa de muestreo (2,048 MHz). La rutina de interpolación depende del filtrado de la banda de paso anterior utilizado en la parte de RF/IF del receptor remoto 20. Un filtro de buena calidad producirá un pico que presenta una forma casi triangular con el ancho de la base igual a 4 muestras. Bajo esta condición, después de la substracción de una amplitud promedio (para eliminar la línea de base de CC), se puede utilizar la mayor de las dos amplitudes para determinar el emplazamiento del pico con mayor precisión. Suponiendo que estas amplitudes se indican con A_{p} y A_{p+1}, donde A_{p} \geq A_{p+1}, sin perder generalidad, y p es el índice de la amplitud del pico. A continuación, se puede obtener el emplazamiento del pico asociado al A_{p} correspondiente, mediante la fórmula: el emplazamiento del pico = p+A_{p}/(A_{p}+A_{p+1}). Por ejemplo, si A_{p} = A_{p+1}, entonces se determina que el emplazamiento del pico vale p + 0,5, es decir, que está a medio camino entre los índices de las dos muestras. En algunas situaciones, el filtrado de la banda de paso puede redondear el pico y puede ser más adecuada una interpolación polinómica de tres puntos.
En el procesamiento anterior, se puede calcular una señal de ruido local de referencia, utilizada en una operación de comparación con umbrales, promediando todos los datos del bloque promediado final, después de eliminar los varios de dichos picos que son mayores.
Una vez que se ha determinado la pseudodistancia, el procesamiento continúa en la etapa 128 de una forma similar para el siguiente satélite visionado, a no ser que todos los satélites hayan sido procesados. Después de completar el procesamiento de todos los satélites, el procedimiento continua en la etapa 130 en la que se transmite los datos de la pseudodistancia hacia la estación base 10 a través de un enlace de comunicaciones 16, donde se realiza el cálculo final de la posición (suponiendo que se utiliza el Procedimiento 3). Finalmente, en la etapa 132, la mayoría de los circuitos de la unidad remota 20 son dispuestos en un estado de potencia baja, esperando una nueva orden para realizar otra operación de determinación de la posición.
A continuación, se proporciona un resumen del procesamiento de la señal descrito anteriormente y representado en la figura 3. Se reciben las señales GPS procedentes de uno o más satélites GPS visionados en la unidad remota GPS utilizando una antena dispuesta en la unidad remota GPS. Estas señales son digitalizadas y almacenadas en una memoria de almacenamiento temporal en la unidad remota GPS. Después de almacenar estas señales, un procesador realiza las operaciones de preprocesamiento, procesamiento de convolución rápida y de postprocesamiento. Estas operaciones de procesamiento comprenden:
a)
descomponer los datos almacenados en una serie de bloques contiguos cuyas duraciones son iguales a un múltiplo del periodo de trama de los códigos pseudoaleatorios (PN) contenidos dentro de las señales GPS;
b)
realizar, para cada bloque, una etapa de preprocesamiento que crea un bloque comprimido de datos con longitud igual a la duración de un código pseudoaleatorio mediante la suma coherente de subbloques sucesivos de datos, presentando los subbloques una duración igual a una trama PN; esta etapa sumatoria significará que se sumarán entre sí el número de muestras correspondiente de cada uno de los subbloques;
c)
realizar, para cada bloque comprimido, una operación de filtrado adaptado, que utiliza unas técnicas de convolución rápida, para determinar la sincronización relativa entre el código PN recibido contenido dentro del bloque de datos y una señal de referencia PN generada localmente (por ejemplo, la secuencia pseudoaleatoria del satélite GPS que se está procesando);
d)
determinar una pseudodistancia realizando una operación cuadrática sobre los productos creados a partir de dicha operación de filtrado adaptado y postprocesar esto combinando los datos cuadráticos de todos los bloques en un único bloque de datos mediante la suma conjunta de los bloques de datos cuadráticos para producir un pico; y,
e)
determinar con precisión elevada el emplazamiento del pico de dicho bloque único de datos utilizando procedimientos de interpolación digital, donde la posición es la distancia desde el inicio del bloque de datos hasta dicho pico, y la posición representa una pseudodistancia al satélite GPS que corresponde con la secuencia pseudoaleatoria (PN) que se está procesando.
Típicamente, la técnica de convolución rápida utilizada en el procesamiento de las señales GPS almacenadas es una Transformada Rápida de Fourier (FFT) y se produce el resultado de la convolución calculando el producto de la transformada directa del bloque comprimido y una representación prealmacenada de la transformada directa de la secuencia pseudoaleatoria para producir un primer resultado y a continuación realizar una transformada inversa del primer resultado para recuperar el resultado. Asimismo, los retardos de tiempo inducidos por los efectos del efecto Doppler y los errores de tiempo inducidos por el oscilador local son compensados en cada uno de los bloques de datos comprimidos mediante la inserción, entre las operaciones de transformada rápida de Fourier directa e inversa, de la multiplicación de la FFT directa de los bloques comprimidos por una exponencial compleja cuya relación fase respecto a número de muestra es ajustada para corresponder con la compensación de retardo requerida para el bloque.
En la forma de realización anterior, el procesamiento de las señales GPS procedente de cada satélite se produce de forma secuencial a lo largo del tiempo, en lugar de en paralelo. En una forma de realización alternativa, las señales GPS procedentes de todos los satélites visionados se pueden procesar conjuntamente de modo paralelo en el tiempo.
En este caso, se supone que la estación base 10 presenta una visión común de todos los satélites de interés y que está suficientemente dentro de la cobertura de alcance de la unidad remota 20 para evitar ambigüedades asociadas con el periodo de repetición del código C/A PN. Una cobertura de 90 millas cumplirá este criterio. Además, se supone que la estación base 10 presenta un receptor GPS y un excelente emplazamiento geográfico de tal manera que todos los satélites visionados tienen un seguimiento continuo para una mayor precisión.
A la vez que las formas de realización descritas de la estación base 10 muestran la utilización de un componente de procesamiento de datos, tal como un ordenador en la estación base, para calcular la información de posición tal como una latitud y una longitud de la unidad GPS móvil, se apreciará que cada estación base 10 puede simplemente retransmitir la información recibida, tal como unas pseudodistancias procedentes de una unidad GPS móvil, a un emplazamiento central o varios emplazamientos centrales que realmente realizan el cálculo de la latitud y la longitud. De esta manera, se puede reducir el coste y la complejidad de estas estaciones base repetidoras mediante la eliminación de una unidad de procesamiento de datos y de sus componentes asociados de cada estación base repetidora. Una estación central puede incluir receptores (por ejemplo, receptores de telecomunicación) y una unidad de procesamiento de datos y unos componentes asociados. Además, en ciertas formas de realización, la estación base puede ser virtual en cuanto puede ser un satélite que transmite una información Doppler a unas unidades remotas, emulando así a una estación base en una célula de transmisión.
Las figuras 5A y 5B representan dos formas de realización de una estación base. En la estación base representada en la figura 5A, un receptor GPS 501 recibe unas señales GPS a través de una antena GPS 501a. El receptor GPS 501, que puede ser un receptor GPS convencional, proporciona una señal referencia sincronizada que está típicamente sincronizada respecto a las señales GPS, y además proporciona una información Doppler asociada a los satélites visionados. El receptor GPS 501 está acoplado a un oscilador local controlado 505 que recibe la señal de referencia de tiempo 510 y por si mismo se engancha en fase a esta referencia. Este oscilador local controlado 505 presenta una salida que es suministrada a un modulador 506. El modulador 506 recibe además unas señales de datos de información Doppler para cada satélite visionado de la unidad GPS móvil y/u otras señales de datos de información del satélite 511. El modulador 506 modula los datos de información Doppler y/o otros datos de información del satélite, sobre la señal de oscilador local recibida desde el oscilador local controlado 505 para proporcionar una señal modulada 513 al transmisor 503. El transmisor 503 está acoplado a la unidad de procesamiento de datos 502 a través de la interconexión 514 de tal manera que la unidad de procesamiento de datos puede controlar el funcionamiento del transmisor 503 para producir la transmisión de los datos de información del satélite, tales como la información Doppler, a la unidad GPS móvil a través de la antena 503a del transmisor. De esta manera, una unidad GPS móvil puede recibir la información Doppler, la fuente de la cual es el receptor GPS 501 y puede recibir además una señal portadora del oscilador local de alta precisión que se puede utilizar para calibrar el oscilador local de la unidad GPS móvil tal como se representa en la figura 6.
La estación base tal como se representa en la figura 5A incluye asimismo un receptor 504 que está acoplado para recibir unas señales de comunicación desde la unidad remota o unidad GPS móvil a través de una antena de comunicación 504a. Se apreciará que la antena 504a puede ser la misma antena que la antena 503a del transmisor de manera tal que una única antena sirve tanto para el transmisor como para el receptor del modo convencional. El receptor 504 está acoplado a la unidad de procesamiento de datos 502 que puede ser un sistema de ordenador convencional. La unidad de procesamiento 502 puede incluir además una interconexión 512 para recibir los datos de información Doppler y/o otros datos de información del satélite procedentes del receptor GPS 511. Se puede utilizar esta información para el procesamiento de la información de pseudodistancia u otras informaciones recibidas desde la unidad móvil a través del receptor 504. La unidad de procesamiento de datos 502 está conectada a un dispositivo de visualización 508 que puede ser un tubo de rayos catódicos (CRT) convencional. La unidad de procesamiento de datos 502 está conectada además a un dispositivo de almacenamiento masivo 507 que incluye un software GIS (Geographical Information System, Sistema de Información Geográfica, por ejemplo, Atlas GIS de Strategic Mapping, Inc. de Santa Clara, California) que se utiliza para visualizar mapas sobre el visualizador 508. Utilizando los mapas visualizables, se puede indicar en el visualizador la posición de la unidad GPS móvil en relación a un mapa visualizado.
Una estación base alternativa representada en la figura 5B comprende muchos de los mismos componentes representados en la figura 5A. Sin embargo, en lugar de obtener los datos de información Doppler y/o otros datos de información del satélite desde un receptor GPS, la estación base de la figura 5B comprende una fuente de datos de información Doppler y/o otros datos de información del satélite 552 la cual se obtiene de un enlace de telecomunicación o de un enlace de radio de forma convencional.
Estos datos de información Doppler y/o del satélite son conducidos a través de una interconexión 553 hacia el modulador 506. La otra entrada al modulador 506 representada en la figura 5B es la señal de salida de un oscilador local de referencia de calidad tal como un oscilador local estándar de cesio. Este oscilador local de referencia 551 proporciona una frecuencia portadora de precisión sobre la que se modulan los datos de información Doppler y/o otros datos de información del satélite que a continuación se transmiten a través del transmisor 503 hacia la unidad GPS móvil.
La figura 6 representa una forma de realización de una unidad GPS móvil de la presente invención que utiliza la señal de frecuencia portadora de precisión recibida a través de la antena de canal de comunicación 601 que es similar a la antena 24 representada en la figura 1A. La antena 601 está conectada al módem 602, que es similar al módem 22 de la figura 1A, y este módem 602 está acoplado a un circuito de control automático de frecuencia 603 que se engancha a la señal de frecuencia portadora de precisión enviada por la estación base. El circuito de control automático de frecuencia 603 proporciona una salida 604, que está típicamente enganchada en frecuencia a la frecuencia portadora de precisión. El comparador 605 compara esta señal 604 con la salida del oscilador local GPS 606, a través de la interconexión 608. El resultado de la comparación realizada por el comparador 605 es una señal de corrección de error 610 que es suministrada al sintetizador de frecuencia 609. De esta manera, el sintetizador de frecuencia 609 proporciona al desmodulador GPS 614 una señal de oscilador local calibrada de mayor calidad a través de la interconexión 612. Se apreciará que la señal suministrada a través de la interconexión 612 es similar a la señal de oscilador local suministrada por la interconexión 39 de la figura 1A al conversor 42; además, el conversor 42 es similar al desmodulador GPS 614 que está acoplado a la antena GPS 613 para recibir señales GPS.
La figura 7 representa una secuencia particular de gestión de potencia. Se apreciará que existen abundantes maneras conocidas en la técnica para reducir la potencia. Éstas comprenden la ralentización del reloj proporcionado a un componente síncrono temporizado, así como la desactivación completa del suministro de potencia a un componente particular o la desactivación de ciertos circuitos pero no de otros de un componente. Se apreciará, por ejemplo, que los bucles de enganche de fase y los circuitos osciladores requieren unos tiempos de inicio y estabilización y, por lo tanto, un diseñador puede decidir no desactivar completamente (o del todo) estos componentes. El ejemplo representado en la figura 7 comienza en la etapa 701 en la cual se ponen en marcha los diferentes componentes del sistema y se disponen en un estado de potencia reducida. Ya sea de forma periódica o bien después de un periodo de tiempo predeterminado, se dispone de nuevo al receptor de comunicaciones del módem 22 a potencia total para determinar si se están enviando órdenes desde la estación base 10. Esto se produce en la etapa 703. Si en la etapa 705 se recibe una petición de información de posición desde una unidad base, el módem 22 avisa al circuito de gestión de potencia en la etapa 707. En ese instante concreto se puede desactivar el receptor de comunicaciones del módem 22 durante un periodo de tiempo predeterminado, o bien desactivarlo para activarlo de nuevo de forma periódica en un instante posterior; esto está representado como la etapa 709. Se apreciará que se puede mantener el receptor de comunicaciones en un estado de potencia total en lugar de desactivarlo en este instante de tiempo. A continuación, en la etapa 711, el circuito de gestión de potencia dispone de nuevo a la parte de receptor GPS de la unidad móvil a potencia total mediante la activación del conversor 42 y de los conversores analógico a digital 44; si además el oscilador de frecuencia 38 está desactivado, en este instante se activa este componente y se le dispone de nuevo a potencia total y se le permite algo de tiempo para que se estabilice. A continuación, en la etapa 713, el receptor GPS, que comprende los componentes 38, 42 y 44, recibe la señal GPS. Esta señal GPS es almacenada provisionalmente en la memoria 46 que adicionalmente fue dispuesta de nuevo a potencia total en el momento en el que el receptor GPS fue dispuesto de nuevo a potencia total en la etapa 711. Tras completar la recolección de la información de copia instantánea, a continuación el receptor GPS se dispone de nuevo a un estado de potencia reducida en la etapa 717; esto comprende típicamente la reducción del suministro de potencia para el conversor 42 y 44 mientras se mantiene la memoria 46 a potencia total. A continuación, en la etapa 719, se dispone de nuevo al sistema de procesamiento a potencia total; en una forma de realización, esto implica el suministro de potencia total al chip DSP 32; se apreciará sin embargo que si el chip DSP 32 está ofreciendo además funciones de gestión de potencia como en el caso de la forma de realización representada en la figura 1C, entonces típicamente se dispone de nuevo al chip DSP 32a a potencia total en la etapa 707. En la forma de realización representada en la figura 1A, en la que el microprocesador 26 realiza una función de gestión de potencia, se puede disponer de nuevo al sistema de procesamiento, tal como un chip DSP 32, a potencia total en la etapa 719. En la etapa 721, se procesa la señal GPS tal como se representa en la figura 3. A continuación, después de que se complete el procesamiento de la señal GPS, se dispone al sistema de procesamiento en un estado de potencia reducida tal como se representa en la etapa 23 (a no ser que el sistema de procesamiento controle además la gestión de potencia tal como se ha apuntado anteriormente). A continuación, en la etapa 725, se dispone de nuevo al transmisor de comunicaciones del módem 22 a potencia total para transmitir en la etapa 727 la señal GPS procesada de regreso hacia la estación base 10. Después de que se complete la transmisión de la señal GPS procesada, tal como una información de pseudodistancia o una información de latitud y longitud, se dispone de nuevo al transmisor de comunicaciones a un estado de potencia reducida en la etapa 729 y el sistema de gestión de potencia espera durante un retardo de un periodo de tiempo tal como un periodo de tiempo predeterminado en la etapa 731. Después de este retardo, se dispone de nuevo al receptor de comunicaciones del módem 22 a potencia total para determinar si se ha enviado una petición desde una estación base.
Aunque se han descrito los procedimientos y los aparatos de la presente invención en relación a unos satélites GPS, se apreciará que las enseñanzas son del mismo modo aplicables a los sistemas de posicionamiento que utilizan pseudosatélites o una combinación de satélites y pseudosatélites. Los pseudosatélites son transmisores terrestres que emiten un código PN (similar a una señal GPS) modulado sobre una señal portadora en banda L, sincronizada generalmente con un tiempo GPS. Se puede asignar un código PN unívoco a cada transmisor para permitir su identificación por parte de un receptor remoto. Los pseudosatélites son útiles en situaciones en las que las señales GPS procedentes de un satélite en órbita pueden no estar disponibles, tales como túneles, minas, edificios u otras zonas cerradas. El término "satélite", tal como se ha utilizado en este caso, está previsto para comprender el término pseudosatélite o equivalentes de los pseudosatélites, y el término señales GPS, tal como se ha utilizado en este caso, está previsto para comprender las señales de tipo GPS procedentes de pseudosatélites o equivalentes de pseudosatélites.
En la discusión anterior, se ha descrito la invención en relación a su aplicación en el Sistema de Posicionamiento Global Vía Satélite (GPS) de EE.UU. Debería ponerse claramente de manifiesto, sin embargo, que estos procedimientos son del mismo modo aplicables a sistemas de posicionamiento vía satélite similares, y, en particular, al sistema ruso Glonass. El sistema Glonass difiere básicamente del sistema GPS en que las emisiones desde satélites diferentes se diferencian entre sí mediante la utilización de frecuencias portadoras ligeramente diferentes, en lugar de utilizar códigos pseudoaleatorios diferentes. En esta situación, se pueden aplicar substancialmente todos los circuitos y algoritmos descritos anteriormente con la excepción de que cuando se procesa una nueva emisión de un satélite se utiliza un multiplicador exponencial diferente para el preprocesamiento de los datos. Se puede combinar esta operación con la operación de corrección Doppler del recuadro 108 de la figura 3, sin requerir ninguna operación de procesamiento adicional. En esta situación, únicamente se requiere un código PN, eliminando de esta manera el bloque 106. El término "GPS" utilizado en este caso comprende dichos sistemas de posicionamiento vía satélite alternativos, incluyendo el sistema ruso Glonass.
Aunque las figuras 1A, 1B y 1C representan una pluralidad de bloques lógicos que procesan unas señales digitales (por ejemplo 46, 32, 34, 26, 30, 28 en la figura 1A), se debería poner claramente de manifiesto que varios o todos estos bloques se pueden integrar conjuntamente en un único circuito integrado, sin dejar de mantener la naturaleza programable de la parte de DSP de un circuito de este tipo. Una forma de realización de este tipo puede ser muy importante para aplicaciones de baja potencia y sensibles al coste.
Adicionalmente, se debería poner claramente de manifiesto que una o varias de las operaciones de la figura 3 se pueden realizar mediante lógica cableada para aumentar la velocidad global de procesamiento, sin dejar de conservar la naturaleza programable del procesador DSP. Por ejemplo, la capacidad de corrección Doppler del bloque 108 puede ser realizada por un hardware dedicado que puede estar dispuesto entre la memoria de copia instantánea digital 46 y el IC DSP 32. Todas las otras funciones de software de la figura 3 se pueden realizar en dichos casos mediante el procesador DSP. Además, se pueden utilizar varios DSPs conjuntamente en una unidad remota para suministrar una potencia de procesamiento mayor. Adicionalmente se apreciará que es posible recoger (muestrear) múltiples conjuntos de tramas de señales de datos GPS y procesar cada conjunto tal como se representa en la figura 3 mientras se recuenta el tiempo entre la recolección de cada conjunto de tramas.
Se ha construido un sistema de demostración que ha verificado el funcionamiento de los procedimientos y los algoritmos descritos en este caso así como ha puesto de manifiesto la sensibilidad mejorada que se hace posible mediante la utilización de estos procedimientos y algoritmos. El sistema de demostración consistía en una antena GPS y un desmodulador RF de GEC Plessey Semiconductors seguidos de un circuito de almacenamiento temporal digitalizador de Gage Applied Sciences, Inc. La antena y el desmodulador realizan las funciones 38, 40, 42 y 44 de la figura 1A y la memoria de almacenamiento temporal digitalizadora realiza las funciones 44, 46 y 48 de la figura 1A. El procesamiento de la señal se realizó sobre un ordenador compatible IBM PC utilizando un microprocesador Pentium, siendo ejecutado sobre el sistema operativo Windows 95. Esto emuló las funciones del chip DSP 32 y de los periféricos de memoria 34. La información Doppler de los satélites visionados fue suministrada al software de procesamiento de la señal como entradas a las rutinas de procesamiento de la señal para emular las funciones del módem y el microprocesador 22, 24, 25, 26.
Los algoritmos para este sistema de demostración se desarrollaron utilizando el lenguaje de programación MATLAB. Se realizaron un gran número de pruebas sobre unas señales GPS útiles obtenidas en diferentes situaciones de obstaculización. Estas pruebas han verificado que la eficacia de la sensibilidad del sistema de demostración es substancialmente superior a la de varios receptores GPS comerciales que se probaron en ese mismo momento. El apéndice A proporciona una lista detallada del código máquina MATLAB que se utilizó en estas pruebas y es un ejemplo de las operaciones de convolución rápida de la presente invención (por ejemplo, la figura 3).
En la memoria anterior, se ha descrito la invención en relación a unas formas de realización específicas de la misma indicadas a título de ejemplo. Sin embargo, se pondrá claramente de manifiesto que se pueden realizar diferentes modificaciones a la misma sin apartarse, por ello, del alcance de la invención tal como se ha expuesto en las reivindicaciones adjuntas. La memoria y los dibujos, según lo expuesto anteriormente, deben ser considerados a título ilustrativo y no limitativo.
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
\vskip1.000000\baselineskip
(Esquema pasa a página siguiente)
1
2
3
4
5
6
7
8
9
10
11

Claims (15)

1. Procedimiento para la calibración de un oscilador local (606) en un receptor GPS móvil, comprendiendo dicho procedimiento:
\quad
recibir una señal modulada sobre una frecuencia portadora de precisión desde una fuente que proporciona dicha señal modulada, siendo dicha fuente una estación base o un satélite que emula a una estación base;
\quad
enganchar automáticamente a dicha señal modulada y proporcionar una señal de referencia (604) enganchada en frecuencia a la frecuencia portadora de precisión;
\quad
calcular la deriva del oscilador local mediante la comparación de la señal de referencia con una señal generada por dicho oscilador local y generar una señal de corrección de error; y,
\quad
calibrar la señal generada por dicho oscilador local con dicha señal de corrección de error, utilizando dicha señal calibrada para adquirir unas señales GPS.
2. Procedimiento según la reivindicación 1, en el que dicha señal modulada es una señal de datos que contiene información de datos del satélite comunicada a través de un enlace de comunicaciones, comprendiendo dichos datos de información del satélite una información Doppler de un satélite visionado de dicho receptor GPS móvil.
3. Procedimiento según la reivindicación 1, en el que dicha señal modulada es una señal de datos que contiene información de datos del satélite comunicada a través de un enlace de comunicaciones, comprendiendo dichos datos de información del satélite unos datos representativos de las efemérides de un satélite.
4. Procedimiento según la reivindicación 1, en el que dicha señal modulada es una señal de datos que contiene información de datos del satélite comunicada a través de un enlace de comunicaciones, estando seleccionado dicho enlace de comunicaciones de entre el grupo constituido por un enlace de radiobúsqueda de 2 canales o un enlace de teléfono celular o un sistema de comunicaciones personal o radio móvil especializada o un sistema inalámbrico de comunicación de datos por paquetes.
5. Procedimiento según la reivindicación 1, en el que dicha señal modulada es una señal de datos que contiene información de datos del satélite comunicada a través de un enlace de comunicaciones, siendo dicho enlace de comunicaciones un medio de comunicación de radiofrecuencia.
6. Procedimiento según la reivindicación 1, en el que la unidad móvil comprende una lógica de control automático de frecuencia que comprende uno de entre un bucle de enganche de fase, o un bucle de enganche de frecuencia, o un estimador de fase de bloque.
7. Procedimiento según la reivindicación 1, en el que dicha etapa de calibración de la señal generada por dicho oscilador local comprende proporcionar dicha señal generada por dicho oscilador local y dicha señal de corrección de error a un sintetizador de frecuencia.
8. Procedimiento según la reivindicación 1, en el que dicha etapa de utilización de dicha señal calibrada comprende desmodular unas señales GPS recibidas a través de una antena GPS.
9. Receptor GPS móvil que comprende:
\quad
una primera antena (613) para recibir unas señales GPS;
\quad
un desmodulador (614) acoplado a dicha primera antena, proporcionando dicha primera antena dichas señales GPS a dicho desmodulador;
\quad
un oscilador local (606) acoplado a dicho desmodulador, generando dicho oscilador local una primera señal de referencia para dicho desmodulador para convertir dichas señales GPS de una primera frecuencia a una segunda frecuencia;
\quad
una segunda antena (601) para recibir una señal modulada sobre una frecuencia portadora de precisión desde una fuente que proporciona dicha señal modulada, siendo dicha fuente una estación base o un satélite que emula a una estación base;
\quad
un circuito de control automático de frecuencia (AFC) (603) acoplado a dicha segunda antena, proporcionando dicho circuito AFC una segunda señal de referencia (604) que está enganchada en frecuencia a dicha frecuencia portadora de precisión; y,
\quad
un comparador (605) para calcular la deriva de dicho oscilador local mediante la comparación de la primera señal de referencia con la segunda señal de referencia y mediante la generación de una señal de corrección de error (610) para calibrar la primera señal de referencia generada por dicho oscilador local.
10. Receptor GPS móvil según la reivindicación 9, en el que dicho circuito AFC comprende un bucle de enganche de fase acoplado a un receptor que está acoplado a dicha segunda antena.
11. Receptor GPS móvil según la reivindicación 9, que comprende asimismo un receptor acoplado a dicha segunda antena, dicho receptor para recibir dicha señal modulada sobre una frecuencia portadora de precisión procedente de dicha segunda antena, en el que dicho receptor recibe dicha señal modulada con una señal de datos que contiene unos datos de información del satélite comunicados a través de dicha segunda antena.
12. Receptor GPS móvil según la reivindicación 11, en el que dicha información de datos del satélite comprende una información Doppler de un satélite visionado de dicho receptor GPS móvil.
13. Receptor GPS móvil según la reivindicación 12, en el que dicha información de datos del satélite comprende una identificación de una pluralidad de satélites visionados de dicho receptor GPS móvil y una pluralidad correspondiente de informaciones Doppler de cada satélite de dicha serie de satélites visionados de dicho receptor GPS móvil.
14. Receptor GPS móvil según la reivindicación 11, en el que dicha información de datos del satélite comprende unos datos representativos de las efemérides de un satélite.
15. Receptor GPS móvil según la reivindicación 9, que comprende asimismo un sintetizador de frecuencia (608) acoplado a dicho circuito AFC y a dicho desmodulador, recibiendo dicho desmodulador dicha primera señal de referencia calibrada a través de dicho sintetizador de frecuencia.
ES96939443T 1995-10-09 1996-10-08 Receptor gps y procedimiento para el procesamiento de señales gps. Expired - Lifetime ES2314981T3 (es)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US531895P 1995-10-09 1995-10-09
US5318P 1995-10-09
US08/612,669 US5663734A (en) 1995-10-09 1996-03-08 GPS receiver and method for processing GPS signals
US08/612,582 US5874914A (en) 1995-10-09 1996-03-08 GPS receiver utilizing a communication link
US08/613,966 US6133871A (en) 1995-10-09 1996-03-08 GPS receiver having power management
US612582 1996-03-08
US613966 1996-03-08
US612669 1996-03-08

Publications (1)

Publication Number Publication Date
ES2314981T3 true ES2314981T3 (es) 2009-03-16

Family

ID=27485474

Family Applications (2)

Application Number Title Priority Date Filing Date
ES09166968T Expired - Lifetime ES2377707T3 (es) 1995-10-09 1996-10-08 Unidad GPS móvil que presenta un estado de potencia reducida
ES96939443T Expired - Lifetime ES2314981T3 (es) 1995-10-09 1996-10-08 Receptor gps y procedimiento para el procesamiento de señales gps.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES09166968T Expired - Lifetime ES2377707T3 (es) 1995-10-09 1996-10-08 Unidad GPS móvil que presenta un estado de potencia reducida

Country Status (11)

Country Link
EP (7) EP2112525A1 (es)
JP (6) JPH11513787A (es)
CN (2) CN100409027C (es)
AT (1) ATE511662T1 (es)
AU (1) AU723615B2 (es)
BR (1) BRPI9611701B1 (es)
CA (5) CA2667786C (es)
DE (3) DE69638354D1 (es)
ES (2) ES2377707T3 (es)
HK (1) HK1022524A1 (es)
WO (1) WO1997014049A2 (es)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133871A (en) * 1995-10-09 2000-10-17 Snaptrack, Inc. GPS receiver having power management
US5841396A (en) 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
US5884214A (en) 1996-09-06 1999-03-16 Snaptrack, Inc. GPS receiver and method for processing GPS signals
CA2667786C (en) 1995-10-09 2012-07-31 Snaptrack, Inc. Gps receiver and method for processing gps signals
US6208290B1 (en) 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link
US6028887A (en) * 1996-07-12 2000-02-22 General Electric Company Power efficient receiver
US6215442B1 (en) * 1997-02-03 2001-04-10 Snaptrack, Inc. Method and apparatus for determining time in a satellite positioning system
US6377209B1 (en) * 1997-02-03 2002-04-23 Snaptrack, Inc. Method and apparatus for satellite positioning system (SPS) time measurement
US6289041B1 (en) * 1997-02-11 2001-09-11 Snaptrack, Inc. Fast Acquisition, high sensitivity GPS receiver
US6114991A (en) * 1997-09-11 2000-09-05 Lucent Technologies, Inc. Auxiliary system for assisting a wireless terminal in determining its position from signals transmitted from a navigation satellite
US6118977A (en) 1997-09-11 2000-09-12 Lucent Technologies, Inc. Telecommunications-assisted satellite positioning system
US6081229A (en) * 1998-03-17 2000-06-27 Qualcomm Incorporated System and method for determining the position of a wireless CDMA transceiver
US5999124A (en) * 1998-04-22 1999-12-07 Snaptrack, Inc, Satellite positioning system augmentation with wireless communication signals
US6104338A (en) * 1998-05-04 2000-08-15 Snaptrack, Inc. Method and apparatus for operating a satellite positioning system receiver
US6061018A (en) 1998-05-05 2000-05-09 Snaptrack, Inc. Method and system for using altitude information in a satellite positioning system
US6515617B1 (en) * 1998-09-01 2003-02-04 Hughes Electronics Corporation Method and system for position determination using geostationary earth orbit satellite
US6327473B1 (en) * 1998-09-08 2001-12-04 Qualcomm Incorporated Method and apparatus for increasing the sensitivity of a global positioning satellite receiver
US6195041B1 (en) * 1998-09-09 2001-02-27 Qualcomm Incorporated Reliable position location in memory limited environment
US6208292B1 (en) * 1998-09-09 2001-03-27 Qualcomm Incorporated Position location with low tolerance oscillator
US6323805B1 (en) * 1998-09-09 2001-11-27 Qualcomm, Inc. Data boundary aware base station assisted position location
CN1214252C (zh) * 1998-09-15 2005-08-10 三星电子株式会社 提高卫星导航***接收信号的抗噪声性的方法及实现该方法的装置
US6538600B1 (en) * 1998-10-16 2003-03-25 Lucent Technologies Inc. Wireless assisted GPS using a reference location
CN1149734C (zh) 1998-10-22 2004-05-12 因芬尼昂技术股份公司 稳频的发射/接收电路装置
JP2000206222A (ja) * 1999-01-08 2000-07-28 Japan Radio Co Ltd 調査探索システムにおける子機位置検出方法
US6577271B1 (en) * 1999-03-30 2003-06-10 Sirf Technology, Inc Signal detector employing coherent integration
US6301545B1 (en) * 1999-04-30 2001-10-09 Sirf Technology, Inc. Global positioning system tag system
GB9912329D0 (en) * 1999-05-26 1999-07-28 Symmetricon Inc Positioning apparatus
US6321091B1 (en) * 1999-07-29 2001-11-20 Bryan Holland Portable locator system and method
US7016687B1 (en) 1999-07-29 2006-03-21 Bryan Holland Portable locator system and method
US20050026589A1 (en) 1999-07-29 2005-02-03 Bryan Holland Remote locator system using A E911-enabled wireless system
US7246109B1 (en) 1999-10-07 2007-07-17 Koninklijke Philips Electronics N.V. Method and apparatus for browsing using position information
JP2003516547A (ja) * 1999-12-10 2003-05-13 ノキア コーポレイション 衛星をベースとする位置探索システムのための受信器
US6480529B1 (en) * 1999-12-21 2002-11-12 Qualcomm, Incorporated Programmable matched filter searcher for multiple pilot searching
GB0004371D0 (en) * 2000-02-24 2000-04-12 Koninkl Philips Electronics Nv GPS receiver and mobile unit incorporating the same
US6346911B1 (en) * 2000-03-30 2002-02-12 Motorola, Inc. Method and apparatus for determining time in a GPS receiver
US6928275B1 (en) * 2000-05-08 2005-08-09 Qualcomm Incorporated Method and apparatus for compensating local oscillator frequency error
US6738713B2 (en) 2000-05-26 2004-05-18 Parthus (Uk) Limited Positioning apparatus and method
US6329946B1 (en) 2000-05-31 2001-12-11 Mitsubishi Denki Kabushiki Kaisha GPS position measuring system and GPS position measuring apparatus
ATE374375T1 (de) * 2000-07-04 2007-10-15 Asulab Sa Verfahren zur steurung eines navigationsgerät und navigationsgerät dafür
TW533303B (en) 2000-07-04 2003-05-21 Asulab Sa Method for controlling a navigation device and navigation device implementing the same
EP1170874A1 (de) 2000-07-05 2002-01-09 Infineon Technologies AG Empfangseinrichtung, insbesondere für den Mobilfunk
US6583756B2 (en) * 2000-08-25 2003-06-24 Qualcomm Incorporated Method and apparatus for using satellite status information in satellite positioning systems
US6437734B1 (en) * 2000-10-11 2002-08-20 Seiko Epson Corporation Satellite navigation receiver and method
US6542820B2 (en) * 2001-06-06 2003-04-01 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information
JP3624826B2 (ja) 2000-12-20 2005-03-02 日本電気株式会社 Gps受信装置及びgps測位システム
US7747257B2 (en) 2001-02-16 2010-06-29 Motorola, Inc. GPS assistance messages in cellular communications networks and methods therefor
JP4003169B2 (ja) 2002-05-09 2007-11-07 日本電気株式会社 Gps機能搭載型移動通信端末装置
US7595752B2 (en) * 2002-10-02 2009-09-29 Global Locate, Inc. Method and apparatus for enhanced autonomous GPS
US6816111B2 (en) * 2002-12-13 2004-11-09 Qualcomm Incorporated Calibration and correction system for satellite position location systems
JP2004279264A (ja) * 2003-03-17 2004-10-07 Kanazawa Univ Tlo Inc スペクトル拡散方式の受信機および受信信号処理方法
US8010124B2 (en) 2003-03-24 2011-08-30 Sony Ericsson Mobile Communications Ab Methods, systems and computer program products for providing location determination information to an assisted location service
US7822105B2 (en) * 2003-09-02 2010-10-26 Sirf Technology, Inc. Cross-correlation removal of carrier wave jamming signals
US7546423B2 (en) * 2003-09-02 2009-06-09 Sirf Technology, Inc. Signal processing system control method and apparatus
US7321776B2 (en) 2003-09-25 2008-01-22 Sony Ericsson Mobile Communications Ab Estimating GPS time at cellular terminals based on timing of information from base stations and satellites
KR101056365B1 (ko) * 2004-02-28 2011-08-11 삼성전자주식회사 비트 다운 스케일링 방법 및 장치, 지피에스 동기포착방법및 지피에스 수신장치
US7453956B2 (en) 2004-08-16 2008-11-18 Sony Ericsson Mobile Communications Ab Apparatus, methods and computer program products for signal acquisition using common demodulation templates
US7358897B2 (en) 2004-08-16 2008-04-15 Sony Ericsson Mobile Communicatios Ab Apparatus, methods and computer program products for GPS signal acquisition using an adaptive search engine
US7142157B2 (en) * 2004-09-14 2006-11-28 Sirf Technology, Inc. Determining position without use of broadcast ephemeris information
US7019689B1 (en) * 2005-01-31 2006-03-28 Seiko Epson Corporation Skipping z-counts and accurate time in GPS receivers
US8139685B2 (en) 2005-05-10 2012-03-20 Qualcomm Incorporated Systems, methods, and apparatus for frequency control
WO2006131886A2 (en) * 2005-06-08 2006-12-14 Nxp B.V. Gps processing arrangement
CN1888825B (zh) * 2005-06-29 2010-12-08 英华达(上海)电子有限公司 一种将语音信息传输到汽车音响的电子导航仪
EP1916540B1 (en) 2005-08-18 2013-04-10 Mitsubishi Denki Kabushiki Kaisha Gps positioning method and gps position device
EP1938630B1 (en) * 2005-10-20 2013-01-09 QUALCOMM Incorporated Method and apparatus for automatical position determination
JP4844108B2 (ja) * 2005-12-07 2011-12-28 ソニー株式会社 情報処理装置、および電力供給制御方法、並びにコンピュータ・プログラム
US7893869B2 (en) * 2006-01-05 2011-02-22 Qualcomm Incorporated Global navigation satellite system
CN101495885B (zh) 2006-08-01 2015-05-06 高通股份有限公司 向定位服务器提供信息更新的***和/或方法
JP4172513B2 (ja) 2006-09-14 2008-10-29 セイコーエプソン株式会社 衛星信号のサーチレンジ更新方法、および測位装置
US20090016167A1 (en) * 2007-07-09 2009-01-15 Seiko Epson Corporation Time Adjustment Device, Timekeeping Device with a Time Adjustment Device, and a Time Adjustment Method
US8190365B2 (en) * 2007-11-05 2012-05-29 Csr Technology Inc. Systems and methods for processing navigational solutions
CN101206256B (zh) * 2007-12-14 2010-12-15 西安华迅微电子有限公司 一种gps接收机信号非相干积分的数据处理方法
JP2008117424A (ja) * 2008-01-29 2008-05-22 Sony Corp 情報処理装置および方法、並びにプログラム
WO2009140768A1 (en) * 2008-05-22 2009-11-26 Novatel Inc. Gnss receiver using signals of opportunity and assistance information to reduce the time to first fix
US8106821B2 (en) 2008-06-27 2012-01-31 Qualcomm Incorporated Methods and apparatuses for use with mode-switchable navigation radio
US8098101B2 (en) * 2008-07-08 2012-01-17 Qualcomm, Incorporated Method of achieving high selectivity in receiver RF front-ends
DE102008040582A1 (de) 2008-07-21 2010-02-04 Robert Bosch Gmbh Vorrichtung und Verfahren zur Bestimmung einer Position
JP5453875B2 (ja) * 2009-03-27 2014-03-26 富士通株式会社 中継装置、中継方法、受信装置および受信方法
CN101526609B (zh) * 2009-03-27 2011-03-30 电子科技大学 一种基于无线信道频域幅度响应的匹配定位方法
JP5761480B2 (ja) * 2009-10-09 2015-08-12 国立大学法人電気通信大学 超高感度位置計測システム
WO2011069552A1 (en) 2009-12-10 2011-06-16 Nortel Networks Limited Method, arrangement and computer program product for clocking
IT1397713B1 (it) 2010-01-22 2013-01-24 Esaote Spa Macchina per risonanza magnetica nucleare con mezzi per la correzione dell'omogeneità del campo magnetico.
US8730101B2 (en) * 2010-05-13 2014-05-20 Qualcomm Incorporated High sensitivity satellite positioning system receiver
US9568609B2 (en) 2010-05-13 2017-02-14 Qualcomm Incorporated High sensitivity satellite positioning system receiver
US9063222B2 (en) 2010-05-28 2015-06-23 Qualcomm Incorporated Almanac maintenance for mobile station positioning
US8532670B2 (en) 2010-06-02 2013-09-10 Deutsche Telekom Ag Apparatus, method, and system for sensing suppression for location-based applications
EP2402786B1 (en) 2010-06-29 2016-02-17 u-blox AG Method and device for synchronization of signals
CN102594372B (zh) * 2012-03-13 2014-06-04 大连海事大学 基于软件无线电的舰船智能船桥***
CN103033826A (zh) * 2012-11-23 2013-04-10 奥维通信股份有限公司 一种高灵活度的定位卫星信号捕获***
US9476988B2 (en) 2013-05-09 2016-10-25 Samsung Electronics Co., Ltd. Method, apparatus and system for reducing power consumption in GNSS receivers
CN103336289A (zh) * 2013-06-07 2013-10-02 东莞市泰斗微电子科技有限公司 一种导航卫星信号处理的方法、相应的基带接收芯片及模块
US9548744B2 (en) 2014-08-18 2017-01-17 Qualcomm Incorporated Compensating for hysteretic characteristics of crystal oscillators
WO2016027727A1 (ja) * 2014-08-20 2016-02-25 ソニー株式会社 全地球航法衛星システムの受信装置および受信方法、並びにプログラム
US9606238B2 (en) * 2015-03-06 2017-03-28 Gatekeeper Systems, Inc. Low-energy consumption location of movable objects
CN106291618B (zh) * 2015-06-12 2019-01-11 北京信息科技大学 Gnss信号压缩捕获装置的恢复模块及实现方法
EP3144927B1 (en) * 2015-09-15 2020-11-18 Harman Becker Automotive Systems GmbH Wireless noise and vibration sensing
JP6686642B2 (ja) * 2016-04-04 2020-04-22 セイコーエプソン株式会社 集積回路及び動作モード切替制御方法
CN105676242B (zh) * 2016-04-14 2019-06-11 和芯星通科技(北京)有限公司 一种卫星导航装置及其低功耗处理方法
TWI562116B (en) * 2016-04-29 2016-12-11 Triple Power Ltd Electronic paper display apparatus
CN107193000B (zh) * 2017-05-19 2021-01-15 南京矽力微电子技术有限公司 物体特征检测装置和方法
GB2564406B (en) * 2017-07-06 2022-09-07 Focal Point Positioning Ltd Method and system for correcting the frequency or phase of a local signal generated using a local oscillator
CN108196268B (zh) * 2018-01-19 2023-10-27 深圳华大北斗科技股份有限公司 基准站及卫星地基增强***
JP6644449B2 (ja) * 2018-03-02 2020-02-12 M・S・K株式会社 遠隔管理システム、遠隔管理方法および管理タグ
US11137502B2 (en) * 2018-05-29 2021-10-05 Star Ally International Limited Method and system for signal detection including positioning signals
JP7081716B2 (ja) * 2019-02-27 2022-06-07 富士通株式会社 検出方法および検出プログラム
CN109975844B (zh) * 2019-03-25 2020-11-24 浙江大学 一种基于光流法的gps信号防漂移方法
CN111060941A (zh) * 2019-06-13 2020-04-24 广东星舆科技有限公司 一种在遮挡环境下的高精度定位方法及其装置
CN114430292B (zh) * 2020-10-29 2023-04-11 上海华为技术有限公司 识别gnss伪星数据的方法、装置以及相关设备
RU210172U1 (ru) * 2021-02-15 2022-03-30 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Абонентская спутниковая станция для работы с многолучевыми спутниками-ретрансляторами с высокой пропускной способностью
US12003045B2 (en) 2021-10-20 2024-06-04 Samsung Electronics Co., Ltd. Wireless interconnect for high rate data transfer
CN114710192B (zh) * 2022-03-11 2023-11-17 中国科学院国家空间科学中心 一种应用于低轨卫星上的星载天海中继通信***及方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445118A (en) * 1981-05-22 1984-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Navigation system and method
EP0083480B1 (en) * 1981-12-31 1988-08-17 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Receivers for navigation satellite systems
US4785463A (en) * 1985-09-03 1988-11-15 Motorola, Inc. Digital global positioning system receiver
JPH02196976A (ja) * 1989-01-26 1990-08-03 Matsushita Electric Works Ltd Gps測位システム
GB2229874B (en) * 1989-02-04 1992-09-16 Plessey Co Plc Improvements relating to communication systems
US4998111A (en) * 1989-11-27 1991-03-05 Motorola, Inc. CPS transform correlation receiver and method
GB2241623A (en) * 1990-02-28 1991-09-04 Philips Electronic Associated Vehicle location system
JPH03269385A (ja) * 1990-03-20 1991-11-29 Pioneer Electron Corp Gps受信機
US5225842A (en) * 1991-05-09 1993-07-06 Navsys Corporation Vehicle tracking system employing global positioning system (gps) satellites
US5379224A (en) * 1991-11-29 1995-01-03 Navsys Corporation GPS tracking system
JPH05155397A (ja) * 1991-12-02 1993-06-22 Toshiba Corp 軌道推定装置
US5448773A (en) * 1992-02-05 1995-09-05 Trimble Navigation Limited Long life portable global position system receiver
US5245634A (en) * 1992-03-23 1993-09-14 Motorola, Inc. Base-site synchronization in a communication system
JPH05297105A (ja) * 1992-04-21 1993-11-12 Japan Radio Co Ltd Gps受信処理装置
JPH06123767A (ja) * 1992-10-12 1994-05-06 Tokyo Cosmos Electric Co Ltd 位置探索装置
US5430654A (en) * 1992-12-01 1995-07-04 Caterpillar Inc. Method and apparatus for improving the accuracy of position estimates in a satellite based navigation system
US5365450A (en) 1992-12-17 1994-11-15 Stanford Telecommunications, Inc. Hybrid GPS/data line unit for rapid, precise, and robust position determination
US5323163A (en) * 1993-01-26 1994-06-21 Maki Stanley C All DOP GPS optimization
US5408238A (en) * 1993-03-17 1995-04-18 Trimble Navigation Ltd. Location of overboard person or object or of water-chemical interface
US5420592A (en) 1993-04-05 1995-05-30 Radix Technologies, Inc. Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations
US5418538A (en) * 1993-05-21 1995-05-23 Trimble Navigation Limited Rapid satellite signal acquisition in a satellite positioning system
US5389934A (en) * 1993-06-21 1995-02-14 The Business Edge Group, Inc. Portable locating system
US5491486A (en) * 1994-04-25 1996-02-13 General Electric Company Mobile tracking units employing motion sensors for reducing power consumption therein
CA2667786C (en) 1995-10-09 2012-07-31 Snaptrack, Inc. Gps receiver and method for processing gps signals
US6323805B1 (en) * 1998-09-09 2001-11-27 Qualcomm, Inc. Data boundary aware base station assisted position location
GB0011761D0 (en) * 2000-05-16 2000-07-05 Koninkl Philips Electronics Nv A method of despreading a spread spectrum signal

Also Published As

Publication number Publication date
JP4435720B2 (ja) 2010-03-24
EP1752782A2 (en) 2007-02-14
WO1997014049A2 (en) 1997-04-17
EP1418440A1 (en) 2004-05-12
ATE511662T1 (de) 2011-06-15
JP2010008431A (ja) 2010-01-14
CN100409027C (zh) 2008-08-06
JP2005326431A (ja) 2005-11-24
EP1586916A1 (en) 2005-10-19
CN1211324A (zh) 1999-03-17
BRPI9611701B1 (pt) 2016-04-26
EP2112525A1 (en) 2009-10-28
HK1022524A1 (en) 2000-08-11
JP2005326430A (ja) 2005-11-24
CA2667786A1 (en) 1997-04-17
WO1997014049A3 (en) 1997-06-19
EP1586916B1 (en) 2011-06-01
CA2667772A1 (en) 1997-04-17
CA2667764C (en) 2012-07-31
CA2230841A1 (en) 1997-04-17
CN1113250C (zh) 2003-07-02
CA2667764A1 (en) 1997-04-17
AU7662096A (en) 1997-04-30
CA2667772C (en) 2012-07-31
EP2113782A3 (en) 2010-01-27
JP2006030207A (ja) 2006-02-02
AU723615B2 (en) 2000-08-31
CN1487306A (zh) 2004-04-07
DE69638354D1 (de) 2011-05-19
JP5641279B2 (ja) 2014-12-17
EP2113782B1 (en) 2011-12-07
EP1418440B9 (en) 2012-01-18
EP2113782A2 (en) 2009-11-04
EP0855039B1 (en) 2008-11-19
JP2005326429A (ja) 2005-11-24
CA2667775C (en) 2013-12-10
DE69638293D1 (de) 2010-12-30
EP1752782A3 (en) 2008-10-08
EP2110683A1 (en) 2009-10-21
JP3738271B2 (ja) 2006-01-25
EP1418440B1 (en) 2011-04-06
CA2230841C (en) 2009-09-08
CA2667775A1 (en) 1997-04-17
EP0855039A2 (en) 1998-07-29
JPH11513787A (ja) 1999-11-24
DE69637755D1 (de) 2009-01-02
EP1752782B1 (en) 2010-11-17
BR9611701A (pt) 1999-12-28
CA2667786C (en) 2012-07-31
ES2377707T3 (es) 2012-03-30

Similar Documents

Publication Publication Date Title
ES2314981T3 (es) Receptor gps y procedimiento para el procesamiento de señales gps.
ES2357300T3 (es) Corrección lo en un receptor gps.
ES2206601T5 (es) Sistema combinado de posicionamiento gps y de comunicaciones utilizando circuitos compartidos.
ES2296306T3 (es) Receptor gps perfeccionado que utiliza un enlace de comunicacion.
ES2359615T3 (es) Procedimiento y aparato para adquirir señales del sistema de posicionamiento de satélites.
US6570533B2 (en) Method for determining the phase of information, and an electronic device
KR100663899B1 (ko) 통신링크를이용한향상된지피에스수신기
KR100674213B1 (ko) 위치정보 제공장치 및 그 방법
US7161533B2 (en) Method and a system for positioning, and an electronic device
US6714159B1 (en) Method for performing positioning and an electronic device
RU2357267C2 (ru) Способ определения местоположения удаленного устройства