EP4377135A1 - Système d'entraînement électrique pour véhicule et procédé pour faire fonctionner un système d'entraînement électrique correspondant - Google Patents

Système d'entraînement électrique pour véhicule et procédé pour faire fonctionner un système d'entraînement électrique correspondant

Info

Publication number
EP4377135A1
EP4377135A1 EP22757279.9A EP22757279A EP4377135A1 EP 4377135 A1 EP4377135 A1 EP 4377135A1 EP 22757279 A EP22757279 A EP 22757279A EP 4377135 A1 EP4377135 A1 EP 4377135A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
inverter
charging
electrical
drive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22757279.9A
Other languages
German (de)
English (en)
Inventor
Nathan Tröster
Urs Boehme
Markus Orner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Mercedes Benz Group AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercedes Benz Group AG filed Critical Mercedes Benz Group AG
Publication of EP4377135A1 publication Critical patent/EP4377135A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to an electric drive system for a vehicle, with an electric three-phase machine for driving the vehicle.
  • the electrical drive system also has an electrical energy store for supplying power to the three-phase electrical machine while the vehicle is operating in a ferry mode.
  • the electrical drive system also has an inverter for the electrical three-phase machine, which is electrically coupled to the electrical energy store.
  • the electric drive system has a vehicle-side charging connection for electrically coupling the electrical energy store to a vehicle-external charging unit.
  • the invention also relates to a method for operating an electric drive system of a vehicle, with an electric three-phase machine being supplied with electricity by means of an electric energy storage device while the vehicle is in motion, so that the vehicle is driven by means of the electric three-phase machine.
  • BEV battery-powered, vehicles
  • BEV electric vehicles
  • 800 volt charging stations are not always available, so such an electric vehicle must also be charged at 400 volt charging stations.
  • Boost converters can be used for this purpose, for example. Additional power electronics are installed in the electric vehicle, which adapt the voltage of the charging station to the battery voltage of the vehicle.
  • switching batteries are used in the prior art, which are divided into two strands, which are connected in parallel or in series with switches can.
  • the electric vehicle can be charged with either 400 volts or 800 volts.
  • a switching arrangement for hybrid and electric vehicles is known from DE 102018009848 A1.
  • An additional voltage converter can be integrated in the vehicle, with which a 400 volt direct current can be converted into a 800 volt direct current.
  • Something similar is known from DE 102018 009840 A1.
  • One aspect of the invention relates to an electric drive system for a vehicle, with
  • An electrical energy store for supplying electricity to the electric three-phase machine during ferry operation of the vehicle
  • An on-board charging connection for electrically coupling the electrical energy store with an off-board charging unit, wherein - Depending on the inverter, a charging voltage of the vehicle-side charging connection can be converted into a supply voltage for charging the electrical energy store.
  • the inverter of the electric three-phase machine of the vehicle which is already present in the vehicle, also has a secondary function in addition to its primary function.
  • the primary function of the inverter is to provide AC voltage for the three-phase machine.
  • the secondary function is the misuse of the inverter for charging the vehicle, in particular at a 400 volt charging station. Consequently, the vehicle can be backwards compatible without the use of additional components and/or parts since the inverter is already present in the vehicle.
  • Another aspect of the invention relates to a method for operating an electric drive system of a vehicle, wherein
  • an electrical three-phase machine is supplied with electricity by means of an electrical energy store, so that the vehicle is driven by means of the electrical three-phase machine, wherein
  • a vehicle-side charging connection of the vehicle is coupled to an inverter of the electric three-phase machine, wherein
  • a charging voltage of the vehicle-side charging connection is converted into a supply voltage for charging the electrical energy store.
  • a charging process for an 800 volt electric vehicle can be carried out more easily and without additional effort, even with a 400 volt charging station.
  • the method just described can be carried out with an electric drive system according to the previous aspect or an advantageous embodiment thereof.
  • Fig. 1 is a schematic block diagram of an electrical according to the invention
  • Fig. 2 is another schematic block diagram of the electrical
  • an electric drive system 1 for a vehicle.
  • This can in particular be an electric drive system 1 for an electrically driven vehicle, in particular a hybrid vehicle or an electric vehicle.
  • the electric drive system 1 is used to drive the vehicle for locomotion. Consequently, the electric drive system 1 can be associated with a large number of components or systems with which the vehicle can be driven.
  • the electrical drive system 1 can be referred to as a drive device, a switching arrangement or an electrical system.
  • the electric drive unit 1 can have an electric three-phase machine 2 for driving the vehicle.
  • the electrical three-phase machine 2 is an electrical machine, in particular an electric motor.
  • the electric three-phase machine 2 has, specifically, three phases A, B and C.
  • the electric three-phase machine 2 can be operated, for example, in a motor mode and thus as an electric motor.
  • the electric three-phase machine 2 can be supplied with an electrical AC voltage, in particular with an electrical high-voltage AC voltage, via the phases A, B and C, in particular via the phase lines assigned to the phases A, B and C or phase connections.
  • the phases A, B and C of the electric three-phase machine 2 can be connected in particular via a star point.
  • the electric drive system 1 can have an electric energy store 3 .
  • the electrical energy storage device 3 With the help of the electrical energy storage device 3, on the one hand electric three-phase machine 2 other vehicle components and / or vehicle systems are supplied with electrical energy.
  • the electrical energy store 3 can be a number of batteries or battery systems.
  • the electrical energy store 3 is a battery, in particular a vehicle battery.
  • the electrical energy store 3 is a high-voltage battery.
  • a battery voltage Ußatt can be provided with the aid of the electrical energy store 3 .
  • the vehicle is a battery-powered vehicle with a voltage level of 800 volts.
  • a voltage value of essentially 800 volts BC can be provided by means of the battery voltage U ßatt .
  • an alternating voltage is required.
  • This AC voltage can be provided or generated by means of an inverter 4 of the electric three-phase machine 2 by converting the battery voltage Ußatt.
  • the inverter 4 can be a power converter or an inverter, for example.
  • the inverter 4 can be referred to as a drive inverter.
  • the AC voltage for the electric three-phase machine 2 is provided by the primary function or main function of the inverter 4.
  • the inverter 4 can be connected between the electrical energy store 3 and the electrical three-phase machine 2 .
  • the electrical drive system 1 can have a charging connection, in particular a charging connection 5 on the vehicle side.
  • the vehicle-side charging connection 5 can be a charging socket of the vehicle, for example.
  • the vehicle, in particular the electrical energy store 3, can be electrically connected to a charging unit 6 external to the vehicle with the aid of the charging connection 5 on the vehicle.
  • the charging unit 6 can be, for example, a charging infrastructure, a charging system, a charging station or a charging column.
  • a voltage with a voltage value of 400 volts or 800 volts can be provided by means of the charging unit 6 .
  • any desired voltage value can be made available via the charging unit 6 .
  • the vehicle is an 800-volt electric vehicle
  • a charging option with a charging voltage of 800 volts is also required.
  • the charging unit 6 can be connected directly to the electrical energy storage device 3, so that the electrical energy storage device 3 can be supplied with a voltage with a voltage value of 800 volts directly via the charging unit 6 can be loaded.
  • the electric drive system 1 can have a switching device 7 for this purpose.
  • the switching device 7 is arranged directly on the charging connection 5 on the vehicle side. This switching device 7 can be switched or changed between different switching positions or switching states.
  • the switching device 7 can be brought into a first switching position.
  • the vehicle-side charging connection 5, in particular the charging unit 6, is connected directly to the electrical energy store 3, so that the voltage of the charging unit 6 can be used to charge the electrical energy store 3 without having to be converted .
  • the switching device 7 can have switching elements, for example, so that there is a direct flow of current from the charging unit 6 to the electrical energy store 3 .
  • the switching device 7 can have charging contactors, in particular DC charging contactors, for this purpose.
  • the current direction or the current flow is visually represented by the current flow arrows SF, in which the electrical energy store 3 is charged directly with the aid of the charging unit 6 with a voltage value of essentially 800 volts, for example.
  • the switching device 7 can have at least one EMC filter 8 or a plurality of filter units.
  • the EMC filter 8 in particular the vehicle-external charging unit 6 can be protected against disturbances such as electromagnetic interference. If the charging unit 6 is used to provide a voltage with a voltage value of 400 volts, in particular less than 800 volts, the problem arises because, as in the prior art, additional voltage converters are required to step up this voltage, which is lower than the battery voltage .
  • the inverter 4 can also have a secondary function in addition to its primary function.
  • the inverter 4 of the electrical three-phase machine 2 is not used for charging the electrical energy store 3 . Consequently, the inverter 4 has an additional functionality.
  • the inverter 4 can be controlled in such a way that it can be used for charging the electrical energy store 3 .
  • the inverter 4 can be controlled or operated in such a way that the inverter 4 works or acts as a step-up converter or step-up converter. Consequently, with the aid of the inverter 4, the charging voltage UL of the vehicle-side charging connection 5 can be converted or stepped up into a higher supply voltage for charging the electrical energy store 3.
  • the charging voltage UL which is 400 volts in this case, can be converted into a supply voltage with a voltage value of essentially 800 volts.
  • the charging unit 6 can be converted into a higher supply voltage for charging the electrical energy store 3 and made available.
  • the inverter 4 can be used as a step-up converter in order to adapt this 400 volt voltage of the charging unit 6 to the 800 volt voltage of the electrical energy store 3 .
  • the inverter 4 can be designed as a 3-level inverter, S3 inverter or as a 3-level inverter in a T-type design.
  • the inverter 4 can be designed as a 3-level inverter in NPC (Nutrial Point Claimed) topology or as a 3-point inverter in an NPC circuit.
  • the inverter 4 is a nutrial point claimed 3 level inverter. In contrast to the conventionally used 2-level inverter, this has a significantly higher dielectric strength.
  • the inverter 4 may freely have switching arrangements for each of the A, B and C phases.
  • the inverter 4 individual semiconductor switches, such as IGBT's or MOSFETs: SA1, SA2, SA3, SA4, SB1, SB2, SB3, SB4, SC1, SC2, SC3 and SC4.
  • the inverter 4 also has a number of diodes DA1, DA2, DA3, DA4, DZA1, DZA2, DB1, DB2, DB3, DB4, DZB1, DZB2, DC1, DC2, DC3, DC4, DZC1 and DZC2.
  • the inverter 4 has an intermediate circuit 9; this intermediate circuit 9 can have, for example, a capacitor C1 and C2, which can be connected to the charging connection 5 on the vehicle side via a center tap Z.
  • the voltages mentioned, in particular the high-voltage voltages generally mean an electrical voltage which is greater than 50 volts, in particular greater than 60 volts.
  • the voltages, in particular the high-voltage voltages are preferably several hundred volts.
  • FIG. 2 it is now shown in which the electric drive system 1 is present during a charging process at the charging unit 6 at a charging voltage UL with a voltage value of 400 volts.
  • the switching device 7 is switched or changed to a second switching position that is different from the first switching position. This change can be carried out automatically, in particular with the aid of a control unit.
  • the current flow SFL is shown in FIG. This shows, for example, the current flow for charging using the charging voltage UL of 400 volts.
  • the 400 volts of the charging unit 6 can be stepped up, in particular to 800 volts, by means of the inverter 4 .
  • individual semiconductor elements of the inverter 4 are operated in a clocked manner.
  • the components can be driven alternately between current-supplying operation and clocked operation.
  • the clocked operation of the individual components is additionally shown with the current flow arrow SFG.
  • the semiconductor element SA2 is in the current flow SFL.
  • the elements SB3 and SB4 can be found as clock generators.
  • 3 and 4 show, on the one hand, a slightly different interconnection option between the vehicle-side charging connection 5 and the electrical energy store 3.
  • FIG. 3 as in FIG. 1, the case of 800 volt charging is shown in an analogous manner.
  • the statements relating to FIG. 1 can also be considered in an analogous manner to that relating to FIG.
  • FIG. 4 the similar wiring change as in FIG. 3 is shown.
  • FIG. 4 the explanations for FIGS. 2 and 1 can be considered.
  • the components of the inverter 4 and in particular of the electric drive system 2 are now interchanged in the current flow mode and in the clocked mode.
  • the most varied of variations with regard to the current-flowing operation of the components and the clocked operation of the components can be interchanged for this purpose.
  • the current-conducting components are also shown here with the current flow SF L and the clock-generating components are shown with the current flow SF G .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un système d'entraînement électrique (1) pour véhicule, comprenant - une machine électrique triphasée (2) pour l'entraînement du véhicule, - un accumulateur d'énergie électrique (3) pour l'alimentation électrique de la machine électrique triphasée (2) pendant la marche du véhicule, - un onduleur (4) de la machine électrique triphasée (2), lequel est couplé électriquement à l'accumulateur d'énergie électrique (3), et - une prise de charge (5) côté véhicule pour le couplage électrique de l'accumulateur d'énergie électrique (3) à une unité de charge (6) externe au véhicule. Selon l'invention, en fonction de l'onduleur (4), une tension de charge (UL) de la prise de charge (5) côté véhicule peut être convertie en une tension d'alimentation pour charger l'accumulateur d'énergie électrique (3). L'invention concerne par ailleurs un procédé.
EP22757279.9A 2021-07-27 2022-07-26 Système d'entraînement électrique pour véhicule et procédé pour faire fonctionner un système d'entraînement électrique correspondant Pending EP4377135A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021003852.5A DE102021003852A1 (de) 2021-07-27 2021-07-27 Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zum Betreiben eines entsprechenden elektrischen Antriebssystems
PCT/EP2022/070915 WO2023006729A1 (fr) 2021-07-27 2022-07-26 Système d'entraînement électrique pour véhicule et procédé pour faire fonctionner un système d'entraînement électrique correspondant

Publications (1)

Publication Number Publication Date
EP4377135A1 true EP4377135A1 (fr) 2024-06-05

Family

ID=77552865

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22757279.9A Pending EP4377135A1 (fr) 2021-07-27 2022-07-26 Système d'entraînement électrique pour véhicule et procédé pour faire fonctionner un système d'entraînement électrique correspondant

Country Status (4)

Country Link
EP (1) EP4377135A1 (fr)
CN (1) CN117813216A (fr)
DE (1) DE102021003852A1 (fr)
WO (1) WO2023006729A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022002606A1 (de) 2022-07-18 2024-01-18 Mercedes-Benz Group AG Fahrzeug und Verfahren zu dessen Betrieb

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202764A1 (de) * 2012-02-23 2013-08-29 Siemens Aktiengesellschaft Ladevorrichtung eines elektrisch betriebenen Fahrzeugs
US11479139B2 (en) * 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
DE102016213070B4 (de) * 2016-07-18 2017-05-11 Continental Automotive Gmbh Fahrzeugbordnetz und Verfahren
DE102016218304B3 (de) * 2016-09-23 2018-02-01 Volkswagen Aktiengesellschaft Vorrichtung zur Spannungswandlung, Traktionsnetz und Verfahren zum Laden einer Batterie
DE102017123348A1 (de) * 2017-10-09 2019-04-11 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wechselrichter für ein Elektroauto
DE102018120236A1 (de) * 2018-08-20 2020-02-20 Thyssenkrupp Ag Ladevorrichtung mit steuerbarer Zwischenkreismittelpunktsspannung sowie Antriebssystem mit einer derartigen Ladevorrichtung
DE102018124789A1 (de) * 2018-10-08 2020-04-09 Thyssenkrupp Ag Schnellladevorrichtung und elektrisches Antriebssystem mit einer derartigen Schnellladevorrichtung
DE102018009848A1 (de) 2018-12-14 2019-06-27 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
DE102018009840A1 (de) 2018-12-14 2019-06-27 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
WO2020248023A1 (fr) * 2019-06-12 2020-12-17 Invertedpower Pty Ltd Convertisseur élévateur courant continu-courant continu de véhicule électrique

Also Published As

Publication number Publication date
DE102021003852A1 (de) 2021-09-23
CN117813216A (zh) 2024-04-02
WO2023006729A1 (fr) 2023-02-02

Similar Documents

Publication Publication Date Title
EP1710115B1 (fr) Circuit et méthode de commande d'un véhicule électrique ou hybride avec deux sources d'alimentation continue
WO2010069830A1 (fr) Agencement de propulsion pour véhicule à propulsion électrique
EP3718201B1 (fr) Composant redresseur et module semi-conducteur d'un composant redresseur
DE102019132685A1 (de) Elektrische Schaltungsanordnung umfassend eine Erregerschaltung und eine Inverterschaltung und Kraftfahrzeug
DE102009052680A1 (de) Ladevorrichtung zum Laden einer Batterie eines Kraftfahrzeugs mit Tiefsetzsteller
DE102010039886B4 (de) Antriebssystem für ein batteriebetriebenes Fahrzeug
EP2609676B1 (fr) Convertisseur de traction
DE102005015658A1 (de) Schalteinrichtung zur Verknüpfung verschiedener elektrischer Spannungsebenen in einem Kraftfahrzeug
DE102021005548A1 (de) Gleichspannungswandler und Komponentenanordnung für ein elektrisches Hochvoltbordnetz eines Fahrzeugs
EP2941363B2 (fr) Alimentation en énergie électrique de moteurs électriques de propulsion d'un véhicule ferroviaire à l'aide d'une pluralité de moteurs à combustion
DE102013203734B4 (de) Modularer Hochfrequenz-Umrichter
EP4377135A1 (fr) Système d'entraînement électrique pour véhicule et procédé pour faire fonctionner un système d'entraînement électrique correspondant
WO2015117921A1 (fr) Unité d'alimentation électrique d'un véhicule ferroviaire
DE102013011104A1 (de) Elektrische Energieverteilungseinrichtung für ein elektrisch angetriebenes Fahrzeug sowie Verfahren zum Betrieb der Energieverteilungseinrichtung
WO2019053160A1 (fr) Rechargement d'un accumulateur d'énergie électrique d'un véhicule automobile
DE102010025266A1 (de) Transportfahrzeug mit einer Mehrzahl elektrischer Maschinen
WO2014029582A1 (fr) Véhicule pour fonctionnement sur réseau ferroviaire et sur batterie
DE19908495B4 (de) Von einem AC-Fahrdraht versorgte, tranformatorlose Einspeiseschaltung für eine Wechselstrommaschine eines Bahnfahrzeuges
WO2023006726A1 (fr) Système d'entraînement électrique pour un véhicule, véhicule équipé d'un système d'entraînement électrique correspondant et procédé pour faire fonctionner un système d'entraînement électrique correspondant
WO2014090556A2 (fr) Dispositif d'entraînement pour un véhicule
DE102021213459B3 (de) Schalteinrichtung und Verfahren zum Aufladen eines elektrischen Energiespeichers und Elektrofahrzeug
DE102022002607B3 (de) Fahrzeug mit einer elektrischen Schaltungsanordnung und zwei elektrischen Antriebseinheiten und Verfahren zu dessen Betrieb
EP4377133A1 (fr) Système d'entraînement électrique pour un véhicule et procédé d'actionnement d'un système d'entraînement électrique
DE102022123137A1 (de) Zwischenkreis für einen 3-Level-Inverter
DE102012025277A1 (de) Steuerung eines HV-elektrischen Zuheizers durch einen Onboard-Lader

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR