EP4320668A1 - Electrolyte solide pour batterie li-ion - Google Patents

Electrolyte solide pour batterie li-ion

Info

Publication number
EP4320668A1
EP4320668A1 EP22719972.6A EP22719972A EP4320668A1 EP 4320668 A1 EP4320668 A1 EP 4320668A1 EP 22719972 A EP22719972 A EP 22719972A EP 4320668 A1 EP4320668 A1 EP 4320668A1
Authority
EP
European Patent Office
Prior art keywords
vdf
copolymer
film
lithium salt
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22719972.6A
Other languages
German (de)
English (en)
Inventor
Gérôme GODILLOT
Christophe Navarro
Christine TARISSE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP4320668A1 publication Critical patent/EP4320668A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention generally relates to the field of the storage of electrical energy in secondary batteries of the Li-ion type. More specifically, the invention relates to a composition of a solid electrolyte which allows the manufacture of a film having a very good compromise between ionic conductivity, electrochemical stability, stability at high temperature, and mechanical strength. This film is intended for a separator application, in particular for Li-ion batteries. The invention also relates to a Li-ion battery comprising such a separator.
  • a Li-ion battery includes at least a negative electrode or anode coupled to a copper current collector, a positive electrode or cathode coupled to an aluminum current collector, a separator, and an electrolyte.
  • the electrolyte consists of a lithium salt, generally lithium hexafluorophosphate, mixed with a solvent which is a mixture of organic carbonates, chosen to optimize the transport and dissociation of ions.
  • a high dielectric constant favors the dissociation of ions, and therefore the number of ions available in a given volume, while a low viscosity favors ionic diffusion which plays an essential role, among other parameters, in the velocities of charging and discharging of the electrochemical system.
  • Rechargeable or secondary batteries are more advantageous than primary (non-rechargeable) batteries because the associated electrochemical reactions that take place at the positive and negative electrodes of the battery are reversible.
  • the electrodes of the secondary cells can be regenerated several times by the application of an electric current.
  • Many advanced electrode systems have been developed to store electrical energy. At the same time, many efforts have been devoted to the development of electrolytes capable of improving the capacities of electrochemical cells.
  • the separator acts as a mechanical and electronic barrier and as an ion conductor.
  • separators There are several categories of separators: dry polymer membranes, gelled polymer membranes and micro- or macroporous separators soaked in liquid electrolyte.
  • the separator market is dominated by the use of polyolefins (Celgard ® or Hipore ® ) produced by extrusion and/or stretching.
  • the separators must both present low thicknesses, optimum affinity for the electrolyte and sufficient mechanical strength.
  • polyolefins polymers presenting a better affinity with respect to standard electrolytes have been proposed, in order to reduce the internal resistances of the system, such as poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-co-HFP)).
  • Liquid electrolytes composed of solvent(s), lithium salt(s) and additive(s) have good ionic conductivity but are liable to leak or ignite if the battery is damaged.
  • Dense gelled membranes are an alternative to separators soaked in liquid electrolyte.
  • dense membranes membranes which no longer have any free porosity. They are swollen by the solvent but the latter, strongly chemically bound to the membrane material, has lost all its solvation properties; the solvent then crosses the membrane without entraining solute.
  • the free spaces correspond to those left between them by the polymer chains and have the size of simple organic molecules or hydrated ions.
  • the disadvantage of gelled membranes is that they do not retain sufficient mechanical strength after swelling to allow easy handling of the separator for the manufacture of the cell and to resist the mechanical stresses during the charge/discharge cycles of the battery.
  • solid electrolytes overcomes these difficulties, avoiding the use of flammable liquid components.
  • the advantage of solid or quasi-solid electrolytes is also to allow the use of lithium metal at the negative electrode, by preventing the formation of dendrites that can cause short circuits during cycling.
  • the use of lithium metal allows a gain in energy density compared to negative insertion or alloy electrodes.
  • solid electrolytes are generally less conductive than liquid electrolytes.
  • the difficulty of solid electrolytes is to reconcile high ionic conductivity, good electrochemical stability and sufficient temperature resistance.
  • the ionic conductivity must be equivalent to that of liquid electrolytes (of the order of 1 mS/cm at 25°C, measured by electrochemical impedance spectroscopy).
  • the electrochemical stability must allow the use of the electrolyte with cathode materials that can operate at high voltage (> 4.5 V). Similarly, the solid electrolyte must work at least up to 80°C and not ignite below 130°C.
  • Poly(vinylidene fluoride) (PVDF) and its derivatives are of interest as the main constituent material of the separator for their electrochemical stability, and for their high dielectric constant which promotes the dissociation of the ions and therefore the conductivity.
  • the P(VDF-HFP) copolymer copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP)
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • Patent US 5,296,318 describes solid electrolyte compositions comprising a mixture of P(VDF-co-HFP) copolymer, lithium salt, and compatible solvent with a medium boiling point (ie between 100° C. and 150° C. C), capable of forming an extensible and self-supporting film.
  • Example 2 describes the preparation of a film having a thickness of 100 mih from a composition containing a copolymer P (VDF-HFP), LiPF ⁇ (lithium hexafluorophosphate) and a mixture of ethylene carbonate and propylene carbonate.
  • the object of the invention is therefore to remedy at least one of the drawbacks of the prior art, namely to propose a solid electrolyte composition having performances at least equivalent to those of a liquid electrolyte.
  • the invention also relates to a polymeric film consisting of said composition having good properties of mechanical strength, ionic conductivity and electrochemical stability.
  • the invention also aims to provide at least one method for manufacturing this polymeric film.
  • Another object of the invention is a separator, in particular for a secondary Li-ion battery consisting, in whole or in part, of said film.
  • This separator can also be used in a battery, a capacitor, an electrochemical double layer capacitor, a membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device.
  • MEA membrane-electrode assembly
  • the invention aims to provide rechargeable Li-ion secondary batteries comprising such a separator.
  • the invention relates firstly to a solid electrolyte composition consisting of: a) at least one copolymer of vinylidene fluoride (VDF) and at least one comonomer compatible with VDF, b) a mixture of at least one ionic liquid and at least one plasticizer, and c) at least one lithium salt.
  • VDF vinylidene fluoride
  • comonomer compatible with VDF is meant a comonomer which can be polymerized with VDF; these monomers are preferably chosen from vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene (CTFE), 1,2-difluoroethylene, tetrafluoroethylene (TFE), hexafluoropropylene (HFP), perfluoro(alky vinyl) ethers such as perfluoro(methylvinyl)ether (PMVE), perfluoro(ethylvinyl)ether (PEVE), perfluoro(propylvinyl)ether (PP VE).
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • perfluoro(alky vinyl) ethers such as perfluoro(methylvinyl)ether (PMVE), perfluoro(ethylvinyl)ether (PEVE), perfluoro(propylviny
  • the VDF copolymer is a terpolymer.
  • component a) is at least one copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP), or P(VDF-HFP).
  • said P(VDF-HFP) copolymer has a mass content of HFP greater than or equal to 5% and less than or equal to 45%.
  • said plasticizer in said mixture of ionic liquid and plasticizer, has a high boiling point (greater than 150° C.).
  • said lithium salt is chosen from the list: FiFSI, FiTFSI, FiTDI, FiPF ⁇ , F1BF 4 and FiBOB.
  • the invention also relates to a non-porous film consisting of said solid electrolyte composition.
  • the film contains no solvent and has a high ionic conductivity.
  • Another object of the invention is a separator, in particular for a Fi-ion rechargeable battery, comprising a film as described.
  • the invention also relates to an electrochemical device chosen from the group: batteries, capacitor, electric electrochemical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device, said device comprising a separator as described.
  • an electrochemical device chosen from the group: batteries, capacitor, electric electrochemical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device, said device comprising a separator as described.
  • Another object of the invention is a lithium-based secondary battery, for example an Fi-ion battery, or Fi-S or Fi-air batteries, comprising a negative electrode, a positive electrode and a separator, in which said separator includes a film as described.
  • a lithium-based secondary battery for example an Fi-ion battery, or Fi-S or Fi-air batteries, comprising a negative electrode, a positive electrode and a separator, in which said separator includes a film as described.
  • Fa present invention overcomes the drawbacks of the prior art. More particularly, it provides a film capable of functioning as a separator which brings together a high ionic conductivity, good electrochemical stability, temperature resistance, and sufficient mechanical strength to allow easy handling of the separator.
  • the advantage of this invention is to offer a better guarantee of safety compared to a separator based on liquid electrolyte, for electrochemical performances at least equal to those of liquid electrolytes. There is therefore no possible electrolyte leakage, and the flammability of the electrolyte is greatly reduced.
  • the solid electrolyte according to the invention can be used in a battery with an anode made of graphite, silicon or graphite and silicon.
  • anode made of graphite, silicon or graphite and silicon.
  • its resistance to the growth of dendrites on the surface of the anode also allows a lithium metal anode, which allows a gain in energy density compared to conventional Li-ion technologies.
  • Figure 1 is a diagram representing the electrochemical stability of different compositions of solid electrolytes, evaluated by cyclic voltammetry.
  • Figure 2 is a diagram representing the dendrite resistance performance of a solid electrolyte composition, evaluated by flowing lithium ions through a film placed between two metallic lithium electrodes.
  • the invention relates to a solid electrolyte composition consisting of: a) at least one copolymer of VDF and of at least one comonomer compatible with VDF, b) a mixture of at least one ionic liquid and at least one plasticizer, and c) at least one lithium salt.
  • said film comprises the following characters, possibly combined.
  • the contents indicated are expressed by weight, unless otherwise indicated.
  • the concentration ranges given include the limits, unless otherwise indicated.
  • Component a) consists of at least one copolymer comprising vinylidene difluoride (VDF) units and one or more types of comonomer units compatible with vinylidene difluoride (hereinafter referred to as "VDF copolymer").
  • VDF copolymer contains at least 50% by mass of vinylidene difluoride, advantageously at least 70% by mass of VDF and preferably at least 80% by mass of VDF.
  • Comonomers compatible with vinylidene difluoride can be halogenated (fluorinated, chlorinated or brominated) or non-halogenated.
  • fluorinated comonomers examples include: vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, trifluoropropenes and in particular 3,3,3-trifluoropropene, tetrafluoropropenes and in particular 2,3,3,3-tetrafluoropropene or 1 , 3,3,3-tetrafluoropropene, hexafluoroisobutylene, perfluorobutylethylene, pentafluoropropenes and in particular 1,1,3,3,3-pentafluoropropene or 1,2,3,3,3-pentafluoropropene, perfluoroalkylvinylethers and in particular those of general formula Rf-0-CF-CF2, Rf being an alkyl group, preferably C1 to C4 (preferred examples being perfluoropropylvinylether and perfluoromethylvinylether).
  • the fluorinated monomer can contain a chlorine or bromine atom. It can in particular be chosen from bromotrifluoroethylene, chlorofluoroethylene, chlorotrifluoroethylene and chlorotrifluoropropene.
  • Chlorofluoroethylene can denote either 1-chloro-1-chloroethylene or 1-chloro-2-fluoroethylene.
  • the 1-chloro-1-thioroethylene isomer is preferred.
  • the chlorotrifluoropropene is preferably 1-chloro-3,3,3-trifluoropropene or 2-chloro-3,3,3-trifluoropropene.
  • component a) consists of a VDF copolymer.
  • component a) consists of a P(VDF-HFP) copolymer.
  • component a) consists of a mixture of a homopolymer of vinylidene fluoride (PVDF) and of at least one copolymer of VDF, with a mass content of PVDF homopolymer ranging from 0.1 to 20% based on the weight of said mixture.
  • PVDF vinylidene fluoride
  • said component a) consists of a mixture of a PVDF homopolymer and a P(VDF-HFP) copolymer.
  • said component a) consists of a mixture of two VDF copolymers of different structures.
  • the P(VDF-HFP) copolymer has a mass content of HFP greater than or equal to 5%, preferably greater than or equal to 8%, advantageously greater than or equal to 11%, and less than or equal to 45%, of preferably less than or equal to 30%.
  • the VDF copolymer and/or the homopolymer PVDF comprises monomer units bearing at least one of the following functions: carboxylic acid, carboxylic acid anhydride, carboxylic acid esters, epoxy groups (such as glycidyl), amide, hydroxyl, carbonyl, mercapto, sulfide, oxazoline, phenolics, ester, ether, siloxane, sulfonic, sulfuric, phosphoric, phosphonic.
  • the function is introduced by a chemical reaction which can be grafting, or a copolymerization of the fluorinated monomer with a monomer bearing at least one of said functional groups and a vinyl function capable of copolymerizing with the fluorinated monomer, according to techniques well known by the man of the trade.
  • the functional group bears a carboxylic acid function which is a group of (meth)acrylic acid type chosen from acrylic acid, methacrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth) acrylate and hydroxyethylhexyl (meth)acrylate.
  • a carboxylic acid function which is a group of (meth)acrylic acid type chosen from acrylic acid, methacrylic acid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth) acrylate and hydroxyethylhexyl (meth)acrylate.
  • the units carrying the carboxylic acid function also comprise a heteroatom chosen from oxygen, sulphur, nitrogen and phosphorus.
  • the functional group content of the VDF copolymer and/or of the PVDF homopolymer is at least 0.01% molar, preferably at least 0.1% molar, and at most 15% molar, preferably at most 10% molar.
  • the VDF copolymer has a high molecular weight.
  • high molecular weight as used herein, is meant a copolymer having a melt viscosity greater than 100 Pa.s, preferably greater than 500 Pa.s, more preferably greater than 1000 Pa.s, according to the ASTM D-3835 method measured at 232°C and 100 sec 1 .
  • VDF copolymers used in the invention can be obtained by known polymerization methods such as polymerization in emulsion, in solution or in suspension.
  • they are prepared by an emulsion polymerization process in the absence of fluorinated surfactant.
  • said VDF copolymer is a random copolymer.
  • This type of copolymer has the advantage of having a homogeneous distribution of the comonomer along the vinylidene fluoride chains.
  • said VDF copolymer is a so-called “heterogeneous” copolymer, which is characterized by a non-homogeneous distribution of the comonomer along the VDF chains, due to the synthesis process described by the applicant for example in the document US 6187885 or in US 10570230.
  • a heterogeneous copolymer has two (or several) distinct phases, with a phase rich in PVDF homopolymer and a phase of copolymer rich in comonomer.
  • the heterogeneous copolymer consists of discontinuous, discrete and individual copolymer domains of comonomer-rich phase, which are homogeneously distributed in a continuous PVDF-rich phase. We then speak of a non-continuous structure.
  • the heterogeneous copolymer is a copolymer having two (or more) continuous phases which are intimately linked together and cannot be physically separated. We then speak of a co-continuous structure.
  • said heterogeneous copolymer comprises two or more co-continuous phases which comprise: a) from 25 to 50 percent by weight of a first co-continuous phase comprising 90-100 percent by weight of monomer units of vinylidene fluoride and 0 to 10 percent by weight units of other fluoromonomers, and b) from more than 50 percent by weight to 75 percent by weight of a co-continuous second phase comprising from 65 to 95 percent by weight of vinylidene fluoride monomer units and an effective amount of one or more comonomers, such as hexafluoropropylene and perfluorovinyl ether, to cause phase separation of the co-continuous second phase from the continuous first phase.
  • co-continuous phases comprise: a) from 25 to 50 percent by weight of a first co-continuous phase comprising 90-100 percent by weight of monomer units of vinylidene fluoride and 0 to 10 percent by weight units of other fluoromonomers, and b) from more than 50 percent by
  • the heterogeneous copolymer can be made by forming an initial polymer that is rich in VDF monomer units, generally greater than 90 wt% VDF, preferably greater than 95 wt%, and in a preferred embodiment, a PVDF homopolymer, then adding a co-monomer to the reactor well into the polymerization to produce a copolymer.
  • VDF-rich polymer and copolymer will form distinct phases resulting in an intimate heterogeneous copolymer.
  • Copolymerization of VDF with a comonomer, for example with HFP results in a latex generally having a solids content of 10 to 60% by weight, preferably 10 to 50%, and having a weight average particle size less than 1 micrometer, preferably less than 800 nm, and more preferably less than 600 nm.
  • the weight average size of the particles is generally at least 20 nm, preferably at least 50 nm, and advantageously the average size is in the range of 100 to 400 nm.
  • the polymer particles can form agglomerates whose average size by weight is from 1 to 30 micrometers, and preferably from 2 to 10 micrometers. Agglomerates can break down into discrete particles during formulation and application to a substrate.
  • the VDF copolymers used in the invention can form a gradient between the core and the surface of the particles, in terms of composition (comonomer content, for example) and/or molecular weight.
  • the VDF copolymers contain bio-based VDF.
  • biobased means “derived from biomass”. This improves the ecological footprint of the membrane.
  • Bio-based VDF can be characterized by a renewable carbon content, i.e. carbon of natural origin and coming from a biomaterial or from biomass, of at least 1 atomic % as determined by the content of 14C according to standard NF EN 16640.
  • renewable carbon indicates that the carbon is of natural origin and comes from a biomaterial (or biomass), as indicated below.
  • the bio-carbon content of the VDF can be greater than 5%, preferably greater than 10%, preferably greater than 25%, preferably greater than or equal to 33%, preferably greater than 50% , preferably greater than or equal to 66%, preferably greater than 75%, preferably greater than 90%, preferably greater than 95%, preferably greater than 98%, preferably greater than 99%, advantageously equal to 100% .
  • the second component of the solid electrolyte composition of the invention is a mixture of at least one ionic liquid and at least one plasticizer.
  • An ionic liquid is a salt that is liquid at room temperature, i.e. it has a melting point below 100°C under atmospheric pressure. It is formed by the association of an organic cation and an anion whose ionic interactions are weak enough not to form a solid.
  • this cation may comprise a C1-C30 alkyl group, such as 1-butyl-l-methylpyrrolidinium, l-ethyl-3-methylimidazolium, N-methyl-N-propylpyrrolydinium or N-methyl- N -butylpiperidinium.
  • the anions which are associated with them are chosen from: imides, in particular bis(fluorosulfonyl)imide and bis(trifluoromethanesulfonyl)imide; borates; phosphates; phosphinates and phosphonates, in particular alkyl-phosphonates; amides, in particular dicyanamide; aluminates, in particular tetrachloroaluminate; halides (such as bromide, chloride, iodide anions); cyanates; acetates (CH 3 COO ), in particular trifluoroacetate; sulfonates, in particular methanesulfonate (CH3SO3), trifluoromethanesulfonate; and sulphates, especially hydrogen sulphate.
  • imides in particular bis(fluorosulfonyl)imide and bis(trifluoromethanesulfonyl)imide
  • borates phosphates; phosphinates and
  • the anions are chosen from tetrafluoroborate (BFF), bis(oxalato)borate (BOB), hexafluorophosphate (PF ⁇ ), hexafluoroarsenate (ASF ⁇ ), triflate or trifluoromethylsulfonate (CF3SO3) , bis(fluorosulfonyl)imide (FSF), bis-(trifluoromethanesulfonyl)imide (TFSF), nitrate (NO3) and 4,5-dicyano-2-(trifluoromethyl)imidazole (TDF).
  • BFF tetrafluoroborate
  • BOB bis(oxalato)borate
  • PF ⁇ hexafluorophosphate
  • ASF ⁇ hexafluoroarsenate
  • CF3SO3 triflate or trifluoromethylsulfonate
  • FSF fluorosulfonyl)imide
  • TFSF
  • said anion of the ionic liquid is chosen from TDF, FSF, FFSF, PF 6- , BF4-, NO3- and BOB .
  • said anion of the ionic liquid is FSF.
  • Component b) of the solid electrolyte composition of the invention also contains a plasticizer.
  • the plasticizer is a solvent with a high boiling point (above 150° C.).
  • the plasticizer is chosen from:
  • F2EC trans-4,5-difluoro-l,3-dioxolan-2-one
  • PC - propylene carbonate
  • - ethers such as poly ethylene glycol dimethyl ethers, in particular diethylene glycol dimethyl ether (EG2DME), triethylene glycol dimethyl ether (EG3DME), and tetraethylene glycol dimethyl ether (EG4DME).
  • EG2DME diethylene glycol dimethyl ether
  • EG3DME triethylene glycol dimethyl ether
  • EG4DME tetraethylene glycol dimethyl ether
  • the mixtures of at least one ionic liquid and at least one plasticizer make it possible to obtain improved properties of conductivity, electrochemical stability, thermal stability, compatibility with electrodes, capacity retention compared to conventional liquid electrolytes.
  • component b) according to the invention are the following mixtures:
  • the mass ratio between the ionic liquids and the plasticizers forming the compound b) varies from 0.1 to 10.
  • the lithium salt present in the solid electrolyte composition comprises the same anion as those of the ionic liquid present in component b).
  • said lithium salt is chosen from: LiPF ⁇ , LiFSI, LiTFSI, LiTDI, LiBF 4 , L1NO3 and LiBOB.
  • the solid electrolyte composition consists of: a) 20 to 70% of VDF copolymer(s), b) 10 to 80% of ionic liquid(s)/plasticizer(s) mixture , and c) 2 to 30% lithium salt(s), the sum of all constituents being 100%.
  • the solid electrolyte composition consists of:
  • the solid electrolyte composition consists of a P(VDF-HFP) copolymer, an EMIM-FSEEG4DME and LiFSI mixture in a mass proportion of 40/56/4, the ionic liquid/plasticizer mass ratio being 1 : 1.
  • the invention also relates to a non-porous film consisting of said solid electrolyte composition.
  • the film contains no solvent and has a high ionic conductivity.
  • the film is self-supporting, that is to say it can be manipulated without the aid of a support.
  • the film is able to be rolled up, that is to say that it can be manipulated so that it can be rolled up on a reel.
  • said film has a thickness of 5 to 30 mih, preferably from 7 ⁇ m to 20 mih.
  • the film according to the invention has an ionic conductivity ranging from 0.01 to 5 mS/cm, preferably from 0.05 to 5 mS/cm, advantageously from 0.5 to 5 mS/cm, at 25°C.
  • Conductivity is measured by electrochemical impedance spectroscopy.
  • the non-porous film is placed between two gold electrodes in a sealed conductivity cell and under an inert atmosphere (CESH, Biology) and an electrochemical impedance spectroscopy is carried out between 1 Hz and 1 MHz with an amplitude of 10mV.
  • CESH, Biology inert atmosphere
  • the conductivity value at a given temperature is obtained by taking the average of at least two measurements carried out on different samples.
  • the film according to the invention has good electrochemical stability over the temperature range from -20°C to 80°C.
  • the film according to the invention has a content of solvent(s) with a boiling point of less than 150° C., less than 1% by weight, preferably less than 0.1%, preferably less than 10 ppm.
  • the film retains its properties up to 80°C and does not ignite below 130°C.
  • the film according to the invention has a mechanical strength characterized by an elastic modulus, measured at 1 Hz and 23° C. by dynamic mechanical analysis, greater than 0.1 MPa, preferably greater than 1 MPa.
  • the invention also aims to provide at least one method for manufacturing this polymeric film.
  • said fluoropolymer film is manufactured by a solvent process.
  • Said at least one VDF copolymer is dissolved at room temperature in a solvent chosen from: n-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl formamide, methyl ethyl ketone, acetonitrile, and acetone.
  • Said at least one lithium salt is dissolved in the ionic liquid/plasticizer mixture, to obtain a lithium salt solution.
  • the two solutions are mixed.
  • the mixture obtained is then deposited on a support (for example, a glass plate) and dried at 60° C. under vacuum overnight. A perfectly homogeneous and transparent self-supported film is finally obtained.
  • said fluoropolymer film is manufactured by extrusion.
  • the VDF copolymer and the plasticizer are mixed at room temperature. This mixture is introduced into an extruder brought to 100-150°C.
  • the lithium salt dissolved in the ionic liquid is then added. After homogenization, the mixture is extradited through a flat die 300 ⁇ m thick. The thickness is adjusted to the desired value by pulling the film.
  • said fluoropolymer film is manufactured by hot pressing.
  • the mixture of VDF copolymer(s), ionic liquid(s), plasticizer(s) and lithium salt(s) is homogenized and then deposited between the two metal plates of a heating press. A pressure of 5 to 10 kN is then applied for 1 to 5 min at 100-150° C. to obtain a film.
  • the film obtained is then cooled to ambient temperature.
  • Another object of the invention is a separator for a Li-ion secondary battery consisting, in whole or in part, of said film.
  • the invention also relates to an electrochemical device chosen from the group: batteries, capacitor, electric electrochemical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device, said device comprising a separator as described.
  • an electrochemical device chosen from the group: batteries, capacitor, electric electrochemical double-layer capacitor, and membrane-electrode assembly (MEA) for a fuel cell or an electrochromic device, said device comprising a separator as described.
  • Another object of the invention is a lithium-based secondary battery, for example a Li-ion battery, or Li-S or Li-air batteries, comprising a negative electrode, a positive electrode and a separator, in which said separator comprises a film as described above.
  • said battery comprises a lithium metal anode.
  • P(VDF-HFP) poly(vinylidene fluoride)-co-hexafluoropropylene
  • 0.056 g of LiFSI lithium bis(fluorosulfonyl)amide
  • EMIM-FSI 1-ethyl-3-methylimidazolium bis(fluorosulfonyl imide
  • FEC fluoroethylene carbonate
  • the residual solvent is measured by GC-MS.
  • the amount of acetone is below the detection limit of this technique, i.e. 10 ppm.
  • the conductivity is evaluated by electrochemical impedance spectroscopy by placing the solid electrolyte (prepared by the solvent route under an inert atmosphere) between the two gold electrodes of a sealed conductivity cell under an inert atmosphere (CESH, Bilogic). Measurements are carried out on films composed of 40% by mass of P(VDF-HFP) (containing 11% by mass of HFP), and different contents of ionic liquid and plasticizer.
  • the lithium salt (LiFSI) content in the solid electrolyte is such that its concentration in the ionic liquid + plasticizer mixture is equal to 0.4 mol/L.
  • plasticizers are also evaluated such as FEC (fluoroethylene carbonate), EG2DME (diethylene glycol dimethyl ether), EG3DME (triethylene glycol dimethyl ether), EG4DME (tetraethylene glycol dimethyl ether), MPN (3-methoxypropionitrile).
  • FEC fluoroethylene carbonate
  • EG2DME diethylene glycol dimethyl ether
  • EG3DME triethylene glycol dimethyl ether
  • EG4DME tetraethylene glycol dimethyl ether
  • MPN 3-methoxypropionitrile
  • composition 1 shows that the mixture of P(VDL-HLP) and lithium salt does not provide sufficient conductivity. It is necessary to add to this mixture a mixture of ionic liquid and plasticizer.
  • the solid electrolytes thus prepared exhibit high ionic conductivities (up to 1.2 mS/cm), of the same order of magnitude as the liquid electrolytes.
  • the mass ratio of the ionic liquid to the plasticizer is varied. The results show that this ratio must be greater than 0 to obtain good conductivity, this means that the presence of ionic liquid is essential. It is also observed that the ionic conductivity increases with the content of ionic liquid. This characteristic thus makes it possible, by adjusting the composition of the film, to finely adjust the conduction properties of the solid electrolyte according to the intended application. At iso composition, higher ionic conductivities are obtained with the plasticizer EG4DME.
  • the electrochemical stability of different solid electrolytes is evaluated by cyclic voltammetry at 60°C by placing the solid electrolyte (prepared by the solvent route under an inert atmosphere) in a button cell between a stainless steel electrode and a lithium metal electrode. Cyclic voltammetry is performed between 2 and 6 V at 1 mV/s. The results are shown in Figure 1.
  • the film with the plasticizer EG4DME has an electrochemical stability of at least 4.6 V, while that of the other films is at least equal to 4.8 V. These electrochemical stabilities are largely sufficient for use in Li-ion batteries, including with high voltage positive active materials (NMC type rich in nickel).
  • ionic conductivity measurements are carried out as described in Example 3.
  • a first conductivity measurement is carried out at 25° C. (measurement 1).
  • the CESH cell is then gradually heated to 80°C, and maintained for 1 hour at 80°C.
  • the temperature is then gradually lowered to 25° C., and a second conductivity measurement is carried out at 25° C. (measurement 2).
  • the results are presented in Table 2, the compositions are in mass percentages. [Table 2] After a passage at 80° C. for 1 hour, no reduction in the ionic conductivity at 25° C. is observed for all the solid electrolytes tested. On the contrary, the latter increases significantly, thanks to the improvement of the interfaces between the solid electrolyte and the gold electrode which takes place around 80°C. 6. Dendrite resistance test of an all-solid separator
  • Dendrite resistance is evaluated by chronopotentiometry at 25° C. by placing the solid electrolyte (prepared under an inert atmosphere) in a button cell between two lithium metal electrodes. Lithium “plating/stripping” cycles are carried out by applying a current density of 3 mA/cm 2 for lh, then ⁇ 3 mA/cm 2 for lh, and so on. The results obtained with a film of composition P(VDF-HFP)/EMIM-FSI/EG4DME/LiFSI (40/28/28/4) are presented in Figure 2.
  • the overvoltage observed is low (of the order of 3-4 mV), stable, and no dendrite formation is observed for 1000 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

L'invention concerne une composition d'un électrolyte solide qui permet la fabrication d'un film présentant un très bon compromis entre conductivité ionique, stabilité électrochimique, stabilité à haute température, et tenue mécanique. Ce film est destiné à une application de 5 séparateur, notamment pour les batteries Li-ion. L'invention concerne aussi une batterie Li-ion comprenant un tel séparateur.

Description

ELECTROLYTE SOLIDE POUR BATTERIE LI-ION
DOMAINE DE L'INVENTION
La présente invention a trait de manière générale au domaine du stockage d’énergie électrique dans des batteries secondaires de type Li-ion. Plus précisément, l’invention concerne une composition d’un électrolyte solide qui permet la fabrication d’un film présentant un très bon compromis entre conductivité ionique, stabilité électrochimique, stabilité à haute température, et tenue mécanique. Ce film est destiné à une application de séparateur, notamment pour les batteries Li-ion. L’invention concerne aussi une batterie Li-ion comprenant un tel séparateur.
ARRIERE-PLAN TECHNIQUE
Une batterie Li-ion comprend au moins une électrode négative ou anode couplée à un collecteur de courant en cuivre, une électrode positive ou cathode couplée avec un collecteur de courant en aluminium, un séparateur, et un électrolyte. L’électrolyte est constitué d’un sel de lithium, généralement l’hexafluorophosphate de lithium, mélangé à un solvant qui est un mélange de carbonates organiques, choisis pour optimiser le transport et la dissociation des ions. Une constante diélectrique élevée favorise la dissociation des ions, et donc, le nombre d’ions disponibles dans un volume donné, alors qu’une faible viscosité est favorable à la diffusion ionique qui joue un rôle essentiel, entre autres paramètres, dans les vitesses de charge et décharge du système électrochimique.
Les piles rechargeables ou secondaires sont plus avantageuses que les piles primaires (non rechargeables) car les réactions électrochimiques associées qui ont lieu aux électrodes positive et négative de la batterie sont réversibles. Les électrodes des cellules secondaires peuvent être régénérées plusieurs fois par l'application d’un courant électrique. De nombreux systèmes d'électrodes avancés ont été développés pour stocker l’énergie électrique. Parallèlement, de nombreux efforts ont été consacrés au développement d'électrolytes capables d'améliorer les capacités des cellules électrochimiques.
Situé entre les deux électrodes, le séparateur joue le rôle de barrière mécanique et électronique et de conducteur ionique. Il existe plusieurs catégories de séparateurs : des membranes polymères sèches, des membranes polymères gélifiées et des séparateurs micro- ou macroporeux imbibés d’électrolyte liquide.
Le marché des séparateurs est dominé par l’utilisation de polyoléfines (Celgard® ou Hipore®) produits par extrusion et/ou étirement. Les séparateurs doivent à la fois présenter de faibles épaisseurs, une affinité optimale pour l’électrolyte et une tenue mécanique suffisante. Parmi les alternatives les plus intéressantes aux polyoléfines, des polymères présentant une meilleure affinité vis-à-vis des électrolytes standards ont été proposés, afin de diminuer les résistances internes du système, tels que le poly(méthacrylate de méthyle) (PMMA), le poly(fluorure de vinylidène) (PVDF) et le poly(fluorure de vinylidène-co-hexafluoropropène) (P(VDF-co-HFP)).
Les électrolytes liquides composés de solvant(s), sel(s) de lithium et additif(s) ont une bonne conductivité ionique mais sont susceptibles de fuir ou de s’enflammer si la batterie est endommagée.
Les membranes denses gélifiées constituent une alternative aux séparateurs imbibés d’électrolyte liquide. On appelle membranes denses, des membranes qui n'ont plus aucune porosité libre. Elles sont gonflées par le solvant mais celui-ci, fortement lié chimiquement au matériau membranaire, a perdu toutes ses propriétés de solvatation ; le solvant traverse alors la membrane sans entraîner de soluté. Dans le cas de ces membranes, les espaces libres correspondent à ceux laissés entre elles par les chaînes de polymère et ont la taille des molécules organiques simples ou des ions hydratés. Cependant, l’inconvénient des membranes gélifiées est de ne pas conserver une tenue mécanique suffisante après gonflement pour permettre une manipulation aisée du séparateur pour la fabrication de la cellule et résister aux contraintes mécaniques lors des cycles de charge/décharge de la batterie.
L’utilisation d’électrolytes solides permet de pallier à ces difficultés, en évitant l’utilisation de composants liquides inflammables. L’avantage des électrolytes solides ou quasi-solides est également de permettre l’utilisation de lithium métal à l’électrode négative, en empêchant la formation de dendrites pouvant causer des court-circuits au cours du cyclage. L’utilisation de lithium métal permet un gain en densité d’énergie par rapport aux électrodes négatives d’insertion ou d’alliage.
Cependant, les électrolytes solides sont généralement moins conducteurs que les électrolytes liquides. La difficulté des électrolytes solides est de concilier une conductivité ionique élevée, une bonne stabilité électrochimique ainsi qu’une tenue en température suffisante. La conductivité ionique doit être équivalente à celle des électrolytes liquides (de l’ordre de 1 mS/cm à 25°C, mesurée par spectroscopie d'impédance électrochimique).
La stabilité électrochimique doit permettre l’utilisation de l’électrolyte avec des matériaux de cathode pouvant fonctionner à haute tension (> 4,5 V). De même, l’électrolyte solide doit fonctionner au moins jusqu’à 80°C et ne pas s’enflammer en-dessous de 130°C. Le poly(fluorure de vinylidène) (PVDF) et ses dérivés présentent un intérêt comme matériau constitutif principal du séparateur pour leur stabilité électrochimique, et pour leur constante diélectrique élevée qui favorise la dissociation des ions et donc la conductivité. Le copolymère P(VDF-HFP) (copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP)) a été étudié en tant que membrane gélifiée car il présente une cristallinité inférieure au PVDF. De ce fait, l’intérêt de ces copolymères de P(VDF-HFP) est qu’ils permettent d’atteindre des gonflements plus importants et favoriser ainsi la conductivité.
Le document US 5296318 décrit des compositions d'électrolytes solides comprenant un mélange de copolymère P(VDF-co-HFP), de sel de lithium, et de solvant compatible à point d'ébullition moyen (i.e. compris entre 100°C et 150°C), capables de former un film extensible et autoportant. L’exemple 2 décrit la préparation d’un film ayant une épaisseur de 100 mih à partir d’une composition contenant un copolymère P(VDF-HFP), LiPFô (hexafluorophosphate de lithium) et un mélange de carbonate d’éthylène et de carbonate de propylène.
Il existe toujours un besoin de développer de nouveaux électrolytes solides qui présentent un bon compromis entre conductivité ionique, stabilité électrochimie et tenue en température, et qui sont adaptés à une mise en œuvre simplifiée, compatible avec une application industrielle.
L’invention a donc pour but de remédier à au moins un des inconvénients de l’art antérieur, à savoir proposer une composition d’électrolyte solide présentant des performances au moins équivalentes à celles d’un électrolyte liquide.
L’invention concerne également un film polymérique consistant en ladite composition présentant de bonnes propriétés de tenue mécanique, de conductivité ionique et de stabilité électrochimique .
L’invention vise également à fournir au moins un procédé de fabrication de ce film polymérique.
Un autre objet de l’invention est un séparateur, notamment pour batterie secondaire Li-ion consistant, en tout ou partie, en ledit film. Ce séparateur peut également être utilisé dans une batterie, un condensateur, un condensateur à double couche électrochimique, un assemblage membrane-électrode (AME) pour pile à combustible ou un dispositif électrochrome.
Enfin, l’invention vise à fournir des batteries secondaires Li-ion rechargeables comprenant un tel séparateur.
RESUME DE L’INVENTION
L’invention concerne en premier lieu une composition d’électrolyte solide consistant en : a) au moins un copolymère de fluorure de vinylidène (VDF) et d’au moins un comonomère compatible avec le VDF, b) un mélange d’au moins un liquide ionique et d’au moins un plastifiant, et c) au moins un sel de lithium.
Par « comonomère compatible avec le VDF » on entend un comonomère polymérisable avec le VDF ; ces monomères sont choisis de préférence parmi le fluorure de vinyle, le trifluoroéthylène, le chlorotrifluoroéthylène (CTFE), le 1,2-difluoroéthylène, tétrafluoroéthylène (TFE), l’hexafluoropropylène (HFP), les perfluoro(alky vinyl) éthers tels que le perfluoro(méthylvinyl)éther (PMVE), le perfluoro(éthylvinyl)éther (PEVE), le perfluoro(propylvinyl)éther (PP VE) .
Selon un mode de réalisation, le copolymère de VDF est un terpolymère.
Selon un mode de réalisation, le composant a) est au moins un copolymère de fluorure de vinylidène (VDF) et d’hexafluoropropylène (HFP), ou P(VDF-HFP).
Avantageusement, ledit copolymère P(VDF-HFP) a un taux massique d’HFP supérieur ou égal à 5% et inférieur ou égal à 45%.
Selon un mode de réalisation, dans ledit mélange de liquide ionique et de plastifiant ledit plastifiant présente un point d’ébullition élevé (supérieur à 150°C).
Selon un mode de réalisation, ledit sel de lithium est choisi dans la liste : FiFSI, FiTFSI, FiTDI, FiPFô, F1BF4 et FiBOB.
F’invention concerne également un film non-poreux consistant en ladite composition d’électrolyte solide. Avantageusement, le film ne contient pas de solvant et présente une conductivité ionique élevée.
Un autre objet de l’invention est un séparateur, notamment pour batterie rechargeable Fi- ion, comprenant un film tel que décrit.
F’invention concerne également un dispositif électrochimique choisi dans le groupe : batteries, condensateur, condensateur électrique à double couche électrochimique, et assemblage membrane-électrode (AME) pour pile à combustible ou un dispositif électrochrome, ledit dispositif comprenant un séparateur tel que décrit.
Un autre objet de l’invention est une batterie secondaire à base de lithium, par exemple une batterie Fi-ion, ou des batteries Fi-S ou Fi-air, comprenant une électrode négative, une électrode positive et un séparateur, dans laquelle ledit séparateur comprend un film tel que décrit.
Fa présente invention permet de surmonter les inconvénients de l’état de la technique. Elle fournit plus particulièrement un film capable de fonctionner en tant que séparateur qui réunit une conductivité ionique élevée, une bonne stabilité électrochimique, une tenue en température, et une tenue mécanique suffisante pour permettre une manipulation aisée du séparateur.
L’avantage de cette invention est d’offrir un meilleur gage de sécurité par rapport à un séparateur à base d’électrolyte liquide, pour des performances électrochimiques au moins égales à celles des électrolytes liquides. Il n’y a donc pas de fuite d’électrolyte possible, et l’inflammabilité de l’électrolyte s’en trouve fortement réduite.
Tout comme les électrolytes liquides, l’électrolyte solide selon l’invention peut être utilisé dans une batterie avec une anode en graphite, en silicium ou en graphite et silicium. Cependant, sa résistance à la croissance de dendrites à la surface de l’anode autorise également une anode de lithium métal, ce qui permet un gain en densité d’énergie par rapport aux technologies Li-ion classiques.
BREVE DESCRIPTION DES FIGURES
La Figure 1 est un diagramme représentant la stabilité électrochimique de différentes compositions d’électrolytes solide, évaluée par voltampérométrie cyclique.
La Figure 2 est un diagramme représentant les performances de résistance aux dendrites d’une composition d’électrolyte solide, évaluée en faisant circuler des ions lithium à travers un film placé entre deux électrodes de lithium métallique.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Selon un premier aspect, l’invention concerne une composition d’électrolyte solide consistant en : a) au moins un copolymère de VDF et d’au moins un comonomère compatible avec le VDF, b) un mélange d’au moins un liquide ionique et d’au moins un plastifiant, et c) au moins un sel de lithium.
Selon diverses réalisations, ledit film comprend les caractères suivants, le cas échéant combinés. Les teneurs indiquées sont exprimées en poids, sauf si indiqué autrement. Les gammes de concentration indiquées comprennent les bornes, sauf si indiqué autrement.
Composant a) Le composant a) consiste en au moins un copolymère comprenant des unités de difluorure de vinylidène (VDF) et un ou plusieurs types d’unités de co-monomères compatibles avec le difluorure de vinylidène (appelé ci-après « copolymère de VDF »). Le copolymère de VDF contient au moins 50 % en masse de difluorure de vinylidène, avantageusement au moins 70% en masse de VDF et de préférence au moins 80% en masse de VDF.
Les comonomères compatibles avec le difluorure de vinylidène peuvent être halogénés (fluorés, chlorés ou bromés) ou non-halogénés.
Des exemples de comonomères fluorés appropriés sont : le fluorure de vinyle, le tétrafluoroéthylène, l’hexafluoropropylène, les trifluoropropènes et notamment le 3,3,3- trifluoropropène, les tétrafluoropropènes et notamment le 2,3,3,3-tétrafluoropropène ou le 1, 3,3,3- tétrafluoropropène, l’hexafluoroisobutylène, le perfluorobutyléthylène, les pentafluoropropènes et notamment le 1,1,3,3,3-pentafluoropropène ou le 1,2,3,3,3-pentafluoropropène, les perfluoroalkylvinyléthers et notamment ceux de formule générale Rf-0-CF-CF2, Rf étant un groupement alkyle, de préférence en Cl à C4 (des exemples préférés étant le perfluoropropylvinyléther et le perfluorométhylvinyléther). Le monomère fluoré peut comporter un atome de chlore ou de brome. Il peut en particulier être choisi parmi le bromotrifluoroéthylène, le chlorofluoroethylène, le chlorotrifluoroéthylène et le chlorotrifluoropropène. Le chlorofluoroéthylène peut désigner soit le 1-chloro-l-fhioroéthylène, soit le l-chloro-2- fluoroéthylène. L’isomère 1-chloro-l-fhioroéthylène est préféré. Le chlorotrifluoropropène est de préférence le l-chloro-3,3,3-trifluoropropène ou le 2-chloro-3,3,3-trifluoropropène.
Selon un mode de réalisation, le composant a) consiste en un copolymère de VDF.
Selon un mode de réalisation, le composant a) consiste en un copolymère P(VDF-HFP).
Selon un mode de réalisation, le composant a) consiste en un mélange d’un homopolymère de fluorure de vinylidène (PVDF) et d’au moins un copolymère de VDF, avec un taux massique de PVDF homopolymère allant de 0,1 à 20% basé sur le poids dudit mélange.
Selon un mode de réalisation, ledit composant a) consiste en un mélange d’un PVDF homopolymère et d’un copolymère P(VDF-HFP).
Selon un mode de réalisation, ledit composant a) consiste en un mélange de deux copolymères de VDF de structures différentes.
Avantageusement, le copolymère P(VDF-HFP) a un taux massique d’HFP supérieur ou égal à 5%, de préférence supérieur ou égal à 8%, avantageusement supérieur ou égal à 11%, et inférieur ou égal à 45%, de préférence inférieur ou égal à 30%. Selon un mode de réalisation, le copolymère de VDF et/ou le PVDF homopolymère comprend des unités monomères portant au moins l’une des fonctions suivantes: acide carboxylique, anhydride d’acide carboxylique, esters d’acide carboxylique, groupes époxy (tel que le glycidyle), amide, hydroxyle, carbonyle, mercapto, sulfure, oxazoline, phénoliques, ester, éther, siloxane, sulfonique, sulfurique, phosphorique, phosphonique. La fonction est introduite par une réaction chimique qui peut être du greffage, ou une copolymérisation du monomère fluoré avec un monomère portant au moins un desdits groupes fonctionnels et une fonction vinylique capable de copolymériser avec le monomère fluoré, selon des techniques bien connues par l’homme du métier.
Selon un mode de réalisation, le groupement fonctionnel est porteur d’une fonction acide carboxylique qui est un groupe de type acide (méth) acrylique choisi parmi l’acide acrylique, l’acide méthacrylique, hydroxyéthyl(méth)acrylate, hydroxypropyl(méth)acrylate et hydroxyéthylhexyl (méth) acrylate .
Selon un mode de réalisation, les unités portant la fonction acide carboxylique comprennent en outre un hétéroatome choisi parmi l’oxygène, le soufre, l’azote et le phosphore.
La teneur en groupes fonctionnels du copolymère de VDF et/ou du PVDF homopolymère est d’au moins 0,01% molaire, de préférence d’au moins 0,1 % molaire, et au plus de 15% molaire, de préférence au plus 10% molaire.
Selon un mode de réalisation, le copolymère de VDF a un poids moléculaire élevé. Par poids moléculaire élevé, tel qu'utilisé ici, on entend un copolymère ayant une viscosité à l'état fondu supérieure à 100 Pa.s, de préférence supérieure à 500 Pa.s, plus préférablement supérieure à 1000 Pa.s, selon la méthode ASTM D-3835 mesurée à 232°C et 100 sec 1.
Les copolymères de VDF utilisés dans l’invention peuvent être obtenus par des méthodes de polymérisation connues comme la polymérisation en émulsion, en solution ou en suspension.
Selon un mode de réalisation, ils sont préparés par un procédé de polymérisation en émulsion en l’absence d’agent tensioactif fluoré.
Selon un mode de réalisation, ledit copolymère de VDF est un copolymère statistique. Ce type de copolymère présente l’avantage de présenter une répartition homogène du comonomère le long des chaînes de fluorure de vinylidène.
Selon un mode de réalisation, ledit copolymère de VDF est un copolymère dit « hétérogène », qui se caractérise par une distribution non-homogène du comonomère le long des chaînes de VDF, due au procédé de synthèse décrit par la demanderesse par exemple dans le document US 6187885 ou dans le document US 10570230. Un copolymère hétérogène possède deux (ou plusieurs) phases distinctes, avec une phase riche en PVDF homopolymère et une phase de copolymère riche en comonomère.
Selon un mode de réalisation, le copolymère hétérogène est constitué de domaines copolymères discontinus, discrets et individuels de phase riche en comonomère, qui sont distribués de manière homogène dans une phase continue riche en PVDF. On parle alors d'une structure non- continue.
Selon un autre mode de réalisation, le copolymère hétérogène est un copolymère ayant deux (ou plus) phases continues qui sont intimement liées entre elles et ne peuvent être physiquement séparées. On parle alors d’une structure co-continue.
Selon un mode de réalisation, ledit copolymère hétérogène comprend deux ou plusieurs phases co-continues qui comprennent : a) de 25 à 50 pour cent en poids d'une première phase co-continue comprenant 90-100 pour cent en poids de motifs monomères de fluorure de vinylidène et 0 à 10 pour cent en poids de motifs d'autres fluoromonomères, et b) de plus de 50 % en poids à 75 % en poids d'une seconde phase co-continue comprenant de 65 à 95 % en poids de motifs monomères de fluorure de vinylidène et une quantité efficace d'un ou plusieurs comonomères, tels que l'hexafluoropropylène et l'éther perfluoro vinylique, pour provoquer la séparation de phase de la seconde phase co-continue de la première phase continue.
Le copolymère hétérogène peut être fabriqué en formant un polymère initial qui est riche en unités monomères VDF, généralement supérieur à 90% en poids de VDF, de préférence supérieur à 95% en poids, et dans une mode de réalisation préféré, un homopolymère PVDF, puis en ajoutant un co-monomère dans le réacteur à un point bien avancé de la polymérisation pour produire un copolymère. Le polymère et le copolymère riches en VDF formeront des phases distinctes, ce qui donnera un copolymère hétérogène intime.
La copolymérisation du VDF avec un comonomère, par exemple avec l’HFP, aboutit à un latex ayant généralement une teneur en solides de 10 à 60 % en poids, de préférence de 10 à 50 %, et ayant une taille de particule moyenne en poids inférieure à 1 micromètre, de préférence inférieure à 800 nm, et plus préférablement inférieure à 600 nm. La taille moyenne en poids des particules est généralement d'au moins 20 nm, de préférence d'au moins 50 nm, et avantageusement la taille moyenne est comprise dans la gamme de 100 à 400 nm. Les particules de polymère peuvent former des agglomérats dont la taille moyenne en poids est de 1 à 30 micromètres, et de préférence de 2 à 10 micromètres. Les agglomérats peuvent se briser en particules discrètes pendant la formulation et l'application sur un substrat. Les copolymères de VDF utilisés dans l’invention peuvent former un gradient entre le cœur et la surface des particules, en termes de composition (teneur en comonomère, par exemple) et/ou de masse moléculaire.
Selon certains modes de réalisation, les copolymères de VDF contiennent du VDF biosourcé. Le terme « biosourcé » signifie « issu de la biomasse ». Ceci permet d’améliorer l’empreinte écologique de la membrane. Le VDF biosourcé peut être caractérisé par une teneur en carbone renouvelable, c’est-à-dire en carbone d’origine naturelle et provenant d’un biomatériau ou de la biomasse, d'au moins 1 % atomique comme déterminé par la teneur en 14C selon la norme NF EN 16640. Le terme de « carbone renouvelable » indique que le carbone est d’origine naturelle et provient d'un biomatériau (ou de la biomasse), comme indiqué ci-après. Selon certains modes de réalisation, la teneur en bio-carbone du VDF peut être supérieure à 5%, de préférence supérieure à 10%, de préférence supérieure à 25%, de préférence supérieure ou égale à 33%, de préférence supérieure à 50%, de préférence supérieure ou égale à 66%, de préférence supérieure à 75%, de préférence supérieure à 90%, de préférence supérieure à 95%, de préférence supérieure à 98%, de préférence supérieure à 99%, avantageusement égale à 100%.
Composant b)
Le deuxième composant de la composition d’électrolyte solide de l’invention est un mélange d’au moins un liquide ionique et d’au moins un plastifiant.
Un liquide ionique est un sel liquide à température ambiante, c’est-à-dire qu’il possède une température de fusion inférieure à 100°C sous pression atmosphérique. Il est formé par l’association d’un cation organique et d’un anion dont les interactions ioniques sont suffisamment faibles pour ne pas former un solide.
A titre d’exemples de cations organiques, on peut citer les cations : ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, et leurs mélanges. Selon un mode de réalisation, ce cation peut comprendre un groupe alkyle C1-C30, comme le 1-butyl-l- methylpyrrolidinium, le l-éthyl-3-méthylimidazolium, le N-méthyl-N-propylpyrrolydinium ou le N -méthyl-N -butylpiperidinium.
Selon un mode de réalisation, les anions qui leur sont associés sont choisis parmi : les imides, notamment bis(fluorosulfonyl)imide et bis(trifluorométhanesulfonyl)imide; les borates; les phosphates; les phosphinates et les phosphonates, notamment les alkyl-phosphonates ; les amides, notamment dicyanamide; les aluminates, notamment tetrachloroaluminate ; les halogénures (tels que les anions bromure, chlorure, iodure) ; les cyanates ; les acétates (CH3COO ), notamment trifluoroacétate ; les sulfonates, notamment méthanesulfonate (CH3SO3 ), trifluorométhanesulfonate ; et les sulfates, notamment hydrogène sulfate.
Selon un mode de réalisation, les anions sont choisis parmi le tétrafluoroborate (BFF), le bis(oxalato)borate (BOB ), l’hexafluorophosphate (PFÔ ), l’hexafluoroarsénate (ASFÔ ), le triflate ou trifluorométhylsulfonate (CF3SO3 ), le bis(fluorosulfonyl)imide (FSF), le bis- (trifluoromethanesulfonyl)imide (TFSF), le nitrate (NO3 ) et le 4,5-dicyano-2- (trifluoromethyl)imidazole (TDF).
Selon un mode de réalisation, ledit anion du liquide ionique est choisi parmi TDF, FSF, FFSF, PF6-, BF4-, NO3- et BOB .
Selon un mode de réalisation, ledit anion du liquide ionique est le FSF.
Le composant b) de la composition d’électrolyte solide de l’invention contient également un plastifiant.
Avantageusement, le plastifiant est un solvant à point d’ébullition élevé (supérieur à 150°C). Selon un mode de réalisation, le plastifiant est choisi parmi :
- le carbonate de vinylène (VC) (CAS : 872-36-6),
- le carbonate de fluoroéthylène ou 4-fluoro-l,3-dioxolan-2-one (FEC ou F1EC) (CAS : 114435-02-8),
- le trans-4,5-difluoro-l,3-dioxolan-2-one (F2EC) (CAS: 171730-81-7),
- le carbonate d’éthylène (EC) (CAS : 96-49-1),
- le carbonate de propylène (PC) (CAS : 108-32-7),
- le (2-cyanoéthyl)triéthoxysilane (CAS : 919-31-3),
- le 3-methoxypropionitrile (CAS No. 110-67-8),
- les éthers tels que les poly éthylène glycol diméthyle éthers, notamment le diéthylène glycol diméthyle éther (EG2DME), le triéthylène glycol diméthyle éther (EG3DME), et le tétraéthylène glycol diméthyle éther (EG4DME).
Les mélanges d’au moins un liquide ionique et d’au moins un plastifiant, permettent d’obtenir des propriétés améliorées de conductivité, stabilité électrochimique, stabilité thermique, de compatibilité avec les électrodes, de rétention de capacité par rapport aux électrolytes liquides conventionnels.
Des exemples de composant b) selon l’invention sont les mélanges suivants:
- l-éthyl-3-méthylimidazolium-FSI et FEC,
- l-éthyl-3-méthylimidazolium-FSI et tetraéthylene glycol diméthyl ether,
- 1-butyl-l-methylpyrrolidinium-FSI et FEC,
- l-éthyl-3-méthylimidazolium-FFSI et FEC. Selon un mode de réalisation, dans le mélange, le rapport massique entre les liquides ioniques et les plastifiants formant le composé b) varie de 0,1 à 10.
Composant c)
Le sel de lithium présent dans la composition d’électrolyte solide comprend le même anion que ceux du liquide ionique présent dans le composant b).
Selon un mode de réalisation, ledit sel de lithium est choisi parmi : LiPFô, LiFSI, LiTFSI, LiTDI, LiBF4, L1NO3 et LiBOB.
Selon un mode de réalisation, la composition d’électrolyte solide consiste en : a) 20 à 70% de copolymère(s) de VDF, b) 10 à 80% de mélange liquide(s) ionique(s)/plastifiant(s), et c) 2 à 30% de sel(s) de lithium, la somme de tous les constituants étant de 100%.
Selon un mode de réalisation, la composition d’électrolyte solide consiste en :
- 30 à 50% de composant a),
- 40 à 70% de composant b), et
- 3 à 10% de composant c).
Selon un mode de réalisation, la composition d’électrolyte solide consiste en un copolymère P(VDF-HFP), un mélange EMIM-FSEEG4DME et LiFSI en proportion massique de 40/56/4, le rapport massique liquide ionique/plastifiant étant de 1 : 1.
L’invention concerne également un film non-poreux consistant en ladite composition d’électrolyte solide. Avantageusement, le film ne contient pas de solvant et présente une conductivité ionique élevée. Avantageusement, le film est autosupporté, c'est-à-dire qu’il est manipulable sans l'aide de support. Avantageusement, le film est apte à s’enrouler, c’est-à-dire qu’il est manipulable de sorte qu’on puisse l’enrouler sur une bobine.
Selon un mode de réalisation, ledit film présente une épaisseur de 5 à 30 mih, de préférence de 7 pm à 20 mih.
Selon un mode de réalisation, le film selon l’invention présente une conductivité ionique allant de 0,01 à 5 mS/cm, de préférence de 0,05 à 5 mS/cm, avantageusement de 0,5 à 5 mS/cm, à 25°C. La conductivité est mesurée par spectroscopie d’impédance électrochimique. Selon un mode de réalisation, le film non poreux est placé entre deux électrodes en or dans une cellule de conductivité étanche et sous atmosphère inerte (CESH, Biologie) et une spectroscopie d’impédance électrochimique est réalisée entre 1 Hz et 1 MHz avec une amplitude de 10 mV. On détermine ensuite la résistance R du film par régression linéaire de la courbe -Im(Z) = f (Re(Z)). La conductivité s est alors donnée par la relation suivante : l s = -
R x S où l est l’épaisseur du film et S sa surface. Pour chaque composition, la valeur de conductivité à une température donnée est obtenue en faisant la moyenne sur au moins deux mesures réalisées sur des échantillons différents.
Avantageusement, le film selon l’invention présente une bonne stabilité électrochimique sur la plage de températures allant de -20°C à 80°C.
Avantageusement, le film selon l’invention présente une teneur en solvant(s) à point d’ébullition inférieur à 150°C, inférieure à 1% en poids, de préférence inférieure à 0,1%, de préférence inférieure à 10 ppm.
Avantageusement, le film garde ses propriétés jusqu’à 80°C et qu’il ne s’enflamme pas en- dessous de 130°C.
Selon un mode de réalisation, le film selon l’invention présente une tenue mécanique caractérisée par un module élastique, mesuré à 1Hz et 23°C par analyse mécanique dynamique, supérieur à 0,1 MPa, préférentiellement supérieur à lMPa.
L’invention vise également à fournir au moins un procédé de fabrication de ce film polymérique.
Selon un mode de réalisation, ledit film de polymère fluoré est fabriqué par un procédé en voie solvant. Ledit au moins un copolymère de VDF est solubilisé à température ambiante dans un solvant choisi parmi : la n-méthyl-2-pyrrolidone, le diméthyl sulfoxyde, le diméthyl formamide, la méthyl éthyl cétone, l’acétonitrile, et l’acétone. Ledit au moins un sel de lithium est dissout dans le mélange liquide ionique/plastifiant, pour obtenir une solution de sel de lithium. Les deux solutions sont mélangées. On dépose alors le mélange obtenu sur un support (par exemple, une plaque de verre) et l’on sèche à 60°C sous vide pendant une nuit. On obtient finalement un film auto-supporté parfaitement homogène et transparent.
Selon un mode de réalisation, ledit film de polymère fluoré est fabriqué par extrusion. On mélange le copolymère de VDF et le plastifiant à température ambiante. On introduit ce mélange dans une extrudeuse portée à 100-150°C. On ajoute ensuite le sel de lithium dissout dans le liquide ionique. Après homogénéisation, on extrade le mélange à travers une filière plate de 300 pm d’épaisseur. L’épaisseur est ajustée à la valeur souhaitée par tirage du film. Selon un mode de réalisation, ledit film de polymère fluoré est fabriqué par pressage à chaud. Le mélange copolymère(s) de VDF, liquide(s) ionique(s), plastifiant(s) et sel(s) de lithium est homogénéisé puis déposé entre les deux plaques métallique d’une presse chauffante. On applique ensuite une pression de 5 à 10 kN pendant 1 à 5 min à 100-150°C pour obtenir un film. On refroidit ensuite le film obtenu à température ambiante.
Un autre objet de l’invention est un séparateur pour batterie secondaire Li-ion consistant, en tout ou partie, en ledit film.
L’invention concerne également un dispositif électrochimique choisi dans le groupe : batteries, condensateur, condensateur électrique à double couche électrochimique, et assemblage membrane-électrode (AME) pour pile à combustible ou un dispositif électrochrome, ledit dispositif comprenant un séparateur tel que décrit.
Un autre objet de l’invention est une batterie secondaire à base de lithium, par exemple une batterie Li-ion, ou des batteries Li-S ou Li-air, comprenant une électrode négative, une électrode positive et un séparateur, dans laquelle ledit séparateur comprend un film tel que décrit ci-dessus.
Selon un mode de réalisation, ladite batterie comprend une anode en lithium métal.
EXEMPLES
Les exemples suivants illustrent de façon non limitative la portée de l’invention.
1. Préparation d’un électrolyte solide pour séparateur de batterie Li-ion par voie solvant
0,4 g de P(VDF-HFP) (poly(fluorure de vinylidene)-co-hexafluoropropylene) (contenant 11% d’HFP en poids) sont dissous dans 1,93g d’acétone à température ambiante. On dissout par ailleurs 0,056 g de LiFSI (lithium bis(fluorosulfonyl)amide) dans 0,276 g d’EMIM-FSI (l-éthyl-3- méthylimidazolium bis(fluorosulfonyl imide) et 0,281 g de FEC (carbonate de fluoroéthylène). Cette dernière solution est ajoutée à la solution de P(VDF-HFP) puis mélangée. On dépose alors la solution obtenue sous forme de film à l’aide d’une racle et l’on sèche à 60°C sous vide pendant 1 nuit. On obtient finalement un film auto-supporté transparent de 15-20 pm.
Le solvant résiduel est mesuré par GC-MS. La quantité d’acétone est inférieure à la limite de détection de cette technique, soit 10 ppm.
2. Préparation d’un électrolyte solide pour séparateur de batterie Li-ion par extrusion
On prépare un mélange de 5,7 g de P(VDF-HFP) (contenant 15% d’HFP en poids) et 4 g d’EG4DME (tetraéthylène glycol diméthyle éther), que l’on introduit dans une micro-extrudeuse de 15 mL (avec recirculation de la matière) chauffée à 100-150°C. On ajoute ensuite un mélange de 0,57 g de LiFSI dissous dans 4 g d’EMIM-FSI. On homogénéise le mélange, puis on extrade un jonc, que l’on presse à 120°C. On obtient alors un film autosupporté transparent d’environ 30 pm. 3. Mesure de la conductivité d’un séparateur tout solide
La conductivité est évaluée par spectroscopie d’impédance électrochimique en plaçant l’électrolyte solide (préparé par voie solvant sous atmosphère inerte) entre les deux électrodes en or d’une cellule de conductivité étanche et sous atmosphère inerte (CESH, Bilogic). On réalise des mesures sur des films composés de 40% en masse de P(VDF-HFP) (contenant 11% en masse d’HFP), et des teneurs différentes en liquide ionique et plastifiant. La teneur en sel de lithium (LiFSI) dans l’électrolyte solide est telle que sa concentration dans le mélange liquide ionique + plastifiant soit égale à 0,4 mol/L. Différents plastifiants sont également évalués tels que FEC (carbonate de fluoroéthylène), EG2DME (diéthylène glycol diméthyle éther), EG3DME (triéthylène glycol diméthyle éther), EG4DME (tetraéthylène glycol diméthyle éther), MPN (3- methoxypropionitrile). Les résultats sont indiqués dans le Tableau 1, les compositions sont en pourcentages massique.
[Tableau 1] La composition 1 montre que le mélange de P(VDL-HLP) et de sel de lithium ne permet pas d’ avoir une conductivité suffisante. Il faut ajouter à ce mélange un mélange de liquide ionique et de plastifiant. Les électrolytes solides ainsi préparés (compositions 2 à 9) présentent des conductivités ioniques élevées (jusqu’à 1,2 mS/cm), du même ordre de grandeur que les électrolytes liquides. Dans les compositions 2 à 5, on fait varier le rapport massique du liquide ionique sur le plastifiant. Les résultats montrent que ce rapport doit être supérieur à 0 pour obtenir une bonne conductivité, cela signifie que la présence de liquide ionique est indispensable. On observe également que la conductivité ionique augmente avec la teneur en liquide ionique. Cette caractéristique permet ainsi, en jouant sur la composition du film, d’ajuster finement les propriétés de conduction de l’électrolyte solide en fonction de l’application visée. A iso composition, on obtient des conductivités ioniques plus élevées avec le plastifiant EG4DME.
4. Mesure de la stabilité électrochimique d’un séparateur tout solide
La stabilité électrochimique de différents électrolytes solides est évaluée par voltampérométrie cyclique à 60°C en plaçant l’électrolyte solide (préparé par voie solvant sous atmosphère inerte) dans une pile bouton entre une électrode en acier inoxydable et une électrode de lithium métal. La voltampérométrie cyclique est réalisée entre 2 et 6 V à 1 mV/s. Les résultats sont présentés dans la Ligure 1.
On observe que le film avec le plastifiant EG4DME possède une stabilité électrochimique d’au moins 4,6 V, tandis que celle des autres films est au-moins égale à 4,8 V. Ces stabilités électrochimiques sont largement suffisantes pour une utilisation dans les batteries Li-ion, y compris avec des matières actives positives à haut voltage (type NMC riche en nickel).
5. Mesure de la stabilité thermique d’un séparateur tout solide
Afin de vérifier que les propriétés du séparateur tout solide ne sont pas dégradées au moins jusqu’à 80°C, on réalise des mesures de conductivité ionique telles que décrites dans l’exemple 3. Après introduction de l’électrolyte solide dans la cellule CESH, on réalise une première mesure de conductivité à 25°C (mesure 1). La cellule CESH est ensuite progressivement chauffée jusqu’à 80°C, et maintenue pendant 1 heure à 80°C. On abaisse alors progressivement la température jusqu’à 25°C, et on réalise une seconde mesure de conductivité à 25°C (mesure 2). Les résultats sont présentés dans le Tableau 2, les compositions sont en pourcentages massique. [Tableau 2] Après un passage à 80°C pendant 1 heure, on n’observe pas de diminution de la conductivité ionique à 25°C pour l’ensemble des électrolytes solides testés. Au contraire, cette dernière augmente sensiblement, grâce à l’amélioration des interfaces entre l’électrolyte solide et l’électrode d’or qui s’opère vers 80°C. 6. Test de résistance aux dendrites d’un séparateur tout solide
La résistance aux dendrites est évaluée par chronopotentiométrie à 25°C en plaçant l’électrolyte solide (préparé sous atmosphère inerte) dans une pile bouton entre deux électrodes de lithium métal. On réalise des cycles de « plating/stripping » du lithium en appliquant une densité de courant de 3 mA/cm2 pendant lh, puis -3 mA/cm2 pendant lh, et ainsi de suite. Les résultats obtenus avec un film de composition P(VDF-HFP)/EMIM-FSI/EG4DME/LiFSI (40/28/28/4) sont présentés dans la Figure 2.
La surtension observée est faible (de l’ordre de 3-4 mV), stable, et aucune formation de dendrite n’est observée pendant 1000 h.

Claims

REVENDICATIONS
1. Composition d’électrolyte solide consistant en : a) au moins un copolymère de fluorure de vinylidène (VDF) et d’au moins un comonomère compatible avec le VDF, ledit copolymère de VDF comprenant au moins 50% en poids de VDF, b) un mélange d’au moins un liquide ionique et d’au moins un plastifiant, et c) au moins un sel de lithium.
2. Composition selon la revendication 1, dans laquelle ledit comonomère est choisi parmi le fluorure de vinyle, le trifluoroéthylène, le chlorotrifluoroéthylène, le 1,2-difluoroéthylène, tétrafluoroéthylène, l’hexafluoropropylène, le perfhioro(méthylvinyl)éther, le perfluoro(éthylvinyl)éther, et le perfluoro(propylvinyl)éther.
3. Composition selon l’une des revendications 1 ou 2, dans laquelle ledit copolymère de VDF est un copolymère de fluorure de vinylidène et d’hexafluoropropylène (HFP) ayant un taux massique d’HFP supérieur ou égal à 5%, de préférence supérieur ou égal à 8%, avantageusement supérieur ou égal à 11%, et inférieur ou égal à 45%, de préférence inférieur ou égal à 30%.
4. Composition selon l’une quelconque des revendications 1 à 3, dans laquelle ledit liquide ionique comprend un anion choisi parmi le tétrafluoroborate (BFF), le bis(oxalato)borate BOB , l’hexafluorophosphate (PFÔ ), l’hexafluoroarsénate (ASFÔ ), le triflate ou trifluorométhylsulfonate (CF3SO3 ), le bis(fluorosulfonyl)imide (FSF), le bis- (trifhioromethanesulfonyl)imide (TFSF), le nitrate (NO3 ) et le 4,5-dicyano-2- (trifhioromethyl)imidazole (TDF).
5. Composition selon l’une quelconque des revendications 1 à 4, dans laquelle ledit liquide ionique comprend un cation choisi dans la liste : ammonium, sulfonium, pyridinium, pyrrolidinium, imidazolium, imidazolinium, phosphonium, guanidinium, piperidinium, thiazolium, triazolium, oxazolium, pyrazolium, et leurs mélanges.
6. Composition selon l’une quelconque des revendications 1 à 5, dans laquelle ledit plastifiant est un solvant à point d’ébullition -supérieur à 150°C choisi parmi : le carbonate de vinylène, le carbonate de fluoroéthylène, le trans-4,5-difluoro-l,3-dioxolan-2-one, le carbonate d’éthylène, le carbonate de propylène, le (2-cyanoéthyl)triéthoxysilane, le 3- methoxypropionitrile, et les poly éthylène glycol diméthyle éthers.
7. Composition selon l’une quelconque des revendications 1 à 6, dans laquelle ledit sel de lithium est choisi parmi : LiPFô, LiFSI, LiTFSI, LiTDI, L1BF4, L1NO3 et LiBOB.
8. Composition selon l’une quelconque des revendications 1 à 7, consistant en : a) 20 à 70% de copolymère(s) de VDF, b) 10 à 80% de mélange liquide(s) ionique(s)/plastifiant(s), et c) 2 à 30% de sel(s) de lithium, la somme de tous les constituants étant de 100%.
9. Film non-poreux consistant en la composition selon l’une des revendications 1 à 8.
10. Film selon la revendication 9, présentant une teneur en solvant(s) à point d’ébullition inférieur à 150°C, inférieure à 1% en poids, de préférence inférieure à 0,1%, de préférence inférieure à 10 ppm.
11. Film selon l’une des revendications 9 ou 10, présentant une conductivité ionique de 0,01 à 5 mS/cm, de préférence de 0,05 à 5 mS/cm, avantageusement de 0,5 à 5 mS/cm à 25°C, mesurée par spectroscopie d’impédance électrochimique.
12. Procédé de préparation du film selon l’une des revendications 9 à 11 en voie solvant, ledit procédé comprenant les étapes suivantes :
- solubiliser ledit au moins un copolymère de VDF à température ambiante dans un solvant choisi parmi : la n-méthyl-2-pyrrolidone, le diméthyl sulfoxyde, le diméthyl formamide, la méthyl éthyl cétone, l’acétonitrile, et l’acétone ;
- dissoudre ledit au moins un sel de lithium dans un mélange liquide ionique/plastifiant, pour obtenir une solution de sel de lithium ;
- mélanger les solutions de copolymère de VDF et de sel de lithium,
- déposer le mélange obtenu sur un support,
- sécher à 60°C sous vide pendant une nuit.
13. Procédé de préparation du film selon l’une des revendications 9 à 11 par extrusion, ledit procédé comprenant les étapes suivantes :
- mélanger ledit copolymère de VDF et ledit plastifiant à température ambiante,
- introduire le mélange obtenu dans une extrudeuse portée à 100-150°C,
- rajouter le sel de lithium dissout dans le liquide ionique, et homogénéiser,
- extrader le mélange à travers une filière plate de 300 pm d’épaisseur.
14. Procédé de préparation du film selon l’une des revendications 9 à 11 par pressage à chaud, ledit procédé comprenant les étapes suivantes :
- mélanger le(s)dit(s) copolymère(s) de VDF, liquide(s) ionique(s), plastifiant(s) et sel(s) de lithium,
- homogénéiser ledit mélange,
- déposer ledit mélange entre les deux plaques métallique d’une presse chauffante, - appliquer une pression de 5 à 10 kN pendant 1 à 5 min à 100-150°C, pour obtenir un film,
- refroidir le film à température ambiante.
15. Séparateur pour batterie rechargeable Li-ion, comprenant le film selon l’une des revendications 9 à 11.
16. Dispositif électrochimique choisi dans le groupe : batteries, condensateur, condensateur électrique à double couche électrochimique, et assemblage membrane-électrode (AME) pour pile à combustible ou un dispositif électrochrome, ledit dispositif comprenant un séparateur selon la revendication 15.
17. Batterie secondaire Li-ion comprenant une anode, une cathode et un séparateur, dans laquelle ledit séparateur comprend le film selon l’une des revendications 9 à 11.
EP22719972.6A 2021-04-09 2022-04-05 Electrolyte solide pour batterie li-ion Pending EP4320668A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2103647A FR3121792B1 (fr) 2021-04-09 2021-04-09 Electrolyte solide pour batterie li-ion
PCT/FR2022/050632 WO2022214762A1 (fr) 2021-04-09 2022-04-05 Electrolyte solide pour batterie li-ion

Publications (1)

Publication Number Publication Date
EP4320668A1 true EP4320668A1 (fr) 2024-02-14

Family

ID=76920871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22719972.6A Pending EP4320668A1 (fr) 2021-04-09 2022-04-05 Electrolyte solide pour batterie li-ion

Country Status (8)

Country Link
US (1) US20240162488A1 (fr)
EP (1) EP4320668A1 (fr)
JP (1) JP2024513118A (fr)
KR (1) KR20230167402A (fr)
CN (1) CN117121247A (fr)
FR (1) FR3121792B1 (fr)
TW (1) TWI817436B (fr)
WO (1) WO2022214762A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118040038A (zh) * 2024-04-07 2024-05-14 中国铁塔股份有限公司 一种聚合物电解质、其制备方法及电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093427A (en) 1990-05-10 1992-03-03 Atochem North America, Inc. Copolymers of vinylidene fluoride and hexafluoropropylene and process for preparing the same
US5296318A (en) 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
WO2016130413A1 (fr) 2015-02-09 2016-08-18 Arkema Inc. Copolymères hétérogènes, cocontinus de fluorure de vinylidène
TWI570990B (zh) * 2016-07-21 2017-02-11 國立成功大學 用於電池的電解質組成物
US10084220B2 (en) * 2016-12-12 2018-09-25 Nanotek Instruments, Inc. Hybrid solid state electrolyte for lithium secondary battery
US10916766B2 (en) * 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
CN107910588A (zh) * 2017-10-27 2018-04-13 上海大学 含室温poss基离子液体的固态聚合物电解质及其制备方法
CN107887643A (zh) * 2017-10-27 2018-04-06 上海大学 含耐高温固态poss基离子液体的固态聚合物电解质及其制备方法
CN107994256B (zh) * 2017-11-23 2020-09-04 上海大学 含poss基季铵盐类离子液体的聚合物电解质膜及其制备方法

Also Published As

Publication number Publication date
JP2024513118A (ja) 2024-03-21
CN117121247A (zh) 2023-11-24
FR3121792A1 (fr) 2022-10-14
KR20230167402A (ko) 2023-12-08
WO2022214762A1 (fr) 2022-10-13
TW202308207A (zh) 2023-02-16
TWI817436B (zh) 2023-10-01
US20240162488A1 (en) 2024-05-16
FR3121792B1 (fr) 2023-06-16

Similar Documents

Publication Publication Date Title
EP3485525B1 (fr) Materiau a conduction ionique pour generateur electrochimique et procedes de fabrication
CN109314276B (zh) 氟聚合物薄膜
WO2014079861A1 (fr) Séparateur revêtu de polymère et de sel conducteur et dispositif électrochimique l'utilisant
FR3069959A1 (fr) Melange de sels de lithium et ses utilisations comme electrolyte de batterie
CN103296238B (zh) 包括含有聚酰亚胺的有机和无机混合物涂层的隔膜
EP3049471B1 (fr) Compositions polymeres conductrices d'ions lithium pour generateur electrochimique au lithium
EP4320668A1 (fr) Electrolyte solide pour batterie li-ion
EP3830887A1 (fr) Anode pour batterie li-ion
US20230093841A1 (en) Electrochemical device having at least one gelled electrode
EP3648205B1 (fr) Générateur électrochimique au lithium et au fluorure de carbone comprenant un matériau d'électrode négative spécifique
EP3549192B1 (fr) Amelioration de la conductivite ionique d'electrolyte a base de sels de lithium d'imidazolate
WO2023052736A1 (fr) Électrolyte solide
EP4058508B1 (fr) Membrane polymere gelifiee pour batterie li-ion
WO2023139329A1 (fr) Electrolyte solide pour batterie tout solide
WO2023047065A1 (fr) Revetement d'anode pour batterie li-ion tout solide
WO2023047064A1 (fr) Revetement de cathode pour batterie li-ion
EP4256633A1 (fr) Electrode pour batterie li-ion quasi solide
CA2232107C (fr) Generateurs a electrolyte polymere possedant un sel de potassium permettant de stabiliser les performances et la vie utile de la batterie
FR3136119A1 (fr) Dispositif électrochimique comprenant un séparateur contenant du PVDF et une composition électrolytique à viscosité élevée ou à haute polarité
KR20230170765A (ko) 셀 분리막
FR3058574A1 (fr) Electrolytes non fluores a base d'un additif specifique du type liquide ionique pour batteries au lithium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR