EP4209656B1 - Modulare tunnelschalungsvorrichtung - Google Patents

Modulare tunnelschalungsvorrichtung Download PDF

Info

Publication number
EP4209656B1
EP4209656B1 EP22152345.9A EP22152345A EP4209656B1 EP 4209656 B1 EP4209656 B1 EP 4209656B1 EP 22152345 A EP22152345 A EP 22152345A EP 4209656 B1 EP4209656 B1 EP 4209656B1
Authority
EP
European Patent Office
Prior art keywords
frame
tunnel formwork
tunnel
formwork device
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22152345.9A
Other languages
English (en)
French (fr)
Other versions
EP4209656A1 (de
Inventor
Reiner Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kern Tunneltechnik SA
Original Assignee
Kern Tunneltechnik SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kern Tunneltechnik SA filed Critical Kern Tunneltechnik SA
Priority to US18/062,199 priority Critical patent/US20230220773A1/en
Publication of EP4209656A1 publication Critical patent/EP4209656A1/de
Application granted granted Critical
Publication of EP4209656B1 publication Critical patent/EP4209656B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/102Removable shuttering; Bearing or supporting devices therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/105Transport or application of concrete specially adapted for the lining of tunnels or galleries ; Backfilling the space between main building element and the surrounding rock, e.g. with concrete

Definitions

  • the invention relates to a modular tunnel formwork device for concrete lining CN 107 965 337 A discloses a tunnel formwork device.
  • the tunnel formwork is supported by a frame of the tunnel formwork device via hydraulic support cylinders. Checking the exact alignment and control of the support cylinders and checking the exact fit of the tunnel formwork is sometimes difficult due to the cramped conditions in the tunnel.
  • the tunnel formwork device contains a frame and at least two support structures which can be connected to the frame and are spaced apart from one another in the longitudinal direction of the tunnel formwork device for supporting the frame on a tunnel floor.
  • the frame carries at least two hydraulic support cylinders at at least two positions spaced apart in the longitudinal direction, which can be connected to longitudinal beams running in the longitudinal direction, which in turn carry tunnel formwork elements of the tunnel formwork device.
  • a lifting device is arranged on the frame, preferably at at least one end of the frame, which carries a work platform, the lifting device having a lifting drive, at least for the height-adjustable movement of the work platform relative to the frame, but preferably also for lateral movement relative to it Frame.
  • the tunnel formwork device itself to check the correct setting of components, such as the hydraulic support cylinders, the correct position of the longitudinal beams and the tunnel formwork elements, and thus to ensure the quality of the formwork process. From the work platform, even light work can be carried out on the tunnel wall, for example to fasten components of the tunnel formwork device. If the work platform is located at the end of the frame, the entire Working area of the tunnel formwork device can be moved more easily without the movement of the working platform being affected by the frame of the tunnel formwork device and / or its components.
  • the lifting device is also designed for horizontal movement of the working platform relative to the frame.
  • the working platform can cover the entire effective range of the tunnel formwork device up to the tunnel walls and ceiling in order to check and, if necessary, manually correct or repair components of the tunnel formwork device, such as the support cylinders, the longitudinal beams, the tunnel formwork elements, or the To enable connections for the concrete pumps.
  • the at least one working platform is carried on the end modules of the frame in a height-adjustable and/or laterally adjustable manner via the hydraulic lifting device.
  • this at least one movable work platform helps with the positioning of the tunnel formwork elements and with maintenance or assembly work.
  • the lifting devices can preferably be controlled via a/the common control arrangement of the tunnel formwork device or separately via controls of the work platforms.
  • the lifting drive is preferably designed as an electric or hydraulic drive, which works reliably in the dirty construction site area of a tunnel and can apply high forces so that several workers and tools can be transported on the work platform.
  • the lifting device comprises two support arms which are pivotally connected to one another. In this way, a large working area of the working platform is achieved over the entire tunnel cross-section, at least above the frame.
  • the work area of a work platform preferably extends over at least half of the tunnel cross section, at least above the frame.
  • the support arms are preferably pivotally connected to both the frame and the work platform in order to ensure a wide working area with the work platform aligned exactly horizontally.
  • the support arms are preferably driven to be pivotable relative to the frame and to one another via hydraulic cylinders of the lifting drive, which is less susceptible to contamination on the drive side and also provides the necessary forces for moving the work platform.
  • At least one work platform is arranged at each longitudinal end of the frame, which has the advantage that the tunnel formwork can be inspected at both ends of the tunnel formwork device.
  • Two work platforms are preferably arranged at at least one longitudinal end of the frame, each of which covers half of the tunnel cross section in its working or adjustment area. In this way, the working area of the work platform is not affected by the frame, as it extends laterally and upwards away from the frame.
  • the two working platforms are preferably arranged symmetrically to a central longitudinal axis of the frame, so that both can be designed identically and the division of the working area of the working platforms in the transverse direction of the tunnel formwork device is clearly defined.
  • the travel range of the working platform in the transverse direction of the frame includes the adjustment ranges of all support cylinders, at least on one side of the frame, and is therefore able to cover the entire effective range of the tunnel formwork device.
  • the support structures preferably have feet with rollers which are designed to move the tunnel formwork device in its longitudinal direction. In this way, the tunnel formwork device can move along the tunnel and any point in the tunnel can be approached with the at least one working platform
  • the work platform projects beyond the support structures of the frame and/or the front of the frame, which makes it possible to close the work platform over the entire tunnel cross section procedure, including in places where the frame is arranged along the length of the tunnel formwork device.
  • the support structures include height-adjustable support legs. This means that the work platform can also be influenced in its work area by adjusting the height of the support legs.
  • the tunnel formwork device preferably has a control arrangement at least for the lifting drive of the lifting device, which is connected to an input device arranged on the working platform for controlling the lifting drive. In this way, the movement of the work platform can be easily controlled from this operational point of view.
  • the tunnel formwork device comprises at least two modules, preferably at least three modules connected to one another in the longitudinal direction of the tunnel formwork device, which can be connected to one another to form the frame.
  • the at least two modules, preferably at least three modules connected to one another in the longitudinal direction of the tunnel formwork device thus form a tunnel formwork device, the length of which can be adjusted by the number of modules used.
  • each module can be varied, for example by adapter pieces or by a hydraulic adjusting mechanism, so that not only the length of the tunnel formwork device in the longitudinal direction of the tunnel, but also the width of the tunnel formwork device can be adjusted in accordance with the width of the modules .
  • the working width of the modules can be easily varied by appropriately adjusting the support structures and the length-adjustable hydraulic support cylinders so that both narrow and wide tunnel shapes can be formed.
  • the tunnel shape is adjusted by appropriately adjusting the length of the support cylinders, which are preferably hydraulically telescopic.
  • the entire tunnel formwork device Due to the fact that the entire tunnel formwork device has a modular structure, it can be transported comparatively easily, i.e. using common transport vehicles, such as semi-trailers or semi-trailers of freight trains. For example, if the length of a module in the tunnel direction is between 1 and 4 m and the width is between 3 m and 10 m, conventional semi-trailers can be used to transport the modules because the maximum width and length regulations for transport are not exceeded .
  • the modules preferably comprise two end modules, which form the two ends of the tunnel formwork device in the longitudinal direction, and at least one intermediate module to be arranged between the end modules, which can be connected to at least one of the two end modules in a positive and/or non-positive manner.
  • the end modules can be designed specifically for the supporting function, e.g. for fastening the supporting structures, while the intermediate modules are designed to support the tunnel formwork through the support cylinders and the longitudinal beams. This distributes the different necessary functions of the tunnel formwork device, such as the load-bearing function and support function of the tunnel formwork, across different types of modules, which is more economical and more efficient than if one module has to fulfill all of these functions.
  • the support structure is height-adjustable and is formed in particular by hydraulically telescoping support legs.
  • the tunnel formwork device can thus be adapted to different tunnel heights.
  • the distance between the support legs can also be adjusted transversely to the tunnel direction, so that the support structure can be adapted to different tunnel widths.
  • the support structures are height adjustable, the vertical support cylinders do not necessarily need to be designed as hydraulically length-adjustable support cylinders, since the height adjustment can then be realized via the support structures.
  • the height adjustability also has the advantage that the tunnel formwork device can enter the tunnel with a reduced height, i.e. lowered, so that the tunnel formwork does not collide with tunnel sections that have already been boarded up.
  • the support cylinders are preferably connected to load sensors, so that the load absorbed by each support cylinder can be monitored on a central control arrangement and, if necessary, pressure peaks can be reduced by appropriately controlling the support cylinders.
  • each support cylinder is preferably provided with a load sensor. The pressure peaks are reduced by controlling the concreting speed.
  • At least one of the at least two support cylinders is pivotally articulated to the frame or the frame part of a module, so that the support points for the tunnel formwork elements can be adapted to the local conditions.
  • the support strut can be connected to the support cylinders via a pivoting mechanism, so that the longitudinal beams can optimally reach behind the tunnel formwork elements, even if the support by the support cylinders is not exactly vertical from below.
  • the longitudinal beams have hydraulically operated stamps, particularly at their ends, for support on the tunnel wall or the tunnel ceiling.
  • the longitudinal beams are fixed in an absolutely immovable manner between the supporting structures of the frame of the tunnel device and the stamps, which are hydraulically controlled and rest firmly against the tunnel walls or the tunnel ceiling.
  • each support structure is formed by two support legs, which can be releasably connected to the frame, preferably to the outermost frame parts of the end modules or intermediate modules in the longitudinal direction.
  • the end modules can have the fastening structures for the support structures or support legs, which, on the one hand, ensures that the support structures are arranged at the two ends of the tunnel formwork device and thus securely support the tunnel formwork device arranged between them.
  • the intermediate modules can only have those structures that are required to support the tunnel formwork, i.e. the hydraulic support cylinders. As already stated, these legs are both height adjustable and their distance can be adjusted.
  • only the frame parts of the intermediate modules carry the hydraulic support cylinders and the frame parts of the end modules each carry at least one work platform and the support structures, with the work platform projecting beyond the front of the support structures.
  • each module preferably each end and intermediate module, has integrated connections for pneumatics and/or hydraulics and/or electrical systems.
  • the hydraulic support cylinders are connected to the longitudinal beams via at least one bolt, in particular a conical bolt, in order to ensure the firm connection of the hydraulic support cylinder and the support strut.
  • the tunnel formwork device has a control module with a control arrangement for the tunnel formwork device, which can preferably be connected to the frame.
  • the control module can be formed, for example, by a cabin of the tunnel formwork device or a control box in which the control arrangement is arranged in order to be easy to operate and to protect it from dirt and moisture in the tunnel.
  • This control arrangement then has all the necessary interfaces for the hydraulics, electrics and pneumatics of all modules and is able to receive the force measurement data from the load sensors of the support cylinders and to carry out the adjustment and actuation of the support cylinders centrally for the entire tunnel formwork device.
  • the control arrangement is preferably also designed to control the lifting device, in particular via an input device on the work platform or optionally also via mobile devices.
  • the working platform(s) is/are preferably designed as a lifting platform with a railing, with the input device for controlling the lifting drive of the lifting device preferably being arranged on the railing.
  • the invention also relates to a tunnel concreting device comprising a tunnel formwork device of the above type and at least one concrete pump, which is controlled by the control arrangement for controlling the support cylinders of the tunnel concreting device, at least one delivery line of the concrete pump being connected to the space between the tunnel formwork elements and the tunnel wall.
  • the concrete pumps are preferably controllable depending on the signals from load sensors which are arranged in connection with the support cylinders. In this way, a tunnel of almost any cross-sectional shape and length can be boarded efficiently, with the control of the concrete pumps dynamically taking into account the degree of filling of the space between the tunnel formwork and the tunnel wall.
  • the tunnel formwork device 10 has a modular structure in this exemplary embodiment, but this is not necessary. It will be explained below using the Fig. 1 to 3 described and consists of two end modules 12a, 12b and seven intermediate modules 14a-14g extending between the two end modules 12a, b, which are firmly connected to one another. Each end module 12a, 12b contains a frame part 16a, which is positively and/or non-positively connected to the frame parts 16b of the intermediate modules 14a-g, as well as the frame parts 16b of the intermediate modules 14a-g to one another, preferably in the same way are non-positively connected to a common frame 20 of the tunnel formwork device 10.
  • the frame parts 16a of the end modules 12a, b can be connected to support structures 18 in the form of two support legs each, which securely support the frame 20 of the entire tunnel formwork device 10 formed by the frame parts 16a, b of all modules 12a, b, 14a-g on the tunnel floor .
  • the connection between the modules 12a, b and 14a-g or between their frame parts 16a, b is detachable, so that the individual modules can be transported separately to the construction site.
  • the support legs 18 are height adjustable via a hydraulic telescopic mechanism 23, while they have a Horizontal telescopic mechanism 21 or by insertable adapter pieces can be adjusted in their mutual distance in the transverse direction (horizontally transverse to the tunnel direction).
  • a hydraulic lifting device 24 preferably comprising two pivotally connected support arms 25a, 25b, which can be moved relative to one another and to the frame 20 via a lifting drive 27 in the form of several hydraulic cylinders
  • the frame parts 16a of the end modules 12a, b are part of the frame parts 16a of the frame 20
  • two work platforms 22a, b and 22c, d are held in the form of lifting platforms relative to the frame part 16a, b or relative to the frame 20, which can be raised and lowered as well as laterally movable.
  • inspections or assembly work on the tunnel formwork elements 33, on the support cylinders 34 of the longitudinal beams 32a-f 25a, b can optionally be adjustable in length, e.g.
  • the work platform or lifting platform 22a, b, c, d has a railing 29 to protect the workers from falling.
  • the frame 20 extends at least approximately over the entire length of the tunnel formwork device 10.
  • Two vertical hydraulic support cylinders 26a, b are preferably attached to the frame 20 for each intermediate module 14ag, so that when the frame 20 is raised via the hydraulic telescopic mechanisms 23 of the support legs 18
  • the vertical support cylinders 26a, b must also be raised for height adjustment. In this way, 10 tunnels of different heights can be boarded and filled with concrete using the tunnel formwork device.
  • the vertical support cylinders therefore do not even need to be hydraulic and length-adjustable.
  • the work platforms 22a, b, c, d can preferably be controlled via control devices that are attached to the work platform 22a, b, c, d or its railing 29.
  • Each frame part 16b of the intermediate modules 14a-g carries two support cylinders 28a, b pointing obliquely downwards as well as two horizontally extending support cylinders 30a, b, which extend symmetrically towards the tunnel sides facing away from one another in relation to the center of the tunnel.
  • the free ends of the support cylinders 26a, b, 28a, b, 30a, b are each connected to longitudinal beams 32a-f, which in turn carry circular arc-shaped tunnel formwork elements 33 ( Fig. 4 ), which in their entirety form the tunnel formwork 37.
  • the tunnel formwork device 10 shown thus controls six support cylinders or struts 32a-f, which extend over the entire inner circumference of the tunnel wall to be concreted, that is, generally over a range of 150 to 270 degrees (see Fig. 2 and 4 ).
  • the tunnel formwork elements 33 can be supported on the tunnel floor 35 via separate support bodies 36.
  • the support cylinders 32a and 32f pointing obliquely downwards can form the lowest support which will form the tunnel formwork 37 composed of the entirety of the tunnel formwork elements 33.
  • the support of the tunnel formwork 37 by the support elements 26a, 28a, 30a and by the support cylinders 32a, 32b, 32c is in Fig. 4 clarified. It can also be seen in this illustration that the vertical support cylinders 26a, b do not have to be aligned exactly vertically, just as the horizontal support cylinders 30a, b do not have to be aligned exactly horizontally. These can be adjustable in their fastening angle on the frame parts of the intermediate modules 14a-g at least in a small range of, for example, +/- 15 degrees, while the support cylinders pointing obliquely downwards can preferably be adjustable in a larger angular range of, for example, 45 degrees.
  • the support struts 26a, b are preferably fixed rigidly, ie not pivotally, to the frame 20, so that the tunnel formwork is fixed in its angular position, and the tunnel formwork 37 can therefore not tilt while the tunnel formwork device is moving.
  • support cylinders 26a, b, 28a, b, 30a, b are provided with load sensors 38, which can be connected via data lines 40 to the central control arrangement 44 of a control module 42 of the tunnel formwork device 10.
  • the control arrangement evaluates the data from the load sensors 38 and preferably controls the support cylinders depending on the recorded data in order to optimally position the tunnel formwork 37 and to operate concrete pumps to fill the space between the tunnel wall and the tunnel formwork 37 in such a way that there are no excess loads the support cylinders or the tunnel formwork elements 33 come.
  • each support strut 32a-f are provided with hydraulically actuated stamps 34, which are controlled in such a way that they are supported on the tunnel walls, whereby all longitudinal beams 32a-f between these and the support structures 18 are firmly defined in their position, which leads to reproducible formwork results.
  • the control module 42 preferably contains a cabin 46, preferably with at least one window 48, in which the control arrangement 44 is positioned. In this way it is effectively protected against dirt and moisture on the construction site.
  • the control module 42 can be positioned anywhere on the tunnel formwork device 10. Preferably it can be connected to the support structure 18 or to a frame part 16a, b of an end or intermediate module 12a, b, 14a-g.
  • the control arrangement is connected to the hydraulics for actuating all support cylinders and to concrete pumps for filling the cavity between the tunnel wall and the tunnel formwork 37 in order to optimally control the tunnel formwork process.
  • the work platforms 22a-d which are movably held on the end modules 16a, 16b, preferably protrude beyond the end faces of the support structures or support legs 18, so that the ends of the tunnel formwork 37 and the entire tunnel formwork device 10 can be clearly seen.
  • Fig. 5 shows the cross section of the in the Fig. 1 to 4 shown tunnel formwork device 10 in more detail than Fig. 4 .
  • identical or functionally identical parts are provided with identical reference numerals.
  • FIG. 6 to 9 Different working positions of the working platform 22a are shown, which show how comprehensively each of the four working platforms 22a-d at both ends of the tunnel formwork device covers a complete half of the tunnel cross section or working area of the tunnel formwork device.
  • the working platform 22a-d can be moved under the frame 20, over the frame 20 and laterally away from it, so that the The entire corresponding tunnel formwork 37 can be inspected, as well as the corresponding parts 26, 28, 30, 32, 33, 34 of the tunnel formwork device 10. Only visual inspections can be made on the components 26, 28, 30, 32 from the work platforms, but rather none Assembly or revision work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

  • Die Erfindung betrifft eine modulare Tunnelschalungsvorrichtung zur Betonauskleidung von CN 107 965 337 A offenbart eine Tunnelschalungsvorrichtung.
  • Die Tunnelschalung wird dabei von einem Rahmen der Tunnelschalungsvorrichtung über hydraulische Stützzylinder getragen. Die Überprüfung der exakten Ausrichtung und Ansteuerung der Stützzylinder und die Überprüfung des exakten Sitzes der Tunnelschalung gestaltet sich aufgrund der beengten Verhältnisse im Tunnel manchmal schwierig.
  • Es ist daher Aufgabe der Erfindung, eine Tunnelschalungsvorrichtung zu schaffen, die eine leichtere Überprüfung ihrer Komponenten und des Schalungsvorgangs ermöglicht.
  • Diese Aufgabe wird durch eine Tunnelschalungsvorrichtung gemäß Anspruch 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche. Vorteilhafte Weiterbildungen der Erfindung sind auch in der Beschreibung und in den Figuren offenbart.
  • Die erfindungsgemäße Tunnelschalungsvorrichtung enthält einen Rahmen und wenigstens zwei mit dem Rahmen verbindbare in Längsrichtung der Tunnelschalungsvorrichtung voneinander beabstandete Tragstrukturen zur Abstützung des Rahmens an einem Tunnelboden.
  • Der Rahmen trägt an wenigstens zwei in Längsrichtung voneinander beabstandeten Positionen jeweils wenigstens zwei hydraulische Stützzylinder, welche mit in Längsrichtung verlaufenden Längsträgern verbindbar sind, die wiederum Tunnelschalungselemente der Tunnelschalungsvorrichtung tragen. Gemäß der Erfindung ist an dem Rahmen, vorzugsweise an wenigstens einem Ende des Rahmens, eine Hebevorrichtung angeordnet, die eine Arbeitsplattform trägt, wobei die Hebevorrichtung einen Hebeantrieb aufweist, zumindest zum höhenverstellbaren Verfahren der Arbeitsplattform gegenüber dem Rahmen, vorzugsweise jedoch auch zum seitlichen Verfahren gegenüber dem Rahmen.
  • Auf diese Weise wird an der Tunnelschalungsvorrichtung selbst eine Möglichkeit geschaffen, die korrekte Einstellung von Komponenten, wie der hydraulischen Stützzylinder, die richtige Lage der Längsträger und der Tunnelschalungselemente zu überprüfen und damit den Schalungsvorgang qualitativ abzusichern. Von der Arbeitsplattform aus können sogar leichte Arbeiten an der Tunnelwandung, z.B. zur Befestigung von Komponenten der Tunnelschalungsvorrichtung ausgeführt werden. Wenn die Arbeitsplattform am Ende des Rahmens angeordnet ist, kann der gesamte Arbeitsbereich der Tunnelschalungsvorrichtung einfacher abgefahren werden, ohne dass das Verfahren der Arbeitsplattform durch dem Rahmen der Tunnelschalungsvorrichtung und/oder deren Komponenten beeinträchtigt wird.
  • Vorzugsweise ist die Hebevorrichtung zudem ausgebildet für ein horizontales Verfahren der Arbeitsplattform gegenüber dem Rahmen. Auf diese Weise kann die Arbeitsplattform den gesamten Wirkungsbereich der Tunnelschalungsvorrichtung abfahren bis an die Tunnelwände und -decke, um auf diese Weise eine Überprüfung und gegebenenfalls manuelle Korrektur oder Reparatur von Komponenten der Tunnelschalungsvorrichtung, wie z.B. der Stützzylinder, der Längsträger, der Tunnelschalungselemente, oder der Anschlüsse der Betonpumpen zu ermöglichen.
  • Vorzugsweise ist, insbesondere an den beiden Enden und im Falle eines modularen Aufbaus des Rahmens, an dessen Endmodulen die wenigstens eine Arbeitsplattform über die hydraulische Hebevorrichtung höhenverstellbar und/oder seitlich verstellbar getragen. Auf diese Weise kann die korrekte Ausbildung der Tunnelschalung an allen Stellen überprüft werden. Zudem hilft diese wenigstens eine bewegbare Arbeitsplattform bei der Positionierung der Tunnelschalungselemente und bei Wartungs- oder Montagearbeiten. Die Hebevorrichtungen sind vorzugsweise über eine/die gemeinsame Steuerungsanordnung der Tunnelschalungsvorrichtung oder separat über Steuerungen der Arbeitsplattformen ansteuerbar.
  • Vorzugsweise ist der Hebeantrieb als elektrischer oder hydraulischer Antrieb ausgebildet ist, welcher im schmutzigen Baustellenbereich eines Tunnels zuverlässig arbeitet und hohe Kräfte aufbringen kann, so dass auf der Arbeitsplattform mehrere Arbeiter und Werkzeug transportiert werden können.
  • In einer vorteilhaften Weiterbildung der Erfindung umfasst die Hebevorrichtung zwei schwenkbar miteinander verbundene Tragarme. Auf diese Weise wird ein großer Arbeitsbereich der Arbeitsplattform über den gesamten Tunnelquerschnitt, zumindest oberhalb des Rahmens erzielt. Beim Verwenden von zwei nebeneinander angeordneten Arbeitsplattformen erstreckt sich der Arbeitsbereich einer Arbeitsplattform vorzugsweise wenigstens über die Hälfte des Tunnelquerschnitts zumindest oberhalb des Rahmens.
  • In diesem Fall sind die Tragarme vorzugsweise sowohl mit dem Rahmen als auch mit der Arbeitsplattform schwenkbar verbunden, um so einen weiten Arbeitsbereich bei exakt horizontal ausgerichteter Arbeitsplattform sicherzustellen.
  • Vorzugsweise sind in diesem Fall die Tragarme über hydraulische Zylinder des Hebeantriebs relativ zum Rahmen und zueinander schwenkbar angetrieben, was antriebsseitig wenig verschmutzungsanfällig ist und zudem die erforderlichen Kräfte zum Verfahren der Arbeitsplattform bereitstellt.
  • In einer vorteilhaften Weiterbildung der Erfindung ist an jedem Längsende des Rahmens wenigstens eine Arbeitsplattform angeordnet, was den Vorteil hat, dass die Tunnelschalung an beiden Enden der Tunnelschalungsvorrichtung inspiziert werden kann.
  • Vorzugsweise sind an wenigstens einem Längsende des Rahmen zwei Arbeitsplattformen angeordnet, die jeweils eine Hälfte des Tunnelquerschnitts in ihrem Arbeits- oder Verstellbereich abdecken. Auf diese Weise wird der Arbeitsbereich der Arbeitsplattform durch den Rahmen nicht beeinträchtigt, da sich dieser seitlich und nach oben vom Rahmen weg erstreckt.
  • In diesem Fall sind vorzugsweise die beiden Arbeitsplattformen symmetrisch zu einer zentralen Längsachse des Rahmens angeordnet, so dass beide identisch ausgebildet sein können, und die Aufteilung des Arbeitsbereichs der Arbeitsplattformen in Querrichtung der Tunnelschalungsvorrichtung klar definiert ist.
  • In einer vorteilhaften Weiterbildung der Erfindung umfasst der Verfahrbereich der Arbeitsplattform in Querrichtung des Rahmens die Verstellbereiche aller Stützzylinder, zumindest auf einer Seite des Rahmens, und ist damit in der Lage den gesamten Wirkungsbereich der Tunnelschalungsvorrichtung abzudecken.
  • Vorzugsweise weisen die Tragstrukturen Standfüße mit Rollen auf, die zum Verfahren der Tunnelschalungsvorrichtung in ihrer Längsrichtung ausgebildet sind. Auf diese Weise kann die Tunnelschalungsvorrichtung den Tunnel entlangfahren und mit der wenigstens einen Arbeitsplattform kann jede Stelle des Tunnels angefahren werden
  • Vorzugsweise überragt die Arbeitsplattform die Tragstrukturen des Rahmens und/oder den Rahmen stirnseitig, was es ermöglicht, die Arbeitsplattform über den gesamten Tunnelquerschnitt zu verfahren, auch an Stellen, wo über die Länge der Tunnelschalungsvorrichtung der Rahmen angeordnet ist.
  • In einer vorteilhaften Weiterbildung der Erfindung umfassen die Tragstrukturen höhenverstellbare Tragbeine. Somit kann die Arbeitsplattform zusätzlich über die Verstellung der Höhe der Tragbeine in ihrem Arbeitsbereich beeinflusst werden.
  • Vorzugsweise weist die Tunnelschalungsvorrichtung eine Steuerungsanordnung zumindest für den Hebeantrieb der Hebevorrichtung auf, die mit einem an der Arbeitsplattform angeordneten Eingabegerät für die Steuerung des Hebeantriebs verbunden ist. Auf diese Weise kann das Verfahren der Arbeitsplattform von dieser aus bedientechnisch einfach gesteuert werden.
  • Vorzugsweise umfasst die Tunnelschalungsvorrichtung wenigstens zwei Module, vorzugsweise wenigstens drei in Längsrichtung der Tunnelschalungsvorrichtung miteinander verbundene Module umfasst, die miteinander zu dem Rahmen verbindbar sind. Durch die wenigstens zwei Module, vorzugsweise durch wenigstens drei in Längsrichtung der Tunnelschalungsvorrichtung miteinander verbundene Module wird somit eine Tunnelschalungsvorrichtung gebildet, deren Länge durch die Anzahl der verwendeten Module einstellbar ist. Dies hat den Vorteil, dass die Länge der Tunnelschalungsvorrichtung durch die Anzahl der gewählten Zwischenmodule individuell beliebig einstellbar ist. Es ist anzumerken, dass die Längsrichtung der Tunnelschalungsvorrichtung mit der Tunnelrichtung übereinstimmt.
  • Optional kann auch es vorgesehen sein, dass die Breite jedes Moduls, zum Beispiel durch Adapterstücke oder durch einen hydraulischen Stellmechanismus, variierbar ist, so dass nicht nur die Länge der Tunnelschalungsvorrichtung in Tunnellängsrichtung, sondern auch die Breite der Tunnelschalungsvorrichtung entsprechend der Breite der Module einstellbar ist. Die Arbeitsbreite der Module kann einfach auch durch eine entsprechende Verstellung der Tragstrukturen und der längenverstellbaren hydraulischen Stützzylinder so variiert werden, so dass sowohl schmale als auch breite Tunnelformen geschalt werden können. Die Tunnelform wird dabei durch eine entsprechende Einstellung der Länge der Stützzylinder eingestellt, die vorzugsweise hydraulisch teleskopierbar sind. Durch eine entsprechende Variierung der Standbreite der Tragstrukturen, die vorzugsweise sowohl in ihrem Abstand in Querrichtung als auch in ihrer Höhe einstellbar sind, kann eine angepasste Standsicherheit auch bei breiten Tunnels erzielt werden. Die vertikalen Stützzylinder müssen nicht hydraulisch längenverstellbar sein, da die Höhenseinstellung der Tunnelschalungsvorrichtung auch über die Tragstruktur realisiert werden kann.
  • Durch die Tatsache, dass die gesamte Tunnelschalungsvorrichtung modular aufgebaut ist, lässt sie sich vergleichsweise einfach, das heißt durch übliche Transportfahrzeuge, wie Sattelschlepper-LKWs oder Sattelaufleger von Güterzügen, transportieren. Wenn zum Beispiel die Länge eines Moduls in Tunnelrichtung zwischen 1 und 4 m liegt und die Breite zwischen 3 m und 10 m, so können herkömmliche Sattelschlepper für den Transport der Module verwendet werden, weil die maximalen Breiten- und Längenbestimmungen für die Transporte nicht überschritten werden.
  • Vorzugsweise umfassen die Module zwei Endmodule, welche in Längsrichtung die beiden Enden der Tunnelschalungsvorrichtung bilden, und wenigstens ein zwischen den Endmodulen anzuordnendes Zwischenmodul, welches form- und/oder kraftschlüssig mit wenigstens einem der beiden Endmodule verbindbar ist. Die Endmodule können so zielgerichtet auf die Tragfunktion ausgebildet werden, z.B. zur Befestigung der Tragstrukturen, während die Zwischenmodule für die Abstützung der Tunnelschalung durch die Stützzylinder und die Längsträger ausgebildet sind. Dies verteilt die unterschiedlichen notwendigen Funktionen der Tunnelschalungsvorrichtung wie Tragfunktion und Stützfunktion der Tunnelschalung auf unterschiedliche Modularten, was ökonomischer und leistungsfähiger ist, als wenn ein Modul alle diese Funktionen erfüllen muss.
  • Vorzugsweise ist die Tragstruktur höhenverstellbar und ist insbesondere durch hydraulisch teleskopierbare Tragbeine gebildet ist. Die Tunnelschalungsvorrichtung kann somit an unterschiedliche Tunnelhöhen angepasst werden. Vorzugsweise ist auch der Abstand der Tragbeine quer zur Tunnelrichtung einstellbar, so dass die Tragstruktur an unterschiedliche Tunnelbreiten anpassbar ist. Die vertikalen Stützzylinder brauchen bei einer Höhenverstellbarkeit der Tragstrukturen nicht notwendigerweise als hydraulisch längenverstellbare Stützzylinder ausgebildet sein, da dann die Höhenanpassung über die Tragstrukturen realisiert werden kann. Die Höhenverstellbarkeit hat auch den Vorteil, dass die Tunnelschalungsvorrichtung mit verringerter Höhe, d.h. abgesenkt in den Tunnel einfahren kann, so dass die Tunnelschalung nicht mit bereits verschalten Tunnelabschnitten kollidiert.
  • Vorzugsweise sind die Stützzylinder mit Lastsensoren verbunden, so dass man die durch jeden Stützzylinder abgefangene Last an einer zentralen Steuerungsanordnung überwachen kann und gegebenenfalls durch die entsprechende Ansteuerung der Stützzylinder Druckspitzen abbauen kann. Hierbei ist vorzugsweise natürlich jeder Stützzylinder mit einem Lastsensor versehen. Das Abbauen der Druckspitzen erfolgt durch Steuerung der Betoniergeschwindigkeit.
  • Vorzugsweise ist wenigstens einer der wenigstens zwei Stützzylinder schwenkbar an dem Rahmen beziehungsweise dem Rahmenteil eines Moduls angelenkt, so dass die Abstützungspunkte für die Tunnelschalungselemente den örtlichen Gegebenheiten entsprechend angepasst werden können. Alternativ oder zusätzlich kann die Stützstrebe mit den Stützzylindern über einen Schwenkmechanismus verbunden sein, so dass die Längsträger die Tunnelschalungselemente optimal hintergreifen können, auch wenn die Abstützung durch die Stützzylinder nicht exakt senkrecht von unten erfolgt.
  • In einer vorteilhaften Weiterbildung der Erfindung haben die Längsträger insbesondere an ihren Enden hydraulisch betätigte Stempel zur Abstützung an der Tunnelwand beziehungsweise der Tunneldecke. Hierdurch sind die Längsträger absolut unbeweglich zwischen den Tragstrukturen des Rahmens der Tunnelvorrichtung und den Stempeln fixiert, die hydraulisch angesteuert fest an den Tunnelwänden beziehungsweise der Tunneldecke anliegen. Beim hinterfüllen der Tunnelschalungselemente mit Beton kommt es also zu keiner räumlichen Veränderung der Lage der Tunnelschalungselemente, weil diese absolut ortsfest eingespannt sind.
  • Vorzugsweise ist jede Tragstruktur durch jeweils zwei Tragbeine gebildet, die mit dem Rahmen, vorzugsweise mit den in Längsrichtung äußersten Rahmenteilen der Endmodule beziehungsweise Zwischenmodule, lösbar verbindbar sind. So können beispielsweise nur die Endmodule die Befestigungsstrukturen für die Tragstrukturen bzw. Tragbeine aufweisen, was zum einen sicherstellt, dass die Tragstrukturen an den beiden Enden der Tunnelschalungsvorrichtung angeordnet sind, und damit die dazwischen angeordnete Tunnelschalungsvorrichtung sicher abstützen. Zum anderen können so die Zwischenmodule nur jene Strukturen aufweisen, die zur Abstützung der Tunnelschalung erforderlich sind, das heißt die hydraulischen Stützzylinder. Wie bereits ausgeführt, sind diese Beine sowohl höhenverstellbar als auch in ihrem Abstand verstellbar.
  • In einer vorteilhaften Weiterbildung der Erfindung tragen nur die Rahmenteile der Zwischenmodule die hydraulischen Stützzylinder und die Rahmenteile der Endmodule jeweils wenigstens eine Arbeitsplattform und die Tragstrukturen, wobei die Arbeitsplattform die Tragstrukturen stirnseitig überragt.
  • Um einen einfachen Aufbau der Tunnelschalungsvorrichtung zu gewährleisten, hat jedes Modul, vorzugsweise jedes End- und Zwischenmodul, integrierte Anschlüsse für Pneumatik und/oder Hydraulik und/oder Elektrik.
  • Die hydraulischen Stützzylinder sind mit den Längsträgern über wenigstens einen Bolzen, insbesondere einen konischen Bolzen, verbunden, um so die feste Verbindung von hydraulischem Stützzylinder und Stützstrebe sicherzustellen.
  • In einer vorteilhaften Weiterbildung der Erfindung hat die Tunnelschalungsvorrichtung ein Steuerungsmodul mit einer Steuerungsanordnung für die Tunnelschalungsvorrichtung, die vorzugsweise mit dem Rahmen verbindbar ist. Das Steuerungsmodul kann zum Beispiel durch eine Kabine der Tunnelschalungsvorrichtung oder einen Schaltkasten gebildet sein, in der die Steuerungsanordnung angeordnet ist, um dort zum einen einfach bedient zu werden und zum anderen um diese vor dem Schmutz und der Feuchtigkeit in dem Tunnel zu schützen. Diese Steuerungsanordnung hat dann alle notwendigen Schnittstellen für die Hydraulik, Elektrik und Pneumatik aller Module und ist in der Lage, die Kraftmessdaten von den Lastsensoren der Stützzylinder zu erhalten und die Einstellung und Betätigung der Stützzylinder zentral für die gesamte Tunnelschalungsvorrichtung durchzuführen. Die Steuerungsanordnung ist vorzugsweise auch für die Ansteuerung der Hebevorrichtung ausgebildet, insbesondere über ein Eingabegerät an der Arbeitsplattform oder optional auch durch mobile Endgeräte.
  • Die Arbeitsplattform(en) ist/sind vorzugsweise als Hebebühne mit einem Geländer ausgebildet, wobei das Eingabegerät für die Steuerung des Hebeantriebs der Hebevorrichtung vorzugsweise an dem Geländer angeordnet ist.
  • Die Erfindung betrifft ebenfalls eine Tunnelbetoniereinrichtung umfassend eine Tunnelschalungsvorrichtung der obigen Art und wenigstens eine Betonpumpe, die von der/einer Steuerungsanordnung zur Ansteuerung der Stützzylinder der Tunnelbetoniereinrichtung angesteuert ist, wobei wenigstens eine Förderleitung der Betonpumpe mit dem Zwischenraum zwischen den Tunnelschalungselementen und der Tunnelwand verbunden ist. Die Betonpumpen sind vorzugsweise in Abhängigkeit von den Signalen von Lastsensoren steuerbar, die in Verbindung mit den Stützzylindern angeordnet sind. Auf diese Weise kann ein Tunnel ziemlich beliebiger Querschnittsform und Länge effizient verschalt werden, wobei die Steuerung der Betonpumpen dynamisch dem Verfüllungsgrad des Zwischenraums zwischen Tunnelschalung und Tunnelwand Rechnung trägt.
  • Folgende Begriffe werden synonym verwendet: Arbeitsplattform - Hebebühne; Hebevorrichtung - Tragvorrichtung; Antriebseinrichtung der Hebevorrichtung - Hebeantrieb;
    Es ist für den Fachmann offensichtlich, dass die oben beschriebenen Ausführungsformen der Erfindung in beliebiger Weise miteinander kombiniert werden können.
  • Die Erfindung wird nachfolgend schematisch in der beiliegenden Zeichnung beschrieben. In dieser zeigen:
  • Fig. 1
    eine perspektivische Ansicht einer aus zwei Endmodulen und sieben Zwischenmodulen zusammengesetzten Tunnelschalungsvorrichtung,
    Fig. 2
    eine perspektivische Ansicht in Längsrichtung der Tunnelschalungsvorrichtung,
    Fig. 3
    eine perspektivische Ansicht der Tunnelschalungsvorrichtung aus Fig. 1 von schräg unten,
    Fig. 4
    eine Seitenansicht auf die Tunnelschalung, die von den Stützzylindern und den Längsträgern zur Tunnelwand hin positioniert wird, und
    Fig. 5
    eine stirnseitige Ansicht der Tunnelschalungsvorrichtung von einem Längsende
    Fig. 6 - 9
    eine stirnseitige Ansicht mit den möglichen Arbeitsbereichen der Arbeitsplattformen
  • Die erfindungsgemäße Tunnelschalungsvorrichtung 10 ist in diesem Ausführungsbeispiel modular aufgebaut, was aber nicht notwendig ist. Sie wird nachfolgend anhand der Fig. 1 bis 3 beschrieben und besteht aus zwei Endmodulen 12a, 12b und sieben sich zwischen den beiden Endmodulen 12a,b erstreckenden Zwischenmodulen 14a-14g, die miteinander fest verbunden sind. Jedes Endmodul 12a, 12b enthält ein Rahmenteil 16a, das mit den Rahmenteilen 16b der Zwischenmodule 14a-g form- und/oder kraftschlüssig verbunden ist, sowie auch die Rahmenteile 16b der Zwischenmodule 14a-g untereinander vorzugsweise in der gleichen Weise form- und/oder kraftschlüssig zu einem gemeinsamen Rahmen 20 der Tunnelschalungsvorrichtung 10 verbunden sind. Die Rahmenteile 16a der Endmodule 12a,b sind dabei mit Tragstrukturen 18 in Form von jeweils zwei Tragbeinen verbindbar, die den durch die Rahmenteile 16a,b aller Module 12a,b, 14a-g gebildeten Rahmen 20 der gesamten Tunnelschalungsvorrichtung 10 sicher auf dem Tunnelboden abstützen. Am unteren Ende jedes Tragbeins 18 ist ein Standfuß 19 mit Rollen angeordnet, der im Zuge der Tunnelverschalung entlang eines Weges oder von Schienen in Längsrichtung des Tunnels verfahrbar ist. Die Verbindung zwischen den Modulen 12a,b und 14a-g bzw. zwischen deren Rahmenteilen 16a,b ist lösbar, so dass die einzelnen Module separat zur Baustelle transportierbar sind. Die Tragbeine 18 sind über einen hydraulischen Teleskopmechanismus 23 höhenverstellbar, während sie über einen horizontalen Teleskopmechanismus 21 oder durch einsetzbare Adapterstücke in ihrem gegenseitigen Abstand in Querrichtung (horizontal quer zur Tunnelrichtung) einstellbar sind.
  • Über eine hydraulische Hebevorrichtung 24, vorzugsweise umfassend jeweils zwei schwenkbar miteinander verbundenen Tragarme 25a, 25b, die über einen Hebeantrieb 27 in Form mehrerer Hydraulikzylinder relativ zueinander und zum Rahmen 20 bewegbar sind, sind an den Rahmenteilen 16a der Endmodule 12a,b, die einen Bestandteil des Rahmens 20 bilden, jeweils zwei Arbeitsplattformen 22a,b bzw. 22c,d in Form von Hebebühnen gegenüber dem Rahmenteil 16a,b bzw. gegenüber dem Rahmen 20 heb- und senkbar als auch seitlich bewegbar gehalten. Somit können über diese Arbeitsplattformen 22a-d Inspektionen oder Montagearbeiten an den Tunnelschalungselementen 33, an den Stützzylindern 34 der Längsträgern 32a-f 25a,b kann optional längenverstellbar, z.B. teleskopierbar sein, um somit abermals den Arbeitsbereich der Arbeitsplattform 22a-d vergrößern zu können. Im vorliegende Beispiel ist es der erste Tragarm 25a, der mit der Hebebühne 22a-d verbunden ist. Die Stützzylinder 26, 28, 30 können von den hydraulisch gesteuerten Arbeitplattformen eingesehen werden
  • Die Arbeitsplattform bzw. Hebebühne 22a,b,c,d hat ein Geländer 29, um die Arbeiter vor Herabfallen zu schützen. Der Hebeantrieb 27 bestehend aus einer Mehrzahl an hydraulischen Zylindern bewegt die beiden Tragarme 25a,b derart relativ zum Rahmen und zur Arbeitsplattform, dass letztere zumindest über den zugeordneten halben Querschnitt des Tunnels bzw. des Arbeitsbereichs der Tunnelschalungsvorrichtung 10 bewegbar ist.
  • Der Rahmen 20 erstreckt sich zumindest annähernd über die gesamte Länge der Tunnelschalungsvorrichtung 10. An dem Rahmen 20 sind vorzugsweise für jedes Zwischenmodul 14ag zwei vertikale hydraulische Stützzylinder 26a,b befestigt, so dass mit dem Anheben des Rahmens 20 über die hydraulischen Teleskopmechanismen 23 der Tragbeine 18 für die Höhenverstellung auch die vertikalen Stützzylinder 26a,b mit angehoben werden. Auf diese Weise können mit der Tunnelschalungsvorrichtung 10 Tunnels unterschiedlicher Höhe verschalt und ausbetoniert werden. die vertikalen Stützzylinder brauchen daher nicht einmal hydraulisch und längenverstellbar sein.
  • Die Arbeitsplattformen 22a,b,c,d sind vorzugsweise über Steuergeräte steuerbar, die an der Arbeitsplattform 22a,b,c,d bzw. ihrem Geländer 29 befestigt ist.
  • Jedes Rahmenteil 16b der Zwischenmodule 14a-g trägt jeweils zwei schräg nach unten weisende Stützzylinder 28a,b als auch zwei sich horizontal erstreckende Stützzylinder 30a,b, die sich bezogen auf die Tunnelmitte symmetrisch auf die einander abgewandten Tunnelseiten hin erstrecken. Die freien Enden der Stützzylinder 26a,b, 28a,b, 30a,b sind jeweils mit Längsträgern 32a-f verbunden, die wiederum kreisbogenförmige Tunnelschalungselemente 33 tragen (Fig. 4), welche in ihrer Gesamtheit die Tunnelschalung 37 bilden. Die dargestellte Tunnelschalungsvorrichtung 10 steuert somit sechs Stützzylinder bzw. -streben 32a-f an, die sich über den gesamten Innenumfang der zu betonierenden Tunnelwand erstrecken, d.h. in der Regel über einen Bereich von 150 bis 270 Grad (siehe Fig. 2 und 4). Die Tunnelschalungselemente 33 können am Tunnelboden 35 über separate Stützkörper 36 abgestützt sein. Alternativ dazu können die schräg nach unten weisenden Stützzylinder 32a und 32f die unterste Abstützung der die durch die Gesamtheit der Tunnelschalungselemente 33 zusammengesetzten Tunnelschalung 37 bilden, wird.
  • Die Abstützung der Tunnelschalung 37 durch die Stützelemente 26a, 28a, 30a und durch die Stützzylinder 32a, 32b, 32c ist in Fig. 4 verdeutlicht. Es ist in dieser Darstellung auch ersichtlich, dass die vertikalen Stützzylinder 26a,b nicht exakt vertikal ausgerichtet sein müssen, ebenso wenig wie die horizontalen Stützzylinder 30a,b nicht exakt horizontal ausgerichtet sein müssen. Diese können in ihrem Befestigungswinkel an den Rahmenteilen der Zwischenmodule 14a-g zumindest in einem geringen Bereich von beispielsweise +/- 15 Grad justierbar sein, während die schräg nach unten weisenden Stützzylinder vorzugsweise in einem größeren Winkelbereich von z.B. 45 Grad einstellbar sein können. Die Stützstreben 26a,b sind vorzugsweise starr, d.h. nicht schwenkbar an dem Rahmen 20 befestigt, so dass die Tunnelschalung sich ihrer Winkelposition festgelegt ist, und die Tunnelschalung 37 somit nicht während der Fahrt der Tunnelschalungsvorrichtung kippen kann.
  • Es erübrigt sich zu sagen, dass vorzugsweise alle Stützzylinder 26a,b, 28a,b, 30a,b mit Lastsensoren 38 versehen sind, welche über Datenleitungen 40 mit der zentralen Steuerungsanordnung 44 eines Steuerungsmoduls 42 der Tunnelschalungsvorrichtung 10 verbindbar sind. Die Steuerungsanordnung wertet die Daten der Lastsensoren 38 aus und steuert die Stützzylinder vorzugsweise auch in Abhängigkeit von den erfassten Daten an, um die Tunnelschalung 37 optimal zu positionieren und Betonpumpen zur Verfüllung des Raumes zwischen Tunnelwand und Tunnelschalung 37 derart zu betätigen, dass zu keinen Lastüberhöhungen auf die Stützzylinder oder die Tunnelschalungselemente 33 kommt. An der Tunnelschalungsvorrichtung 10 sind sechs Längsträger 32a-f durch jeweils sieben hydraulische Stützzylinder 26a,b, 28a,b, 30a,b getragen, die mit den sieben einzelnen Zwischenmodulen 14a-g verbunden sind. Auf diese Weise können die Kräfte der Tunnelschalung 37 effektiv durch die Tunnelschalungsvorrichtung 10abgefangen werden, wobei die Krafteinleitung im Fahrzustand letztendlich über die Tragstrukturen 18 in den Tunnelboden 35 erfolgt. Die beiden Enden jeder Stützstrebe 32a-f sind mit hydraulisch betätigbaren Stempeln 34 versehen, die derart angesteuert werden, dass sie sich an den Tunnelwänden abstützen, womit alle Längsträger 32a-f zwischen diesen und den Tragstrukturen 18 in ihrer Lage fest definiert sind, was zu reproduzierbaren Schalungsergebnissen führt.
  • Das Steuerungsmodul 42 enthält vorzugsweise eine Kabine 46, vorzugsweise mit wenigstens einem Fenster 48, in welcher die Steuerungsanordnung 44 positioniert ist. Auf diese Weise ist sie wirksam gegen den Schmutz und die Feuchtigkeit der Baustelle geschützt. Das Steuerungsmodul 42 kann an beliebiger Stelle an der Tunnelschalungsvorrichtung 10 positioniert sein. Vorzugsweise ist es mit der Tragstruktur 18 oder mit einem Rahmenteil 16a,b eines End- oder Zwischenmoduls 12a,b, 14a-g verbindbar. Die Steuerungsanordnung ist mit der Hydraulik zur Betätigung aller Stützzylinder und mit Betonpumpen zum Verfüllen des Hohlraums zwischen Tunnelwand und Tunnelschalung 37 verbunden, um den Tunnelschalungsvorgang optimal zu steuern.
  • Die an den Endmodulen 16a, 16b verfahrbar gehaltenen Arbeitsplattformen 22a-d überragen vorzugsweise die Tragstrukturen beziehungsweise Tragbeine 18 stirnseitig, so dass die Enden der Tunnelschalung 37 und die gesamte Tunnelschalungsvorrichtung 10 gut überblickt werden können.
  • Fig. 5 zeigt den Querschnitt der in den Fig. 1 bis 4 gezeigten Tunnelschalungsvorrichtung 10 detaillierter als Fig. 4. In allen Figuren sind hierbei identische oder funktionsgleiche Teile mit den identischen Bezugszeichen versehen.
  • Dargestellt ist die komplette Tunnelschalungsvorrichtung 10 im Querschnitt mit dem auf den Tragbeinen 18 getragenen Rahmen 20, mit den an dem Rahmen 20 angeordneten Stützzylindern 26a,b, 28a,b und 30a,b, den an den Stützzylindern getragenen und sich in Längsrichtung der Tunnelschalungsvorrichtung 10 (= Tunnelrichtung) erstreckenden Längsträgern 32a-f, den dazwischen aufgespannten Tunnelschalungselementen 33, die zusammen die Tunnelschalung 37 bilden.
  • In den Figuren Fig. 6 bis 9 sind unterschiedliche Arbeitspositionen der Arbeitsplattform 22a dargestellt, die zeigen, wie umfassend jede der vier Arbeitsplattformen 22a-d an beiden Enden der Tunnelschalungsvorrichtung jeweils eine komplette Hälfte des Tunnelquerschnitts bzw. Arbeitsbereichs der Tunnelschalungsvorrichtung abdeckt. Die Arbeitsplattform 22a-d kann dabei unter den Rahmen 20, über den Rahmen 20 und seitlich weg davon verfahren werden, so dass die gesamte korrespondierende Tunnelschalung 37 inspiziert werden kann, als auch die korrespondierenden Teile 26, 28, 30, 32, 33, 34 der Tunnelschalungsvorrichtung 10. An den Komponenten 26, 28, 30, 32 können nur Sichtkontrollen von den Arbeitsplattformen gemacht werden, jedoch eher keine Montage oder Revisionsarbeiten.
  • Die vorliegende Erfindung ist nicht auf das Ausführungsbeispiel beschränkt, sondern kann innerhalb des Schutzbereichs der nachfolgenden Ansprüche beliebig variiert werden.
  • Bezugszeichenliste:
  • 10
    Tunnelschalungsvorrichtung
    12a,b
    Endmodule
    14a-g
    Zwischenmodule
    16a
    Rahmenteil der Endmodule
    16b
    Rahmenteil der Zwischenmodule
    18
    Tragstrukturen -Tragbeine
    19
    mit Rollen versehene Standfüße der Tragbeine
    20
    aus den Rahmenteilen der End- und Zwischenmodule gebildeter Rahmen der Tunnelschalungsvorrichtung
    21
    horizontaler hydraulischer Teleskopmechanismus oder Adapterstücke zur Breitenanpassung, d.h. zur Anpassung des gegenseitigen Abstandes der Tragbeine in Querrichtung
    22a-d
    gegenüber dem Rahmen bzw. den Rahmenteile der Endmodule verfahrbare Arbeitsplattformen oder Hebebühnen, jeweils zwei an jedem Endmodul
    23
    vertikaler hydraulischer Teleskopmechanismus zur Höhenverstellung der Tragstruktur bzw. Tragbeine
    24
    hydraulische Hebevorrichtung für die Arbeitsplattformen, insbesondere angeordnet an den Rahmenteilen der Endmodule
    25a,b
    zwei miteinander gelenkig verbundene Tragarme der Hebevorrichtung zum vertikalen und seitlichen Bewegen der Arbeitsplattform relativ zum Rahmen, wovon der erste mit der Arbeitsplattform verbundene Tragarm längenverstellbar ist
    26a,b
    vertikale Stützzylinder, insbesondere hydraulisch oder nicht längenverstellbare Stützstreben, vorzugsweise in einem festen Winkel an dem Rahmen befestigt
    27
    hydraulischer Hebeantrieb der Hebevorrichtung, umfassend eine Vielzahl von hydraulischen Zylindern
    28a,b
    schräg nach unten gerichtete Stützzylinder, insbesondere hydraulisch
    29
    Geländer der Arbeitsplattform
    30a,b
    horizontale Stützzylinder, insbesondere hydraulisch
    32a-f
    in Längsrichtung der Tunnelschalungsvorrichtung verlaufende Längsträgern zur Abstützung der Tunnelschalungselemente
    33
    kreisbogenförmige Tunnelschalungselemente
    34
    hydraulisch betätigbare Stempel an den Längsträgern zur Abstützung an der Tunnelwand-Abstützstempel
    35
    Tunnelboden
    36
    Bodenstützelement
    37
    Tunnelschalung
    38
    Lastsensoren
    40
    Datenverbindung
    42
    Steuerungsmodul
    44
    Steuerungsanordnung
    46
    Kabine
    48
    Fenster

Claims (15)

  1. Tunnelschalungsvorrichtung (10), umfassend:
    - einen Rahmen (20),
    - wenigstens zwei mit dem Rahmen (20) der Tunnelschalungsvorrichtung (10) verbindbare in Längsrichtung der Tunnelschalungsvorrichtung voneinander beabstandete Tragstrukturen (18) zur Abstützung des Rahmens (20) an einem Tunnelboden (35),
    dadurch gekennzeichnet, dass der Rahmen (20) an wenigstens zwei in Längsrichtung voneinander beabstandeten Positionen jeweils wenigstens zwei hydraulische Stützzylinder (26a,b, 28a,b, 30a,b) trägt, welche Stützzylinder mit in Längsrichtung verlaufenden Längsträgern (32a-f) verbindbar sind, welche Längsträger (32a-f) Tunnelschalungselemente (33) der Tunnelschalungsvorrichtung (10) tragen, wobei an dem Rahmen (20) wenigstens eine Hebevorrichtung (24) angeordnet ist, die wenigstens eine Arbeitsplattform (22a-d) trägt, wobei die Hebevorrichtung (24) einen Hebeantrieb (27) zum Verfahren der Arbeitsplattform (22a-d) gegenüber dem Rahmen (20) aufweist.
  2. Tunnelschalungsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Hebevorrichtung (24) zudem ausgebildet ist für ein horizontales und vertikales Verfahren der Arbeitsplattform (22a-d) gegenüber dem Rahmen (20).
  3. Tunnelschalungsvorrichtung (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Hebeantrieb (27) als elektrischer oder hydraulischer Antrieb ausgebildet ist.
  4. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hebevorrichtung (24) wenigstens zwei schwenkbar miteinander verbundene Tragarme (25a, 25b) umfasst.
  5. Tunnelschalungsvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Tragarme (25a, 25b) sowohl mit dem Rahmen (20) als auch mit der Arbeitsplattform (22a-d) schwenkbar verbunden sind.
  6. Tunnelschalungsvorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Tragarme (25a, 25b) über den Hebeantrieb (27), der vorzugsweise hydraulische Zylinder umfasst, relativ zum Rahmen (20) und zueinander schwenkbar angetrieben sind.
  7. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an wenigstens einem, vorzugsweise an jedem Längsende des Rahmens (20) wenigstens eine Arbeitsplattform (22a-d) angeordnet ist.
  8. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an wenigstens einem Längsende des Rahmens (20) zwei Arbeitsplattformen (22a-d) angeordnet sind.
  9. Tunnelschalungsvorrichtung (10) nach Anspruch 8, dadurch gekennzeichnet, dass die beiden Arbeitsplattformen (22a-d) symmetrisch zu einer zentralen Längsachse des Rahmens (20) angeordnet sind.
  10. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Verfahrbereich der Arbeitsplattform (22a-d) in Querrichtung des Rahmens (20) die Verstellbereiche aller Stützzylinder (26a,b, 28a,b, 30a,b), zumindest auf einer Seite des Rahmens (20) umfasst.
  11. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Tragstrukturen (18) Standfüße (19) mit Rollen aufweisen, die zum Verfahren der Tunnelschalungsvorrichtung (10) in ihrer Längsrichtung ausgebildet sind.
  12. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Arbeitsplattform (22a-d) die Tragstrukturen (18) des Rahmens (20) stirnseitig überragt.
  13. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Tragstrukturen (18) höhenverstellbare Tragbeine umfassen.
  14. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie wenigstens zwei Module (12a,b, 14a-g), vorzugsweise wenigstens drei in Längsrichtung der Tunnelschalungsvorrichtung (10) miteinander verbundene Module (12a,b, 14a-g) umfasst, die miteinander zu dem Rahmen (20) verbindbar sind.
  15. Tunnelschalungsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Steuerungsanordnung (44) für den Hebeantrieb (27) aufweist, die mit einem an der Arbeitsplattform (22a-d) angeordneten Eingabegerät für die Steuerung des Hebeantriebs (27) verbunden ist.
EP22152345.9A 2022-01-07 2022-01-20 Modulare tunnelschalungsvorrichtung Active EP4209656B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/062,199 US20230220773A1 (en) 2022-01-07 2022-12-06 Modular tunnel formwork device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22150523.3A EP4209655B1 (de) 2022-01-07 2022-01-07 Modulare tunnelschalungsvorrichtung

Publications (2)

Publication Number Publication Date
EP4209656A1 EP4209656A1 (de) 2023-07-12
EP4209656B1 true EP4209656B1 (de) 2023-12-06

Family

ID=79283215

Family Applications (2)

Application Number Title Priority Date Filing Date
EP22150523.3A Active EP4209655B1 (de) 2022-01-07 2022-01-07 Modulare tunnelschalungsvorrichtung
EP22152345.9A Active EP4209656B1 (de) 2022-01-07 2022-01-20 Modulare tunnelschalungsvorrichtung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP22150523.3A Active EP4209655B1 (de) 2022-01-07 2022-01-07 Modulare tunnelschalungsvorrichtung

Country Status (5)

Country Link
US (2) US20230220773A1 (de)
EP (2) EP4209655B1 (de)
DK (1) DK4209656T3 (de)
ES (2) ES2970580T3 (de)
FI (1) FI4209656T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118143656A (zh) * 2024-05-13 2024-06-07 山西新能正源智能装备有限公司 折叠三榀拱架治具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105422137B (zh) * 2015-12-14 2017-09-22 中铁四局集团有限公司 隧道大净空模块化衬砌台车
CN106640131B (zh) * 2016-11-24 2019-01-18 中国人民解放军63926部队 一种模块化的变截面隧道衬砌台车
CN107130978A (zh) * 2017-05-31 2017-09-05 中铁隧道集团四处有限公司 组合式隧道衬砌模板台车
CN107965337B (zh) * 2017-12-21 2024-06-21 湖南五新隧道智能装备股份有限公司 一种衬砌施工方法及其采用的衬砌台车
KR20190140266A (ko) * 2018-06-11 2019-12-19 주식회사 서진기계 작업자 이동통로가 있는 터널용 강재 거푸집
CN112780309A (zh) * 2021-02-23 2021-05-11 四川蓝海智能装备制造有限公司 一种隧道施工用拱喷台车

Also Published As

Publication number Publication date
EP4209655A1 (de) 2023-07-12
US20230220773A1 (en) 2023-07-13
ES2969746T3 (es) 2024-05-22
DK4209656T3 (da) 2024-01-15
FI4209656T3 (en) 2024-01-11
US20230220774A1 (en) 2023-07-13
EP4209656A1 (de) 2023-07-12
EP4209655C0 (de) 2023-11-01
EP4209655B1 (de) 2023-11-01
ES2970580T3 (es) 2024-05-29

Similar Documents

Publication Publication Date Title
DE102016205956A1 (de) Selbstklettersystem, Selbstklettereinheit sowie Verfahren zum Umsetzen einer solchen Selbstklettereinheit an einem Betonbaukörper
WO2008148637A1 (de) Selbstklettersystem und verfahren zum betonieren eines unterzugs und/oder montieren eines fertigteils mittels eines selbstklettersystems
EP0865539B1 (de) Vorrichtung zur brückeninspektion
EP4209656B1 (de) Modulare tunnelschalungsvorrichtung
EP2642065B1 (de) Unterbaumodul für eine mobile Landbohranlage und Verfahren zum Auf- und Abbau solcher Unterbaumodule
WO2009118198A2 (de) Vorrichtung zum abbrechen von bauwerken
DE102007021159B4 (de) Rostdeckenschalung zur Einbindung einer Säule
WO1991003603A1 (de) Brückenuntersichtvorrichtung
CH714893B1 (de) Fahrbares Arbeitsgerüst.
EP0930408A1 (de) Schalung zum Betonieren von auskragenden Betonbauteilen
DE102010006560A1 (de) Tragvorrichtung und Schalungssystem
DE29908482U1 (de) Kappenschalvorrichtung
WO2012001158A1 (de) Brückenentlastungs- und brückenertüchtigungsgerät
DE19858186A1 (de) Schalung zum Betonieren von auskragenden Betonbauteilen, insbesondere Kappen, Gesimsen und Überbauten
AT4624U1 (de) Verstellbare arbeitsbühne
EP3645443B1 (de) Aufzugsanlage
DE2402683C3 (de) Kletterschalung
WO2006092259A1 (de) Fahrbares schalgerüst
EP3543197B1 (de) Vorrichtung zum anbringen eines leiterteils eines kranführeraufzugs an einem kranmasten
DE19704967A1 (de) Portalkran, insbesondere zum Errichten von Bauwerken
DE19545453A1 (de) Hubgerüst
DE10022662C2 (de) Vorrichtung zum schrittweisen Verfahren einer Schalung an einem Betonbauwerk
DE202004011443U1 (de) Abstützvorrichtung für Traggestelle mit vorkragenden Lasten
WO2023241941A1 (de) Schachtmodul zur bildung eines aus aufeinandergesetzten schachtmodulen zusammengesetzten aufzugschachts für eine aufzuganlage
WO2011095289A1 (de) Geländerelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230721

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E21D 11/10 20060101AFI20230809BHEP

INTG Intention to grant announced

Effective date: 20230912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000302

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20240110

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20231206

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240228

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240131

Year of fee payment: 3

Ref country code: DE

Payment date: 20240131

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2969746

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240131

Year of fee payment: 3

Ref country code: NO

Payment date: 20240123

Year of fee payment: 3

Ref country code: IT

Payment date: 20240131

Year of fee payment: 3

Ref country code: DK

Payment date: 20240124

Year of fee payment: 3