EP4176225B1 - Fusee comportant un dispositif d'autodestruction pour projectile giratoire - Google Patents

Fusee comportant un dispositif d'autodestruction pour projectile giratoire Download PDF

Info

Publication number
EP4176225B1
EP4176225B1 EP21722465.8A EP21722465A EP4176225B1 EP 4176225 B1 EP4176225 B1 EP 4176225B1 EP 21722465 A EP21722465 A EP 21722465A EP 4176225 B1 EP4176225 B1 EP 4176225B1
Authority
EP
European Patent Office
Prior art keywords
holder
projectile
striker
primer
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21722465.8A
Other languages
German (de)
English (en)
Other versions
EP4176225A1 (fr
Inventor
Sébastien Dubois
Philippe Guyon
Florent LEMERCIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dixi Microtechniques SA
Original Assignee
Dixi Microtechniques SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dixi Microtechniques SA filed Critical Dixi Microtechniques SA
Publication of EP4176225A1 publication Critical patent/EP4176225A1/fr
Application granted granted Critical
Publication of EP4176225B1 publication Critical patent/EP4176225B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C9/00Time fuzes; Combined time and percussion or pressure-actuated fuzes; Fuzes for timed self-destruction of ammunition
    • F42C9/14Double fuzes; Multiple fuzes
    • F42C9/16Double fuzes; Multiple fuzes for self-destruction of ammunition
    • F42C9/18Double fuzes; Multiple fuzes for self-destruction of ammunition when the spin rate falls below a predetermined limit, e.g. a spring force being stronger than the locking action of a centrifugally-operated lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/18Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein a carrier for an element of the pyrotechnic or explosive train is moved
    • F42C15/188Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein a carrier for an element of the pyrotechnic or explosive train is moved using a rotatable carrier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/44Arrangements for disarming, or for rendering harmless, fuzes after arming, e.g. after launch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C9/00Time fuzes; Combined time and percussion or pressure-actuated fuzes; Fuzes for timed self-destruction of ammunition
    • F42C9/14Double fuzes; Multiple fuzes
    • F42C9/16Double fuzes; Multiple fuzes for self-destruction of ammunition

Definitions

  • the present invention relates to a rocket comprising a self-destruct device for a gyratory projectile, said rocket consisting of a hollow body, defined by an axis of symmetry coincident with the axis of rotation of said projectile, and comprising a striker associated with a door -striker, a primer associated with a primer holder, and a self-destruct device arranged to cooperate with said striker holder and said primer holder to successively generate a first position called “storage position” before firing the projectile, in in which the primer is misaligned with the striker, a second position called “intermediate position” at the start of the shot, in which the striker holder is distant from the primer holder, a third position called “cocked position” during the flight of the projectile , in which the primer is aligned with the firing pin, and a fourth position called the "self-destruct position” at the end of the flight, in which the firing pin holder is folded back onto the firing pin so that the
  • detonator fuses projectile heads comprising the striker, the primer and the explosive charge
  • a self-destruct device intended to cause the explosion of these projectiles after a specific period of time if they have not hit a target, this to avoid leaving them armed in the wild with the risk of exploding at any moment and injuring innocent people.
  • the invention concerns only gyratory projectiles, that is to say which are fired by weapons with helically rifled barrels to give the projectiles a gyroscopic movement on themselves combined with a linear trajectory.
  • the invention is particularly interested in 40mm grenades which are grenades that can be fired from a specific barrel, but are not more powerful than hand grenades.
  • 40mm grenades are standard grenades, but there are also 20mm and 37mm grenades for specialized weapons.
  • the invention is of course not limited to this type of ammunition, and extends to any other ammunition or gyratory projectile.
  • a pyrotechnic delay is an element containing chemical substances, capable of detonating or deflagrating reaction following mechanical initiation, often via a striker tip.
  • the pyrotechnic delay is characterized by a defined and non-modifiable duration between the moment of its initiation and that of the expected pyrotechnic reaction, often a detonation.
  • the pyrotechnic delay begins counting down and at the end of its duration detonates.
  • the duration of the pyrotechnic delay is dimensioned so as to allow the projectile to reach a target at maximum distance.
  • detonation of the projectile's main charge is initiated by the mechanical action of the fuze impacting a target. The projectile self-destructs when the target is missed and the impact does not generate detonation of the main charge. In this scenario, the projectile falls to the ground and it is the pyrotechnic delay which initiates the main charge at the end of its duration.
  • the duration defined by the pyrotechnic delay can be from several seconds to a few tens of seconds depending on the models.
  • the limit of this technology is the direct dependence between the self-destruction of the projectile and a duration defined by the pyrotechnic delay. This dependence reduces the reactivity of the self-destruct device and can put people in danger. Indeed, an ammunition fallen to the ground after a missed shot will explode a few seconds or a few tens of seconds after having stabilized on the ground, representing a danger for the user who would have progressed and reached the point of fall of the ammunition before the end of the pyrotechnic delay.
  • the present invention aims to overcome these drawbacks by proposing a mechanical self-destruction device for a gyratory projectile rocket, meeting the standards in force (STANAG 4187), independent of duration, without energy storage prior to firing, reactive and flexible, that is to say adapted to all shooting situations, thus capable of guaranteeing a very high level of safety for the user and those around them by eliminating the risk of an active projectile remaining on the ground.
  • the invention further proposes a self-destruction device of reliable, reproducible design, and which can be superimposed or combined with other means of percussion provided in the rocket to further increase its level of reliability.
  • the invention relates to a rocket according to claim 1.
  • This self-destruct device is its reactivity. During an impact, whatever the angle of impact, whether this impact is on a target or on the ground, the loss of rotation speed of the projectile is rapid. This sudden drop in rotation speed allows immediate triggering of the self-destruct device, that is to say without inertia, increasing the level of reliability and making it possible to achieve a very high level of safety for people.
  • this self-destruct device which is sensitive to the loss of centrifugal effects, can be coupled to a ricochet type firing system, sensitive to flight deceleration peaks, as well as to a device firing by deformation of the rocket fairing in the event of direct impact, during “normal” operation of the rocket, thus allowing maximum reactivity for all scenarios encountered in the field of ballistics.
  • the inertial body of said AD mechanism extends on an axis parallel to said axis of symmetry so that the balance axis of said striker holder is positioned between the two axes, said inertial body is movable in its axis between an extended position in which it pushes the striker holder towards the primer holder, and a retracted position in which it releases the striker holder, said extended position corresponding to the storage and self-destruct positions, and said retracted position corresponding to the intermediate and armed positions, said inertial body is arranged to move in a direction opposite to the direction of linear acceleration of the projectile from an extended position to a retracted position by compressing said return member to store the energy axial kinetic at the start of the shot, and said return member is arranged to move said inertial body in the opposite direction from a retracted position to an extended position by decompressing to restore said axial kinetic energy stored at the end of the shot.
  • Said striker is advantageously carried at one end of said striker holder located opposite said inertial body relative to said balance axis, and said primer holder advantageously comprises a housing distant from said primer, said housing being arranged to be aligned with said striker in said storage and intermediate positions, so that in the storage position, said striker holder is folded towards said primer holder, and said striker enters said housing and blocks said primer holder.
  • said self-destruct device further comprises an inertial mass pivotally mounted around said balance axis, consisting of a part separate from said striker holder, disposed between said inertial body and said striker holder and arranged to transmit to said door -striker either the axial kinetic energy restored by said AD mechanism in said self-destruction position, or the specific kinetic energy that said inertial mass has itself stored and which it restores in the event of strong linear deceleration of said projectile during 'an impact.
  • an inertial mass pivotally mounted around said balance axis, consisting of a part separate from said striker holder, disposed between said inertial body and said striker holder and arranged to transmit to said door -striker either the axial kinetic energy restored by said AD mechanism in said self-destruction position, or the specific kinetic energy that said inertial mass has itself stored and which it restores in the event of strong linear deceleration of said projectile during 'an impact.
  • the centrifugal lever of said safety mechanism is pivotally mounted around a pivot axis parallel to said axis of symmetry, between an unlocked position in which it releases the inertial body and a locked position in which it blocks the inertial body in a retracted position, the unlocked position corresponding to said storage and self-destruct positions, and the locked position corresponding to said armed position, said centrifugal lever is arranged to move radially in one direction from an unlocked position to a locked position under the centrifugal effects of the projectile by compressing said return member to store radial kinetic energy during flight, and said return member is arranged to move said centrifugal lever in the opposite direction from a locked position to a position unlocked by decompressing to restore said radial kinetic energy stored at the end of the shot as soon as the centrifugal force is less than the elastic force of said return member.
  • the centrifugal lever of said safety mechanism can advantageously comprise two segments arranged on either side of its pivot axis, a first segment capable of carrying a centrifugal mass, and a second segment forming a locking stop to block the inertial body in a retracted position, the pivot axis being close to the axis of said inertial body so that the length of said first segment is greater than the length of said second segment.
  • the return member of said safety mechanism may consist of a torsion spring mounted on an axis fixing stud parallel to said axis of symmetry, and provided with a fixed end relative to the body of said rocket, and a movable end coupled to said centrifugal lever to bias it into the unlocked position.
  • Said self-destruct device may further comprise a storage lever pivotally mounted around a pivot axis parallel to said axis of symmetry, between an active position in which it blocks said centrifugal lever in an unlocked position corresponding to said storage position, and a passive position in which it disappears relative to said centrifugal lever when the latter moves into a locked position corresponding to said armed position.
  • Said storage lever can advantageously comprise a locking tab arranged to lock said primer holder in a safety position corresponding to said storage position, when said storage lever is in an active position.
  • Said storage lever and said centrifugal lever may respectively comprise self-locking means arranged to cooperate only when said storage lever is in an active position and said centrifugal lever is in an unlocked position.
  • Said self-locking means can be provided respectively in an end zone of said storage lever opposite its pivot axis and in an end zone of said centrifugal lever opposite its pivot axis, and said storage levers storage and centrifugal can be arranged to pivot around their respective pivot axis in opposite directions of rotation under the effect of said centrifugal force of the projectile.
  • Said self-locking means may comprise a blocking tooth provided on one of the storage or centrifugal levers, and a blocking notch provided on the other of the centrifugal or storage levers, the blocking tooth being arranged to escape from the notch blocking when said centrifugal lever moves into a locked position, which is only possible in said armed position.
  • the body of said rocket comprises an impact disc coaxial with the axis of symmetry, arranged between its top and the striker holder, and arranged to deform in the event of direct impact of the projectile on a target, and fold said striker holder onto the primer holder to impact the primer.
  • the invention is more particularly interested in gyrating grenades, which are projectiles 1 substantially in the shape of an ogive, rotating on themselves around an axis of rotation coincident with the axis of symmetry A of the projectile. This rotation allows increased stability of the projectile in flight by gyroscopic effect.
  • projectile which applies to any type of projectiles, ammunition, grenades, and the like.
  • Projectile 1 shown in figure 1 comprises from bottom to top, a cartridge 2 which contains a propelling charge, an ammunition body 3 which contains an explosive charge, and a fuse 4 which contains a striker 5 associated with a striker holder 14, an associated percussion primer 6 to a primer holder 60 and a self-destruct device 7.
  • a cartridge 2 which contains a propelling charge
  • an ammunition body 3 which contains an explosive charge
  • a fuse 4 which contains a striker 5 associated with a striker holder 14, an associated percussion primer 6 to a primer holder 60 and a self-destruct device 7.
  • the projectile 1 will not be described in more detail, because it is not the subject of the invention as such. In addition, it may have a composition or constitution other than that described and illustrated in the figure 1 .
  • the primer holder 60 will not be described in detail, because it is not the subject of the invention as such, and may have a construction other than that illustrated in the figures 13 , 14 and 15 .
  • the primer holder 60 has a safety function which is ensured by maintaining mechanically misalign the primer 6 of the pyrotechnic chain.
  • the axis of the pyrotechnic chain coincides with the axis of symmetry A or axis of rotation of the projectile 1.
  • the invention is more particularly interested in the rocket 4 and the self-destruct device 7 which it contains.
  • This rocket 4 can also be suitable for any type of rotating projectile. It is shown in partial section in the figure 2 . It comprises a hollow body delimiting a closed interior volume, and is made up of a substantially cylindrical base 8, and a cap 9 substantially semi-spherical or in the shape of an ogive.
  • the cover 9 is superimposed on the base 8 by means of an O-ring 10 (see axial section of the base 8 in the figures 11 And 12 ).
  • the two parts 8 and 9 are assembled together by any compatible process, such as crimping, bonding, welding.
  • the base 8 of the rocket 4 has in its center a through housing (not shown) to receive the upper part of the ammunition body 3 communicating with the primer 6 making it possible to initiate a pyrotechnic chain which will activate the explosive charges and cause the destruction of projectile 1.
  • the cap 9 of the rocket 4 comprises an impact disk 11, coaxial with the axis of symmetry A, placed in line with the striker 5 and the primer 6 when the device AD is in the armed position.
  • the cap 9 will deform, causing with it a deformation of the impact disk 11.
  • This impact disk 11 is specially designed so that all possible deformations of the cap generate a sudden descent of the striker 5 towards the primer 6.
  • the impact disk 11 has a generally conical shape and is always deformed so as to when its center collapses, it presses on the striker 5, which strikes the primer 6, which initiates the pyrotechnic chain.
  • the rocket 4 comprises a plate 12 perpendicular to the axis of symmetry A, delimiting in the interior volume of the rocket 4 an upper part, in which the striker holder 14 and the self-destruct device 7 are housed, and a lower part in which the primer holder 60 and its actuation mechanism are housed.
  • the striker holder 14 is associated with an inertial mass 16, which is pivotally mounted around the same balance axis 15, while constituting a mechanically distinct part. It has a U-shaped stirrup shape and is positioned below one end of the striker holder 14 opposite the striker 5.
  • the inertial mass 16 and the striker holder 14 intersect at a right angle. They may include complementary interlocking shapes to be linked together at least temporarily, particularly in the percussion position. These complementary interlocking shapes can consist for example of an L-shaped end at the end of the striker holder 14 and a U-shaped recess in the center of the inertial mass 16, without these examples being limiting.
  • the center of gravity of the inertial mass 16 is eccentric outside the balance axis 15, that is to say far from the axis of symmetry A of the rocket 4.
  • the inertial mass 16 which transmits to the striker holder 14 the energy necessary for the AD function when this energy is released. But it is also sensitive to the inertia of the projectile 1 to achieve a so-called ricochet function, that is to say when the angle of impact of the projectile 1 is greater than 85° NATO (function sometimes called in English " Graze effect"). Indeed, its shape and the position of its center of gravity make it extremely sensitive to the axial decelerations of the projectile 1. Its mass allows it to generate a level of energy sufficient to initiate the primer 6. Its role is to further increase the reactivity of the self-destruct device 7 of the invention.
  • the self-destruct device 7 is a mechanical device designed to use these two phenomena as sources of energy for its operation. It is activated from the start of the shot and stores the energy necessary for the AD function. This energy, called kinetic energy, is stored mechanically at the start of the shot and is kept stored by centrifugal effects throughout the flight of projectile 1. From the moment the rotation speed of projectile 1 falls below a certain threshold, the effects centrifugal forces are no longer sufficient to maintain the stored kinetic energy. Without the necessary centrifugal effects, the stored kinetic energy of self-destruction is then released and the explosive charge is initiated.
  • the AD mechanism 20 comprises an inertial body 21, a return member 23, a sleeve 22 and a lock 24.
  • the inertial body 21 extends axially on an axis B parallel to the axis of symmetry A of the rocket 4, below and to the right of inertial mass 16. In the example shown, it has a cylindrical shape, without this shape being limiting.
  • the mass and the axial position of the inertial body 21 make it extremely sensitive to the axial acceleration of the projectile 1. Its mass also allows it to generate, in combination with the inertial mass 16, a level of energy sufficient to initiate the primer 6, as explained further away.
  • the return member 24 is arranged coaxially with the axis B, between the inertial body 21 and the bottom of the blind bore 25. It can consist of a helical spring, without this example being limiting, and is arranged to secure the inertial body 21 upwards in the direction of the inertial mass 16.
  • the lock 24 is in the example shown consisting of an elastic ring, trapped in an annular groove 26 formed in a central zone of the inertial body 21.
  • the sleeve 22 includes in its interior geometry a compression ramp 27 followed by a notch d stop 28 cooperating with the lock 24 as explained below.
  • THE figures 4 to 6 show the kinematics of the AD 20 mechanism passing from a storage position ( fig. 4 ) to an armed position ( fig. 6 ) under the effect of the linear acceleration of the projectile 1 at the start of the shot.
  • the socket 22 In the storage position, when the projectile 1 is at rest, the socket 22 is pressed into the blind bore 25 of the plate 12, the return member 23 is relaxed and the inertial body 21 protrudes from the plate 12 and in contact with the inertial mass 16, itself in contact with the striker holder 14 held in the lowered position.
  • the linear acceleration of the projectile 1 in a direction represented by the arrow F instantly generates the axial displacement of the inertial body 21 in an opposite direction represented by the arrow G against the return member 23 ( fig. 5 ).
  • the inertial body 21 sinks into the socket 22, compressing the return member 23 which stores kinetic energy until it reaches the armed position ( fig. 6 ).
  • the return member 23 is compressed to its maximum and constitutes a reserve of kinetic energy capable of ensuring the AD function of the self-destruct device 7.
  • the lock 24 on board with the inertial body 21 descends along the interior wall of the sleeve 22, as the compression ramp 27 passes ( fig.
  • the inertial body 21 and the socket 22 are then closely linked by the lock 24 and form an inseparable whole. In the event of loss of linear acceleration, the inseparable assembly "inertial body 21 and socket 22" will rise under the effect of the return member 23, as explained with reference to the figure 12 .
  • the socket 22 and the lock 24 are not essential, but provide additional security.
  • the fact of separating these two parts: the inertial body 21 and the socket 22, allows the self-destruct device 7 to guarantee both that no energy is stored in the rocket 4 before the start of the shot but also that the AD mechanism 20 is always locked by the locking lever 31 described below, whatever the firing situation. Furthermore, in the storage position, when the self-destruct device 7 is secure, the protruding position of the inertial body 21 prevents the locking lever 31 from rotating ( fig. 3 And 4 ). The angular acceleration has no effect on the locking lever 31 as long as the inertial body 21 has not sunk into the socket 22 under the effect of the linear acceleration at the start of the blow. This security requires a combination of two ballistic phenomena simultaneously to be lifted: linear acceleration for the inertial body 21 and centrifugal effect for the locking lever 31.
  • the safety mechanism 30 comprises a locking lever 31, a centrifugal mass 32 and a return member 33.
  • the locking lever 31 is a flat part which is elongated in a plane perpendicular to the axis of symmetry A of the rocket 4. It is mounted pivoting around a pivot axis C parallel and distant from the axis of symmetry A, arranged in the environment close to the mechanism AD 20. It has two segments arranged on either side of its axis pivoting C: a first segment 31a which carries at its end the centrifugal mass 32 and a second segment 31b which forms a locking stop by superimposing itself above the inertial body 21 of the AD mechanism 20 when it is in the armed position ( fig. 6 ).
  • the length of the first segment 31a is greater than the length of the second segment 31b, to increase the lever arm on the side of the centrifugal mass 32.
  • the centrifugal mass 32 has a cylindrical shape with axis D, without this shape being limiting. Its shape, its mass and its position distant from the axis of symmetry At the make it particularly sensitive to the centrifugal force of the projectile 1.
  • the return member 33 is in the example shown made up of a torsion spring, the central part 33a of which is mounted on a stud 34 fixed on the plate 12, forming with the pivot axis C of the locking lever 31 and the axis D of the centrifugal mass 32 a triangle.
  • One of the end branches 33b of the return member 33 is fixed to the plate 12 and the other end branch 33c is coupled to the centrifugal mass 32.
  • it comprises an annular groove 35 in which the branch end 33c is in sliding contact.
  • This return member 33 has the function of biasing the locking lever 31 into the unlocking position ( fig. 10 And 12 ).
  • THE figures 7 to 9 illustrate the kinematics of the safety mechanism 30 passing from a storage position ( fig. 7 ) to a locked position ( fig. 8 and 9 ) under the effect of the centrifugal force induced by the angular acceleration of the projectile 1 at the start of the shot.
  • the angular position of the locking lever 31 In the storage position, when the projectile 1 is at rest, the angular position of the locking lever 31 is such that its end forming a locking stop 31b is located outside the inertial body 21 of the AD mechanism 20, and that the centrifugal mass 32 which it carries at its other end is brought closer to the axis of symmetry A, and the return member 33 is pre-stressed.
  • the locking lever 31 moves to a peripheral stop 36 of the plate 12.
  • the locking stop 31b opposite the centrifugal mass 32, moves in the same direction S above the body inertial body 21 of the AD mechanism 20, if and only if said inertial body 21 has meanwhile moved to the armed position ( fig.
  • the locking lever 31 blocks and maintains the AD mechanism 20 in the armed position for the entire duration of the projectile's flight and as long as the rotation speed of the projectile 1 is sufficient.
  • the return member 33 is compressed and stores a reserve of kinetic energy capable of ensuring the return of the locking lever 31 to the unlocked position ( fig. 10 ), to release the self-destruct function of the AD 20 mechanism ( fig. 12 ). It is important to specify that rotation of the locking lever 31 is only possible in the event of erasure of the inertial body 21 in the armed position. Indeed, if the inertial body 21 has not undergone the effects of linear acceleration of the projectile 1, it prevents any rotation of the centrifugal lever 31.
  • the storage lever 37 has at its free end a locking notch 38 arranged to receive a locking tooth 39 of complementary shape provided on the locking lever 31.
  • the locking tooth 39 projects radially from the end of the locking lever 31 carrying the centrifugal mass 32. It further comprises a locking tab 40, opposite the locking notch 38, which extends towards the primer holder 60 to be housed in a locking notch 64 of the mechanism actuation of the primer holder 60 described below.
  • THE figures 11 And 12 represent in axial section the self-destruct device 7 respectively in the armed position and in the self-destruct position.
  • the centrifugal effects linked to its rotation maintain the locking lever 31 in the locked position ( fig. 11 ). In this position, it maintains the inseparable assembly formed by the inertial body 21 and the socket 22 in the armed position, preventing it from rising.
  • the locking lever 31 which retains the self-destruct device 7 while maintaining the centrifugal effects.
  • centrifugal effects During an impact, projectile 1 suffers a loss of rotation speed, the centrifugal effects then decrease very quickly until they disappear completely. From the moment the centrifugal effects pass below the triggering threshold of the AD function, the centrifugal force is no longer sufficient to keep the return member 33 compressed. Thus, the triggering threshold is determined by the elastic force of said return member 33.
  • the centrifugal mass 31 is then pushed towards the inside of the rocket 4 by the return member 33. It drives with it the locking lever 31 in rotation around its pivot axis C in the direction inverse represented by the arrow S'. The locking stop 31b then releases the AD mechanism 20, and the safety mechanism 30 is in the unlocked position ( fig. 10 ).
  • the inseparable assembly formed by the inertial body 21 and the sleeve 22 can rise under the effect of the return member 23 which releases the stored kinetic energy at the start of the shot.
  • the “inertial body 21 and sleeve 22” assembly moves upwards in the direction of the arrow G', and drives the inertial mass 16 which in turn rises by tilting around the axis of the balance 15 ( fig. 12 ).
  • the inertial mass 16 comes into contact with the striker holder 14 which also tilts around the balance axis 15, and carries with it the striker 5 downwards.
  • the striker 5 strikes the primer 6 which initiates the pyrotechnic chain activating the explosive charge of the projectile 1.
  • the projectile 1 is then destroyed by the self-destruct device 1 as soon as the rotation speed falls below a certain threshold.
  • the primer holder 60 is movable in rotation around an axis of rotation P parallel and distant from the axis of symmetry A. It is associated with an actuation mechanism which comprises at least a pair of inertial locks 62, a segment motor 63 and a timing train 65.
  • the primer holder 60 is mechanically independent of the motor segment 63, which allows the projectile 1 to remain safe over a defined safety distance.
  • the pair of inertial locks 62 constitutes security for the actuation mechanism, which only reacts to the linear acceleration of the projectile 1. Thus, it blocks the rotation of the motor segment 63 and the primer holder 60 as long as the shot was not made.
  • Engine segment 63 is an eccentric mass which reacts strongly to centrifugal effects. When it is subjected to the centrifugal effects of the projectile 1 after the start of the shot, it begins a rotation around its axis of rotation P. This rotation is subject to the fact that the storage lever 37 of the self-destruct device 7 has moved into position. passive position ( fig. 9 And 10 ) and that the locking tab 40 has moved away from the locking notch 64 provided on the motor segment 63.
  • the speed of rotation of the motor segment 63 is regulated by a set of gear trains or timing trains 65. rotational stroke of the motor segment 63 is carried out in two parts. A first so-called “regulated” part in which the motor segment 63 drives the timekeeping train 65 over the defined safety distance.
  • the primer holder 60 does not move and the primer 6 remains in the safety position in which it is offset. And a second so-called “instantaneous” part which begins the second the last tooth of the motor segment 63 detaches from the timing train 65. At this moment, the defined safety distance is exceeded, the motor segment 63 is no longer braked and can complete its travel almost instantly. It carries with it the primer holder 60 and instantly aligns the primer 6 in the axis of symmetry A.
  • the operation of the actuation mechanism associated with the primer holder 60 is simple and the self-destruct device 7 according to the invention contributes to maintaining the safety of this mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Toys (AREA)
  • Fuses (AREA)
  • Air Bags (AREA)

Description

    Domaine technique :
  • La présente invention concerne une fusée comportant un dispositif d'autodestruction pour projectile giratoire, ladite fusée étant constituée d'un corps creux, défini par un axe de symétrie confondu avec l'axe de rotation dudit projectile, et comportant un percuteur associé à un porte-percuteur, une amorce associée à un porte-amorce, et un dispositif d'autodestruction agencé pour coopérer avec ledit porte-percuteur et ledit porte-amorce pour générer successivement une première position dite « position de stockage » avant le tir du projectile, dans laquelle l'amorce est désalignée par rapport au percuteur, une deuxième position dite « position intermédiaire » au départ du coup, dans laquelle le porte-percuteur est éloigné du porte-amorce, une troisième position dite « position armée » pendant le vol du projectile, dans laquelle l'amorce est alignée sur le percuteur, et une quatrième position dite « position d'autodestruction » à la fin du vol, dans laquelle le porte-percuteur est rabattu sur le porte-amorce de sorte que le percuteur frappe l'amorce et initie la chaine pyrotechnique contenue dans le projectile.
  • Technique antérieure :
  • Dans le domaine des projectiles tirés avec différentes armes à feu aussi bien terrestres qu'aériennes, il est connu d'équiper les fusées détonateurs (têtes des projectiles comportant le percuteur, l'amorce et la charge explosive) d'un dispositif d'autodestruction destiné à provoquer l'explosion de ces projectiles après un laps de temps déterminé s'ils n'ont pas touché de cible, ceci pour éviter de les laisser armés dans la nature risquant d'exploser à tout moment et de blesser des innocents.
  • L'invention s'intéresse uniquement aux projectiles giratoires, c'est à dire qui sont tirés par des armes à canons rayés hélicoïdalement pour imprimer aux projectiles un mouvement gyroscopique sur eux-mêmes combiné à une trajectoire linéaire.
  • Dans ce cas, on peut utiliser la force centrifuge du projectile pendant le tir pour activer des dispositifs d'autodestruction mécaniques, en libérant l'énergie cinétique nécessaire à la percussion préalablement emmagasinée dans un système à ressort, comme dans les publications EP2102581B1 , EP1155279B1 , EP1500902B1 et FR2489956B1 . Néanmoins, le fait de stocker l'énergie cinétique durant la durée de vie du projectile préalablement au tir (en position de stockage) est une source de danger permanente pour les personnes et n'est pas conforme aux normes en vigueur (STANAG 4187). En outre, certains de ces dispositifs ne fonctionnent qu'avec des vitesses de rotation très élevées, par exemple 70.000 tr/mn, et ne sont pas adaptés à des vitesses plus faibles telles que 15.000 tr/mn. De plus, la fiabilité et la reproductibilité de ces dispositifs sont difficilement maîtrisables.
  • On peut également utiliser l'accélération du projectile au départ du coup pour activer des dispositifs d'autodestruction mécaniques, en emmagasinant l'énergie cinétique nécessaire à la percussion dès le départ du coup, puis la force centrifuge du projectile pendant le tir pour maintenir l'équilibre du mécanisme d'autodestruction, comme dans les publications EP2941620B1 et WO2007137444A1 . Même si ces dispositifs d'autodestruction sont conformes aux normes en vigueur (STANAG 4187), ils sont moins réactifs en cas d'impact direct, c'est-à-dire en fonctionnement normal de la fusée. En effet, ils ne disposent pas de fonction d'impact direct par déformation de la coiffe. En outre, en cas d'impact de biais (par exemple 60° NATO*), ces dispositifs d'autodestruction peuvent se désaxer ou se déformer et ne pas fonctionner, ou fonctionner en mode dégradé, nuisant gravement à la sécurité des personnes. *(Le « degré NATO » est l'angle d'incidence de l'impact d'une munition par rapport à la normale de la cible : 0° NATO représente un impact direct sur cible, soit une orientation de la munition à l'impact de 90° par rapport à la cible).
  • L'invention s'intéresse particulièrement aux grenades de 40mm qui sont des grenades pouvant être tirées depuis un canon spécifique, mais ne sont pas plus puissantes que des grenades à main. Les grenades de 40 mm sont des grenades standard, mais il existe également des grenades de 20 mm et 37 mm pour des armes spécialisées. L'invention n'est bien entendu pas limitée à ce type de munition, et s'étend à toute autre munition ou projectile giratoire.
  • Les dispositifs d'autodestruction actuels sur ce type de grenades sont essentiellement pyrotechniques, comme dans l'exemple de la publication WO2005111533A1 . Lors du tir d'une grenade, l'accélération et/ou la rotation du départ du projectile dans le canon actionnent un mécanisme qui va directement initier un retard pyrotechnique. Un retard pyrotechnique est un élément contenant des substances chimiques, capable de réaction détonante ou déflagrante à la suite d'une initiation mécanique, souvent via une pointe de percuteur. Ces dispositifs ne sont pas fiables dans le temps à cause des composants pyrotechniques qui sont sensibles à l'humidité et aux différences de température. Ils encourent donc un risque d'obsolescence non contrôlé. La précision et la fiabilité de ces dispositifs sont aléatoires et difficilement reproductibles. En outre, le retard pyrotechnique se caractérise par une durée définie et non modifiable entre l'instant de son initiation et celui de la réaction pyrotechnique attendue, souvent une détonation. Ainsi, suite au départ du coup (le tir de la munition ou du projectile), le retard pyrotechnique commence le décompte et à la fin de sa durée détonne. La durée du retard pyrotechnique est dimensionnée de manière à permettre au projectile d'atteindre une cible à distance maximale. Généralement, la détonation de la charge principale du projectile est initiée par l'action mécanique de l'impact de la fusée sur une cible. L'autodestruction du projectile intervient lorsque la cible est manquée et que l'impact ne génère pas de détonation de la charge principale. Dans ce cas de figure, le projectile tombe au sol et c'est le retard pyrotechnique qui initie la charge principale à la fin de sa durée.
  • Or, la durée définie par le retard pyrotechnique peut être de plusieurs secondes à quelques dizaines de secondes en fonction des modèles. La limite de cette technologie est la dépendance directe entre l'autodestruction du projectile et une durée définie par le retard pyrotechnique. Cette dépendance diminue la réactivité du dispositif d'autodestruction et peut engendrer une mise en danger des personnes. En effet, une munition tombée au sol après un tir manqué explosera quelques secondes ou quelques dizaines de seconde après s'être stabilisée à terre représentant un danger pour l'utilisateur qui aurait progressé et rejoint le point de chute de la munition avant la fin du retard pyrotechnique.
  • Présentation de l'invention :
  • La présente invention vise à pallier ces inconvénients en proposant un dispositif d'autodestruction mécanique pour une fusée de projectile giratoire, répondant aux normes en vigueur (STANAG 4187), indépendant d'une durée, sans stockage d'énergie préalable au tir, réactif et flexible, c'est-à-dire adapté à toutes les situations de tir, capable ainsi de garantir un niveau très élevé de sécurité pour l'utilisateur et son entourage en supprimant le risque qu'un projectile actif reste au sol. L'invention propose en outre un dispositif d'autodestruction de conception fiable, reproductible, et pouvant se superposer ou se combiner à d'autres moyens de percussion prévus dans la fusée pour augmenter encore son niveau de fiabilité.
  • Dans ce but, l'invention concerne une fusée selon la revendication 1.
  • L'avantage principal de ce dispositif d'autodestruction est sa réactivité. Lors d'un impact, quel que soit l'angle d'impact, que cet impact soit sur une cible ou au sol, la perte en vitesse de rotation du projectile est rapide. Cette baisse subite de vitesse de rotation permet un déclenchement immédiat du dispositif d'autodestruction, c'est-à-dire sans inertie, augmentant le niveau de fiabilité et permettant d'atteindre un niveau de sécurité très élevé pour les personnes.
  • Grâce à sa configuration, ce dispositif d'autodestruction, qui est sensible à la perte d'effets centrifuges, peut être couplé à un système de mise à feu de type ricochet, sensible aux pics de décélération de vol, ainsi qu'à un dispositif de mise à feu par déformation de la coiffe de la fusée en cas d'impact direct, lors du fonctionnement « normal » de la fusée, permettant ainsi une réactivité maximale pour tous les cas de figures rencontrés dans le domaine de la balistique.
  • Dans une forme préférée de l'invention, le corps inertiel dudit mécanisme AD s'étend sur un axe parallèle audit axe de symétrie de sorte que l'axe de balancier dudit porte-percuteur est positionné entre les deux axes, ledit corps inertiel est mobile dans son axe entre une position sortie dans laquelle il pousse le porte-percuteur en direction du porte-amorce, et une position rentrée dans laquelle il libère le porte-percuteur, ladite position sortie correspondant aux positions de stockage et d'autodestruction, et ladite position rentrée correspondant aux positions intermédiaire et armée, ledit corps inertiel est agencé pour se déplacer dans un sens opposé au sens de l'accélération linéaire du projectile d'une position sortie à une position rentrée en comprimant ledit organe de rappel pour stocker l'énergie cinétique axiale au départ du coup, et ledit organe de rappel est agencé pour déplacer ledit corps inertiel en sens contraire d'une position rentrée à une position sortie en se décomprimant pour restituer ladite énergie cinétique axiale emmagasinée à la fin du tir.
  • Ledit percuteur est avantageusement porté à une extrémité dudit porte-percuteur située à l'opposé dudit corps inertiel par rapport audit axe de balancier, et ledit porte-amorce comporte avantageusement un logement distant de ladite amorce, ledit logement étant agencé pour être aligné sur ledit percuteur dans lesdites positions de stockage et intermédiaire, de sorte qu'en position de stockage, ledit porte-percuteur est rabattu vers ledit porte-amorce, et ledit percuteur pénètre dans ledit logement et bloque ledit porte-amorce.
  • De manière préférentielle, ledit dispositif d'autodestruction comporte en outre une masse inertielle montée pivotante autour dudit axe de balancier, constituée d'une pièce séparée dudit porte-percuteur, disposée entre ledit corps inertiel et ledit porte-percuteur et agencée pour transmettre audit porte-percuteur soit l'énergie cinétique axiale restituée par ledit mécanisme AD dans ladite position d'autodestruction, soit l'énergie cinétique propre que ladite masse inertielle a elle-même emmagasinée et qu'elle restitue en cas de forte décélération linéaire dudit projectile lors d'un impact.
  • Dans la forme préférée de l'invention, le levier centrifuge dudit mécanisme de sécurité est monté pivotant autour d'un axe de pivotement parallèle audit axe de symétrie, entre une position déverrouillée dans laquelle il libère le corps inertiel et une position verrouillée dans laquelle il bloque le corps inertiel dans une position rentrée, la position déverrouillée correspondant auxdites positions de stockage et d'autodestruction, et la position verrouillée correspondant à ladite position armée, ledit levier centrifuge est agencé pour se déplacer radialement dans un sens d'une position déverrouillée à une position verrouillée sous les effets centrifuges du projectile en comprimant ledit organe de rappel pour stocker de l'énergie cinétique radiale pendant le vol, et ledit organe de rappel est agencé pour déplacer ledit levier centrifuge en sens contraire d'une position verrouillée à une position déverrouillée en se décomprimant pour restituer ladite énergie cinétique radiale emmagasinée à la fin du tir dès lors que la force centrifuge est inférieure à la force élastique dudit organe de rappel.
  • Le levier centrifuge dudit mécanisme de sécurité peut comporter avantageusement deux segments disposés de part et d'autre de son axe de pivotement, un premier segment pouvant porter une masse centrifuge, et un second segment formant une butée de verrouillage pour bloquer le corps inertiel dans une position rentrée, l'axe de pivotement étant proche de l'axe dudit corps inertiel de sorte que la longueur dudit premier segment est supérieure à longueur dudit second segment.
  • L'organe de rappel dudit mécanisme de sécurité peut être constitué d'un ressort de torsion monté sur un plot de fixation d'axe parallèle audit axe de symétrie, et pourvu d'une extrémité fixe par rapport au corps de ladite fusée, et d'une extrémité mobile couplée audit levier centrifuge pour le solliciter en position déverrouillée.
  • Ledit dispositif d'autodestruction peut en outre comporter un levier de stockage monté pivotant autour d'un axe de pivotement parallèle audit axe de symétrie, entre une position active dans laquelle il bloque ledit levier centrifuge dans une position déverrouillée correspondant à ladite position de stockage, et une position passive dans laquelle il s'efface par rapport audit levier centrifuge lorsque ce dernier se déplace dans une position verrouillée correspondant à ladite position armée.
  • Ledit levier de stockage peut avantageusement comporter une patte de blocage agencée pour bloquer ledit porte-amorce dans une position de sécurité correspondant à ladite position de stockage, lorsque ledit levier de stockage est dans une position active.
  • Ledit levier de stockage et ledit levier centrifuge peuvent comporter respectivement des moyens autobloquants agencés pour coopérer uniquement lorsque ledit levier de stockage est dans une position active et ledit levier centrifuge est dans une position déverrouillée.
  • Lesdits moyens autobloquants peuvent être prévus respectivement dans une zone d'extrémité dudit levier de stockage à l'opposé de son axe de pivotement et dans une zone d'extrémité dudit levier centrifuge à l'opposé de son axe de pivotement, et lesdits leviers de stockage et centrifuge peuvent être agencés pour pivoter autour de leur axe de pivotement respectif dans des sens de rotation opposés sous l'effet de ladite force centrifuge du projectile. Lesdits moyens autobloquants peuvent comporter une dent de blocage prévue sur l'un des leviers de stockage ou centrifuge, et un cran de blocage prévu sur l'autre des leviers centrifuge ou de stockage, la dent de blocage étant agencée pour s'échapper du cran de blocage lorsque ledit levier centrifuge se déplace dans une position verrouillée, qui n'est possible que dans ladite position armée.
  • Dans la forme préférée de l'invention, le corps de ladite fusée comporte un disque d'impact coaxial à l'axe de symétrie, disposé entre son sommet et le porte-percuteur, et agencé pour se déformer en cas d'impact direct du projectile sur une cible, et rabattre ledit porte-percuteur sur le porte-amorce pour percuter l'amorce.
  • Brève description des figures :
  • La présente invention et ses avantages apparaîtront mieux dans la description suivante de plusieurs modes de réalisation donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, dans lesquels:
    • la figure 1 est une vue en perspective d'un projectile pourvu d'une fusée selon l'invention,
    • la figure 2 est une vue en perspective et en coupe partielle de la fusée du projectile de la figure 1, équipée d'un dispositif d'autodestruction selon l'invention,
    • la figure 3 est une vue en perspective des parties principales du mécanisme d'autodestruction seul équipant la fusée de la figure 2,
    • la figure 4 est une vue en coupe axiale d'un mécanisme AD faisant partie du dispositif d'autodestruction de la figure 3, en position de stockage,
    • la figure 5 est une vue similaire à la figure 4 du mécanisme AD dans une position intermédiaire,
    • la figure 6 est une vue similaire à la figure 4 du mécanisme AD en position armée,
    • la figure 7 est une vue de dessus d'un mécanisme de sécurité faisant partie du dispositif d'autodestruction de la figure 3, en position de stockage,
    • la figure 8 est une vue similaire à la figure 7 du mécanisme de sécurité dans une position intermédiaire,
    • la figure 9 est une vue similaire à la figure 7 du mécanisme de sécurité en position verrouillée,
    • la figure 10 est une vue similaire à la figure 7 du mécanisme de sécurité en position déverrouillée,
    • la figure 11 est une vue en coupe axiale du dispositif d'autodestruction de la figure 3 en position armée,
    • la figure 12 est une vue similaire à la figure 11 du dispositif d'autodestruction en position d'autodestruction,
    • la figure 13 est une vue en perspective du porte-amorce et d'une partie du mécanisme d'autodestruction équipant la fusée de la figure 2, en position de stockage,
    • la figure 14 est une vue similaire à la figure 13, en position armée,
    • la figure 15 est une vue similaire à la figure 13, en position d'autodestruction.
    Description détaillée de l'invention :
  • Dans l'exemple de réalisation illustré, les éléments ou parties identiques portent les mêmes numéros de référence. En outre, les termes qui ont un sens relatif, tels que vertical, horizontal, droite, gauche, avant, arrière, au-dessus, en-dessous, intérieur, extérieur, etc. doivent être interprétés dans des conditions normales d'utilisation de l'invention, et telles que représentées sur les figures.
  • L'invention s'intéresse plus particulièrement aux grenades girantes, qui sont des projectiles 1 sensiblement en forme d'ogive, tournent sur elles-mêmes autour d'un axe de rotation confondu avec l'axe de symétrie A du projectile. Cette rotation permet une stabilité accrue du projectile en vol par effet gyroscopique. Dans la suite de la description, on utilise le terme générique « projectile » qui s'applique à tout type de projectiles, munitions, grenades, et similaires. Le projectile 1 représenté à la figure 1 comporte du bas vers le haut, une cartouche 2 qui contient une charge propulsive, un corps de munition 3 qui contient une charge explosive, et une fusée 4 qui contient un percuteur 5 associé à un porte-percuteur 14, une amorce 6 à percussion associé à un porte-amorce 60 et un dispositif d'autodestruction 7. Ces différents étages sont assemblés entre eux par tout procédé approprié, tel que sertissage, collage, soudage. Dans la suite de la description, on utilise en tout ou partie l'abréviation « AD » pour remplacer le terme « autodestruction ».
  • Le projectile 1 ne sera pas décrit plus en détail, car il ne fait pas l'objet en tant que tel de l'invention. En outre, il peut présenter une autre composition ou constitution que celle décrite et illustrée à la figure 1. De même le porte-amorce 60 ne sera pas décrit en détail, car il ne fait pas l'objet de l'invention en tant que tel, et peut présenter une autre construction que celle illustrée dans les figures 13, 14 et 15. De manière connue, le porte-amorce 60 a une fonction de sécurité qui est assurée par le fait de maintenir désaligner mécaniquement l'amorce 6 de la chaîne pyrotechnique. L'axe de la chaine pyrotechnique est confondu avec l'axe de symétrie A ou axe de rotation du projectile 1. Pour cette raison, il est associé à un mécanisme d'actionnement qui maintient l'amorce 6 désaxée ou désalignée pendant les phases de transport, de manutention et même de tir. Ce n'est qu'après avoir détecté et réagi aux événements balistiques d'un tir (accélérations linéaire et angulaire conjuguées) que les sécurités prévues dans le mécanisme autorisent le porte-amorce 60 à se mouvoir.
  • L'invention s'intéresse plus particulièrement à la fusée 4 et au dispositif d'autodestruction 7 qu'elle contient. Cette fusée 4 peut en outre convenir à tout type de projectile girant. Elle est représentée en coupe partielle dans la figure 2. Elle comporte un corps creux délimitant un volume intérieur fermé, et est constituée d'un socle 8 sensiblement cylindrique, et d'une coiffe 9 sensiblement semi-sphérique ou en forme d'ogive. La coiffe 9 est superposée au socle 8 au moyen d'un joint torique 10 (voir coupe axiale du socle 8 dans les figures 11 et 12). Les deux parties 8 et 9 sont assemblées entre elles par tout procédé compatible, tel que sertissage, collage, soudage.
  • Le socle 8 de la fusée 4 comporte en son centre un logement traversant (non représenté) pour recevoir la partie haute du corps de munition 3 communiquant avec l'amorce 6 permettant d'initier une chaîne pyrotechnique qui va activer les charges explosives et provoquer la destruction du projectile 1.
  • La coiffe 9 de la fusée 4 comporte un disque d'impact 11, coaxial à l'axe de symétrie A, disposé au droit du percuteur 5 et de l'amorce 6 lorsque le dispositif AD est en position armée. Lors d'un impact direct (de 0° à 60° NATO), la coiffe 9 va se déformer, entraînant avec elle une déformation du disque d'impact 11. Ce disque d'impact 11 est spécialement conçu pour que toutes les déformations possibles de la coiffe engendrent une descente brutale du percuteur 5 en direction de l'amorce 6. En effet, le disque d'impact 11 présente une forme générale conique et se déforme toujours de manière à ce que son centre s'affaisse, appuie sur le percuteur 5, qui frappe l'amorce 6, laquelle initie la chaîne pyrotechnique.
  • La fusée 4 comporte une platine 12 perpendiculaire à l'axe de symétrie A, délimitant dans le volume intérieur de la fusée 4 une partie supérieure, dans laquelle sont logés le porte-percuteur 14 et le dispositif d'autodestruction 7, et une partie inférieure dans laquelle sont logés le porte-amorce 60 et son mécanisme d'actionnement.
  • Le dispositif d'autodestruction 7 de l'invention est conçu pour coopérer avec le porte-percuteur 14 et le porte-amorce 60 pour placer le projectile 1 dans les positions successives suivantes:
    • une première position dite « position de stockage » dans laquelle le projectile 1 est au repos pendant toutes les phases qui précèdent le tir, dans laquelle l'amorce 6 est désalignée par rapport au percuteur 5,
    • une deuxième position dite « position intermédiaire » au départ du coup, dans laquelle le porte-percuteur 14 est éloigné du porte-amorce 60,
    • une troisième position dite « position armée » pendant le vol du projectile, dans laquelle l'amorce 6 est alignée sur le percuteur 5, et
    • une quatrième position dite « position d'autodestruction » à la fin du vol, dans laquelle le porte-percuteur 14 est rabattu sur le porte-amorce 60 de sorte que le percuteur 5 frappe l'amorce 6, initie la chaine pyrotechnique et détruit le projectile 1.
  • Dans l'exemple représenté et en référence à la figure 3, le porte-percuteur 14 est monté pivotant autour d'un axe de balancier 15 perpendiculaire à l'axe de symétrie A de la fusée 4. Il comporte à une extrémité située du côté de l'amorce 6, le percuteur 5 en forme d'aiguille. Le porte-percuteur 14 peut adopter successivement :
    • une position de stockage (fig. 2, 3, 13), correspondant à la position de stockage du projectile 1, dans laquelle il ne subit aucune sollicitation, il est abaissé en direction du porte-amorce 60 et la pointe du percuteur 5 est reçue dans un logement 61 distant de l'amorce 6 pour empêcher le porte-amorce 60 de tourner et maintenir le projectile 1 dans une position de sécurité,
    • une position d'attente (fig. 11 et 14), pendant toute la durée des positions intermédiaire et armée du projectile 1, dans laquelle il est sollicité par des effets centrifuges du projectile 1, se relève et s'éloigne du porte-amorce 60, et le percuteur 5 libère le porte-amorce 60 qui peut tourner, et
    • une position de percussion (fig.12 et 15), dans la position d'autodestruction du projectile 1, dans laquelle il est sollicité par le mécanisme AD 20 (décrit plus loin) et abaissé en direction du porte-amorce 60 qui a tourné pour aligner l'amorce 6 sur le percuteur 5, et le percuteur 5 peut frapper l'amorce 6 pour initier la chaine pyrotechnique.
  • Le porte-percuteur 14 est associé à une masse inertielle 16, qui est montée pivotante autour du même axe de balancier 15, tout en constituant une pièce mécaniquement distincte. Elle a une forme d'étrier en U et est positionnée en-dessous d'une extrémité du porte-percuteur 14 opposée au percuteur 5. La masse inertielle 16 et le porte-percuteur 14 se croisent en angle droit. Ils peuvent comporter des formes d'emboîtement complémentaires pour être liés entre eux au moins temporairement notamment dans la position de percussion. Ces formes d'emboîtement complémentaires peuvent être constituées par exemple d'une extrémité en L à l'extrémité du porte-percuteur 14 et d'un évidement en U au centre de la masse inertielle 16, sans que ces exemples ne soient limitatifs. Le centre de gravité de la masse inertielle 16 est excentré à l'extérieur de l'axe de balancier 15, c'est à dire éloigné de l'axe de symétrie A de la fusée 4.
  • Comme on le verra plus loin en référence aux figures 12 et 15, c'est la masse inertielle 16 qui transmet au porte-percuteur 14, l'énergie nécessaire à la fonction AD lorsque cette énergie est relâchée. Mais elle est également sensible à l'inertie du projectile 1 pour réaliser une fonction dite de ricochet, c'est-à-dire lorsque l'angle d'impact du projectile 1 est supérieur à 85° NATO (fonction parfois appelée en anglais « Graze effect »). En effet, sa forme et la position de son centre de gravité la rendent extrêmement sensible aux décélérations axiales du projectile 1. Sa masse lui permet de générer un niveau d'énergie suffisant pour initier l'amorce 6. Son rôle est d'augmenter encore la réactivité du dispositif d'autodestruction 7 de l'invention. En effet, si le projectile 1 n'atteint pas sa cible, et que sa décélération est suffisante, alors la masse inertielle 16 remonte par inertie contre le porte-percuteur 14, fait basculer le porte-percuteur 14 autour de l'axe de balancier 15 passant de sa position d'attente à sa position de percussion dans laquelle il frappe l'amorce 6. Cette fonction de mise à feu court-circuite alors le dispositif d'autodestruction 7, qui doit attendre une perte d'effet centrifuge pour s'enclencher, comme détaillé plus loin.
  • Lors de l'initiation du lancement d'un projectile 1, appelée « départ du coup », des phénomènes balistiques sont transmis à la fusée 4. Il s'agit de deux phénomènes conjugués d'accélération linéaire et d'accélération angulaire. Le dispositif d'autodestruction 7 selon l'invention est un dispositif mécanique conçu pour utiliser ces deux phénomènes comme sources d'énergie pour son fonctionnement. Il est activé dès le départ du coup et emmagasine l'énergie nécessaire à la fonction AD. Cette énergie, appelée énergie cinétique, est stockée mécaniquement au départ du coup et est maintenue stockée par les effets centrifuges durant tout le vol du projectile 1. Dès l'instant où la vitesse de rotation du projectile 1 passe sous un certain seuil, les effets centrifuges ne sont plus suffisants pour maintenir l'énergie cinétique stockée. Sans les effets centrifuges nécessaires, l'énergie cinétique stockée d'autodestruction est alors relâchée et la charge explosive est initiée.
  • En référence aux figures 2 et 3, le dispositif d'autodestruction 7 comporte un mécanisme AD 20 agencé pour exploiter le premier phénomène qui est l'accélération linéaire. Il est conçu pour adopter successivement :
    • une position de stockage, qui correspond à la position de stockage du projectile 1, dans laquelle il maintient le porte-percuteur 14 abaissé et empêche le porte-amorce 60 de tourner,
    • une position armée, pendant toute la durée des positions intermédiaire et armée du projectile 1, dans laquelle il emmagasine de l'énergie cinétique sous l'effet de l'accélération linéaire du projectile 1 au départ du coup, et permet au porte-percuteur 14 de se relever en position d'attente, et
    • une position d'autodestruction dans laquelle il restitue l'énergie cinétique emmagasinée en déplaçant le porte-percuteur 14 en position de percussion pour frapper l'amorce 6 dès que la vitesse rotation du projectile 1 passe sous un certain seuil.
  • Le mécanisme d'autodestruction 7 comporte en outre un mécanisme de sécurité 30 agencé pour exploiter le second phénomène qui est l'accélération angulaire. Il est conçu pour adopter successivement :
    • une position de stockage, qui correspond à la position de stockage du projectile 1, dans laquelle il n'a pas d'effet sur le mécanisme AD,
    • une position verrouillée, pendant toute la durée des positions intermédiaire et armée du projectile 1, dans laquelle il maintient le mécanisme AD en position armée sous l'effet de la force centrifuge induite par la vitesse de rotation du projectile 1 dès le départ du coup et pendant toute la durée du vol, et
    • une position déverrouillée, dans la position d'autodestruction du projectile 1, dans laquelle il libère le mécanisme AD en position d'autodestruction dès que la vitesse de rotation du projectile 1 passe sous un certain seuil.
  • En référence plus particulièrement aux figures 3 à 6, le mécanisme AD 20 comporte un corps inertiel 21, un organe de rappel 23, une douille 22 et un verrou 24. Le corps inertiel 21 s'étend axialement sur un axe B parallèle à l'axe de symétrie A de la fusée 4, en dessous et au droit de la masse inertielle 16. Dans l'exemple représenté, il a une forme cylindrique, sans que cette forme ne soit limitative. La masse et la position axiale du corps inertiel 21 le rendent extrêmement sensible à l'accélération axiale du projectile 1. Sa masse lui permet également de générer en combinaison avec la masse inertielle 16 un niveau d'énergie suffisant pour initier l'amorce 6, comme expliqué plus loin. Il est logé dans la douille 22 qui est débouchante, elle-même logée dans un alésage 25 borgne prévu dans la platine 12 de la fusée 4. L'organe de rappel 24 est disposé coaxialement à l'axe B, entre le corps inertiel 21 et le fond de l'alésage borgne 25. Il peut être constitué d'un ressort hélicoïdal, sans que cet exemple ne soit limitatif, et est agencé pour assujettir le corps inertiel 21 vers le haut en direction de la masse inertielle 16. Le verrou 24 est dans l'exemple représenté constitué d'un anneau élastique, emprisonné dans une rainure annulaire 26 ménagée dans une zone médiane du corps inertiel 21. Et la douille 22 comporte dans sa géométrie intérieure une rampe de compression 27 suivie d'un cran d'arrêt 28 coopérant avec le verrou 24 comme expliqué ci-après.
  • Les figures 4 à 6 montrent la cinématique du mécanisme AD 20 passant d'une position de stockage (fig. 4) à une position armée (fig. 6) sous l'effet de l'accélération linéaire du projectile 1 au départ du coup. En position de stockage, lorsque le projectile 1 est au repos, la douille 22 est enfoncée dans l'alésage borgne 25 de la platine 12, l'organe de rappel 23 est détendu et le corps inertiel 21 est saillant de la platine 12 et en contact avec la masse inertielle 16, elle-même en contact avec le porte-percuteur 14 maintenu en position abaissée. Au départ du coup, l'accélération linéaire du projectile 1 dans un sens représenté par la flèche F, génère instantanément le déplacement axial du corps inertiel 21 dans un sens opposé représenté par la flèche G à l'encontre de l'organe de rappel 23 (fig. 5). Au cours de ce déplacement, le corps inertiel 21 s'enfonce dans la douille 22, en comprimant l'organe de rappel 23 qui emmagasine de l'énergie cinétique jusqu'à atteindre la position armée (fig. 6). En position armée, l'organe de rappel 23 est comprimé à son maximum et constitue une réserve d'énergie cinétique capable d'assurer la fonction AD du dispositif d'autodestruction 7. En même temps, le verrou 24 embarqué avec le corps inertiel 21 descend le long de la paroi intérieure de la douille 22, au passage de la rampe de compression 27 se comprime (fig. 5), et après se détend au niveau du cran d'arrêt 28 pour figer la position armée du mécanisme AD 20 (fig. 6). Le corps inertiel 21 et la douille 22 sont alors intimement liés par le verrou 24 et forme un ensemble indissociable. En cas de perte d'accélération linéaire, l'ensemble indissociable « corps inertiel 21 et douille 22 » remontera sous l'effet de l'organe de rappel 23, comme expliqué en référence à la figure 12. La douille 22 et le verrou 24 ne sont pas indispensables, mais forment une sécurité supplémentaire.
  • En effet, le fait de séparer ces deux pièces : le corps inertiel 21 et la douille 22, permet au dispositif d'autodestruction 7 de garantir à la fois qu'aucune énergie n'est stockée dans la fusée 4 avant le départ du coup mais également que le mécanisme AD 20 est toujours verrouillé par le levier de verrouillage 31 décrit ci-après et ce quelle que soit la situation de tir. De plus, en position stockage, lorsque le dispositif d'autodestruction 7 est en sécurité, la position saillante du corps inertiel 21 empêche le levier de verrouillage 31 de tourner (fig. 3 et 4). L'accélération angulaire n'a aucun effet sur le levier de verrouillage 31 tant que le corps inertiel 21 ne s'est pas enfoncé dans la douille 22 sous l'effet de l'accélération linéaire au départ du coup. Cette sécurité nécessite une combinaison des deux phénomènes balistiques simultanément pour être levée : accélération linaire pour le corps inertiel 21 et effet centrifuge pour le levier de verrouillage 31.
  • En référence à présent aux figures 3 et 7 à 9, le mécanisme de sécurité 30 comporte un levier de verrouillage 31, une masse centrifuge 32 et un organe de rappel 33. Le levier de verrouillage 31 est une pièce plate qui est allongée dans un plan perpendiculaire à l'axe de symétrie A de la fusée 4. Il est monté pivotant autour d'un axe de pivotement C parallèle et éloigné de l'axe de symétrie A, disposé dans l'environnement proche du mécanisme AD 20. Il comporte deux segments disposés de part et d'autre de son axe de pivotement C : un premier segment 31a qui porte à son extrémité la masse centrifuge 32 et un second segment 31b qui forme une butée de verrouillage en se superposant au-dessus du corps inertiel 21 du mécanisme AD 20 lorsqu'il est en position armée (fig. 6). La longueur du premier segment 31a est supérieure à longueur du second segment 31b, pour augmenter le bras de levier du côté de la masse centrifuge 32. La masse centrifuge 32 a une forme cylindrique d'axe D, sans que cette forme ne soit limitative. Sa forme, sa masse et sa position éloignée de l'axe de symétrie A la rendent particulièrement sensible à la force centrifuge du projectile 1. L'organe de rappel 33 est dans l'exemple représenté constitué d'un ressort de torsion, dont la partie centrale 33a est montée sur un plot 34 fixé sur la platine 12, formant avec l'axe de pivotement C du levier de verrouillage 31 et l'axe D de la masse centrifuge 32 un triangle. Une des branches d'extrémité 33b de l'organe de rappel 33 est fixée à la platine 12 et l'autre branche d'extrémité 33c est couplée à la masse centrifuge 32. Elle comporte à cet effet une rainure annulaire 35 dans laquelle la branche d'extrémité 33c est en contact glissant. Cet organe de rappel 33 a pour fonction de solliciter le levier de verrouillage 31 en position de déverrouillage (fig. 10 et 12).
  • Les figures 7 à 9 illustrent la cinématique du mécanisme de sécurité 30 passant d'une position de stockage (fig. 7) à une position verrouillée (fig. 8 et 9) sous l'effet de la force centrifuge induite par l'accélération angulaire du projectile 1 au départ du coup. En position de stockage, lorsque le projectile 1 est au repos, la position angulaire du levier de verrouillage 31 est telle que son extrémité formant butée de verrouillage 31b est située en dehors du corps inertiel 21 du mécanisme AD 20, et que la masse centrifuge 32 qu'il porte à son autre extrémité est rapprochée de l'axe de symétrie A, et l'organe de rappel 33 est précontraint. Au départ du coup, l'accélération angulaire du projectile 1 dans un sens (antihoraire) représenté par la flèche R autour de l'axe de symétrie A de la fusée 4, déplace la masse centrifuge 32 vers l'extérieur en l'éloignant de l'axe de symétrie A, entraînant le levier de verrouillage 31 en rotation autour de son axe de pivotement C dans un sens opposé (horaire) représenté par la flèche S à l'encontre de l'organe de rappel 33 (fig. 8 et 9). Le levier de verrouillage 31 se déplace jusqu'à une butée périphérique 36 de la platine 12. Au cours de ce déplacement, la butée de verrouillage 31b, opposée à la masse centrifuge 32, se déplace dans le même sens S au-dessus du corps inertiel 21 du mécanisme AD 20, si et seulement si ledit corps inertiel 21 est entretemps passé en position armée (fig. 6). Si le levier de verrouillage 31 a pu se déplacer, il bloque et maintient le mécanisme AD 20 en position armée pendant toute la durée du vol du projectile et tant que la vitesse de rotation du projectile 1 est suffisante. Au cours de ce déplacement, l'organe de rappel 33 est comprimé et stocke une réserve d'énergie cinétique capable d'assurer le retour du levier de verrouillage 31 en position déverrouillée (fig. 10), pour libérer la fonction d'autodestruction du mécanisme AD 20 (fig. 12). Il est important de préciser que la rotation du levier de verrouillage 31 n'est possible qu'en cas d'effacement du corps inertiel 21 en position armée. En effet, si le corps inertiel 21 n'a pas subi les effets d'accélération linéaire du projectile 1, il empêche toute rotation du levier centrifuge 31. Cette condition permet de garantir que sans l'existence d'un événement qui conjugue accélération linéaire et accélération angulaire, le projectile 1 est maintenu dans un état de sécurité maximale. Le levier de verrouillage 31 via le levier de stockage 37 décrit plus loin permet en effet de bloquer la rotation du porte-amorce 60 et rend impossible un potentiel alignement de l'amorce 6 avec la chaine pyrotechnique.
  • Le mécanisme de sécurité 30 comporte en outre un levier de stockage 37 monté pivotant autour d'un axe de pivotement E parallèle à l'axe de symétrie A de la fusée 4, et sensiblement diamétralement opposé à l'axe de pivotement C du levier de verrouillage 31. Il est conçu pour adopter successivement :
    • une position active, correspondant à la position de stockage du projectile 1, dans laquelle il retient le levier de verrouillage 31 en position de stockage (fig. 7) et le porte-amorce 60 en position de sécurité, et
    • une position passive, pendant toute la durée des positions intermédiaire, armée et d'autodestruction du projectile 1, dans laquelle il s'efface par rapport au levier de verrouillage 31 (fig. 8 et 9).
  • Le levier de stockage 37 comporte à son extrémité libre un cran de blocage 38 agencé pour recevoir une dent de blocage 39 de forme complémentaire prévue sur le levier de verrouillage 31. La dent de blocage 39 est saillante radialement de l'extrémité du levier de verrouillage 31 portant la masse centrifuge 32. Il comporte en outre une patte de blocage 40, à l'opposé du cran de blocage 38, qui s'étend en direction du porte-amorce 60 pour se loger dans une encoche de blocage 64 du mécanisme d'actionnement du porte-amorce 60 décrit plus loin.
  • En position active (fig.7), le levier de verrouillage 31 et le levier de stockage 37 sont liés intimement par la dent de blocage 39 emboitée dans le cran de blocage 38, formant ainsi des moyens autobloquants garantissant à la fois le maintien en sécurité du dispositif d'autodestruction 7 et le maintien en sécurité du porte-amorce 60, dans la position de stockage du projectile 1 pendant toutes les phases précédant le départ du coup.
  • Au départ du coup, lorsque le levier de verrouillage 31 se déplace sous l'effet de l'accélération angulaire du projectile 1, la dent de blocage 39 s'échappe du cran de blocage 38 grâce à leur forme courbe respective, et libère le levier de stockage 37. Ce levier de stockage 37, étant lui aussi soumis à la force centrifuge, peut se déplacer vers l'extérieur en s'éloignant de l'axe de symétrie A et en pivotant autour de son axe E dans un sens de rotation inverse par rapport au levier de verrouillage 31, représenté par la flèche T. Il passe ainsi d'une position active à une position passive dans laquelle il restera, n'étant soumis à aucun organe de rappel. Pendant ce temps, la patte de blocage 40 a quitté l'encoche de blocage 64 libérant le mécanisme d'actionnement du porte-amorce 60. La configuration du levier de stockage 37 et les moyens autobloquants (cran de blocage 38 et dent de blocage 39 ; patte de blocage 40 et encoche de blocage 64) illustrés et décrits peuvent varier sous réserve de remplir la même fonction.
  • Les figures 11 et 12 représentent en coupe axiale le dispositif d'autodestruction 7 respectivement dans la position armée et dans la position d'autodestruction. Lors du vol du projectile 1, les effets centrifuges liés à sa rotation maintiennent le levier de verrouillage 31 en position verrouillée (fig. 11). Dans cette position, il maintient l'ensemble indissociable formé par le corps inertiel 21 et la douille 22 en position armée, en l'empêchant de remonter. Ainsi, pendant le vol du projectile 1, c'est le levier de verrouillage 31 qui retient le dispositif d'autodestruction 7 moyennant le maintien des effets centrifuges.
  • Lors d'un impact, le projectile 1 subit une perte de vitesse de rotation, les effets centrifuges diminuent alors très rapidement jusqu'à disparaître complètement. Dès l'instant où les effets centrifuges passent en dessous du seuil de déclenchement de la fonction AD, la force centrifuge n'est plus suffisante pour maintenir comprimé l'organe de rappel 33. Ainsi, le seuil de déclenchement est déterminé par la force élastique dudit organe de rappel 33. La masse centrifuge 31 est alors poussée vers l'intérieur de la fusée 4 par l'organe de rappel 33. Elle entraine avec elle le levier de verrouillage 31 en rotation autour de son axe de pivotement C dans le sens inverse représenté par la flèche S'. La butée de verrouillage 31b libère alors le mécanisme AD 20, et le mécanisme de sécurité 30 est en position déverrouillée (fig. 10).
  • Dès l'instant où le levier de verrouillage 31 est en position déverrouillée, l'ensemble indissociable formé par le corps inertiel 21 et la douille 22, peut remonter sous l'effet de l'organe de rappel 23 qui relâche l'énergie cinétique emmagasinée au départ du coup. L'ensemble « corps inertiel 21 et douille 22 » se déplace vers le haut dans le sens de la flèche G', et entraine la masse inertielle 16 qui monte à son tour en basculant autour de l'axe du balancier 15 (fig. 12). La masse inertielle 16 entre en contact avec le porte-percuteur 14 qui bascule lui aussi autour de l'axe de balancier 15, et entraine avec lui le percuteur 5 vers le bas. Le percuteur 5 frappe l'amorce 6 qui initie la chaine pyrotechnique activant la charge explosive du projectile 1. Le projectile 1 est alors détruit par le dispositif d'autodestruction 1 dès que la vitesse de rotation passe sous un certain seuil.
  • Les figures 13 à 14 illustrent le porte-amorce 60 associé à son mécanisme d'actionnement dans ses différentes positions par rapport aux positions successives du porte-percuteur 14 :
    • la position de stockage (fig. 3, 4, 11 et 13) dans laquelle le porte-amorce 60 est en position de sécurité, l'amorce 6 est excentrée par rapport au percuteur 5, le porte-percuteur 14 est abaissé et la pointe du percuteur 5 est reçue dans le logement 61 du porte-amorce 60 pour l'empêcher de tourner,
    • la position d'attente (fig. 11 et 14) dans laquelle le porte-percuteur 14 est levé, le percuteur 5 libère le porte-amorce 60, et le porte-amorce 60 a tourné et est dans une position armée dans laquelle l'amorce 6 est alignée sur le percuteur 5, et
    • la position de percussion (fig. 12 et 15) dans laquelle le porte-percuteur 14 est abaissé en direction du porte-amorce 60, le percuteur frappe l'amorce 6 pour initier la chaine pyrotechnique.
  • Le porte-amorce 60 est mobile en rotation autour d'un axe de rotation P parallèle et distant de l'axe de symétrie A. Il est associé à un mécanisme d'actionnement qui comporte au moins un couple de verrous inertiels 62, un segment moteur 63 et un train chronométrique 65. Le porte-amorce 60 est mécaniquement indépendant du segment moteur 63, ce qui permet au projectile 1 de rester en sécurité sur une distance de sécurité définie. Le couple de verrous inertiels 62 constitue une sécurité pour le mécanisme d'actionnement, qui ne réagit qu'à l'accélération linéaire seule du projectile 1. Ainsi, il bloque la rotation du segment moteur 63 et du porte-amorce 60 tant que le tir n'a pas été réalisé.
  • Le segment moteur 63 est une masse excentrique qui réagit fortement aux effets centrifuges. Lorsqu'il est soumis aux effets centrifuges du projectile 1 après le départ du coup, il commence une rotation autour de son axe de rotation P. Cette rotation est subordonnée au fait que le levier de stockage 37 du dispositif d'autodestruction 7 est passé en position passive (fig. 9 et 10) et que la patte de blocage 40 s'est éloignée de l'encoche de blocage 64 prévue sur le segment moteur 63. La vitesse de rotation du segment moteur 63 est régulée par un ensemble de train d'engrenages ou train chronométrique 65. La course de rotation du segment moteur 63 s'effectue en deux parties. Une première partie dite « régulée » dans laquelle le segment moteur 63 entraine le train chronométrique 65 sur la distance de sécurité définie. Le porte-amorce 60 ne bouge pas et l'amorce 6 reste en position de sécurité dans laquelle elle est désaxée. Et une seconde partie dite « instantanée » qui commence à la seconde où la dernière dent du segment moteur 63 décroche du train chronométrique 65. A cet instant, la distance de sécurité définie est dépassée, le segment moteur 63 n'est plus freiné et peut terminer sa course quasi instantanément. Il entraine avec lui le porte-amorce 60 et aligne instantanément l'amorce 6 dans l'axe de symétrie A.
  • Le fonctionnement du mécanisme d'actionnement associé au porte-amorce 60 est simple et le dispositif d'autodestruction 7 selon l'invention participe au maintien en sécurité de ce mécanisme.
  • La présente invention n'est bien entendu pas limitée à l'exemple de réalisation décrit mais s'étend à toute modification et variante évidentes pour un homme du métier dans la limite des revendications annexées.

Claims (13)

  1. Fusée (4) comportant un dispositif d'autodestruction (7) pour projectile (1) giratoire, ladite fusée (4) étant constituée d'un corps creux, défini par un axe de symétrie (A) confondu avec l'axe de rotation dudit projectile, et comportant un percuteur (5) associé à un porte-percuteur (14), une amorce (6) associée à un porte-amorce (60), et un dispositif d'autodestruction (7) agencé pour coopérer avec ledit porte-percuteur (14) et ledit porte-amorce (60) pour générer successivement une première position dite « position de stockage » avant le tir du projectile, dans laquelle l'amorce est désalignée par rapport au percuteur, une deuxième position dite « position intermédiaire » au départ du coup, dans laquelle le porte-percuteur est éloigné du porte-amorce, une troisième position dite « position armée » pendant le vol du projectile, dans laquelle l'amorce est alignée sur le percuteur, et une quatrième position dite « position d'autodestruction » à la fin du vol, dans laquelle le porte-percuteur est rabattu sur le porte-amorce de sorte que le percuteur frappe l'amorce et initie la chaine pyrotechnique contenue dans le projectile, caractérisée en ce que ledit porte-percuteur (14) est mobile en rotation autour d'un axe de balancier (15) perpendiculaire audit axe de symétrie (A), en ce que ledit porte-amorce (60) est mobile en rotation autour d'un axe de rotation (P) parallèle audit axe de symétrie (A), en ce que ledit dispositif d'autodestruction (7) comporte un mécanisme AD (20) et un mécanisme de sécurité (30) agencés pour coopérer, en ce que ledit mécanisme AD (20) comporte un corps inertiel (21) axial sollicité par un organe de rappel (23) et agencé pour utiliser l'accélération linéaire du projectile (1) au départ du coup, emmagasiner de l'énergie cinétique axiale et provoquer le passage de ladite position de stockage à ladite position intermédiaire dans laquelle ledit mécanisme AD (20) libère le porte-percuteur (14) pour qu'il s'éloigne du porte-amorce (60), en ce que ledit mécanisme de sécurité (30) comporte un levier centrifuge (31) sollicité par un organe de rappel (33) et agencé pour utiliser les effets centrifuges du projectile (1) pendant le vol, emmagasiner de l'énergie cinétique radiale et provoquer le passage de ladite position intermédiaire à ladite position armée dans laquelle ledit mécanisme de sécurité (30) verrouille ledit mécanisme AD (20), et en ce que ledit mécanisme de sécurité (30) est en outre agencé pour, à la fin du vol, dès lors que la force centrifuge induite par la rotation du projectile (1) descend sous un seuil déterminé, provoquer le passage de ladite position armée à ladite position d'autodestruction dans laquelle ledit mécanisme de sécurité (30) restitue l'énergie cinétique radiale emmagasinée et déverrouille ledit mécanisme AD (20) pour qu'à son tour, ledit mécanisme AD (20) restitue l'énergie cinétique axiale emmagasinée et rabat le porte-percuteur sur le porte-amorce pour percuter l'amorce (6).
  2. Fusée selon la revendication 1, caractérisée en ce que le corps inertiel (21) dudit mécanisme AD (20) s'étend sur un axe (B) parallèle audit axe de symétrie (A) de sorte que l'axe de balancier (15) dudit porte-percuteur (14) est positionné entre les deux axes (A) et (B), en ce que ledit corps inertiel (21) est mobile dans l'axe (B) entre une position sortie dans laquelle il pousse le porte-percuteur en direction du porte-amorce (60), et une position rentrée dans laquelle il libère le porte-percuteur (14), ladite position sortie correspondant aux positions de stockage et d'autodestruction, et ladite position rentrée correspondant aux positions intermédiaire et armée, en ce que ledit corps inertiel (21) est agencé pour se déplacer dans un sens (G) opposé au sens (F) de l'accélération linéaire du projectile (1) d'une position sortie à une position rentrée en comprimant ledit organe de rappel (23) pour stocker l'énergie cinétique axiale au départ du coup, et en ce que ledit organe de rappel (23) est agencé pour déplacer ledit corps inertiel (21) en sens contraire (G') d'une position rentrée à une position sortie en se décomprimant pour restituer ladite énergie cinétique axiale emmagasinée à la fin du tir.
  3. Fusée selon la revendication 2, caractérisée en ce que ledit percuteur (5) est porté à une extrémité dudit porte-percuteur (14) située à l'opposé dudit corps inertiel (21) par rapport audit axe de balancier (15), et en ce que ledit porte-amorce (60) comporte un logement (61) distant de ladite amorce (6), ledit logement étant agencé pour être aligné sur ledit percuteur (5) dans lesdites positions de stockage et intermédiaire, de sorte qu'en position de stockage, ledit porte-percuteur est rabattu vers ledit porte-amorce, et ledit percuteur (5) pénètre dans ledit logement (61) et bloque ledit porte-amorce (60).
  4. Fusée selon la revendication 3, caractérisée en ce que ledit dispositif d'autodestruction (7) comporte en outre une masse inertielle (16) montée pivotante autour dudit axe de balancier (15), constituée d'une pièce séparée dudit porte-percuteur (14), disposée entre ledit corps inertiel (21) et ledit porte-percuteur (14) et agencée pour transmettre audit porte-percuteur (14) soit l'énergie cinétique axiale restituée par ledit mécanisme AD (20) dans ladite position d'autodestruction, soit l'énergie cinétique propre que ladite masse inertielle (16) a elle-même emmagasinée et qu'elle restitue en cas de forte décélération linéaire dudit projectile (1) lors d'un impact.
  5. Fusée selon l'une quelconque des revendications précédentes, caractérisée en ce que le levier centrifuge (31) dudit mécanisme de sécurité (30) est monté pivotant autour d'un axe de pivotement (C) parallèle audit axe de symétrie (A), entre une position déverrouillée dans laquelle il libère le corps inertiel (21) et une position verrouillée dans laquelle il bloque le corps inertiel (21) dans une position rentrée, la position déverrouillée correspondant auxdites positions de stockage et d'autodestruction, et la position verrouillée correspondant à ladite position armée, en ce que ledit levier centrifuge (31) est agencé pour se déplacer radialement dans un sens (S) d'une position déverrouillée à une position verrouillée sous les effets centrifuges du projectile (1) en comprimant ledit organe de rappel (33) pour stocker de l'énergie cinétique radiale pendant le vol, et en ce que ledit organe de rappel (33) est agencé pour déplacer ledit levier centrifuge (31) en sens contraire (S') d'une position verrouillée à une position déverrouillée en se décomprimant pour restituer ladite énergie cinétique radiale emmagasinée à la fin du tir dès lors que la force centrifuge est inférieure à la force élastique dudit organe de rappel (33).
  6. Fusée selon la revendication 5, caractérisée en ce que le levier centrifuge (31) dudit mécanisme de sécurité (30) comporte deux segments disposés de part et d'autre de son axe de pivotement (C), un premier segment (31a) pouvant porter une masse centrifuge (32), et un second segment (31b) formant une butée de verrouillage pour bloquer le corps inertiel (21) dans une position rentrée, l'axe de pivotement (C) étant proche de l'axe (B) dudit corps inertiel (21) de sorte que la longueur dudit premier segment (31a) est supérieure à longueur dudit second segment (31b).
  7. Fusée selon la revendication 6, caractérisée en ce que l'organe de rappel (33) dudit mécanisme de sécurité (30) est constitué d'un ressort de torsion monté sur un plot (34) de fixation d'axe parallèle audit axe de symétrie (A), et pourvu d'une extrémité fixe (33a) par rapport au corps de ladite fusée (4), et d'une extrémité mobile (33b) couplée audit levier centrifuge (31) pour le solliciter en position déverrouillée.
  8. Fusée selon l'une quelconque des revendications précédentes, caractérisée en ce que ledit dispositif d'autodestruction (7) comporte un levier de stockage (37) monté pivotant autour d'un axe de pivotement (E) parallèle audit axe de symétrie (A), entre une position active dans laquelle il bloque ledit levier centrifuge (31) dans une position déverrouillée correspondant à ladite position de stockage, et une position passive dans laquelle il s'efface par rapport audit levier centrifuge (31) lorsque ce dernier se déplace dans une position verrouillée correspondant à ladite position armée.
  9. Fusée selon la revendication 8, caractérisée en ce que ledit levier de stockage (37) comporte une patte de blocage (40) agencée pour bloquer ledit porte-amorce (60) dans une position de sécurité correspondant à ladite position de stockage, lorsque ledit levier de stockage (37) est dans une position active.
  10. Fusée selon la revendication 8, caractérisée en ce que ledit levier de stockage (37) et ledit levier centrifuge (31) comportent respectivement des moyens autobloquants agencés pour coopérer uniquement lorsque ledit levier de stockage (37) est dans une position active et ledit levier centrifuge (31) est dans une position déverrouillée.
  11. Fusée selon la revendication 10, caractérisée en ce que lesdits moyens autobloquants sont prévus respectivement dans une zone d'extrémité dudit levier de stockage (37) à l'opposé de son axe de pivotement (E) et dans une zone d'extrémité dudit levier centrifuge (31) à l'opposé de son axe de pivotement (C), et en ce que lesdits leviers de stockage (37) et centrifuge (31) sont agencés pour pivoter autour de leur axe de pivotement respectif (E, C) dans des sens de rotation (T, S) opposés sous l'effet de ladite force centrifuge du projectile (1).
  12. Fusée selon la revendication 11, caractérisée en ce que lesdits moyens autobloquants comportent une dent de blocage (39) prévue sur l'un des leviers de stockage ou centrifuge, et un cran de blocage (38) prévu sur l'autre des leviers centrifuge ou de stockage, la dent de blocage (39) étant agencée pour s'échapper du cran de blocage (38) lorsque ledit levier centrifuge (31) se déplace dans une position verrouillée, qui n'est possible que dans ladite position armée.
  13. Fusée selon l'une quelconque des revendications précédentes, caractérisée en ce que le corps de ladite fusée (4) comporte un disque d'impact (11) coaxial à l'axe de symétrie (A), disposé entre son sommet et le porte-percuteur (14), et agencé pour se déformer en cas d'impact direct du projectile (1) sur une cible, et rabattre ledit porte-percuteur (14) sur le porte-amorce (60) pour percuter l'amorce (6).
EP21722465.8A 2020-07-02 2021-04-30 Fusee comportant un dispositif d'autodestruction pour projectile giratoire Active EP4176225B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006757A FR3112202B1 (fr) 2020-07-02 2020-07-02 Fusee comportant un dispositif d'autodestruction pour projectile giratoire
PCT/EP2021/061384 WO2022002462A1 (fr) 2020-07-02 2021-04-30 Fusee comportant un dispositif d'autodestruction pour projectile giratoire

Publications (2)

Publication Number Publication Date
EP4176225A1 EP4176225A1 (fr) 2023-05-10
EP4176225B1 true EP4176225B1 (fr) 2024-06-19

Family

ID=73698910

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21722465.8A Active EP4176225B1 (fr) 2020-07-02 2021-04-30 Fusee comportant un dispositif d'autodestruction pour projectile giratoire

Country Status (10)

Country Link
US (1) US11933594B2 (fr)
EP (1) EP4176225B1 (fr)
KR (1) KR20230033006A (fr)
BR (1) BR112022021628A2 (fr)
CO (1) CO2022015087A2 (fr)
FR (1) FR3112202B1 (fr)
IL (1) IL297506A (fr)
MX (1) MX2022013166A (fr)
WO (1) WO2022002462A1 (fr)
ZA (1) ZA202211115B (fr)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985079A (en) * 1975-10-20 1976-10-12 The United States Of America As Represented By The Secretary Of The Army Self-destruct fuze for spinning artillery projectile
FR2364429A1 (fr) * 1976-09-13 1978-04-07 Haut Rhin Manufacture Machines Dispositif mecanique d'autodestruction pour projectile giratoire
FR2489956B1 (fr) * 1980-09-09 1986-07-11 Haut Rhin Sa Manuf Machines Dispositif d'autodestruction pour fusee equipant un projectile giratoire
SG93195A1 (en) * 1999-02-04 2002-12-17 Chartered Ammunition Ind Ptee Self destructing impact fuse
ATE302935T1 (de) 2003-06-24 2005-09-15 Dixi Microtechniques S A Selbst-zerlegerzünder für drallstabilisierte geschosse
BE1016094A3 (fr) 2004-05-14 2006-03-07 Zeebrugge Forges Sa Dispositif d'autodestruction pour fusee de sous-munition.
WO2007137444A1 (fr) 2006-05-31 2007-12-06 Micro Technology Heremence Sa Fusee a impact avec dispositif d'autodestruction
US8037826B2 (en) * 2006-06-01 2011-10-18 Dse, Inc. Mechanical self destruct for runaway escapements
SG144000A1 (en) 2006-12-28 2008-07-29 Advanced Material Engineering Self destructing impact fuze
DE102008053990B4 (de) * 2008-10-30 2010-07-22 Junghans Microtec Gmbh Zünder für ein Geschoss
DE102013000050B3 (de) 2013-01-07 2014-01-30 Rheinmetall Waffe Munition Gmbh Selbstzerlegungsmechanimus für einen Zünder

Also Published As

Publication number Publication date
KR20230033006A (ko) 2023-03-07
BR112022021628A2 (pt) 2023-01-10
FR3112202A1 (fr) 2022-01-07
MX2022013166A (es) 2022-11-30
US20230133860A1 (en) 2023-05-04
EP4176225A1 (fr) 2023-05-10
FR3112202B1 (fr) 2022-07-01
US11933594B2 (en) 2024-03-19
ZA202211115B (en) 2024-01-31
CO2022015087A2 (es) 2022-11-08
WO2022002462A1 (fr) 2022-01-06
IL297506A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
EP0411996B1 (fr) Dispositif d'amorçage de chaîne pyrotechnique pour sous-munitions d'obus-cargo
EP2239535B1 (fr) Dispositif de mise à feu de munition par percussion
EP0687888B1 (fr) Dispositif de mise à feu d'une charge pyrotechnique du type bouchon allumeur notamment pour grenade à main ayant trois modes de fonctionnement
WO2001077608A1 (fr) Verrou pour levier de bouchon allumeur
EP0573328B1 (fr) Système d'auto-destruction d'une munition d'obus cargo par attaque chimique
EP2482027B1 (fr) Dispositif de sécurité et d'armement pour une chaine pyrotechnique d'un projectile
EP4176225B1 (fr) Fusee comportant un dispositif d'autodestruction pour projectile giratoire
EP0756151B1 (fr) Système d'amorçage de la charge propulsive d'une sous-munition embarquée dans un engin porteur
EP1500902B1 (fr) Fusee comportant un dispositif d'autodestruction pour projectile giratoire
EP0234159B1 (fr) Projectile du type logeant une charge pyrotechnique et des moyens d'initiation retardée de cette dernière
FR2501360A1 (fr) Cartouche a actionnement pyrotechnique de charge utile explosant apres le rebond
EP0230196B1 (fr) Projectile à charge pyrotechnique
WO2023046327A1 (fr) Fusee mecanique auto-percutante pour une munition non girante
EP0463974B1 (fr) Dispositif de sécurité et d'armement de charges militaires
FR2699660A1 (fr) Système d'amorçage et d'auto-destruction d'une munition, en particulier d'une sous-munition destinée à être éjectée d'un obus cargo avec un mouvement de rotation propre autour d'un axe.
EP0278837B1 (fr) Fusée temporisatrice à percussion tout azimut pour une munition tirée par une arme, notamment une grenade
EP0233431B1 (fr) Cartouche comportant un projectile à charge pyrotechnique
WO2007137444A1 (fr) Fusee a impact avec dispositif d'autodestruction
BE1016357A3 (fr) Dispositif de securite et d'armement de fusee pour munition gyrostabilisee de type roquette.
FR2691799A1 (fr) Munition en particulier sous-munition destinée à être éjectée d'un projectile porteur.
FR2599135A1 (fr) Munition largable a positionnement automatique, notamment mine dispersable antipersonnel bondissante
EP0709646A1 (fr) Fusée d'impact à double sécurité
FR2691795A1 (fr) Système d'auto-destruction d'une munition, en particulier d'une sous-munition d'obus cargo comprenant un générateur de chaleur.
FR2807510A1 (fr) Bouchon allumeur a securite perfectionnee
BE527006A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20221012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH