EP4162018B1 - Method of improving protease activity - Google Patents

Method of improving protease activity Download PDF

Info

Publication number
EP4162018B1
EP4162018B1 EP21728952.9A EP21728952A EP4162018B1 EP 4162018 B1 EP4162018 B1 EP 4162018B1 EP 21728952 A EP21728952 A EP 21728952A EP 4162018 B1 EP4162018 B1 EP 4162018B1
Authority
EP
European Patent Office
Prior art keywords
protease
detergent composition
saponin
use according
laundry detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21728952.9A
Other languages
German (de)
French (fr)
Other versions
EP4162018A1 (en
Inventor
Sarah Louise Hosking
Dietmar Andreas LANG
Mark Lawrence THOMPSON
Ian Malcolm TUCKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever Global IP Ltd
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Global IP Ltd, Unilever IP Holdings BV filed Critical Unilever Global IP Ltd
Publication of EP4162018A1 publication Critical patent/EP4162018A1/en
Application granted granted Critical
Publication of EP4162018B1 publication Critical patent/EP4162018B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/382Vegetable products, e.g. soya meal, wood flour, sawdust
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/3869Enzyme enhancers or mediators

Definitions

  • the invention concerns a method, in particular a method relating to a detergent composition comprising a protease.
  • Protease enzymes are a useful ingredient for detergent formulations, particularly for laundry detergents. As with any ingredient, especially expensive ingredients, improvement of activity of the ingredient is a problem to be solved.
  • WO2018/041686 A1 discloses the use of saponins from Quillaja saponaria in detergents at low washing temperatures.
  • the present invention provides a method of improving protease activity in a detergent composition, said method involving incorporation of from 0.1 to 40 wt.%,
  • the method involves improving protease activity in a detergent composition, preferably in a home care detergent composition, more preferably a laundry detergent composition.
  • the invention provides the use of saponin to improve protease activity in a detergent composition preferably in a home care detergent composition, more preferably a laundry detergent composition, wherein the saponin has a triterpenoid backbone, and one or more sugar moieties attached to the triterpenoid backbone.
  • the protease is bacterial, fungal or mammalian in origin, more preferably bacterial or fungal in origin, most preferably bacterial in origin.
  • the protease is selected from the following group, serine, acidic, metallo- and cysteine proteases. More preferably the protease is a serine and/or acidic protease.
  • the protease is a serine protease. More preferably the serine protease is subtilisin type serine protease.
  • the saponin has at least two sugar moieties attached to the triterpenoid backbone.
  • the detergent composition comprises anionic and/or nonionic surfactant, more preferably the detergent composition comprises both anionic and nonionic surfactant.
  • a preferred detergent composition is a laundry detergent composition.
  • the laundry detergent composition is a liquid, gel or a powder, more preferably the detergent is a liquid detergent.
  • the laundry detergent preferably comprises from 0.1 to 8 wt.% of an alkoxylated polyamine.
  • the alkoxylated polyamine comprises an alkoxylated polyethylenimine, and/or alkoxylated polypropylenimine, more preferably the alkoxylation is ethoxylation or propoxylation or a mixture of both.
  • the laundry detergent composition preferably comprises from 0.1 to 8 wt.% of a soil release polymer, preferably a polyester soil release polymer.
  • Preferred detergent compositions particularly laundry detergent compositions additionally comprise a further enzyme selected from the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases.
  • a further enzyme selected from the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • the detergent composition may take any suitable form, for example liquids, solids (including powders) or gels.
  • the detergent composition can be applied to any suitable substrate, including but not limited to any substrate to which a home care composition would be applied, for example, textiles, crockery and cutlery.
  • Particularly preferred substrates are textiles.
  • Particularly preferred detergent compositions are laundry detergent compositions.
  • the laundry detergent composition is a liquid, gel or a powder, more preferably the detergent is a liquid detergent.
  • Laundry detergent compositions may take any suitable form. Preferred forms are liquid or powder, with liquid being most preferred.
  • the detergent composition used in the method or use comprises from 0.0005 to 2.5 wt.%, preferably from 0.001 to 2 wt.%, more preferably from 0.005 to 1 wt.% of a protease enzyme.
  • the protease can be derived from fungal, bacterial or mammalian sources.
  • the protease is bacterial, fungal or mammalian in origin, more preferably bacterial or fungal in origin, most preferably bacterial in origin.
  • the protease is selected from the following group, serine, acidic, metallo- and cysteine proteases. More preferably the protease is a serine and/or acidic protease.
  • the protease is a serine protease. More preferably the serine protease is subtilisin type serine protease.
  • proteases hydrolyse bonds within peptides and proteins, in the cleaning context this leads to enhanced removal of protein or peptide containing stains.
  • Serine proteases are preferred.
  • Subtilase type serine proteases are more preferred.
  • the term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523 .
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 sub-divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • subtilases are those derived from Bacillus species such as Bacillus lentus, B. licheniformis, B. alkalophilus, B. subtilis, B. amyloliquefaciens, B. pumilus and B. gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO 89/06279 and protease PD138 described in ( WO 93/18140 ).
  • proteases may be those described in WO 92/175177 , WO 01/016285 , WO 02/026024 and WO 02/016547 .
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 , WO 94/25583 and WO 05/040372 , and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146 .
  • protease is a subtilisin protease (EC 3.4.21.62).
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
  • the subsilisin is derived from Bacillus, preferably Bacillus lentus, B.
  • subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names Georgia ® , Relase ® , Relase ® Ultra, Savinase ® , Savinase ® Ultra, Coronase ® , Coronase ® Ultra, Kannase ® , Liquanase ® , Liquanase ® Ultra, all could be sold as Ultra ® or Evity ® (Novozymes A/S).
  • the detergent composition used in the method or use comprises from 0.1 to 40 wt.%, preferably from 0.25 to 30 wt.%, more preferably from 0.5 to 25 wt.%, more preferably from 0.5 to 20 wt.%, most preferably from 0.5 to 15 wt.%, of a saponin, wherein the saponin has a triterpenoid backbone and one or more sugar moieties attached to the triterpenoid backbone.
  • Saponins are natural compounds which contain sugar moieties bound to a fused system of non-aromatic 4, 5 and 6 membered rings.
  • the ring system are preferably selected from the groups of triterpenoids, for example lanostane, dammarane, lupane, oleanane, ursane and hopane.
  • triterpenoids for example lanostane, dammarane, lupane, oleanane, ursane and hopane.
  • Saponins are discussed in " Saponins Used in Food and Agriculture” Plenum Press, New York 1996, G. R. Waller and K. Yamasaki (eds ).
  • Saponins are preferably extracted from the seed, root, leaf, bulb, fruit, stem, pericarp, bark, tuber or flower of a plant. Saponin extraction and quantification is discussed in Food Research International 59 (2014) 16-40 by R. Sulaiman ey al . Extraction of saponins from agricultural products is discussed in WO2017/019599 and WO1999/053933 .
  • Saponins may also be produced by bacteria (for example glycosylated hopanoids such as ribosylhopane) and marine organisms including sea cucumbers, starfish and sponges ( Bahrami, Y., Zhang, W. & Franco, C.M. (2016) Marine Drugs 16: 423-453 ). Saponins may also be produced through biotechnology, either through enzymatic biosynthesis in vitro or by the engineering of microbial cell factories ( Moses, T. et al. (2014) PNAS 28:1634-1639 ).
  • the saponin is preferably a Tea saponin (for example preferably derived from Camellia species), Soapnut saponin (for example preferably derived from Sapindus species), Quillaja Bark saponin or Escin (for example preferably derived from Aesculus species).
  • Saponins are listed in the Chemical Entities of Biological Interest (ChEBI) database, ( Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V., Owen, G., Turner, S., Williams, M., and Steinbeck, C. (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. ). For example, CHEBI:61778 - triterpenoid saponin.
  • Agricultural residues remaining after harvest may be suitable for extraction and supply of saponins.
  • sugarbeet leaves and skins may be further extracted to derive useful quantities of saponin.
  • saponins may be extracted from parts of the plant collected from the wild (for example, protodioscin from Tribulus terrestris) or through managed plantations (for example from the bark of Quillaja saponaria).
  • the detergent composition used in the method or use preferably comprises surfactant (which includes a mixture of two or more surfactants).
  • the composition comprises from 1 to 60 wt.%, preferably from 2.5 to 50 wt.%, more preferably from 4 to 40 wt.% of surfactant. Even more preferred levels of surfactant are from 6 to 40 wt.%, more preferably from 8 to 35 wt.%.
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • Suitable anionic detergent compounds are rhamnolipids, sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the anionic surfactant is preferably selected from: rhamnolipids, linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • the most preferred anionic surfactants are selected from: rhamnolipids, linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof.
  • the alkyl ether sulphate is a C 12 -C 14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES).
  • the linear alkyl benzene sulphonate is a sodium C 11 to C 15 alkyl benzene sulphonates.
  • the alkyl sulphates is a linear or branched sodium C 12 to C 18 alkyl sulphates.
  • Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
  • Rhamnolipids may preferably be mono-rhamnolipid rich (over 60%), di-rhamnolipid rich (over 60%), or a 40/60 to 60-40 mixture of mono- and di-rhamnolipid.
  • liquid formulations preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt.% of alkyl ethoxylated non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • Preferred nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
  • Alkyl polyglycosides (APG) are also preferred.
  • nonionic detergent compound is the alkyl ethoxylated non-ionic surfactant is a C 8 to C 18 primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • surfactants used are saturated.
  • a soil release polymer is included.
  • the laundry detergent composition preferably comprises from 0.1 to 8 wt.% of a soil release polymer.
  • Preferred levels of soil release polymer range from 0.2 to 6 wt.%, more preferably from 0.5 to 5 wt.%, most preferably from 1 to 5 wt.%.
  • the soil release polymer is a polyester soil release polymer.
  • polyester soil release polymer is a polyethylene and/or polypropylene terephthalate based soil release polymer, most preferably a polypropylene terephthalate based soil release polymer.
  • Suitable polyester based soil release polymers are described in WO 2014/029479 and WO 2016/005338 .
  • the detergent composition is in the form of a laundry composition, it is preferred that an alkoxylated polyamine is included.
  • the laundry detergent preferably comprises from 0.1 to 8 wt.% of an alkoxylated polyamine.
  • Preferred levels of alkoxylated polyamine range from 0.2 to 6 wt.%, more preferably from 0.5 to 5 wt.%. Another preferred level is from 1 to 4 wt.%.
  • the alkoxylated polyamine may be linear or branched. It may be branched to the extent that it is a dendrimer.
  • the alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both.
  • the alkoxylated polyamine comprises an alkoxylated polyethylenimine, and/or alkoxylated polypropylenimine, more preferably the alkoxylation is ethoxylation or propoxylation or a mixture of both.
  • a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25.
  • a preferred material is alkoxylated polyethylenimine, most preferably ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30 preferably from 15 to 25, where a nitrogen atom is ethoxylated.
  • Additional enzymes other than the specified protease may be present in the detergent composition. It is preferred that additional enzymes are present in the preferred laundry detergent composition.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
  • Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
  • Preferred further enzymes include those in the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases. Said preferred additional enzymes include a mixture of two or more of these enzymes.
  • the further enzyme is selected from: lipases, cellulases, and/or alpha-amylases.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P . alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
  • lipase variants such as those described in WO 92/05249 .
  • Lipolase TM and Lipolase Ultra TM Lipex TM and Lipoclean TM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • the composition may use cutinase, classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B . licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
  • amylases are Duramyl TM , Termamyl TM , Termamyl Ultra TM , Natalase TM , Stainzyme TM , Amplify TM , Fungamyl TM and BAN TM (Novozymes A/S), Rapidase TM and Purastar TM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
  • Celluzyme TM Commercially available cellulases include Celluzyme TM , Carezyme TM , Celluclean TM , Endolase TM , Renozyme TM (Novozymes A/S), Clazinase TM and Puradax HA TM (Genencor International Inc.), and KAC-500(B) TM (Kao Corporation).
  • Celluclean TM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C . cinereus, and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include Guardzyme TM and Novozym TM 51004 (Novozymes A/S).
  • the aqueous solution used in the method preferably has an enzyme present.
  • the enzyme is preferably present in the aqueous solution used in the method at a concentration in the range from 0.01 to 10ppm, preferably 0.05 to 1ppm.
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • detergent compositions preferably laundry detergent compositions
  • materials that may be included in the detergent compositions include builders, chelating agents, fluorescent agent, perfume, shading dyes and polymers.
  • the composition may comprise a builder.
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of waterinsoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives thereof, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • zeolites are well known representatives thereof, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • the composition may also contain 0-65 wt.% of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders, with carbonates being particularly preferred.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt.%.
  • Aluminosilicates are materials having the general formula: 0.8-1.5 M 2 O. Al 2 O 3 . 0.8-6 SiO 2 , where M is a monovalent cation, preferably sodium.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate. Most preferably the laundry detergent formulation is not built i.e. contain less than 1 wt.% of builder.
  • Chelating agents may be present or absent from the detergent compositions.
  • the chelating agent is present at a level of from 0.01 to 5 wt.%.
  • Example phosphonic acid (or salt thereof) chelating agents are: 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP); Diethylenetriaminepenta(methylenephosphonic acid) (DTPMP); Hexamethylenediaminetetra(methylenephosphonic acid) (HDTMP); Aminotris(methylenephosphonic acid) (ATMP); Ethylenediaminetetra(methylenephosphonic acid) (EDTMP); Tetramethylenediaminetetra(methylenephosphonic acid) (TDTMP); and, Phosphonobutanetricarboxylic acid (PBTC).
  • HEDP 1-Hydroxyethylidene-1,1-diphosphonic acid
  • DTPMP Diethylenetriaminepenta(methylenephosphonic acid)
  • HDTMP Hexamethylenediaminetetra(methylenephosphonic acid)
  • AMP Aminotris(methylenephosphonic acid)
  • ETMP Ethylenedi
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known, and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.0001 to 0.5 wt.%, preferably 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
  • Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
  • Pyrazoline compounds e.g. Blankophor SN.
  • Preferred fluorescers are fluorescers with CAS-No 3426-43-5 ; CAS-No 35632-99-6 ; CAS-No 24565-13-7 ; CAS-No 12224-16-7 ; CAS-No 13863-31-5 ; CAS-No 4193-55-9 ; CAS-No 16090-02-1 ; CAS-No 133-66-4 ; CAS-No 68444-86-0 ; CAS-No 27344-41-8.
  • fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • the aqueous solution used in the method has a fluorescer present.
  • the fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
  • the composition preferably comprises a perfume.
  • perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl an
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
  • these materials have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethy
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the socalled 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • the composition is a laundry detergent composition
  • it comprises a shading dye.
  • the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
  • Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Switzerland, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
  • Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
  • the dyes are blue or violet in colour.
  • Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
  • Azine preferably carry a net anionic or cationic charge.
  • Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280.
  • the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • Shading dyes are discussed in WO 2005/003274 , WO 2006/032327(Unilever ), WO 2006/032397(Unilever ), WO 2006/045275(Unilever ), WO 2006/027086(Unilever ), WO 2008/017570(Unilever ), WO 2008/141880 (Unilever ), WO 2009/132870(Unilever ), WO 2009/141173 (Unilever ), WO 2010/099997(Unilever ), WO 2010/102861 (Unilever ), WO 2010/148624(Unilever ), WO 2008/087497 (P&G ), WO 2011/011799 (P&G ), WO 2012/054820 (P&G ), WO 2013/142495 (P&G ) and WO 2013/151970 (P&G ).
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497 . Preferred examples of thiophene dyes are shown below: and,
  • Bis-azo dyes are preferably sulphonated bis-azo dyes.
  • Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906 .
  • alkoxylated bis-azo dye is :
  • Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
  • Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5, acid blue 59, and the phenazine dye selected from: wherein:
  • the shading dye is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
  • a mixture of shading dyes may be used.
  • the shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine.
  • the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
  • 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
  • the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
  • An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
  • the composition may comprise one or more further polymers.
  • a preferred detergent composition comprises from 0.1 to 20 wt.%, preferably from 0.5 to 15 wt.% or one or more polymers. Examples are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Substrate N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, was dissolved in methanol to give a stock solution of 20mM.
  • Tris-HCl pH 8.5, 50mM
  • Cotton stained with aged blood CS01 (Centre for Testmaterials - Netherlands) was cut into empty 96-well microtitre plates and pre-wash readings taken for stain intensity.
  • FH32 water the stored formulation samples were diluted to give a final protease concentration of 5mg/L in FH32 water containing (1g/L) of a laundry detergent formulation containing 15 wt.% surfactant (anionic/nonionic mix) also comprising EPEI and polyester soil release polymer plus dosed saponin, and subsequently transferred (200 ⁇ L) to the stains using a multi-channel pipette just prior to incubation at 40°C, with shaking at 200rpm for 1h.
  • anionic/nonionic mix also comprising EPEI and polyester soil release polymer plus dosed saponin
  • the wash liquor was immediately removed using a multi-channel pipette, and the stain discs washed 3x with 200 ⁇ L dH2O, before leaving overnight in a cupboard to dry. After drying, the stain plates were digitally scanned and the deltaE measured. This value is used to express cleaning effect and is defined as the colour difference between a white cloth and that of the stained cloth after being washed.
  • deltaE ⁇ L 2 + ⁇ a 2 + ⁇ b 2 1 / 2
  • ⁇ L is a measure of the difference in darkness between the washed and white cloth
  • ⁇ a and ⁇ b are measures for the difference in redness and yellowness respectively between both cloths.
  • Example 1 showing the use of saponin to improve protease activity
  • Biochemical assays for protease activity were initially used in high-throughput microtitre plate format to enable different saponins at different doses to be screened for their effect on protease activity.
  • the protease used was Carnival Evity protease - supplied by Novozymes.
  • the saponin was tested at the concentrations listed in table 1 without protease, and no effect on the assay was seen by the saponin alone.
  • Table 1 shows that when using a concentration of 100ng/mL protease, a positive effect on (increasing) protease activity is observed from addition of saponin (in this instance Escin). In this case, a step-up in activity corresponding to 30% was noted from Escin concentrations >0.5 ⁇ M, in particular at concentrations ⁇ 10 ⁇ M).
  • Table 1 Biochemical measurement of Carnival Evity protease (100ng/mL) activity in the presence of different doses of Escin saponin. Protease activity ( ⁇ abs/min @405nm) Saponin conc.
  • Example 2 showing the use of different saponins to improve protease activity
  • saponin molecules in addition to Escin, Tea saponin and Quillaja Bark saponin which are able to activate a laundry protease were subsequently found.
  • the graph in figure 1 shows the effect of saponin at various levels for: a control (without protease); oleanolic acid (a triterpenoid backbone without sugar moieties); and saponins within the definition of the invention: the 3x and 4x glycosylated variants of oleanolic acid (OA-28 x 3Gly and OA-28 x4Gly), escin and avenacin.
  • the level of saponin at 0 ⁇ m corresponds to the protease only activity.
  • the saponins within the scope of the invention improved the protease activity by a statistically significant amount at a saponin level of 5 ⁇ M) and above.
  • Avenacin shows major molecular structures in the Avenacin extract
  • Oleanolic acid-28-x 4 Gly Structure is similar to Oleanolic acid-28-x 3 Gly (above) but with glycosylation to a 4 sugar chain - the material used was as Oleanolic acid-28-x 3 Gly with an extra identical sugar added to make Oleanolic acid-28-x 4 Gly Escin (showing major molecular structures in the Escin extract)
  • Example 3 showing the activity of saponin on cleaning performance
  • Table 2 also shows that increasing the dose of saponin does not result in improved cleaning from just the saponin alone.
  • a relatively constant cleaning performance due to saponin ( ⁇ 5 dSRI) is observed at concentrations of up to 25mM (table 2).
  • the 'add-on' effect of boosted protease activity is noted when using Tea saponin >1mM, which leads to increased values for dSRI ( ⁇ 18).
  • Table 2 MTP wash study using wash-levels of Carnival Evity protease (5mg/L) towards aged blood stain (CS01), with varying dose of Tea saponin added.
  • a 5mM dose of saponin corresponds to 0.6 wt.% addition in a formulation.
  • Example 4 showing the activity of saponin on scaled-up cleaning performance
  • Figure 2 shows that the saponin effect on increased protease activity is also seen in scaled-up mini-bottle wash studies (63ml).
  • the figure is a graph showing the increased protease activity when 5mM of saponin is used. A statistically significant improvement in protease activity is demonstrated at this saponin level.
  • proteases are found to be activated by saponins.
  • proteases of different active site configuration/mechanism can also be activated by saponin (examples shown are subtilisin-type alkaline proteases with a catalytic serine residue, as well as an acidic protease) ( figure 3 ).
  • Figure 3 shows that the increased protease activity using saponin is also seen across many different proteases, both from origin and from protease type.
  • Example 6 showing the activity using different saponins at scaled-up mini-bottle (100ml) wash performance across different time points of the wash

Description

    Field of Invention
  • The invention concerns a method, in particular a method relating to a detergent composition comprising a protease.
  • Background of the Invention
  • Protease enzymes are a useful ingredient for detergent formulations, particularly for laundry detergents. As with any ingredient, especially expensive ingredients, improvement of activity of the ingredient is a problem to be solved. WO2018/041686 A1 discloses the use of saponins from Quillaja saponaria in detergents at low washing temperatures.
  • This problem is particularly pronounced in laundry detergent formulations, especially liquid laundry detergent formulations.
  • Summary of the Invention
  • We have found that the incorporation of saponins having a triterpenoid backbone, and one or more sugar moieties attached to the triterpenoid backbone, in detergent compositions promotes protease activity and improves cleaning performance.
  • In one aspect the present invention provides a method of improving protease activity in a detergent composition, said method involving incorporation of from 0.1 to 40 wt.%,
    • preferably from 0.5 to 25 wt.%, more preferably from 0.5 to 20 wt.%, most preferably from 0.5 to 15 wt.%, of a saponin into said composition,
    • wherein the detergent composition comprises from 0.0005 to 2.5 wt.%, preferably from 0.001 to 2 wt.%, more preferably from 0.005 to 1 wt.% of a protease enzyme;
    • wherein the saponin has a triterpenoid backbone, and one or more sugar moieties attached to the triterpenoid backbone.
  • The method involves improving protease activity in a detergent composition, preferably in a home care detergent composition, more preferably a laundry detergent composition.
  • In another aspect the invention provides the use of saponin to improve protease activity in a detergent composition preferably in a home care detergent composition, more preferably a laundry detergent composition, wherein the saponin has a triterpenoid backbone, and one or more sugar moieties attached to the triterpenoid backbone.
  • Preferably the protease is bacterial, fungal or mammalian in origin, more preferably bacterial or fungal in origin, most preferably bacterial in origin.
  • Preferably the protease is selected from the following group, serine, acidic, metallo- and cysteine proteases. More preferably the protease is a serine and/or acidic protease.
  • Preferably the protease is a serine protease. More preferably the serine protease is subtilisin type serine protease.
  • Preferably the saponin has at least two sugar moieties attached to the triterpenoid backbone.
  • Preferably the detergent composition comprises anionic and/or nonionic surfactant, more preferably the detergent composition comprises both anionic and nonionic surfactant.
  • A preferred detergent composition is a laundry detergent composition. Preferably the laundry detergent composition is a liquid, gel or a powder, more preferably the detergent is a liquid detergent.
  • The laundry detergent preferably comprises from 0.1 to 8 wt.% of an alkoxylated polyamine. Preferably the alkoxylated polyamine comprises an alkoxylated polyethylenimine, and/or alkoxylated polypropylenimine, more preferably the alkoxylation is ethoxylation or propoxylation or a mixture of both.
  • The laundry detergent composition preferably comprises from 0.1 to 8 wt.% of a soil release polymer, preferably a polyester soil release polymer.
  • Preferred detergent compositions, particularly laundry detergent compositions additionally comprise a further enzyme selected from the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases.
  • Brief description of the figures
  • Figure 1
    graph showing the improvement effect of different saponins on protease activity and the beneficial effect of the sugar moieties present on the triterpenoid backbone.
    Figure 2
    graph showing that the increased protease activity using saponin is also seen in scaled-up mini-bottle wash studies.
    Figure 3
    graph showing that the increased protease activity using saponin is also seen across many different proteases.
    Figure 4
    graph showing that the increased protease activity using saponin is also seen using two different saponins in wash conditions (100ml).
    Detailed Description of the Invention
  • The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.
  • All % levels of ingredients in compositions (formulations) listed herein are in wt.% based on total formulation unless other stated.
  • It is understood that any reference to a preferred ingredient of the detergent composition used in the method/use is envisaged to be combinable subject matter with any other preferred ingredient of the detergent composition disclosed herein.
  • The detergent composition may take any suitable form, for example liquids, solids (including powders) or gels.
  • The detergent composition can be applied to any suitable substrate, including but not limited to any substrate to which a home care composition would be applied, for example, textiles, crockery and cutlery. Particularly preferred substrates are textiles. Particularly preferred detergent compositions are laundry detergent compositions. Preferably the laundry detergent composition is a liquid, gel or a powder, more preferably the detergent is a liquid detergent.
  • Laundry detergent compositions may take any suitable form. Preferred forms are liquid or powder, with liquid being most preferred.
  • Protease
  • The detergent composition used in the method or use comprises from 0.0005 to 2.5 wt.%, preferably from 0.001 to 2 wt.%, more preferably from 0.005 to 1 wt.% of a protease enzyme.
  • The protease can be derived from fungal, bacterial or mammalian sources.
  • Preferably the protease is bacterial, fungal or mammalian in origin, more preferably bacterial or fungal in origin, most preferably bacterial in origin.
  • Preferably the protease is selected from the following group, serine, acidic, metallo- and cysteine proteases. More preferably the protease is a serine and/or acidic protease.
  • Preferably the protease is a serine protease. More preferably the serine protease is subtilisin type serine protease.
  • Protease enzymes hydrolyse bonds within peptides and proteins, in the cleaning context this leads to enhanced removal of protein or peptide containing stains. Serine proteases are preferred. Subtilase type serine proteases are more preferred. The term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523. Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate. The subtilases may be divided into 6 sub-divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • Examples of subtilases are those derived from Bacillus species such as Bacillus lentus, B. licheniformis, B. alkalophilus, B. subtilis, B. amyloliquefaciens, B. pumilus and B. gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO 89/06279 and protease PD138 described in ( WO 93/18140 ). Other useful proteases may be those described in WO 92/175177 , WO 01/016285 , WO 02/026024 and WO 02/016547 . Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 , WO 94/25583 and WO 05/040372 , and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146 .
  • Most preferably the protease is a subtilisin protease (EC 3.4.21.62).
  • Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ). Preferably the subsilisin is derived from Bacillus, preferably Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii as described in US 6,312,936 B1 , US 5,679,630 , US 4,760,025 , US7,262,042 and WO 09/021867 . Most preferably the subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names Carnival®, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Coronase®, Coronase® Ultra, Kannase®, Liquanase®, Liquanase® Ultra, all could be sold as Ultra® or Evity® (Novozymes A/S).
  • Saponin
  • The detergent composition used in the method or use comprises from 0.1 to 40 wt.%, preferably from 0.25 to 30 wt.%, more preferably from 0.5 to 25 wt.%, more preferably from 0.5 to 20 wt.%, most preferably from 0.5 to 15 wt.%, of a saponin, wherein the saponin has a triterpenoid backbone and one or more sugar moieties attached to the triterpenoid backbone.
  • Saponins are natural compounds which contain sugar moieties bound to a fused system of non-aromatic 4, 5 and 6 membered rings. The ring system are preferably selected from the groups of triterpenoids, for example lanostane, dammarane, lupane, oleanane, ursane and hopane. An overview of these ring systems is provided in Natural Product Reports 27 (2010), 79-132 by R.A. Hill et al.
  • Saponins are discussed in "Saponins Used in Food and Agriculture" Plenum Press, New York 1996, G. R. Waller and K. Yamasaki (eds).
  • Saponins are preferably extracted from the seed, root, leaf, bulb, fruit, stem, pericarp, bark, tuber or flower of a plant. Saponin extraction and quantification is discussed in Food Research International 59 (2014) 16-40 by R. Sulaiman ey al. Extraction of saponins from agricultural products is discussed in WO2017/019599 and WO1999/053933 .
  • Saponins may also be produced by bacteria (for example glycosylated hopanoids such as ribosylhopane) and marine organisms including sea cucumbers, starfish and sponges (Bahrami, Y., Zhang, W. & Franco, C.M. (2018) Marine Drugs 16: 423-453). Saponins may also be produced through biotechnology, either through enzymatic biosynthesis in vitro or by the engineering of microbial cell factories (Moses, T. et al. (2014) PNAS 28:1634-1639).
  • The saponin is preferably a Tea saponin (for example preferably derived from Camellia species), Soapnut saponin (for example preferably derived from Sapindus species), Quillaja Bark saponin or Escin (for example preferably derived from Aesculus species).
  • Saponins are listed in the Chemical Entities of Biological Interest (ChEBI) database, (Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., Muthukrishnan, V., Owen, G., Turner, S., Williams, M., and Steinbeck, C. (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res.). For example, CHEBI:61778 - triterpenoid saponin.
  • Agricultural residues remaining after harvest may be suitable for extraction and supply of saponins. For example, sugarbeet leaves and skins may be further extracted to derive useful quantities of saponin. In China, the production and supply of tea saponin derived from the seed cake remaining after extraction of Camellia oleifera seeds for tea seed oil is well established. Alternatively, saponins may be extracted from parts of the plant collected from the wild (for example, protodioscin from Tribulus terrestris) or through managed plantations (for example from the bark of Quillaja saponaria).
  • Preferred Ingredients Surfactant
  • The detergent composition used in the method or use preferably comprises surfactant (which includes a mixture of two or more surfactants). The composition comprises from 1 to 60 wt.%, preferably from 2.5 to 50 wt.%, more preferably from 4 to 40 wt.% of surfactant. Even more preferred levels of surfactant are from 6 to 40 wt.%, more preferably from 8 to 35 wt.%.
  • Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.
  • Examples of suitable anionic detergent compounds are rhamnolipids, sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • The anionic surfactant is preferably selected from: rhamnolipids, linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.
  • The most preferred anionic surfactants are selected from: rhamnolipids, linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof. Preferably the alkyl ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units.
  • Sodium lauryl ether sulphate is particularly preferred (SLES). Preferably the linear alkyl benzene sulphonate is a sodium C11 to C15 alkyl benzene sulphonates. Preferably the alkyl sulphates is a linear or branched sodium C12 to C18 alkyl sulphates. Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate).
  • Rhamnolipids may preferably be mono-rhamnolipid rich (over 60%), di-rhamnolipid rich (over 60%), or a 40/60 to 60-40 mixture of mono- and di-rhamnolipid.
  • In liquid formulations preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.
  • In liquid formulations, preferably the laundry composition in addition to the anionic surfactant comprises alkyl exthoylated non-ionic surfactant, preferably from 2 to 8 wt.% of alkyl ethoxylated non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide. Preferred nonionic detergent compounds are the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with ethylene oxide. Alkyl polyglycosides (APG) are also preferred.
  • Most preferably the nonionic detergent compound is the alkyl ethoxylated non-ionic surfactant is a C8 to C18 primary alcohol with an average ethoxylation of 7EO to 9EO units.
  • Preferably the surfactants used are saturated.
  • Soil release polymer
  • It is preferred that a soil release polymer is included.
  • The laundry detergent composition preferably comprises from 0.1 to 8 wt.% of a soil release polymer.
  • Preferred levels of soil release polymer range from 0.2 to 6 wt.%, more preferably from 0.5 to 5 wt.%, most preferably from 1 to 5 wt.%.
  • Preferably the soil release polymer is a polyester soil release polymer.
  • More preferably the polyester soil release polymer is a polyethylene and/or polypropylene terephthalate based soil release polymer, most preferably a polypropylene terephthalate based soil release polymer.
  • Suitable polyester based soil release polymers are described in WO 2014/029479 and WO 2016/005338 .
  • Alkoxylated polyamine
  • When the detergent composition is in the form of a laundry composition, it is preferred that an alkoxylated polyamine is included.
  • The laundry detergent preferably comprises from 0.1 to 8 wt.% of an alkoxylated polyamine.
  • Preferred levels of alkoxylated polyamine range from 0.2 to 6 wt.%, more preferably from 0.5 to 5 wt.%. Another preferred level is from 1 to 4 wt.%.
  • The alkoxylated polyamine may be linear or branched. It may be branched to the extent that it is a dendrimer. The alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both. Preferably the alkoxylated polyamine comprises an alkoxylated polyethylenimine, and/or alkoxylated polypropylenimine, more preferably the alkoxylation is ethoxylation or propoxylation or a mixture of both. Where a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25.
  • A preferred material is alkoxylated polyethylenimine, most preferably ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30 preferably from 15 to 25, where a nitrogen atom is ethoxylated.
  • Additional Enzymes
  • Additional enzymes, other than the specified protease may be present in the detergent composition. It is preferred that additional enzymes are present in the preferred laundry detergent composition.
  • If present, then the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.%.
  • Levels of enzyme present in the composition preferably relate to the level of enzyme as pure protein.
  • Preferred further enzymes include those in the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases. Said preferred additional enzymes include a mixture of two or more of these enzymes.
  • Preferably the further enzyme is selected from: lipases, cellulases, and/or alpha-amylases.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P. fluorescens, Pseudomonas sp. strain SD 705 ( WO 95/06720 and WO 96/27002 ), P. wisconsinensis ( WO 96/12012 ), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), B. stearothermophilus ( JP 64/744992 ) or B. pumilus ( WO 91/16422 ).
  • Other examples are lipase variants such as those described in WO 92/05249 ,
    • WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 ,
    • WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and
    • WO 97/07202 , WO 00/60063 .
  • Preferred commercially available lipase enzymes include Lipolase and Lipolase Ultra, Lipex and Lipoclean (Novozymes A/S).
  • The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid. Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
  • The composition may use cutinase, classified in EC 3.1.1.74. The cutinase used according to the invention may be of any origin. Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 . Commercially available amylases are Duramyl, Termamyl, Termamyl Ultra, Natalase, Stainzyme, Amplify, Fungamyl and BAN (Novozymes A/S), Rapidase and Purastar (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 . Commercially available cellulases include Celluzyme, Carezyme, Celluclean, Endolase, Renozyme (Novozymes A/S), Clazinase and Puradax HA (Genencor International Inc.), and KAC-500(B) (Kao Corporation). Celluclean is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include Guardzyme and Novozym 51004 (Novozymes A/S).
  • Further enzymes suitable for use are discussed in WO 2009/087524 , WO 2009/090576 , WO 2009/107091 , WO 2009/111258 and WO 2009/148983 .
  • The aqueous solution used in the method preferably has an enzyme present. The enzyme is preferably present in the aqueous solution used in the method at a concentration in the range from 0.01 to 10ppm, preferably 0.05 to 1ppm.
  • Enzyme Stabilizers
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • Further materials
  • Further optional but preferred materials that may be included in the detergent compositions (preferably laundry detergent compositions) include builders, chelating agents, fluorescent agent, perfume, shading dyes and polymers.
  • Builders or Complexing Agents
  • The composition may comprise a builder.
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of waterinsoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives thereof, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070 .
  • The composition may also contain 0-65 wt.% of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders, with carbonates being particularly preferred.
  • The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt.%.
  • Aluminosilicates are materials having the general formula:

            0.8-1.5 M2O. Al2O3. 0.8-6 SiO2,

    where M is a monovalent cation, preferably sodium.
  • These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 SiO2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • If a laundry detergent, then preferably the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate. Most preferably the laundry detergent formulation is not built i.e. contain less than 1 wt.% of builder.
  • Chelating Agent
  • Chelating agents may be present or absent from the detergent compositions.
  • If present, then the chelating agent is present at a level of from 0.01 to 5 wt.%.
  • Example phosphonic acid (or salt thereof) chelating agents are: 1-Hydroxyethylidene-1,1-diphosphonic acid (HEDP); Diethylenetriaminepenta(methylenephosphonic acid) (DTPMP); Hexamethylenediaminetetra(methylenephosphonic acid) (HDTMP);
    Aminotris(methylenephosphonic acid) (ATMP); Ethylenediaminetetra(methylenephosphonic acid) (EDTMP); Tetramethylenediaminetetra(methylenephosphonic acid) (TDTMP); and, Phosphonobutanetricarboxylic acid (PBTC).
  • Fluorescent Agent
  • The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known, and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • The total amount of the fluorescent agent or agents used in the composition is generally from 0.0001 to 0.5 wt.%, preferably 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are fluorescers with CAS-No 3426-43-5; CAS-No 35632-99-6; CAS-No 24565-13-7; CAS-No 12224-16-7; CAS-No 13863-31-5; CAS-No 4193-55-9; CAS-No 16090-02-1; CAS-No 133-66-4; CAS-No 68444-86-0; CAS-No 27344-41-8.
  • Most preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino}stilbene-2-2' disulphonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino} stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • The aqueous solution used in the method has a fluorescer present. The fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
  • Perfume
  • The composition preferably comprises a perfume. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
  • Preferably the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate.
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA).
  • It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • The International Fragrance Association has published a list of fragrance ingredients (perfumes) in 2011. (http://www.ifraorgorg/en-us/ingredients#.U7Z4hPldWzk)
    The Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • Some or all of the perfume may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0. These materials, of relatively low boiling point and relatively low CLog P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethyl amyl ketone, ethyl benzoate, ethyl butyrate, ethyl hexyl ketone, ethyl phenyl acetate, eucalyptol, eugenol, fenchyl acetate, flor acetate (tricyclo decenyl acetate) , frutene (tricyclco decenyl propionate) , geraniol, hexenol, hexenyl acetate, hexyl acetate, hexyl formate, hydratropic alcohol, hydroxycitronellal, indone, isoamyl alcohol, iso menthone, isopulegyl acetate, isoquinolone, ligustral, linalool, linalool oxide, linalyl formate, menthone, menthyl acetphenone, methyl amyl ketone, methyl anthranilate, methyl benzoate, methyl benyl acetate, methyl eugenol, methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, methyl-n-methyl anthranilate, nerol, octalactone, octyl alcohol, p-cresol, p-cresol methyl ether, p-methoxy acetophenone, p-methyl acetophenone, phenoxy ethanol, phenyl acetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl bornate, pulegone, rose oxide, safrole, 4-terpinenol, alphaterpinenol, and /or viridine. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • Another group of perfumes with which the present invention can be applied are the socalled 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • Shading Dye
  • Preferably when the composition is a laundry detergent composition, then it comprises a shading dye. Preferably the shading dye is present at from 0.0001 to 0.1 wt.% of the composition.
  • Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zürich, 2003) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003).
  • Shading Dyes for use in laundry compositions preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol-1 cm-1, preferably greater than 10000 L mol-1 cm-1. The dyes are blue or violet in colour.
  • Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged. Azine preferably carry a net anionic or cationic charge. Blue or violet shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 250 to 320, most preferably 250 to 280. The white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes. The mono-azo dyes are preferably alkoxylated and are preferably uncharged or anionically charged at pH=7. Alkoxylated thiophene dyes are discussed in WO/2013/142495 and WO/2008/087497 . Preferred examples of thiophene dyes are shown below:
    Figure imgb0001
    Figure imgb0002
    and,
    Figure imgb0003
  • Bis-azo dyes are preferably sulphonated bis-azo dyes. Preferred examples of sulphonated bis-azo compounds are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, Direct Violet 66, direct violet 99 and alkoxylated versions thereof. Alkoxylated bis-azo dyes are discussed in WO2012/054058 and WO2010/151906 .
  • An example of an alkoxylated bis-azo dye is :
    Figure imgb0004
  • Thiophene dyes are available from Milliken under the tradenames of Liquitint Violet DD and Liquitint Violet ION.
  • Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5, acid blue 59, and the phenazine dye selected from:
    Figure imgb0005
    wherein:
    • X3 is selected from: -H; -F; -CH3; -C2H5; -OCH3; and, -OC2H5;
    • X4 is selected from: -H; -CH3; -C2H5; -OCH3; and, -OC2H5;
    • Y2 is selected from: -OH; -OCH2CH2OH; -CH(OH)CH2OH; -OC(O)CH3; and, C(O)OCH3.
  • The shading dye is present is present in the composition in range from 0.0001 to
    0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
  • A mixture of shading dyes may be used.
  • The shading dye is most preferably a reactive blue anthraquinone dye covalently linked to an alkoxylated polyethyleneimine. The alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation. Preferably 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation. Preferably the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
  • An example structure of a preferred reactive anthraquinone covalently attached to a propoxylated polyethylene imine is:
    Figure imgb0006
  • Polymers
  • The composition may comprise one or more further polymers. A preferred detergent composition comprises from 0.1 to 20 wt.%, preferably from 0.5 to 15 wt.% or one or more polymers. Examples are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Examples
  • The invention will be demonstrated by the following non-limiting examples.
  • Experimental methods: Biochemical determination of protease activity
  • Substrate (N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, was dissolved in methanol to give a stock solution of 20mM. In Tris-HCl (pH 8.5, 50mM), a working stock solution 1mM of substrate was prepared. In a 96 well plate, 140µL of Tris-HCl (pH 8.5, 50mM), 20µL of stock solution of enzyme (to give a final concentration between 10-100ng/mL), 20 µL of corresponding saponin working-stock solution, and 20µL of substrate (final concentration of 100uM) were added, before incubating the plate in a Tecan Infinite plate reader at ambient temperature to monitor the release of p-nitroanilide for 15min at 405nm.
  • Wash studies in microtitre plates (MTP)
  • Cotton stained with aged blood CS01 (Centre for Testmaterials - Netherlands) was cut into empty 96-well microtitre plates and pre-wash readings taken for stain intensity. Using FH32 water, the stored formulation samples were diluted to give a final protease concentration of 5mg/L in FH32 water containing (1g/L) of a laundry detergent formulation containing 15 wt.% surfactant (anionic/nonionic mix) also comprising EPEI and polyester soil release polymer plus dosed saponin, and subsequently transferred (200µL) to the stains using a multi-channel pipette just prior to incubation at 40°C, with shaking at 200rpm for 1h. Following washing, the wash liquor was immediately removed using a multi-channel pipette, and the stain discs washed 3x with 200µL dH2O, before leaving overnight in a cupboard to dry. After drying, the stain plates were digitally scanned and the deltaE measured. This value is used to express cleaning effect and is defined as the colour difference between a white cloth and that of the stained cloth after being washed.
  • Mathematically, the definition of deltaE is: deltaE = ΔL 2 + Δa 2 + Δb 2 1 / 2
    Figure imgb0007
    wherein ΔL is a measure of the difference in darkness between the washed and white cloth; Δa and Δb are measures for the difference in redness and yellowness respectively between both cloths.
  • From this equation, it is clear that the lower the value of deltaE, the whiter the cloth will be. With regard to this colour measurement technique, reference is made to Commission International de I'Eclairage (CIE); Recommendation on Uniform Colour Spaces, colour difference equations, psychometric colour terms, supplement no. 2 to CIE Publication, no. 15, Colorimetry, Bureau Central de la CIE, Paris 1978.
  • Herein the cleaning effect is expressed in the form of a stain removal index (SRI): SRI = 100 deltaE .
    Figure imgb0008
  • The higher the SRI the cleaner the cloth, and it follows that SRI = 100 is white.
  • Wash studies in Mini-bottles
  • Cotton swatches stained with blood/milk/ink on cotton E116 (Centre for Testmaterials - Netherlands) together with cotton ballast were used for the mini-bottle washes. Using either Prenton water (FH26) or water prepared to FH32, containing 1g/L EU liquid formulation (15% surfactancy mixture of anionic/non-ionic, comprising EPEI and a polyester soil release polymer), protease was added to a concentration of 5mg/L in a total volume of 63mL which also contained the dosed saponin. Washes were carried out at 40°C, with shaking at 200rpm for 1h. Following washing, the stains were separated from the wash liquor and rinsed 3x in Prenton water, before leaving to dry overnight. The washed stains were then measured for stain intensity and the dSRI calculated as a measure of cleaning effectiveness.
  • Example 1 - showing the use of saponin to improve protease activity
  • Biochemical assays for protease activity were initially used in high-throughput microtitre plate format to enable different saponins at different doses to be screened for their effect on protease activity. The protease used was Carnival Evity protease - supplied by Novozymes. The saponin was tested at the concentrations listed in table 1 without protease, and no effect on the assay was seen by the saponin alone.
  • Table 1 shows that when using a concentration of 100ng/mL protease, a positive effect on (increasing) protease activity is observed from addition of saponin (in this instance Escin). In this case, a step-up in activity corresponding to 30% was noted from Escin concentrations >0.5µM, in particular at concentrations ≥10µM). Table 1 Biochemical measurement of Carnival Evity protease (100ng/mL) activity in the presence of different doses of Escin saponin.
    Protease activity (Δabs/min @405nm)
    Saponin conc. (µM) Saponin + Protease
    0 0.126 (±0.001)
    0.01 0.125 (±0.001)
    0.1 0.121 (±0.002)
    0.5 0.126 (±0.005)
    10 0.170 (±0.003)
    25 0.160 (±0.0004)
    50 0.159 (±0.001)
    125 0.154 (±0.006)
    250 0.158 (±0.001)
    500 0.156 (±0.0006)
  • Example 2 - showing the use of different saponins to improve protease activity
  • Further examples of saponin molecules (in addition to Escin, Tea saponin and Quillaja Bark saponin) which are able to activate a laundry protease were subsequently found.
  • The effect of glycosylation appears key in conferring the activation benefits to molecules derived from oleanolic acid. The non-glycosylated triterpenoid oleanolic acid does not activate protease, the 3x and 4x glycosylated variants (OA-28 x 3Gly and OA-28 x4Gly) do clearly show these benefits (figure 1). Another saponin, Avenacin, was also shown to be highly activating of protease (figure 1).
  • The graph in figure 1 shows the effect of saponin at various levels for: a control (without protease); oleanolic acid (a triterpenoid backbone without sugar moieties); and saponins within the definition of the invention: the 3x and 4x glycosylated variants of oleanolic acid (OA-28 x 3Gly and OA-28 x4Gly), escin and avenacin. The level of saponin at 0µm corresponds to the protease only activity. The saponins within the scope of the invention improved the protease activity by a statistically significant amount at a saponin level of 5µM) and above.
  • Similarity between structures of effective saponin activators of protease are observed (figure 1); with common structural features of a triterpenoid backbone to which are linked sugar moieties.
    Avenacin (showing major molecular structures in the Avenacin extract)
    Figure imgb0009
    Oleanolic acid
    Figure imgb0010
    Oleanolic acid-28-x 3 Gly
    Figure imgb0011
    Oleanolic acid-28-x 4 Gly Structure is similar to Oleanolic acid-28-x 3 Gly (above) but with glycosylation to a 4 sugar chain - the material used was as Oleanolic acid-28-x 3 Gly with an extra identical sugar added to make Oleanolic acid-28-x 4 Gly
    Escin (showing major molecular structures in the Escin extract)
    Figure imgb0012
  • Example 3 - showing the activity of saponin on cleaning performance
  • A similar type of dose response experiment to the biochemical testing is displayed in table 2, this time showing the effect of Tea saponin on cleaning performance of Carnival Evity protease towards an aged blood stain (on cotton fabric). This experiment provides a link between the previously shown biochemical activity measurements for protease (table 1) and transfers them to a cleaning performance measurement with wash relevant levels of protease - also in microtitre plates. The activity boosting effect (improved cleaning) appears when increasing the concentration of saponin from 1mM to 5mM. Typical wash levels of protease (5mg/L) were used in this experiment.
  • Table 2 also shows that increasing the dose of saponin does not result in improved cleaning from just the saponin alone. A relatively constant cleaning performance due to saponin (~5 dSRI) is observed at concentrations of up to 25mM (table 2). The 'add-on' effect of boosted protease activity is noted when using Tea saponin >1mM, which leads to increased values for dSRI (~18). Table 2 MTP wash study using wash-levels of Carnival Evity protease (5mg/L) towards aged blood stain (CS01), with varying dose of Tea saponin added. A 5mM dose of saponin corresponds to 0.6 wt.% addition in a formulation.
    Cleaning performance (dSRI)
    Saponin conc. (mM) Saponin only Saponin + Protease
    0 4.95 (±0.94) 6.00 (±1.06)
    0.01 5.06 (±0.83) 5.85 (±0.97)
    0.1 4.62 (±0.95) 6.95 (±1.87)
    0.5 5.78 (±1.71) 6.16 (±1.04)
    1 5.50 (±0.63) 6.29 (±1.57)
    5 4.99 (±1.70) 18.49 (±3.13)
    25 6.88 (±1.09) 18.33 (±2.69)
  • Example 4 - showing the activity of saponin on scaled-up cleaning performance
  • The same effect of increased protease activity is observed when scaling-up the wash study from MTP to mini-bottles (figure 2).
  • Figure 2 shows that the saponin effect on increased protease activity is also seen in scaled-up mini-bottle wash studies (63ml). The figure is a graph showing the increased protease activity when 5mM of saponin is used. A statistically significant improvement in protease activity is demonstrated at this saponin level.
  • The effects of this improved cleaning can be visualised in de-colouration of the stain E116 (blood/milk/ink). With a liquid:cloth ratio of 53:1 used, this highlights the fact that saponins could be used to increase the cleaning performance of proteases in dilute solution, which further extends the potential application of this technology.
  • The reproducibility of this work in mini-bottle washes was also confirmed by protease activity boosting using Escin. For Escin, an even lower concentration of 1mM was found to give the same improved effect.
  • Example 5 - showing the activity of saponin on different proteases
  • This example shows that many proteases are found to be activated by saponins. This includes a range of commercial bacterial laundry proteases, as well as other bacterial derived protease (Streptomyces) and proteases of fungal origin (Aspergillus and Rhizopus). An example of a mammalian protease activated by escin is also shown (Bovine pancreas). Interestingly proteases of different active site configuration/mechanism can also be activated by saponin (examples shown are subtilisin-type alkaline proteases with a catalytic serine residue, as well as an acidic protease) (figure 3).
  • Figure 3 shows that the increased protease activity using saponin is also seen across many different proteases, both from origin and from protease type.
  • Example 6 - showing the activity using different saponins at scaled-up mini-bottle (100ml) wash performance across different time points of the wash
  • With the improvements in protease-catalysed cleaning shown for the addition of Escin and Tea saponin, a follow-up study looked into these cleaning improvements over the timecourse of a mini-bottle wash (100mL volume). In this study, the previously optimised levels of saponin used for the activity boosting effect on protease were applied (Escin = 1mM, Tea saponin = 5mM) - see example 4. Multiple swatches of the same E116 stain were included within the 100mL wash, with extraction of 1 piece of stained fabric every 10 minutes. The results (figure 4) show very clearly the reproducible benefit of saponin addition with approximately +5 SRI units observed for Escin and +10 SRI units observed for Tea saponin addition at concentrations used.
  • In summary the experiments included herein support the technical effect of improved protease activity across the many different proteases and saponins tested.

Claims (13)

  1. A method of improving protease activity in a detergent composition, said method involving incorporation of from 0.1 to 40 wt.%, preferably from 0.5 to 25 wt.%, more preferably from 0.5 to 20 wt.%, most preferably from 0.5 to 15 wt.%, of a saponin into said composition,
    wherein the detergent composition comprises from 0.0005 to 2.5 wt.%, preferably from 0.001 to 2 wt.%, more preferably from 0.005 to 1 wt.% of a protease enzyme;
    wherein the saponin has a triterpenoid backbone, and one or more sugar moieties attached to the triterpenoid backbone.
  2. A method according to claim 1, wherein the detergent composition, is a home care detergent composition, preferably a laundry detergent composition.
  3. Use of saponin to improve protease activity in a detergent composition preferably in a home care detergent composition, more preferably a laundry detergent composition, wherein the saponin has a triterpenoid backbone, and one or more sugar moieties attached to the triterpenoid backbone.
  4. A method or use according to any one of claims 1 to 3, wherein the protease is bacterial, fungal or mammalian in origin, preferably bacterial or fungal in origin, most preferably bacterial in origin.
  5. A method or use according to any one of claims 1 to 4, wherein the protease is selected from the following group: serine, acidic, metallo- and cysteine proteases, preferably the protease is a serine and/or acidic protease.
  6. A method or use according to any one of claims 1 to 5, wherein the protease is a serine protease, preferably the serine protease is subtilisin type serine protease.
  7. A method or use according to any one of claims 1 to 6, wherein the saponin has at least two sugar moieties attached to the triterpenoid backbone.
  8. A method or use according to any one of claims 1 to 7, wherein the detergent composition comprises from 1 to 60 wt.%, preferably from 2.5 to 50 wt.%, more preferably from 4 to 40 wt.%, most preferably from 8 to 35 wt.% of a surfactant, said surfactant not including saponin.
  9. A method or use according to any one of claims 1 to 8, wherein the detergent composition comprises anionic and/or nonionic surfactant, preferably comprising both anionic and nonionic surfactant.
  10. A method or use according to any one of claims 1 to 9, wherein the composition is laundry detergent composition, preferably the laundry detergent composition is a liquid, gel or a powder, more preferably the laundry detergent is a liquid detergent.
  11. A method or use according to any one of claims 1 to 10, wherein the laundry detergent composition comprises an alkoxylated polyamine, preferably at a level of from 0.1 to 8 wt.%, more preferably from 0.2 to 6 wt.%, most preferably from 0.5 to 5 wt.%, preferably the alkoxylated polyamine is an alkoxylated polyethylenimine, and/or alkoxylated polypropylenimine, more preferably the alkoxylation is ethoxylation or propoxylation or a mixture of both.
  12. A method or use according to any one of claims 1 to 11, wherein the laundry detergent composition comprises a soil release polymer, preferably at a level of from 0.1 to 8 wt.%, more preferably from 0.2 to 6 wt.%, most preferably from 0.5 to 5 wt.%, preferably the soil release polymer is a polyester soil release polymer.
  13. A method or use according to any one of claims 1 to 12, additionally comprising a further enzyme selected from the group consisting of: lipases, cellulases, alpha-amylases, peroxidases/oxidases, pectate lyases, and/or mannanases.
EP21728952.9A 2020-06-08 2021-06-07 Method of improving protease activity Active EP4162018B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20178738 2020-06-08
PCT/EP2021/065145 WO2021249927A1 (en) 2020-06-08 2021-06-07 Method of improving protease activity

Publications (2)

Publication Number Publication Date
EP4162018A1 EP4162018A1 (en) 2023-04-12
EP4162018B1 true EP4162018B1 (en) 2024-01-31

Family

ID=71069770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21728952.9A Active EP4162018B1 (en) 2020-06-08 2021-06-07 Method of improving protease activity

Country Status (5)

Country Link
EP (1) EP4162018B1 (en)
CN (1) CN115698246A (en)
BR (1) BR112022024537A2 (en)
WO (1) WO2021249927A1 (en)
ZA (1) ZA202212914B (en)

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
DK187280A (en) 1980-04-30 1981-10-31 Novo Industri As RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
WO1987000859A1 (en) 1985-08-09 1987-02-12 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
US4810414A (en) 1986-08-29 1989-03-07 Novo Industri A/S Enzymatic detergent additive
EP0305216B1 (en) 1987-08-28 1995-08-02 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
ATE129523T1 (en) 1988-01-07 1995-11-15 Novo Nordisk As SPECIFIC PROTEASES.
DK6488D0 (en) 1988-01-07 1988-01-07 Novo Industri As ENZYMES
JP3079276B2 (en) 1988-02-28 2000-08-21 天野製薬株式会社 Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same
JP2728531B2 (en) 1988-03-24 1998-03-18 ノボ ノルディスク アクティーゼルスカブ Cellulase preparation
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
CA2001927C (en) 1988-11-03 1999-12-21 Graham Thomas Brown Aluminosilicates and detergent compositions
KR100236540B1 (en) 1990-04-14 2000-01-15 레클로우크스 라우에르 Alkaline bacillus lipases, coding dna sequences thereof and bacilli which produce these lipases
AU657278B2 (en) 1990-09-13 1995-03-09 Novo Nordisk A/S Lipase variants
US5292796A (en) 1991-04-02 1994-03-08 Minnesota Mining And Manufacturing Company Urea-aldehyde condensates and melamine derivatives comprising fluorochemical oligomers
EP0583420B1 (en) 1991-04-30 1996-03-27 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
EP0511456A1 (en) 1991-04-30 1992-11-04 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
DK28792D0 (en) 1992-03-04 1992-03-04 Novo Nordisk As NEW ENZYM
DK72992D0 (en) 1992-06-01 1992-06-01 Novo Nordisk As ENZYME
EP0652946B1 (en) 1993-04-27 2005-01-26 Genencor International, Inc. New lipase variants for use in detergent applications
DK52393D0 (en) 1993-05-05 1993-05-05 Novo Nordisk As
JP2859520B2 (en) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ Lipase, microorganism producing the same, method for producing lipase, and detergent composition containing lipase
JPH09503664A (en) 1993-10-13 1997-04-15 ノボ ノルディスク アクティーゼルスカブ H-lower 2 O-lower 2 stable peroxidase mutant
CZ105396A3 (en) 1993-10-14 1996-09-11 Procter & Gamble Cleaning agent, agent for cleaning fabrics, agent for washing dishes, washing agent, method of cleaning fabrics, method of washing dishes and washing process
JPH07143883A (en) 1993-11-24 1995-06-06 Showa Denko Kk Lipase gene and mutant lipase
DE69527835T2 (en) 1994-02-22 2003-04-10 Novozymes As METHOD FOR PRODUCING A VARIANT OF A LIPOLYTIC ENZYME
CN1326994C (en) 1994-03-29 2007-07-18 诺沃奇梅兹有限公司 Alkaling bacillus amylase
EP0755442B1 (en) 1994-05-04 2002-10-09 Genencor International, Inc. Lipases with improved surfactant resistance
BE1008998A3 (en) 1994-10-14 1996-10-01 Solvay Lipase, microorganism producing the preparation process for the lipase and uses thereof.
EP0785994A1 (en) 1994-10-26 1997-07-30 Novo Nordisk A/S An enzyme with lipolytic activity
JPH08228778A (en) 1995-02-27 1996-09-10 Showa Denko Kk New lipase gene and production of lipase using the same
NZ303162A (en) 1995-03-17 2000-01-28 Novo Nordisk As Enzyme preparations comprising an enzyme exhibiting endoglucanase activity appropriate for laundry compositions for textiles
JP4307549B2 (en) 1995-07-14 2009-08-05 ノボザイムス アクティーゼルスカブ Modified enzyme with lipolytic activity
EP1726644A1 (en) 1996-09-17 2006-11-29 Novozymes A/S Cellulase variants
WO1998015257A1 (en) 1996-10-08 1998-04-16 Novo Nordisk A/S Diaminobenzoic acid derivatives as dye precursors
MA25044A1 (en) 1997-10-23 2000-10-01 Procter & Gamble WASHING COMPOSITIONS CONTAINING MULTISUBSTITUTED PROTEASE VARIANTS.
AU3589899A (en) 1998-04-17 1999-11-08 Her Majesty The Queen In Right Of Canada As Represented By The Department Of Agriculture And Agri-Food Canada Process for recovery and purification of saponins and sapogenins from quinoa ((chenopodium quinoa))
WO1999057236A1 (en) * 1998-05-04 1999-11-11 The Procter & Gamble Company Application of semi-synthetic saponins in the reduction of shrinkage on fine fabrics
DK2011864T3 (en) 1999-03-31 2015-04-07 Novozymes As Polypeptides with alkaline alpha-amylase activity and nucleic acids encoding them
EP2336331A1 (en) 1999-08-31 2011-06-22 Novozymes A/S Novel proteases and variants thereof
CN1337553A (en) 2000-08-05 2002-02-27 李海泉 Underground sightseeing amusement park
AU7961401A (en) 2000-08-21 2002-03-04 Novozymes As Subtilase enzymes
DE10162728A1 (en) 2001-12-20 2003-07-10 Henkel Kgaa New alkaline protease from Bacillus gibsonii (DSM 14393) and washing and cleaning agents containing this new alkaline protease
GB0314210D0 (en) 2003-06-18 2003-07-23 Unilever Plc Laundry treatment compositions
ATE516347T1 (en) 2003-10-23 2011-07-15 Novozymes As PROTEASE WITH IMPROVED STABILITY IN DETERGENTS
CN103421760A (en) 2003-11-19 2013-12-04 金克克国际有限公司 Serine proteases, nucleic acids encoding serine enzymes and vectors and host cells incorporating same
GB0420203D0 (en) 2004-09-11 2004-10-13 Unilever Plc Laundry treatment compositions
GB0421145D0 (en) 2004-09-23 2004-10-27 Unilever Plc Laundry treatment compositions
DE602005019640D1 (en) 2004-09-23 2010-04-08 Unilever Nv Laundry treatment compositions
DE102004052007B4 (en) 2004-10-25 2007-12-06 Müller Weingarten AG Drive system of a forming press
DE202006007594U1 (en) * 2006-05-12 2006-07-13 Remsgold-Chemie Gmbh & Co Cleaning agent containing saponin, useful as e.g. bleach and water-free fine detergent, bleach-free wash cream and dishwasher detergents, comprises a surfactant and/or a dispersing agent
ATE443753T1 (en) 2006-08-10 2009-10-15 Unilever Nv NUANCEMENT AGENTS
ATE557080T1 (en) 2007-01-19 2012-05-15 Procter & Gamble LAUNDRY CARE COMPOSITION WITH BLEACH FOR CELLULOSE SUBSTRATES
MX2009012393A (en) 2007-05-18 2009-12-01 Unilever Nv Triphenodioxazine dyes.
DE102007038031A1 (en) 2007-08-10 2009-06-04 Henkel Ag & Co. Kgaa Agents containing proteases
CN101910392B (en) 2008-01-04 2012-09-05 宝洁公司 Enzyme and fabric hueing agent containing compositions
EP2085070A1 (en) 2008-01-11 2009-08-05 Procter & Gamble International Operations SA. Cleaning and/or treatment compositions
CN102112602A (en) 2008-02-29 2011-06-29 宝洁公司 Detergent composition comprising lipase
US20090217463A1 (en) 2008-02-29 2009-09-03 Philip Frank Souter Detergent composition comprising lipase
CN102015989B (en) 2008-05-02 2012-07-04 荷兰联合利华有限公司 Reduced spotting granules
CN102037114B (en) 2008-05-20 2013-03-13 荷兰联合利华有限公司 Shading composition
HUE042847T2 (en) 2008-06-06 2019-07-29 Procter & Gamble Detergent composition comprising a variant of a family 44 xyloglucanase
EP2403931B1 (en) 2009-03-05 2014-03-19 Unilever PLC Dye radical initiators
BRPI1013881B1 (en) 2009-03-12 2023-10-17 Unilever Ip Holdings B.V. DETERGENT COMPOSITION, AND, HOUSEHOLD FABRIC TREATMENT METHOD
WO2010148624A1 (en) 2009-06-26 2010-12-29 Unilever Plc Dye polymers
JP6129740B2 (en) 2010-10-22 2017-05-17 ミリケン・アンド・カンパニーMilliken & Company Bis-azo colorant for bluing agents
WO2012054058A1 (en) 2010-10-22 2012-04-26 The Procter & Gamble Company Bis-azo colorants for use as bluing agents
US20120101018A1 (en) 2010-10-22 2012-04-26 Gregory Scot Miracle Bis-azo colorants for use as bluing agents
MX2013005276A (en) 2010-11-12 2013-06-03 Procter & Gamble Thiophene azo dyes and laundry care compositions containing the same.
MX2014011154A (en) 2012-03-19 2014-12-10 Procter & Gamble Laundry care compositions containing dyes.
CN104204178A (en) 2012-04-03 2014-12-10 宝洁公司 Laundry detergent composition comprising water-soluble phthalocyanine compound
DE102012016462A1 (en) 2012-08-18 2014-02-20 Clariant International Ltd. Use of polyesters in detergents and cleaners
JP6262365B2 (en) * 2014-03-27 2018-01-17 ザ プロクター アンド ギャンブル カンパニー Cleaning composition containing polyetheramine
EP2966160A1 (en) 2014-07-09 2016-01-13 Clariant International Ltd. Storage-stable compositions comprising soil release polymers
WO2017019599A1 (en) 2015-07-27 2017-02-02 Minn-Dak Farmers Cooperative Process for extraction of saponins from agricultural products
DE102016216539A1 (en) * 2016-09-01 2018-03-01 Henkel Ag & Co. Kgaa Detergent with saponin
CN109576070A (en) * 2017-09-28 2019-04-05 刘琼 A kind of multifunctional laundry liquid
CN108998275B (en) * 2018-08-03 2022-05-24 广州市南大实业有限公司 High water-solubility washing powder composition and preparation method thereof

Also Published As

Publication number Publication date
ZA202212914B (en) 2024-04-24
BR112022024537A2 (en) 2022-12-27
CN115698246A (en) 2023-02-03
WO2021249927A1 (en) 2021-12-16
EP4162018A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
EP3649222B1 (en) Whitening composition
TR201906232T4 (en) Detergent composition for laundry.
CN107075416A (en) Lightening compositions
EP4162018B1 (en) Method of improving protease activity
EP3990603B1 (en) Detergent composition
US20230112279A1 (en) Detergent composition
EP3853330B1 (en) Detergent composition
CN108603140B (en) Whitening composition
WO2021185956A1 (en) Detergent composition
EP3649221B1 (en) Laundry cleaning composition
EP3884025B1 (en) Detergent composition
CN113056550B (en) Detergent composition
CN113015781B (en) Detergent composition
EP3417039B1 (en) Whitening composition
EP3417042B1 (en) Whitening composition
WO2020104155A1 (en) Detergent composition
WO2020104156A1 (en) Detergent composition

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20230719

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231004

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231208

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602021009058

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D