EP4088005A1 - Dispositif pour le désengagement de turbine en survitesse de turbomachine - Google Patents

Dispositif pour le désengagement de turbine en survitesse de turbomachine

Info

Publication number
EP4088005A1
EP4088005A1 EP21705582.1A EP21705582A EP4088005A1 EP 4088005 A1 EP4088005 A1 EP 4088005A1 EP 21705582 A EP21705582 A EP 21705582A EP 4088005 A1 EP4088005 A1 EP 4088005A1
Authority
EP
European Patent Office
Prior art keywords
tenons
rotor disc
turbine
shaft
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21705582.1A
Other languages
German (de)
English (en)
Inventor
Antoine Hervé DOS SANTOS
Joao Antonio Amorim
Pascal Grégory CASALIGGI
Nicolas Xavier TRAPPIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP4088005A1 publication Critical patent/EP4088005A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/026Shaft to shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/31Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/36Retaining components in desired mutual position by a form fit connection, e.g. by interlocking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • F05D2270/021Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies

Definitions

  • TITLE Device for disengaging a turbine in turbomachine overspeed Technical field of the invention
  • the invention relates to an assembly for a turbomachine turbine.
  • the invention relates more specifically to an assembly for a turbomachine turbine comprising disengaging the turbine in the event of overspeed.
  • a fan In a turbomachine, a fan is driven in rotation by a turbine having a rotor disc provided with movable blades and connected to a low pressure compressor.
  • the resistive torque on the turbine In the event of a rupture of a shaft connecting the fan to the turbine, the resistive torque on the turbine is abruptly canceled as the flow of engine gas continues to transmit energy to the rotor disc. This causes an uncontrolled increase in the speed of rotation of the rotor disc (s) and therefore a risk of bursting causing the release of high energy flows.
  • the turbine is in this case in "overspeed".
  • EP1640564 is known which proposes a device using the downstream displacement of the turbine to limit the overspeed of the turbine.
  • the device comprises means for destroying the moving vanes arranged in the downstream stator vanes of the turbine.
  • the downstream movement of the rotor disc can be prevented by means for fixing the turbine in translation with respect to its axis of rotation.
  • the moving vanes are not damaged by the destruction means.
  • Such devices therefore lack efficiency and reliability in limiting overspeed.
  • One of the aims of the invention is to ensure the downstream movement of the turbine in the event of the shaft breaking so that an annular row of mobile vanes comes into contact with an annular row of stator vane thus allowing destruction of the annular row of moving vanes by the annular row of stator vanes, braking the turbine.
  • Another object of the invention is to limit the overspeed of the turbine in the event of shaft failure in a reliable and efficient manner.
  • the invention provides an assembly for a turbomachine turbine with a longitudinal axis comprising:
  • the invention is advantageous in that the screwed member has an unscrewing direction identical to the direction of rotation so that the second transmission means cause the screwed member to unscrew when the first torque transmission means stop transmitting the torque. torque from rotor disc to shaft.
  • the turbine is no longer retained in the axial direction and can reverse, thus destroying its blades against a stator of the turbomachine. This prevents the turbine from overspeeding, as the destroyed moving vanes no longer supply it with energy.
  • the invention therefore provides for limiting the overspeed of the turbine reliably and effectively in the event of loss of power transmission from the shaft to the rotor disc.
  • the first torque transmission means may comprise first longitudinal splines formed on the shaft and distributed circumferentially around the longitudinal axis and second longitudinal splines engaged with the first splines and formed in an annular face. internal rotor disc.
  • the first torque transmission means may stop transmitting torque from the rotor disc to the shaft if the first and / or second splines break or deteriorate.
  • the second torque transmission means may comprise a ring centered on the longitudinal axis and comprising first tenons cooperating with housings formed in the screwed member and second tenons cooperating with housings formed in the rotor disc.
  • the first tenons make it possible to drive the screwed member in rotation when the ring is driven in rotation by the rotor disc through the second tenons, for example when the first torque transmission means stop transmitting the torque from the rotor disc to the tree.
  • the circumferential clearance between the first splines and the second splines may be less than the sum of the circumferential clearance between the second tenons and the rotor disc and the circumferential clearance between the first tenons and the screwed member.
  • the transmission of the rotation of the rotor disc to the shaft is favored and the screwed member is not rotated when the first transmission means are able to transmit the rotation of the rotor disc to the shaft.
  • the ring may comprise an annular part, the first tenons extending upstream and the second being arranged downstream of the first tenons.
  • at least one of the first tenons and of the second tenons may comprise concave rounded portions for connection to the annular portion. This allows better mechanical strength of the ring.
  • the second tenons may extend mainly in the direction of the longitudinal axis.
  • the second tenons may extend downstream in the direction of the longitudinal axis.
  • the second tenons may extend primarily in a radial direction perpendicular to the longitudinal axis.
  • the number of second tenons may be greater than the number of housings of the rotor disc.
  • the number of the first tenons may be greater than the number of housings of the screwed member.
  • a number of tenons greater than the number of housings facilitates tight fitting of the ring on the one hand with the rotor disc and on the other hand with the screwed member.
  • the number of second tenons may be less than the number of first tenons.
  • the ring can be mounted in different ways.
  • the ring can be mounted around the screw member.
  • the ring can be blocked in translation downstream by a stop ring mounted in a groove of the screwed member.
  • annular space can be provided immediately downstream of the screwed member.
  • the annular space may have a longitudinal dimension greater than or equal to a longitudinal distance between movable vanes connected to the rotor disc and stator vanes immediately downstream of the turbine.
  • the turbine can move back a sufficient distance for the stator vanes to come into contact with vanes connected to the rotor disc.
  • the shaft can be connected to a low pressure compressor of the turbomachine.
  • the invention provides a turbine, such as a low pressure turbine, comprising the aforementioned assembly.
  • the turbine may extend around a longitudinal axis, and include a stator and a rotor rotatably mounted in the stator.
  • the rotor may include an assembly as mentioned above, the ring being able to be blocked in translation downstream by a stop ring mounted in a groove of the screwed member.
  • annular space can be provided immediately downstream of the screwed member, said annular space having a longitudinal dimension greater than or equal to a longitudinal distance between the mobile vanes connected to the rotor disk and stator vanes located immediately downstream of the mobile vanes.
  • the invention provides a turbomachine, such as an airplane turbojet, equipped with the aforementioned assembly.
  • FIG. 1 shows a partial sectional view of a turbine of a turbomachine.
  • FIG. 2 represents a partial view in couple of a first example of the assembly according to the invention.
  • Figure 3 shows a perspective view of the first example of the assembly according to the invention.
  • FIG. 4a and FIG. 4b respectively show a first example of a ring according to the invention and a second example of a ring according to the invention.
  • Figure 5 shows an example of an assembly according to the invention equipped with the ring of Figure 4a.
  • Figure 6 shows an example of an assembly according to the invention equipped with the ring of Figure 4b.
  • the turbine 10 comprises a plurality of stator blades 24 connected to a fixed casing 20 and a plurality of movable blades 26 connected to a rotor disc 12 rotating about a longitudinal axis of rotation AA .
  • Each of the stator vanes 24 is equipped with a domed protrusion 28 facing upstream from an internal platform, this protrusion is shaped to shear the moving vanes 26 as they come into contact with the protrusions.
  • the protuberance 28 is curved, presenting a convex surface of the blade 24 facing upstream.
  • the rotor disc 12 is arranged to drive a shaft 14 of the turbine 10 in rotation.
  • the shaft 14 can be connected to a low pressure compressor of a turbomachine equipped by the turbine 10.
  • the rotor disc 12 comprises a part annular arranged around the shaft 14 and comprises on an inner face, that is to say oriented radially inwardly, splines 16 distributed circumferentially around the axis of rotation A- A.
  • the splines 16 s' extend over a longitudinal part of the inner face of the rotor disc 12.
  • the shaft 14 comprises on its outer face splines 18, distributed circumferentially around the axis of rotation AA, and in engagement with the splines 16 of the rotor disc 12 for the transmission of torque from the latter to the shaft 14.
  • the splines 18 extend over a longitudinal part of the shaft 14.
  • the rotor disc 12 is held in translation in the direction of the axis of rotation AA by a nut 22 screwed onto the shaft 14 and abutting against a flange 30 of the rotor disc 12.
  • the nut 22 is mounted on the. shaft 14 so that its direction of unscrewing is identical to the direction of rotation of the turbine 10.
  • a thread is provided in the shaft 14 to ensure such a direction of unscrewing.
  • the turbine 10 risks going into uncontrolled overspeed due to the rotating drive of the mobile blades by the hot gases from 'an upstream combustion chamber.
  • the protuberances 28, domed stator vanes 24 are arranged to shear and pluck the moving vanes 26 to reduce or even cancel the energy received by the turbine 10.
  • These protuberances are formed at the leading edge of the vanes . More particularly, the leading edge of each blade thus comprises a convex surface.
  • the turbine comprises a ring 32 configured to unscrew the nut 22 in the event of damage to the shaft 14 thus freeing the rotor disc 12 in translation in the direction of l axis of rotation AA.
  • the ring 32 is annular and arranged between the nut 22 and the rotor disc 12.
  • the ring 32 comprises first tenons 34, distributed circumferentially around the axis of rotation AA, in engagement with the housings provided in the shaft. 14.
  • the ring 32 also comprises second tenons 36, distributed circumferentially around the axis of rotation AA, in engagement with housings provided in the rotor disc 12.
  • the ring 32 transmits the rotation of the rotor disc 12 towards the nut 22.
  • the nut 22 is unscrewed. by the rotation of the turbine 10 which frees the turbine 10 in translation.
  • the turbine 10 moves downstream along the axis of rotation A-A, causing the blades 26 to shear by the protrusions 28 of the downstream stator vanes 24 audited the blades 26.
  • the turbine 10 comprises a space downstream of the nut 22 having a length greater than the distance between the protuberances 28 of the stator vanes 24 and the mobile vanes 26.
  • the length of said space may be greater than or equal to twice. said distance.
  • the circumferential play between the splines 16 of the rotor disc 12 and the splines 18 of the shaft 14 may be less than the sum of the circumferential play between the second tenons 36 and the rotor disc 12 and of the circumferential play between the first tenons 34 and l. 'nut 22.
  • annular snap ring 38 is arranged downstream of the ring 32 in a location provided in the nut 22 and protrudes in the radial direction away from the nut 22.
  • the snap ring 38 keeps the ring 32 fixed in translation in the direction of the axis of rotation AA.
  • Figure 4a and Figure 5 show a first embodiment of a ring 100 which can be installed in the turbine 10 of Figures 1-3.
  • the ring 100 comprises an annular portion 102, for example having a radius greater than the outer radius of the nut 22.
  • the ring 100 comprises on the one hand first tenons 104 and on the other hand second tenons 106.
  • the first tenons. tenons 104 extend upstream in the direction of the axis of rotation AA from the annular portion 102 and engage with housings provided in the nut 22.
  • the second tenons 106 extend downstream from the part annular 102 in the direction of the axis of rotation AA and engage with housings provided in the rotor disc 12.
  • the number of the first tenons 104 is less than the number of housings of the nut 22 and the number of second tenons 106 is lower than the number of housings of the rotor disc 12.
  • the number of housings of the nut 22 can be equal to or greater than twice the number of the first tenons 104.
  • the number of housings of the rotor disc 12 can be equal to twice the number of the second tenons 106. In this way Furthermore, the number of the first tenons 104 may be less than the number of the second tenons 106.
  • Each of the first tenons 104 has a rounded connection with the annular part 102.
  • each of the second tenons 106 has a rounded connection with the annular part. 102.
  • the ring 100 also has an annular shoulder 108 carried by the annular part 102 and delimited by the first tenons 10, this shoulder 108 blowing in abutment upstream on an annular shoulder of the nut 22.
  • the ring 100 may be made of a material identical to the material of the nut 22 and / or the rotor disc 12.
  • Figure 4b and Figure 6 show a second embodiment of a ring 200 which can be installed in the turbine 10 of Figures 1-3.
  • the ring 200 comprises an annular portion 202, for example having a radius greater than the external radius of the nut 22.
  • the ring 200 comprises on the one hand first tenons 204 and on the other hand second tenons 206.
  • the first ones tenons 204 extend in the direction of the axis of rotation AA and are engaged with housings provided in the nut 22.
  • the second tenons 206 extend in the direction of the axis of rotation AA and are engaged with housings provided in the rotor disc 12.
  • the number of the first tenons 204 is less than the number of housings of the nut 22 and the number of second tenons 206 is lower than the number of housings of the rotor disc 12.
  • the number of housings of the nut 22 can be equal to or greater than twice the number of the first tenons 204.
  • the number of housings of the rotor disc 12 can be equal to twice the number of the second tenons 206. In this way Furthermore, the number of the first tenons 204 may be less than the number of the second tenons 206.
  • Each of the first tenons 204 has a rounded connection with the annular part 102.
  • each of the second tenons 106 has a rounded connection with the annular part. 202.
  • the mechanical strength of the ring 32 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un ensemble pour turbine (10) de turbomachine d'axe longitudinal (A-A) comprenant : - un disque rotor (12) de turbine centré sur l'axe longitudinal, - un arbre (14) de turbine centré sur l'axe longitudinal et entrainé en rotation par le disque rotor, - des premiers moyens de transmission de couple du disque rotor à l'arbre, le disque rotor étant bloqué en translation par rapport à l'arbre dans la direction de l'axe longitudinal par un organe vissé (22) sur ledit arbre, et - des seconds moyens de transmission de couple du disque rotor à l'organe vissé, dans lequel l'organe vissé présente un sens de dévissage identique au sens de rotation du disque rotor en fonctionnement et les seconds moyens de transmission de couple sont configurés pour transmettre le couple de rotation du disque rotor vers l'organe vissé lorsque les premiers moyens de transmission de couple cessent de transmettre le couple du disque rotor à l'arbre.

Description

DESCRIPTION
TITRE : Dispositif pour le désengagement de turbine en survitesse de turbomachine Domaine technique de l’invention
L’invention concerne un ensemble pour turbine de turbomachine.
L’invention vise plus spécifiquement un ensemble pour turbine de turbomachine comprenant pour désengager la turbine en cas de survitesse.
Etat de la technique antérieure
Dans une turbomachine une soufflante est entraînée en rotation par une turbine ayant un disque rotor muni d’aubes mobile et reliée à un compresseur basse pression. En cas de rupture d’un arbre reliant la soufflante à la turbine, le couple résistant sur la turbine est brusquement annulé alors que le flux de gaz moteur continue à transmettre de l’énergie au disque rotor. Ceci provoque une augmentation incontrôlée de la vitesse de rotation du ou des disques rotor et donc un risque d’éclatement provoquant la libération de débits à haute énergie. La turbine est dans ce cas en « survitesse ».
On connaît EP1640564 qui propose un dispositif utilisant le déplacement en aval de la turbine pour limiter la survitesse de la turbine. Le dispositif comprend des moyens de destruction des aubes mobiles agencés dans des aubes aval de stator de la turbine. Cependant, le déplacement en aval du disque rotor peut être empêché par des moyens de fixation en translation de la turbine par rapport à son axe de rotation. En conséquence, les aubes mobiles ne sont pas endommagées par les moyens de destruction. De tels dispositifs manquent donc d’efficacité et de fiabilité pour limiter la survitesse.
Présentation de l’invention
Un des buts de l’invention est d’assurer le déplacement en aval de la turbine en cas de rupture de l’arbre afin qu’une rangée annulaire d’aubes mobiles vienne en contact avec une rangée annulaire d’aube de stator permettant ainsi une destruction de la rangée annulaire d’aubes mobiles par la rangée annulaire d’aubes de stator, freinant la turbine.
Un autre but de l’invention est de limiter la survitesse de la turbine en cas de rupture de l’arbre de façon fiable et efficace.
A cet effet, l’invention propose un ensemble pour turbine de turbomachine d’axe longitudinal comprenant :
- un disque rotor de turbine centré sur l’axe longitudinal,
- un arbre de turbine centré sur l’axe longitudinal et entraîné en rotation par le disque rotor,
- des premiers moyens de transmission de couple du disque rotor à l’arbre, le disque rotor étant bloqué en translation par rapport à l’arbre dans la direction de l’axe longitudinal par un organe vissé sur ledit arbre, et
- des seconds moyens de transmission de couple du disque rotor à l’organe vissé, dans lequel l’organe vissé présente un sens de dévissage identique au sens de rotation du disque rotor en fonctionnement et les seconds moyens de transmission de couple sont configurés pour transmettre le couple de rotation du disque rotor vers l’organe vissé lorsque les premiers moyens de transmission de couple cessent de transmettre le couple du disque rotor à l’arbre.
L’invention est avantageuse en ce que l’organe vissé présente un sens de dévissage identique au sens de rotation de sorte que les seconds moyens de transmission provoquent le dévissage de l’organe vissé lorsque les premiers moyens de transmission de couple cessent de transmettre le couple du disque rotor à l’arbre. En conséquence, la turbine n’est plus retenue dans la direction axiale et peut reculer, causant ainsi la destruction de ses aubes mobiles contre un stator de la turbomachine. Ceci empêche la turbine de partir en survitesse, les aubes mobiles détruites ne lui fournissant plus d’énergie. L’invention assure donc une limitation de la survitesse de la turbine de façon fiable et efficace en cas de perte de la transmission de puissance de l’arbre au disque rotor.
Selon un mode de réalisation, les premiers moyens de transmission de couple peuvent comprendre des premières cannelures longitudinales formées sur l’arbre et réparties circonférentiellement autour de l’axe longitudinal et des secondes cannelures longitudinales en prise avec les premières cannelures et formées dans une face annulaire interne du disque rotor.
Les premiers moyens de transmission de couple peuvent cesser de transmettre le couple du disque rotor à l’arbre en cas de cassure ou de détérioration des premières et/ou deuxièmes cannelures.
Les seconds moyens de transmission de couple peuvent comprendre un anneau centré sur l’axe longitudinal et comprenant des premiers tenons coopérant avec des logements formés dans l’organe vissé et des seconds tenons coopérant avec des logements formés dans le disque rotor.
Les premiers tenons permettent d’entrainer l’organe vissé en rotation lorsque l’anneau est entraîné en rotation par le disque rotor à travers les seconds tenons, par exemple lorsque les premiers moyens de transmission de couple cessent de transmettre le couple du disque rotor à l’arbre.
Dans un mode de réalisation, le jeu circonférentiel entre les premières cannelures et les secondes cannelures peut être inférieur à la somme du jeu circonférentiel entre les seconds tenons et le disque rotor et du jeu circonférentiel entre les premiers tenons et l’organe vissé. Ainsi, la transmission de la rotation du disque rotor vers l’arbre est privilégiée et l’organe vissé n’est pas entraîné en rotation lorsque les premiers moyens de transmission sont aptes à transmettre la rotation du disque rotor à l’arbre.
Selon un mode de réalisation, l’anneau peut comprendre une partie annulaire, les premiers tenons s’étendant vers l’amont et les seconds étant agencés en aval des premiers tenons. En outre, l’un au moins des premiers tenons et des seconds tenons peut comprendre des portions arrondies concave de raccordement à la partie annulaire. Ceci permet une meilleure tenue mécanique de l’anneau.
Les seconds tenons peuvent s’étendre principalement dans la direction de l’axe longitudinal. Les seconds tenons peuvent s’étendre vers l’aval dans la direction de l’axe longitudinal.
Les seconds tenons peuvent s’étendre principalement dans une direction radiale perpendiculaire à l’axe longitudinal.
Le nombre des seconds tenons peut être supérieur au nombre de logements du disque rotor. Le nombre des premiers tenons peut être supérieur au nombre de logements de l’organe vissé.
Un nombre de tenons supérieur au nombre de logements permet de faciliter le montage serré de l’anneau d’une part avec le disque rotor et d’autre part avec l’organe vissé.
Le nombre des seconds tenons peut être inférieur au nombre des premiers tenons.
L’anneau peut être monté de différente façon. Par exemple, l’anneau peut être monté autour de l’organe vissé. L’anneau peut être bloqué en translation vers l’aval par un jonc d’arrêt monté dans une rainure de l’organe vissé.
Selon un mode de réalisation, un espace annulaire peut être ménagé immédiatement en aval de l’organe vissé. L’espace annulaire peut avoir une dimension longitudinale supérieure ou égale à une distance longitudinale entre des aubes mobiles reliées au disque rotor et des aubes de stator immédiatement en aval de la turbine.
Ainsi, la turbine peut reculer d’une distance suffisante pour que les aubes de stator entrent en contact avec des aubes reliées au disque rotor.
L’arbre peut être relié à un compresseur basse pression de la turbomachine.
Selon un autre aspect, l’invention propose une turbine, telle qu’une turbine basse pression, comprenant l’ensemble précité.
Selon un mode de réalisation, la turbine peut s’étendre autour d’un axe longitudinal, et comprendre un stator et un rotor monté rotatif dans le stator. Le rotor peut comprendre un ensemble tel que précité, l’anneau pouvant être bloqué en translation vers l’aval par un jonc d’arrêt monté dans une rainure de l’organe vissé.
Un espace annulaire peut être ménagé immédiatement en aval de l’organe vissé, ledit espace annulaire ayant une dimension longitudinale supérieure ou égale à une distance longitudinale entre des aubes mobiles reliées au disque rotor et des aubes de stator situées immédiatement en aval des aubes mobiles.
Selon un autre aspect, l’invention propose une turbomachine, telle qu’un turboréacteur d’avion, équipée de l’ensemble précité.
Brève description des figures [Fig. 1] la figure 1 représente une vue partielle en coupe d’une turbine d’une turbomachine. [Fig. 2] la figure 2 représente une vue partielle en couple d’un premier exemple de l’ensemble selon l’invention.
[Fig. 3] la figure 3 représente une vue en perspective du premier exemple de l’ensemble selon l’invention.
[Fig. 4] la figure 4a et la figure 4b représentent respectivement un premier exemple d’un anneau selon l’invention et un deuxième exemple d’un anneau selon l’invention.
[Fig. 5] la figure 5 représente un exemple d’un ensemble selon l’invention équipé de l’anneau de la figure 4a.
[Fig. 6] la figure 6 représente un exemple d’un ensemble selon l’invention équipé de l’anneau de la figure 4b.
Description détaillée de l’invention
En référence aux figures 1 à 3, la turbine 10 comprend une pluralité d’aubes de stator 24 reliées à un carter 20 fixe et une pluralité d’aubes mobiles 26 reliées à un disque rotor 12 rotatif autour d’un axe longitudinal de rotation A-A. Chacune des aubes de stator 24 est équipée d’une protubérance 28 bombée orientée vers l’amont depuis une plateforme interne, cette protubérance est conformée pour cisailler les aubes mobiles 26 lorsqu’elles entrent en contact avec les protubérances. En particulier, la protubérance 28 est bombée en présentant une surface convexe de l’aube 24 orientée vers l’amont.
Le disque rotor 12 est agencé pour entraîner en rotation un arbre 14 de la turbine 10. Par exemple, l’arbre 14 peut être relié à un compresseur basse pression d’une turbomachine équipée par la turbine 10. Le disque rotor 12 comprend une partie annulaire agencée autour de l’arbre 14 et comprend sur une face intérieure, c’est-à-dire orientée radialement vers l’intérieure, des cannelures 16 distribuées circonférentiellement autour de l’axe de rotation A- A. Les cannelures 16 s’étendent sur une partie longitudinale de la face intérieure du disque rotor 12. L’arbre 14 comprend sur sa face extérieure des cannelures 18, distribuées circonférentiellement autour de l’axe de rotation A-A, et en prise avec les cannelures 16 du disque rotor 12 pour la transmission du couple de ce dernier vers l’arbre 14. Les cannelures 18 s’étendent sur une partie longitudinale de l’arbre 14.
Le disque rotor 12 est maintenu en translation dans la direction de l’axe de rotation A-A par un écrou 22 vissé sur l’arbre 14 et venant en butée contre une collerette 30 du disque rotor 12. L’écrou 22 est monté sur l’arbre 14 de sorte que son sens de dévissage est identique au sens de rotation de la turbine 10. A cet effet, un filetage est prévu dans l’arbre 14 pour assurer un tel sens de dévissage.
En cas de rupture de l’arbre 14 ou de la liaison entre l’arbre 14 et le disque rotor 14, la turbine 10 risque de passer en survitesse incontrôlée du fait de l’entrainement en rotation des aubes mobiles par les gaz chauds issues d’une chambre de combustion amont. Afin de limiter la survitesse, les protubérances 28, bombées des aubes de stator 24 sont agencées pour cisailler et plumer les aubes mobiles 26 pour réduire voire annuler l’énergie reçue par la turbine 10. Ces protubérances sont formées au niveau du bord d’attaque des aubes. Plus particulièrement, le bord d’attaque de chaque aube comprend ainsi une surface convexe. Pour assurer que les protubérances 28 entrent en contact avec les aubes mobiles 24, la turbine comprend un anneau 32 configuré pour dévisser l’écrou 22 en cas de détérioration de l’arbre 14 libérant ainsi le disque rotor 12 en translation dans la direction de l’axe de rotation A-A.
L’anneau 32 est annulaire et agencé entre l’écrou 22 et le disque rotor 12. L’anneau 32 comprend des premiers tenons 34, répartis circonférentiellement autour de l’axe de rotation A-A, en prise avec des logements prévus dans l’arbre 14. L’anneau 32 comprend aussi des seconds tenons 36, répartis circonférentiellement autour de l’axe de rotation A-A, en prise avec des logements prévus dans le disque rotor 12.
Lorsque l’arbre 14 se rompt ou les cannelures 16 et les cannelures 18 sont désengagées l’une de l’autre, l’anneau 32 transmet la rotation du disque rotor 12 vers l’écrou 22. Ainsi, l’écrou 22 est dévissé par la rotation de la turbine 10 ce qui libère la turbine 10 en translation. La turbine 10 se déplace vers l’aval suivant l’axe de rotation A-A, ce qui cause le cisaillement des aubes mobiles 26 par les protubérances 28 des aubes de stator 24 aval audites aubes mobiles 26.
La turbine 10 comprend un espace en aval de l’écrou 22 ayant une longueur supérieure à la distance entre les protubérances 28 des aubes de stator 24 et les aubes mobiles 26. Par exemple, la longueur dudit espace peut être supérieure ou égale à deux fois ladite distance. Le jeu circonférentiel entre les cannelures 16 du disque rotor 12 et les cannelures 18 de l’arbre 14 peut être inférieur à la somme du jeu circonférentiel entre les seconds tenons 36 et le disque rotor 12 et du jeu circonférentiel entre les premiers tenons 34 et l’écrou 22.
En outre, un jonc d’arrêt 38 annulaire est agencé en aval de l’anneau 32 dans un emplacement prévu dans l’écrou 22 et en saillie dans la direction radiale en s’éloignant de l’écrou 22. Le jonc d’arrêt 38 permet de maintenir l’anneau 32 fixe en translation dans la direction de l’axe de rotation A-A.
La figure 4a et la figure 5 représentent un premier exemple de réalisation d’un anneau 100 qui peut être installé dans la turbine 10 des figures 1-3. L’anneau 100 comprend une partie annulaire 102, par exemple ayant un rayon supérieur au rayon externe de l’écrou 22. L’anneau 100 comprend d’une part des premiers tenons 104 et d’autre part des seconds tenons 106. Les premiers tenons 104 s’étendent vers l’amont dans la direction de l’axe de rotation A-A depuis la partie annulaire 102 et sont en prise avec des logements prévus dans l’écrou 22. De la même façon, les seconds tenons 106 s’étendent vers l’aval depuis la partie annulaire 102 dans la direction de l’axe de rotation A-A et sont en prise avec des logements prévus dans le disque rotor 12.
Le nombre des premiers tenons 104 est inférieur au nombre de logements de l’écrou 22 et le nombre des seconds tenons 106 est inférieur au nombre de logements du disque rotor 12. Ainsi, le montage de l’anneau 100 d’une part dans le disque rotor 12 et d’autre part dans l’écrou 22 est facilité. Par exemple, le nombre de logements de l’écrou 22 peut être égal à ou supérieur à deux fois le nombre des premiers tenons 104. Le nombre de logements du disque rotor 12 peut être égal à deux fois le nombre des seconds tenons 106. En outre, le nombre des premiers tenons 104 peut être inférieur au nombre des seconds tenons 106. Chacun des premiers tenons 104 présente un raccord arrondi avec la partie annulaire 102. De façon similaire, chacun des seconds tenons 106 présente un raccord arrondi avec la partie annulaire 102. Ainsi, la tenue mécanique de l’anneau 32 est améliorée.
L’anneau 100 présente en outre un épaulement annulaire 108 porté par la partie annulaire 102 et délimité par les premiers tenons 10, cet épaulement 108 ventant en butée vers l’amont sur un épaulement annulaire de l’écrou 22.
L’anneau 100 peut être fabriqué dans un matériau identique au matériau de l’écrou 22 et/ou du disque rotor 12.
La figure 4b et la figure 6 représentent un deuxième exemple de réalisation d’un anneau 200 qui peut être installé dans la turbine 10 des figures 1-3. L’anneau 200 comprend une partie annulaire 202, par exemple ayant un rayon supérieur au rayon externe de l’écrou 22. L’anneau 200 comprend d’une part des premiers tenons 204 et d’autre part des seconds tenons 206. Les premiers tenons 204 s’étendent dans la direction de l’axe de rotation A-A et sont en prise avec des logements prévus dans l’écrou 22. De la même façon, les seconds tenons 206 s’étendent dans la direction de l’axe de rotation A-A et sont en prise avec des logements prévus dans le disque rotor 12.
Le nombre des premiers tenons 204 est inférieur au nombre de logements de l’écrou 22 et le nombre des seconds tenons 206 est inférieur au nombre de logements du disque rotor 12. Ainsi, le montage de l’anneau 200 d’une part dans le disque rotor 12 et d’autre part dans l’écrou 22 est facilité. Par exemple, le nombre de logements de l’écrou 22 peut être égal à ou supérieur à deux fois le nombre des premiers tenons 204. Le nombre de logements du disque rotor 12 peut être égal à deux fois le nombre des seconds tenons 206. En outre, le nombre des premiers tenons 204 peut être inférieur au nombre des seconds tenons 206. Chacun des premiers tenons 204 présente un raccord arrondi avec la partie annulaire 102. De façon similaire, chacun des seconds tenons 106 présente un raccord arrondi avec la partie annulaire 202. Ainsi, la tenue mécanique de l’anneau 32 est améliorée.

Claims

REVENDICATIONS
1. Ensemble pour turbine (10) de turbomachine d’axe longitudinal (A-A) comprenant :
- un disque rotor (12) de turbine centré sur l’axe longitudinal,
- un arbre (14) de turbine centré sur l’axe longitudinal et entraîné en rotation par le disque rotor,
- des premiers moyens de transmission de couple du disque rotor (12) à l’arbre (14), le disque rotor (12) étant bloqué en translation par rapport à l’arbre (14) dans la direction de l’axe longitudinal par un organe vissé (22) sur ledit arbre (14), et
- des seconds moyens de transmission de couple du disque rotor (12) à l’organe vissé (22), dans lequel l’organe vissé (22) présente un sens de dévissage identique au sens de rotation du disque rotor (12) en fonctionnement et les seconds moyens de transmission de couple sont configurés pour transmettre le couple de rotation du disque rotor (12) vers l’organe vissé (22) lorsque les premiers moyens de transmission de couple cessent de transmettre le couple du disque rotor (12) à l’arbre (14).
2. Ensemble selon la revendication 1 , dans lequel les premiers moyens de transmission de couple comprennent des premières cannelures longitudinales (18) formées sur l’arbre (14) et réparties circonférentiellement autour de l’axe longitudinal (A-A) et des secondes cannelures longitudinales (16) en prise avec les premières cannelures et formées dans une face annulaire interne du disque rotor (12).
3. Ensemble selon la revendication 1 ou 2, dans lequel les seconds moyens de transmission de couple comprennent un anneau (32,100,200) centré sur l’axe longitudinal (A-A) et comprenant des premiers tenons (34,104,204) coopérant avec des logements formés dans l’organe vissé (22) et des seconds tenons (36,106,206) coopérant avec des logements formés dans le disque rotor (12).
4. Ensemble selon les revendications 2 et 3, dans lequel le jeu circonférentiel entre les premières cannelures (18) et les secondes cannelures (16) est inférieur à la somme du jeu circonférentiel entre les seconds tenons (36) et le disque rotor (12) et du jeu circonférentiel entre les premiers tenons (34) et l’organe vissé (22).
5. Ensemble selon la revendication 3 ou 4, dans lequel l’anneau (100,200) comprend une partie annulaire (102,202), les premiers tenons (104,204) s’étendant vers l’amont et les seconds tenons (106,206) étant agencés en aval des premiers tenons, l’un au moins des premiers tenons et des seconds tenons comprend des portions arrondies concave de raccordement à la partie annulaire.
6. Ensemble selon l’une des revendications 3 à 5, dans lequel les seconds tenons (106) s’étendent principalement dans la direction de l’axe longitudinal (A-A), ou s’étendent principalement dans une direction radiale perpendiculaire à l’axe longitudinal (A-A).
7. Ensemble selon l’une des revendications 3 à 6, dans lequel le nombre des seconds tenons (36,106,206) est inférieur au nombre des premiers tenons (34,104,204).
8. Ensemble selon l’une des revendications 3 à 7, dans lequel l’anneau (32,100,200) est monté autour de l’organe vissé (22).
9. Turbine s’étendant autour d’un axe longitudinal (A-A), comprenant un stator et un rotor monté rotatif dans le stator, le rotor comprenant un ensemble selon l’une des revendications 3 à 8, dans lequel l’anneau (22) est bloqué en translation vers l’aval par un jonc d’arrêt (38) monté dans une rainure de l’organe vissé (22).
10. Turbine selon la revendication 9, dans lequel un espace annulaire est ménagé immédiatement en aval de l’organe vissé (22), ledit espace annulaire ayant une dimension longitudinale supérieure ou égale à une distance longitudinale entre des aubes mobiles (26) reliées au disque rotor (12) et des aubes de stator (24) situées immédiatement en aval des aubes mobiles (26).
11. Turbomachine, telle qu’un turboréacteur d’avion, caractérisée en qu’elle est équipée d’un ensemble selon l’une des revendications 1 à 8 ou équipée d’une turbine selon la revendication 9 ou 10.
EP21705582.1A 2020-01-10 2021-01-08 Dispositif pour le désengagement de turbine en survitesse de turbomachine Pending EP4088005A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2000227A FR3106153B1 (fr) 2020-01-10 2020-01-10 Dispositif pour le désengagement de turbine en survitesse de turbomachine
PCT/FR2021/050021 WO2021140301A1 (fr) 2020-01-10 2021-01-08 Dispositif pour le désengagement de turbine en survitesse de turbomachine

Publications (1)

Publication Number Publication Date
EP4088005A1 true EP4088005A1 (fr) 2022-11-16

Family

ID=69903630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21705582.1A Pending EP4088005A1 (fr) 2020-01-10 2021-01-08 Dispositif pour le désengagement de turbine en survitesse de turbomachine

Country Status (5)

Country Link
US (1) US11761345B2 (fr)
EP (1) EP4088005A1 (fr)
CN (1) CN114901919A (fr)
FR (1) FR3106153B1 (fr)
WO (1) WO2021140301A1 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3077334A (en) * 1961-10-23 1963-02-12 Gen Electric Pin-bushed turbine wheel
US4201513A (en) * 1976-12-07 1980-05-06 Rolls-Royce (1971) Limited Gas turbine engines
GB2079402B (en) * 1980-06-27 1984-02-22 Rolls Royce System for supporting a rotor in conditions of dynamic imbalance
FR2637335B1 (fr) * 1988-09-14 1990-11-30 Snecma Accouplement d'un arbre dans un support de palier de turbomachine et procede de desaccouplage
US5492447A (en) * 1994-10-06 1996-02-20 General Electric Company Laser shock peened rotor components for turbomachinery
GB2377731A (en) * 2001-07-21 2003-01-22 Rolls Royce Plc Rotor shaft assembly for a gas turbine engine
FR2858649B1 (fr) * 2003-08-05 2005-09-23 Snecma Moteurs Turbine basse-pression de turbomachine
FR2875842B1 (fr) 2004-09-28 2010-09-24 Snecma Moteurs Dispositif de limitation de survitesse de turbine dans une turbomachine
RU2016140620A (ru) * 2014-03-21 2018-04-23 Эксерджи С.П.А. Радиальная турбомашина
KR101624054B1 (ko) * 2014-11-21 2016-05-24 두산중공업 주식회사 복수 개의 타이로드를 구비한 가스터빈 및 그의 조립방법
FR3032499B1 (fr) * 2015-02-10 2017-11-24 Snecma Ecrou pour le blocage axial d'une bague de palier dans une turbomachine
FR3057300B1 (fr) * 2016-10-07 2018-10-05 Safran Aircraft Engines Assemblage d'anneau mobile de turbine de turbomachine

Also Published As

Publication number Publication date
US11761345B2 (en) 2023-09-19
FR3106153A1 (fr) 2021-07-16
US20230033362A1 (en) 2023-02-02
FR3106153B1 (fr) 2022-01-28
CN114901919A (zh) 2022-08-12
WO2021140301A1 (fr) 2021-07-15

Similar Documents

Publication Publication Date Title
CA2521265C (fr) Dispositif de limitation de survitesse de turbine dans une turbomachine
CA2794837C (fr) Helice non carenee pour turbomachine
EP3559416B1 (fr) Turbomachine comportant un moyen de decouplage d'une soufflante
EP2411270B1 (fr) Helice non carenee a pales a calage variable pour une turbomachine
FR2943312A1 (fr) Helice non carenee a pales a calage variable pour une turbomachine
FR2991421A1 (fr) Reducteur a train epicycloidal avec axes de satellites montes sur roulements
FR2963062A1 (fr) Assemblage entre un tourillon d'arbre de compresseur et un pignon conique pour l'entrainement d'un boitier d'accessoires d'une turbomachine
CA2631620C (fr) Systeme de dissipation d'energie en cas de rupture d'arbre de turbine dans un moteur a turbine a gaz
EP1749977B1 (fr) Systeme d'etancheite de la chambre de lubrification arriere d'un turboreacteur
FR3108370A1 (fr) Etage d’aubes a calage variable pour une turbomachine
EP2071141B1 (fr) Étanchéité de fixation de support de palier dans une turbomachine
FR3071546B1 (fr) Retention axiale de l'arbre de soufflante dans un moteur a turbine a gaz
CA2769696A1 (fr) Moyeu d'helice a pales a calage variable
FR3075863B1 (fr) Turbine de turbomachine comportant un dispositif de limitation de survitesse
FR3017667A1 (fr) Dispositif pour une helice non carenee a pales a calage variable d'une turbomachine
WO2019186028A1 (fr) Arbre de turbine d'une turbomachine et procede de protection contre une survitesse dudit arbre
CA2766661A1 (fr) Moyeu d'helice
EP3011157B1 (fr) Boitier d'accessoires de turbomachine equipe d'une pompe centrifuge
WO2021140301A1 (fr) Dispositif pour le désengagement de turbine en survitesse de turbomachine
EP3824221B1 (fr) Ensemble pour une turbomachine
FR3075864B1 (fr) Turbomachine comportant une soufflante decouplable d'une turbine par l'intermediaire d'un accouplement curvic rappele elastiquement
EP4090833B1 (fr) Ensemble pour une turbomachine
EP3444439A1 (fr) Turbine pour turbomachine comportant des aubes comprenant un pied presentant une forme s'évansant axialement
FR3057909A1 (fr) Turbomachine d'aeronef comprenant une zone fusible agencee sur un arbre pivotant
EP3935273B1 (fr) Turbine à gaz contrarotative pour aéronef à double rotor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240104