EP4086401B1 - Composant denté thermoisolant et procédé de construction d'une section de bâtiment - Google Patents

Composant denté thermoisolant et procédé de construction d'une section de bâtiment Download PDF

Info

Publication number
EP4086401B1
EP4086401B1 EP22170877.9A EP22170877A EP4086401B1 EP 4086401 B1 EP4086401 B1 EP 4086401B1 EP 22170877 A EP22170877 A EP 22170877A EP 4086401 B1 EP4086401 B1 EP 4086401B1
Authority
EP
European Patent Office
Prior art keywords
trough
concrete
formwork
interlocking component
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22170877.9A
Other languages
German (de)
English (en)
Other versions
EP4086401A1 (fr
EP4086401C0 (fr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schoeck Bauteile GmbH
Original Assignee
Schoeck Bauteile GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schoeck Bauteile GmbH filed Critical Schoeck Bauteile GmbH
Publication of EP4086401A1 publication Critical patent/EP4086401A1/fr
Application granted granted Critical
Publication of EP4086401C0 publication Critical patent/EP4086401C0/fr
Publication of EP4086401B1 publication Critical patent/EP4086401B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor

Definitions

  • the present invention relates to a heat-insulating interlocking component for transmitting force between two load-bearing concrete components, in particular a vertical building wall and a floor slab above or below it, and to a method for constructing a building section which comprises two load-bearing concrete components and at least one heat-insulating interlocking component arranged between these concrete components.
  • a gear component is made of EP 3 467 222 A1 or from EN 20 2007 012811 U1 known.
  • US 5 491 948 A teaches a reinforced concrete slab and its manufacture.
  • the EP 3 467 222 A1 discloses the features of the preamble of claim 1.
  • load-bearing, vertically aligned concrete components are often made from reinforced concrete structures.
  • the difficulty here is that the load-bearing, vertically aligned concrete components on which the building rests, such as building walls and columns, must be connected to the concrete components above or below them in a load-bearing manner, in particular to a floor or basement ceiling.
  • a so-called composite joint forms between the vertically aligned concrete component and the basement ceiling or the vertically aligned concrete component and the floor ceiling.
  • the floor slab can be connected to the load-bearing, vertically aligned concrete component with continuous reinforcement.
  • this creates thermal bridges that must be compensated for by an increased energy requirement for heating the building.
  • concrete components can be provided with thermal insulation applied from the outside.
  • the ceiling between the basement, such as the cellar or underground car park, and the ground floor can be equipped with thermal insulation on the basement side.
  • the reduction in heat conduction through the thermal insulation applied from the outside is insufficient.
  • the EN 10 2018 130 843 A1 a thermal insulation element made of lightweight concrete for force transmission and thermal insulation between the concrete components.
  • This thermal insulation element comprises a base body made of compressive force-transmitting and thermally insulating lightweight concrete that can be arranged between the concrete components and has two opposing contact surfaces for the concrete components.
  • a thermal separation is achieved by the material used (lightweight concrete). The thermal separation results in large temperature jumps between the building parts. In the case of large building parts such as a building wall and a floor slab, the associated different thermal expansion can lead to tensions and relative displacements between the concrete components, which can lead to static problems.
  • the base body of this thermal insulation element therefore has a plurality of projections that protrude from these contact surfaces.
  • these projections enable the formation of a interlocking composite joint between the concrete components, through which the shear forces that occur are transmitted to the adjacent parts of the building.
  • the formation of the projections made of lightweight concrete, which has a high modulus of elasticity (abbreviation: E-modulus), can lead to cracks in the adjacent concrete component if the relative displacement of the projections compared to the adjacent concrete component and the resulting shear forces are sufficiently high.
  • the present invention is therefore based on the object of specifying a heat-insulating interlocking component and a method for producing the building section, which enable an improved absorption and transmission of the shear forces arising during a relative displacement between two concrete components, in particular between a load-bearing, vertically aligned concrete component and a horizontally aligned concrete component, while at the same time reducing the heat conduction between the concrete components.
  • a plurality of trough elements are provided which are to be laid individually or in composite groups between the concrete components and which are at least partially made of a heat-insulating material.
  • These trough elements each have a trough bottom, a trough opening opposite the trough bottom and a wall extending laterally from the trough bottom to the trough opening.
  • the interlocking component also comprises a base body which leaves space for the trough openings and has a first contact side and a second contact side opposite the first contact side, with the trough elements forming projections protruding from the first contact side.
  • the contact sides are used in particular for contact with adjacent in-situ concrete and are designed for this purpose.
  • liquid concrete can be poured through the trough openings into the inner area of the trough elements enclosed by the wall and trough floor and hardened there when a building section is constructed that includes two concrete components and the heat-insulating interlocking component arranged between the concrete components.
  • the inner areas of the trough elements serve to hold liquid concrete when constructing the concrete component adjacent to the second side of the system.
  • the concrete component adjacent to the trough openings or adjacent to the second side of the system and the hardened concrete in the inner area are formed as a single piece or monolithic.
  • the trough elements which protrude at least relative to the first side of the system, thus create an interlock between the interlocking component and the adjacent concrete components transversely to the direction of the compressive force when the interlocking component is installed between two concrete components, which ensures that the laterally directed force components are effectively introduced into the adjacent concrete components.
  • the base body is at least partially made of a heat-insulating material and therefore reduces the heat conduction between the concrete components when the interlocking component is installed.
  • Several base bodies can be laid in a line with their short front side butt to butt without leaving a gap between them. This means that the pressure force transmission between the two load-bearing concrete components is distributed linearly over the entire length of the composite joint instead of to individual support points.
  • the butt-to-butt laying leads to a thermal separation of the adjacent concrete components, which can further reduce the heat conduction.
  • the base body of the interlocking component is preferably cuboid-shaped, with its longitudinal axis determining the laying direction of the base bodies.
  • the wall of the trough elements is made of at least one first elastomer. If there is a temperature difference between the concrete components adjacent in the area of the composite joint, this leads to different expansions of the adjacent concrete components. These different expansions result in a relative displacement of the concrete components among each other and the resulting shear forces. Due to the Due to the elastic properties of the first elastomer of the wall of the trough elements, these shear forces can be absorbed at least partially or even completely by deforming the first elastomer and thus the wall. Once the shear forces are removed, the wall can return to its original shape due to its elastic properties.
  • the term "elastomer” refers to a polymer plastic (of artificial or natural origin, such as natural or chloroprene rubber) that is dimensionally stable but at least partially elastically deformable. When the tensile or compressive load is removed, the polymer returns to its original state. This makes the first elastomer of the wall reversibly deformable, whereby the toothed component according to the invention enables an improved absorption of the shear forces that occur during the thermally induced relative displacement of the two concrete components compared to the prior art.
  • the trough elements thus form elastomer bearings between the adjacent concrete components.
  • the first elastomer also has thermal insulation properties, so that when the interlocking component is installed between the concrete components, heat conduction between the concrete components is also reduced in the area of the wall.
  • this thermal insulation is not as strong as with conventional thermal insulation materials such as thermosetting polyurethane rigid foam or thermoplastic expanded polystyrene.
  • thermosetting polyurethane rigid foam or thermoplastic expanded polystyrene such as thermosetting polyurethane rigid foam or thermoplastic expanded polystyrene.
  • this disadvantage is compensated for by the elastic properties of the first elastomer when absorbing shear forces.
  • a further aspect of the present invention provides a method for constructing a building section.
  • This building section to be constructed comprises two load-bearing concrete components, in particular a vertically aligned building wall and a floor slab above or below it, and at least one heat-insulating interlocking component arranged between the concrete components.
  • a first method step (a) of this method a first formwork is first created for a first concrete component and a first reinforcement in the first formwork.
  • the first concrete component can be, for example, the load-bearing, vertically aligned building wall.
  • liquid concrete is poured into the first formwork is filled, whereby the first formwork either already encloses the interlocking component or the interlocking component is inserted into the liquid concrete after the liquid concrete has been poured in.
  • the liquid concrete surrounds the first reinforcement at least partially or even completely.
  • the liquid concrete then hardens in a process step (c). Before hardening, the liquid concrete can be compacted, i.e. the air content in the still liquid concrete can be reduced. Hydration which takes place during hardening is a chemical reaction between cement and water and/or aggregates which can last from several hours to days. In process step (c) this hardening can take place passively, i.e. essentially without additional heating.
  • a second formwork is created for a second concrete component and a second reinforcement in the second formwork.
  • the second concrete component can be the floor slab, for example.
  • liquid concrete is poured into the second formwork.
  • the second formwork is arranged in such a way that when liquid concrete is poured into an inner area of the second formwork, liquid concrete flows over the interlocking component and through the openings in the base body and the trough openings into the inner area of the trough elements.
  • the liquid concrete then hardens in a process step (f).
  • the concrete component adjacent to the trough openings or on the second side of the system and the hardened concrete in the inner area are formed as a single piece or monolithic.
  • the liquid concrete can also be compacted before hardening.
  • a first advantageous embodiment of the toothed component according to the invention provides that the wall of at least a first trough element has a spring stiffness that differs from the spring stiffness of the walls of the other trough elements.
  • the deformability and thus the spring stiffness of elastomers depends, among other things, on their density.
  • the density of an elastomer can be controlled during its production by the amount of blowing agent added. For example, a wall with a lower density of the first elastomer has a low spring stiffness, while a wall with a higher density of the first elastomer has a higher spring stiffness.
  • the deformability of elastomers depends not only on density but also on the so-called form factor, i.e. the ratio of compressed surface to surface area. A large surface area allows the elastomer, which is incompressible in itself, to move sideways. As the spring stiffness decreases, increasing deformations can be absorbed with the same resulting force. Since elastomers with blowing agents are difficult to manufacture, solid material can be used instead of foamed elastomers by achieving different spring stiffnesses by changing the form factor (nub shapes, additional grooves, etc.).
  • the interlocking component can also have several trough elements, the first elastomer of which has a density that differs from the density of the first elastomer of the walls of the other trough elements. It is particularly advantageous if the walls of at least some of the trough elements have a spring stiffness that increases or decreases from trough element to trough element when viewed in the direction of installation. The choice of density and thus the spring stiffness of the first elastomer enables controlled absorption of shear forces of varying magnitude along the composite joint.
  • trough elements it is also possible for several trough elements to be combined into a trough element group and for the spring stiffness to increase or decrease from trough element group to trough element group. This simplifies the manufacture of the trough elements. Instead of an ideally linearly increasing or decreasing spring stiffness, a desired progression of stiffness can be achieved here. by changing the spring stiffness in each section. For example, trough elements with 4 or 5 different stiffnesses can be prefabricated for a building. These can be grouped in 1-2 m pieces and laid in composite groups of trough elements each with the same stiffness.
  • a first of the trough elements can represent a (at least imaginary) deformation zero point between the adjacent concrete components.
  • the corresponding trough element is therefore designed to be stiffer than the other trough elements.
  • a temperature difference between the two concrete components leads to increasing relative displacements, which are permitted by the elastomer bearings and only generate comparatively low restoring forces.
  • a decreasing stiffness of the trough elements with increasing distance from the first trough element can therefore be useful.
  • the relationship between distance from the deformation zero point and spring stiffness of the elastomer bearings is therefore inversely proportional.
  • the controlled decreasing spring stiffness of the trough elements forming the elastomer bearings can prevent the formation of cracks due to thermal expansion of the adjacent concrete components.
  • the spring stiffness can be realized by different densities or different areas or different (geometric) form factors of the trough elements.
  • the toothed component is designed in several parts in the form of a kit, whereby the toothed component is composed of a plurality of individual trough elements and at least one separate base body.
  • a kit is also to be understood as a toothed component in the sense of the invention and is included in the invention.
  • the trough elements can be delivered and installed individually or connected to one another in groups at the factory, or also individually delivered and connected to each other in groups before installation on site.
  • the multi-part design has the advantage that when constructing a building section that has two load-bearing concrete components and at least one heat-insulating interlocking component arranged between the concrete components, the trough elements can first be inserted into the still liquid concrete of a first concrete component. The base body is then placed on the trough elements and the liquid concrete in such a way that passages formed in the base body are each individually aligned with one of the trough openings. Between the insertion of the trough elements and the placement of the base body, the liquid concrete can still be compacted and/or smoothed out. The majority of individual trough elements and the separate base body can be connected to one another when assembled, in particular welded or glued.
  • the trough bottoms of the trough elements are made of at least one second elastomer. So that the toothed component in the area of the trough bottoms can absorb and transmit the vertically acting compressive forces (so-called compressive force transmission) that occur between the concrete components in the installed state, the trough bottoms preferably have a higher spring stiffness than the adjacent wall. Due to the higher spring stiffness of the trough bottoms compared to their walls, their deformability due to the acting compressive forces is less pronounced. It is within the scope of the invention that the first and second elastomers are different and can therefore have different spring stiffnesses depending on the material.
  • the first and/or second elastomer have a density in the range from 200 kg/m 3 to 1250 kg/m 3 , preferably from 600 kg/m 3 to 1100 kg/m 3 , particularly preferably 1050 kg/m 3 .
  • the base body and/or the trough bottom has a layered structure that includes a core layer of heat-insulating and/or compressive force-transmitting material and at least one outer layer delimiting the core layer on one side.
  • the outer layer is made of a slippery material selected from the group consisting of polyethylene, ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK) and polyoxymethylene (POM).
  • UHMW-PE ultra-high molecular weight polyethylene
  • PTFE polytetrafluoroethylene
  • PEEK polyetheretherketone
  • POM polyoxymethylene
  • the slippery material can be applied to the core layer as a film. Alternatively, the slippery material can also be sprayed or painted on.
  • the outer layer made of the slippery material decouples the concrete components from one another and enables - as already mentioned - a restrained, horizontal relative displacement of the concrete components from one another.
  • the shear forces occurring during the relative displacement can thus be absorbed by the first elastomer of the wall, while at least one concrete component can slide along the outer layer, i.e. parallel to the composite joint.
  • the layer structure can also comprise a second outer layer made of the slippery material delimiting the core layer on a side of the layer structure opposite the first outer layer.
  • the layer structure can also comprise several outer layers that border the core layer on one or both sides. This improves the decoupling of the components from one another.
  • the heat-insulating and/or pressure-transmitting material of the core layer is a third elastomer.
  • This third elastomer preferably has a higher spring stiffness than the spring stiffness of the first elastomer.
  • the first elastomer and/or the second elastomer and/or the third elastomer are preferably selected independently of one another from the group formed by natural rubber, synthetic rubber, in particular ethylene-propylene-diene (monomer) rubber (EPDM), styrene-butadiene rubber (SBR), polyurethane elastomer and chlorobutadiene rubber.
  • EPDM ethylene-propylene-diene
  • SBR styrene-butadiene rubber
  • polyurethane elastomer polyurethane elastomer and chlorobutadiene rubber.
  • the base body and an outer side of the wall facing away from the trough opening of the trough elements form an angle ⁇ with each other that is greater than or equal to 90°.
  • the angle ⁇ preferably has a value of 90° to 150°, more preferably 100° to 135° and particularly preferably 105° to 120°. If the angle ⁇ is greater than 90°, the trough bottom has a smaller dimension compared to the trough opening.
  • the trough bottom and/or the trough opening are polygonal, elliptical or circular.
  • the trough bottom and/or the trough opening have a number of corner points n which are connected to one another by an identical number of lines m.
  • cams these can have a square trough bottom and be evenly distributed along at least the first contact side on the base body.
  • ribs these extend along at least the first contact side, preferably transversely to the longitudinal axis of the base body, and are open in particular on their short end faces, i.e. are designed without any end-side extension of the wall.
  • the toothed component has at least one rod-shaped force transmission element that passes through at least the trough bottom and can be connected to the concrete components.
  • This rod-shaped force transmission element enables a quasi-monolithic connection of the adjacent concrete components, especially in the direction of the transverse force. With the help of such a force transmission element, the previously mentioned deformation zero point can be realized.
  • the rod-shaped force transmission element is firmly anchored in the toothed component.
  • the rod-shaped force transmission element is preferably a dowel or a reinforcing rod.
  • the rod-shaped force transmission element is made of stainless steel or a fiber composite material. This can further reduce the heat conduction between the concrete components.
  • a further advantageous embodiment of the concrete component according to the invention provides that the rod-shaped force transmission element passes through the trough bottom and the trough opening.
  • the construction of the building section can be carried out on site at a construction site.
  • the first or second formwork which is used to create the vertically aligned building wall, is aligned vertically or perpendicularly, respectively, so that the liquid concrete can be poured into the formwork which is open at the top.
  • the production of concrete components can also take place in a precast concrete plant when the concrete component to be produced is lying or horizontal.
  • the vertically aligned building wall can be produced in a lying state in the precast concrete plant and then transported to a construction site where the building section is constructed.
  • the first formwork for the lying production of one of the two concrete components comprises a substantially horizontally aligned formwork panel with a formwork frame fixed to the formwork panel and protruding from a panel level of the formwork panel.
  • the formwork panel and the formwork frame define an interior area to be filled with concrete.
  • the formwork frame has the interlocking component as a shuttering element.
  • Concrete is then poured into the interior area, this concrete is preferably compacted and then hardens.
  • the formwork panel and the formwork frame can be removed except for the interlocking component and the concrete component can be transferred from its lying position on the formwork panel to a horizontal transport position.
  • the concrete component is then ready for installation in the building section.
  • the interlocking component remains on the concrete component as permanent formwork.
  • Figure 1 shows a side view of a first embodiment of a heat-insulating toothed component 1 for transmitting force between two load-bearing concrete components.
  • This toothed component 1 comprises a base body 2 with a first contact side 3 and a second contact side 4 opposite the first contact side 2 for connection to the concrete components.
  • the first embodiment of the toothed component 1 has five trough elements 5, 6, 7, 8, 9 protruding from the first contact side 3.
  • the first embodiment of the toothed component 1 is designed in several parts. This means that it is composed of a plurality of individual trough elements 5, 6, 7, 8, 9 and the separate base body 2.
  • the trough elements 5, 6, 7, 8, 9 each have a trough bottom 51, 61, 71, 81, 91, a trough opening 52, 62, 72, 82, 92 opposite the trough bottom 51, 61, 71, 81, 91 and a wall 53, 63, 73, 83, 93 extending laterally from the trough bottom 51, 61, 71, 81, 91 to the trough opening 52, 62, 72, 82, 92.
  • the trough bottom 51, 61, 71, 81, 91 and the wall 53, 63, 73, 83, 93 each define an inner region 54, 64, 74, 84, 94 of the trough elements 5, 6, 7, 8, 9.
  • the trough openings 52, 62, 72, 82, 92 are each recessed in the base body 2 in that the base body 2 has corresponding passages 21, 22, 23, 24, 25 corresponding to the trough openings 52, 62, 72, 82, 92.
  • liquid concrete can be poured through the trough openings 52, 62, 72, 82, 92 into the inner area 54, 64, 74, 84, 94 of the trough elements 5, 6, 7, 8, 9 and harden in the inner area 54, 64, 74, 84, 94.
  • the wall 53, 63, 73, 83, 93 of the trough elements 5, 6, 7, 8, 9 is made of a first elastomer.
  • This first elastomer is a polyurethane elastomer.
  • the trough bottoms 51, 61, 71, 81, 91 are made of a second elastomer, which is also a polyurethane elastomer.
  • the first and second elastomers differ in their rigidity.
  • the trough bottoms 51, 61, 71, 81, 91 have a higher rigidity than the walls 53, 63, 73, 83, 93.
  • the deformability of the trough bottoms 51, 61, 71, 81, 91 in the installed state of the interlocking component 1 between the concrete components due to the acting vertical compressive forces is less pronounced than that of the walls 53, 63, 73, 83, 93.
  • Figure 2 shows a detail of a second embodiment of the heat-insulating toothed component 1 in side view.
  • This second embodiment differs from that shown in Figure 1 shown first embodiment of the toothed component 1 in that the base body 2 and the trough bottom 51 have a layer structure 10 which comprises a core layer 11 made of heat-insulating and pressure-transmitting material and at least one outer layer 12 which delimits the core layer 11 on one side on the second contact side 4.
  • the heat-insulating and pressure-transmitting material of the core layer 11 is a third elastomer, which in the present second embodiment can consist of ethylene-propylene-diene (monomer) rubber (EPDM).
  • the outer layer 12 is made of a lubricious material such as polytetrafluoroethylene. When the toothed component 1 is installed between two concrete components, this outer layer 12 made of polytetrafluoroethylene decouples the concrete components from one another and enables a restraint-free, horizontal relative displacement of the concrete components from one another
  • FIG 3 shows a detail of a third embodiment of the heat-insulating toothed component 1 in side view.
  • This third embodiment differs from that in Figure 1 shown first embodiment of the toothed component 1 in that it has a rod-shaped force transmission element 13 in the form of a dowel, which passes through the trough bottom 51 and can be connected to the concrete components.
  • this third embodiment of the toothed component 1 is designed in one piece. This means that the trough elements 5, 6, 7, 8, 9 and the base body 2 are designed in one piece.
  • the dowel 13 is firmly anchored in the interlocking component 1 and enables a quasi-monolithic connection of the adjacent concrete components, especially in the direction of shear force, when the interlocking component 1 is installed.
  • a building section that comprises two load-bearing concrete components, namely a vertically aligned building wall and a floor above it, and a heat-insulating interlocking component 1 arranged between the concrete components, can be constructed directly on a construction site as described below:
  • a first formwork is constructed for the vertically aligned building wall and a first reinforcement in the first formwork.
  • This first formwork is vertically aligned so that liquid in-situ concrete can then be poured into the first formwork, which is open at the top, from above.
  • This liquid in-situ concrete is compacted in the conventional manner using an internal vibrator.
  • the interlocking component 1 is then placed on top of the liquid, compacted in-situ concrete.
  • the liquid in-situ concrete then hardens and the vertically aligned building wall can be removed from the formwork, with the interlocking component 1 remaining on the top of the vertical building wall and serving as a connection to the floor above that is still to be constructed.
  • a second formwork is then created above the vertical building wall for the horizontally aligned floor slab and a second reinforcement is created in the second formwork. Liquid in-situ concrete is then poured into the second formwork.
  • the second formwork is arranged in such a way that when liquid in-situ concrete is poured into an inner area of the second formwork, liquid in-situ concrete flows over the interlocking component 1 and through the trough openings 52, 62, 72, 82, 92 into the inner area 54, 64, 74, 84, 94 of the trough elements 5, 6, 7, 8, 9.
  • the liquid in-situ concrete is compacted in the conventional way with an internal vibrator. The liquid in-situ concrete then hardens.
  • the floor slab adjacent to the trough openings 52, 62, 72, 82, 92 or adjacent to the second system side 4 and the hardened in-situ concrete in the interior area 54, 64, 74, 84, 94 are formed in one piece or monolithically.
  • the vertically aligned building wall is located on the first system side 3 of the base body 2 of the interlocking component 1.
  • the horizontally aligned floor slab can be stripped.
  • the interlocking component 1 is now arranged between the vertically aligned building wall and the horizontally aligned floor slab above it, so that an interlocking composite joint is formed between the two components.
  • the trough elements 5, 6, 7, 8, 9 act as elastomer bearings, so that shear forces acting parallel to the composite joint can be absorbed and transmitted.
  • the vertically aligned building wall can also be constructed in advance in a precast concrete plant and then transported to the construction site where the building section is to be constructed.
  • the building wall is manufactured while the building wall to be manufactured is lying or horizontal.
  • the first formwork comprises an essentially horizontally aligned formwork panel with a formwork frame fixed to the formwork panel and protruding from a panel level of the formwork panel.
  • the formwork panel and the formwork frame define an interior area of this first formwork to be filled with concrete.
  • the interlocking component 1 is part of the formwork frame as a shuttering element. Liquid concrete is then poured into the interior area.
  • This liquid concrete is compacted and then hardens.
  • the formwork panel and the formwork frame can be removed except for the interlocking component and the building wall can be transferred from its lying position on the formwork panel to a horizontal transport position.
  • the vertically aligned building wall is then ready for installation in the building section.
  • the interlocking component 1 remains on the connection side of the building wall as permanent formwork.
  • FIG 4 shows a side view of an embodiment of the building section 14 created according to the method described above.
  • This building section 14 comprises a load-bearing, vertically aligned concrete component 15 in the form of a building wall and a concrete component 16 in the form of a floor slab that is horizontally aligned above the building wall 15.
  • the interlocking component 1 is arranged in the Figure 1 arranged in the manner shown, whereby an interlocking joint between the building wall 15 and the floor slab 16.
  • the interlocking component 1 can also be arranged between a horizontally aligned basement ceiling and a vertically aligned building wall above it.
  • the base body 2 of the interlocking component 1 is cuboid-shaped, with its longitudinal axis determining the laying direction of the base body 2 along the composite joint.
  • the inner area 54, 64, 74, 84, 94 of the trough elements 5, 6, 7, 8, 9 is filled with hardened concrete, with this hardened concrete being formed in one piece or monolithically with the hardened concrete of the floor slab 16. If there is a temperature difference between the concrete components adjacent in the area of the composite joint, this leads to different expansions of the adjacent concrete components. These different expansions result in a relative displacement of the concrete components among each other and the resulting shear forces.
  • the hardened concrete in the inner area 54, 64, 74, 84, 94 presses against the wall 53, 63, 73, 83, 93 of the trough elements 5, 6, 7, 8, 9. Due to the elastic properties of the first elastomer of the wall 53, 63, 73, 83, 93 of the trough elements 5, 6, 7, 8, 9, these shear forces can be absorbed at least partially or even completely by a deformation of the walls 53, 63, 73, 83, 93. After the shear forces have disappeared, the wall 53, 63, 73, 83, 93 can return to its original shape due to its elastic properties.
  • Figure 5 A further development of a gear component 1 is shown in Figure 5 shown in a section. Shown is a section of the base body 2 with a recessed, rib-shaped trough element 5. Two additional longitudinal ribs 17 are formed on the top 4 of the base body 2. These serve as longitudinal guides for the concrete component to be created above the interlocking component 1. Due to the spring stiffness of the trough element 5, a lateral compensating movement is thus possible under the influence of thermally induced shear forces, while forces acting transversely to the concrete component (e.g. wind pressure) are absorbed by the longitudinal ribs 17.
  • FIG. 6 an alternative embodiment is shown in which a longitudinal rib 18 is formed within the trough element 5 on its trough bottom 51.
  • the longitudinal rib 18 serves to guide lateral thermal compensating movements and absorbs compressive forces acting perpendicular to the concrete component above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)
  • Building Environments (AREA)

Claims (15)

  1. Composant denté (1) thermoisolant pour la transmission de force entre deux composants porteurs en béton, en particulier un mur de bâtiment (15) vertical et un plafond d'étage (16) se trouvant dessus ou dessous, dans lequel le composant denté (1) présente une pluralité d'éléments d'auge (5, 6, 7, 8, 9) à poser individuellement ou en groupements entre les composants en béton, éléments qui sont réalisés au moins partiellement en un matériau thermoisolant,
    dans lequel les éléments d'auge (5, 6, 7, 8, 9) présentent respectivement un fond d'auge (51, 61, 71, 81, 91), une ouverture d'auge (52, 62, 72, 82, 92) opposée au fond d'auge (51, 61, 71, 81, 91) et une paroi (53, 63, 73, 83, 93) s'étendant latéralement du fond d'auge (51, 61, 71, 81, 91) à l'ouverture d'auge (52, 62, 72, 82, 92),
    dans lequel le composant denté (1) comprend en outre un corps de base (2) évidant les ouvertures d'auge avec un premier côté d'appui (3) et un second côté d'appui (4) opposé au premier côté d'appui (3), en particulier pour l'appui contre du béton coulé sur place contigu et les éléments d'auge (5, 6, 7, 8, 9) forment des saillies dépassant du premier côté d'appui (3), et
    dans lequel la paroi (53, 63, 73, 83, 93) des éléments d'auge (5, 6, 7, 8, 9) est réalisée à partir d'un premier élastomère,
    caractérisé en ce que
    le composant denté est réalisé en plusieurs parties comme kit qui comprend une pluralité d'éléments d'auge individuels ou reliés les uns aux autres en un groupement et au moins un corps de base séparé.
  2. Composant denté thermoisolant (1) selon la revendication 1, pour lequel la paroi (53) d'au moins un premier élément d'auge (5) présente une rigidité de ressort qui diffère de la rigidité de ressort des parois (63, 73, 83, 93) des autres éléments d'auge (6, 7, 8, 9) respectifs.
  3. Composant denté thermoisolant (1) selon la revendication 2, pour lequel les parois (53, 63, 73, 83, 93) d'au moins une partie des éléments d'auge (5, 6, 7, 8, 9) présentent, vu dans le sens de la pose, une rigidité de ressort augmentant ou diminuant d'élément d'auge en élément d'auge ou de groupe d'éléments d'auge en groupe d'éléments d'auge.
  4. Composant denté thermoisolant (1) selon l'une quelconque des revendications précédentes, pour lequel les fonds d'auge (51, 61, 71, 81, 91) sont réalisés au moins à partir d'un deuxième élastomère, dans lequel les fonds d'auge (51, 61, 71, 81, 91) présentent de préférence une rigidité de ressort supérieure par rapport à la paroi (53, 63, 73, 83, 93) contiguë.
  5. Composant denté (1) thermoisolant selon l'une quelconque des revendications précédentes, pour lequel le premier et/ou le deuxième élastomère présente une densité dans la plage de 200 kg/m3 à 1250 kg/m3, de préférence de 600 kg/m3 à 1100 kg/m3, le plus préférentiellement de 1050 kg/m3.
  6. Composant denté thermoisolant (1) selon l'une quelconque des revendications précédentes, pour lequel le corps de base (2) et/ou le fond d'auge (51, 61, 71, 81, 91) présente une structure de couche (10) qui comprend une couche centrale (11) en matériau thermoisolant et/ou transmettant une force de pression et au moins une couche extérieure (12) délimitant d'un côté la couche centrale (11), dans lequel la couche extérieure (12) est réalisée en un matériau pouvant glisser qui est sélectionné à partir du groupe qui est formé par du polyéthylène, du polyéthylène à poids moléculaire très élevé, du polytétrafluoréthylène, du polyétheréthercétone et du polyoxyméthylène.
  7. Composant denté thermoisolant (1) selon la revendication 6, pour lequel le matériau thermoisolant et/ou transmettant la force de pression de la couche centrale est un troisième élastomère, dans lequel le troisième élastomère présente de préférence une rigidité de ressort qui diffère du premier élastomère.
  8. Composant denté thermoisolant (1) selon l'une quelconque des revendications précédentes, pour lequel le premier élastomère et/ou le deuxième élastomère et/ou le troisième élastomère sont sélectionnés indépendamment les uns des autres à partir du groupe qui est formé de caoutchouc naturel, de caoutchouc synthétique, en particulier de caoutchouc (monomère) éthylène-propylène-diène, de caoutchouc styrène-butadiène, d'élastomère de polyuréthane et de caoutchouc chlorobutadiène.
  9. Composant denté thermoisolant (1) selon l'une quelconque des revendications précédentes qui est réalisé en plusieurs parties et se compose d'une pluralité d'éléments d'auge (5, 6, 7, 8, 9) individuels et d'au moins un corps de base (2) séparé.
  10. Composant denté thermoisolant (1) selon l'une quelconque des revendications précédentes, pour lequel le corps de base (2) et un côté extérieur éloigné de l'ouverture d'auge (52, 62, 72, 82, 92) des éléments d'auge (5, 6, 7, 8, 9) de la paroi (53, 63, 73, 83, 93) forment un angle a l'un par rapport à l'autre qui est supérieur ou égal à 90°.
  11. Composant denté thermoisolant (1) selon l'une quelconque des revendications précédentes, pour lequel le fond d'auge (51, 61, 71, 81, 91) et/ou l'ouverture d'auge (52, 62, 72, 82, 92) sont réalisés de manière polygonale, elliptique ou circulaire, dans lequel le fond d'auge (51, 61, 71, 81, 91) et/ou l'ouverture d'auge (52, 62, 72, 82, 92) présentent de préférence un nombre de sommets n=4 dans le cas d'une réalisation polygonale.
  12. Composant denté thermoisolant (1) selon l'une quelconque des revendications précédentes qui présente au moins un élément de transmission de force qui traverse au moins le fond d'auge (51, 61, 71, 81, 91) et peut être raccordé aux composants de béton, dans lequel l'élément de transmission de force est en particulier une cheville ou une barre d'armature.
  13. Procédé de construction d'une section de bâtiment (14) qui présente deux composants porteurs en béton, en particulier un mur de bâtiment (15) orienté verticalement et un plafond d'étage (16) se trouvant dessus ou dessous, et au moins un composant denté (1) thermoisolant disposé entre les composants en béton selon l'une quelconque des revendications précédentes, dans lequel le procédé comprend les étapes suivantes :
    a) construction d'un premier coffrage pour un premier composant en béton et d'une première armature dans le premier coffrage,
    b) versement de béton liquide dans le premier coffrage, dans lequel le premier coffrage comprend le composant denté (1) ou le composant denté (1) est inséré dans le béton liquide après le versement du béton liquide,
    c) durcissement du béton liquide,
    d) construction d'un second coffrage pour un second composant en béton et d'une seconde armature dans le second coffrage,
    e) versement de béton liquide dans le second coffrage pour le second composant en béton, de sorte que le béton liquide s'écoule par les ouvertures de corps creux (52, 62, 72, 82, 92) dans une zone intérieure (54, 64, 74, 84, 94) des éléments d'auge (5, 6, 7, 8, 9), et
    f) durcissement du béton liquide.
  14. Procédé selon la revendication 13, pour lequel le composant denté est réalisé en plusieurs parties comme kit qui comprend une pluralité d'éléments d'auge individuels ou reliés les uns aux autres en un groupement et au moins un corps de base séparé et pour lequel les éléments d'auge sont insérés dans le premier coffrage avant ou après le versement de béton liquide et le corps de base est placé sur les éléments d'auge après le versement de béton liquide et le béton liquide dans le premier coffrage de telle manière que des passages réalisés dans le corps de base soient disposés individuellement en s'alignant respectivement sur une des ouvertures d'auge respectives, de préférence pour lequel le béton liquide est compacté et/ou lissé entre l'insertion des éléments d'auge et le placement du corps de base.
  15. Procédé selon la revendication 13, pour lequel le premier coffrage comprend une plaque de coffrage orientée sensiblement horizontalement avec un cadre de coffrage fixé sur la plaque de coffrage et faisant saillie d'un plan de plaque de la plaque de coffrage, dans lequel la plaque de coffrage et le cadre de coffrage définissent une zone intérieure à remplir de béton et le cadre de coffrage présente le composant denté (1).
EP22170877.9A 2021-05-05 2022-04-29 Composant denté thermoisolant et procédé de construction d'une section de bâtiment Active EP4086401B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021111578.7A DE102021111578A1 (de) 2021-05-05 2021-05-05 Wärmedämmendes Verzahnungsbauteil und Verfahren zur Erstellung eines Gebäudeabschnitts

Publications (3)

Publication Number Publication Date
EP4086401A1 EP4086401A1 (fr) 2022-11-09
EP4086401C0 EP4086401C0 (fr) 2024-06-26
EP4086401B1 true EP4086401B1 (fr) 2024-06-26

Family

ID=81449037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22170877.9A Active EP4086401B1 (fr) 2021-05-05 2022-04-29 Composant denté thermoisolant et procédé de construction d'une section de bâtiment

Country Status (2)

Country Link
EP (1) EP4086401B1 (fr)
DE (1) DE102021111578A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491948A (en) * 1993-12-22 1996-02-20 Harris; Dallas L. Tilt-up concrete pad and method of forming and erecting the tilt-up concrete pad
DE202007012811U1 (de) * 2007-09-13 2008-03-06 Vysoke uceni technicke v Brne, Fakulta stavebni, ustav pozemniho stavitelstvi Dämmblockelement zur Unterbrechung von Wärmebrücken im Fußbereich des Mauerwerks
DE102009022799A1 (de) 2009-05-27 2010-12-09 Brillux Gmbh & Co. Kg Verfahren zur Installation von Dämmplatten
EP3467222A1 (fr) 2017-10-09 2019-04-10 Schöck Bauteile GmbH Élément moulé destiné à etre placé entre un mur de construction et une plaque de sol ou de plafond et section de construction pourvue d'un tel élément moulé
DE102018130843A1 (de) 2018-12-04 2020-06-04 Schöck Bauteile GmbH Vorrichtung zur Wärmeentkopplung zwischen einer betonierten Gebäudewand und einer Geschossdecke sowie Herstellverfahren

Also Published As

Publication number Publication date
EP4086401A1 (fr) 2022-11-09
EP4086401C0 (fr) 2024-06-26
DE102021111578A1 (de) 2022-11-10

Similar Documents

Publication Publication Date Title
EP3690159A1 (fr) Enveloppe de bâtiment et procédé d'isolement thermique des enveloppes de bâtiment en béton
EP0059171B1 (fr) Boulon et canon pour la prise et la transmission d'une force transversale
EP3191657B1 (fr) Coffrage perdu en béton haute performance ou ultra haute performance
EP2486196B1 (fr) Procédé et dispositif pour l'ajout postérieur d'une partie extérieure en saillie à une partie de bâtiment existante
DE60023159T2 (de) Hohlplatte zur herstellung von einem bodenfeld in welches leitungen eingebaut werden können und verfahren zum herstellen eines bodenfelds mit leitungen
EP1482101A1 (fr) Elément de construction, procédé pour fabriquer des éléments de construction et moyens de liaison pour élément de construction
AT391731B (de) Deckenplatte und verfahren zu ihrer herstellung sowie anordnung zur durchfuehrung des verfahrens
EP2436845B1 (fr) Dispositif de raccordement forcé d'un composant sur un corps de construction, notamment d'un balcon sur un bâtiment
EP3467223B1 (fr) Élément moulé destiné à etre placé entre un mur de construction et une plaque de sol ou de plafond et section de construction pourvue d'un tel élément moulé
EP4086401B1 (fr) Composant denté thermoisolant et procédé de construction d'une section de bâtiment
EP3663474B1 (fr) Dispositif d'isolement thermique entre un mur de bâtiment bétonné et un plancher, ainsi que procédé de fabrication
EP3789553B1 (fr) Élément préfabriqué et système préfabriqué
EP3296476B1 (fr) Dispositif de liaison d'un mur de bâtiment à une dalle de sol ou de plafond et élément de moulage d'un tel système
EP4400668A2 (fr) Élément moulé destiné à être placé entre un mur de construction et une plaque de sol ou de plafond, et section de construction pourvus d'un tel élément
AT521261B1 (de) Verfahren zur Herstellung eines Brückenträgers einer Spannbetonbrücke
EP0627531A1 (fr) Elément de support pour éléments de construction
EP3492665A1 (fr) Pièce préfabriquée de béton dotée d'au moins un composant recevant la charge ainsi que plaque de raccordement destinée à être agencée dans le joint de raccordement entre une telle pièce préfabriquée de béton et le composant recevant la charge
DE102018130844A1 (de) Vorrichtung zur Wärmeentkopplung zwischen einer betonierten Gebäudewand und einer Geschossdecke sowie Herstellverfahren
EP3467220B1 (fr) Partie de bâtiment et procédé de fabrication d'une telle partie de bâtiment
EP3591130B1 (fr) Structure de plafond
DE102004003366B4 (de) Verfahren zum Herstellen eines Einfamilien-oder Mehrfamilienhauses, Betonfertigteil-Trogplatte für eine Gebäudedecke sowie Fertighaus
DE69001688T2 (de) Verfahren zur befestigung von horizontalen balken an stahlsaeulen eines gebaeudes und ein nach diesem verfahren errichtetes gebaeude.
DE202023107453U1 (de) Vorgefertigter Baublock mit gebrauchsfertiger Wärmedämmung für die Fassade
EP2787135A1 (fr) Éléments de construction en béton et leur procédé de montage
DE20105073U1 (de) Tragkonstruktion für Betonbauelemente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230201

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP