EP4077188B1 - Dispositif de commande pour un systeme d'ascenseur dans un mode d'inspection et systeme d'ascenseur - Google Patents

Dispositif de commande pour un systeme d'ascenseur dans un mode d'inspection et systeme d'ascenseur Download PDF

Info

Publication number
EP4077188B1
EP4077188B1 EP20811681.4A EP20811681A EP4077188B1 EP 4077188 B1 EP4077188 B1 EP 4077188B1 EP 20811681 A EP20811681 A EP 20811681A EP 4077188 B1 EP4077188 B1 EP 4077188B1
Authority
EP
European Patent Office
Prior art keywords
contact
control
control terminal
designed
switching unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20811681.4A
Other languages
German (de)
English (en)
Other versions
EP4077188A1 (fr
Inventor
Frank Olivier Roussel
Markus Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP4077188A1 publication Critical patent/EP4077188A1/fr
Application granted granted Critical
Publication of EP4077188B1 publication Critical patent/EP4077188B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0087Devices facilitating maintenance, repair or inspection tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0043Devices enhancing safety during maintenance
    • B66B5/005Safety of maintenance personnel

Definitions

  • the present invention relates to a control device for controlling an elevator installation in an inspection operation. Furthermore, the invention relates to an elevator installation with such a control device.
  • Elevators such as passenger or freight elevators are usually equipped with a safety circuit.
  • a safety circuit typically comprises a series connection of safety-relevant switches, at least one of which can be opened under certain operating conditions, for example when the elevator is put into inspection mode, a fault is detected or a cabin, shaft door, maintenance door or maintenance hatch is opened. If the safety circuit is interrupted, the elevator is brought to a standstill by switching off a drive of the elevator and activating a braking device to brake the elevator.
  • the switches monitor, for example, the closing states of elevator doors, i.e. a cabin door and several shaft doors, so that it can be ensured that a car can only be moved when all elevator doors are closed and the associated door switches are therefore activated.
  • the safety circuit When the elevator is being inspected, for example for repair or maintenance purposes, the safety circuit is usually interrupted, for example because a corresponding switch in the safety circuit was opened by putting the elevator into inspection mode or a shaft door had to be opened so that a technician could enter an elevator shaft through it.
  • open contacts of the safety circuit can be closed via an inspection path.
  • the inspection path can be closed via an inspection control with several control buttons. In order to move the elevator in inspection mode, for example, a first control button to enable a travel movement and a second control button to specify a travel direction must be pressed at the same time.
  • the safety circuit comprises at least one series circuit of safety-relevant contacts that are closed when the elevator system is operating without problems. At least one of the contacts can be bridged using semiconductor switches, whereby the semiconductor switches can be controlled using at least one processor and monitored for short circuits using at least one monitoring circuit.
  • the safety circuit also comprises at least one electromechanical relay circuit with relay contacts connected in series with the contacts of the bridgeable series circuit.
  • the relay circuit can be controlled using the processor.
  • the bridgeable series circuit can be interrupted using the relay contacts in the event of a short circuit of the semiconductor switches.
  • EP 2 033 927 A1 discloses a control device (200) for controlling an elevator installation in an inspection operation according to the prior art.
  • the prior art is about safely interrupting the bridging path because the car is moving towards an unsafe state.
  • the aim of the invention is to stop a car movement during inspection operation. There is no urgency in this.
  • a first aspect of the invention relates to a control device for controlling an elevator system in an inspection mode.
  • the elevator system comprises a safety circuit with at least one safety contact that is opened in the inspection mode and an inspection path for bridging the at least one safety contact.
  • the control device comprises a first operating element for operating the elevator system in the inspection mode, a second operating element for Operating the elevator system in inspection mode and a first switching unit which has a first contact and a first delay element and is designed to close the first contact in response to actuation of the first operating element and to open it in response to release of the first operating element.
  • the first delay element is designed to delay opening of the first contact by a defined first delay time from release of the first operating element.
  • control device comprises a second switching unit connected in parallel with the first switching unit, which has a second contact and a second delay element and is designed to close the second contact in response to actuation of the second operating element and to open it in response to release of the second operating element.
  • the second delay element is designed to delay opening of the second contact by a defined second delay time from release of the second operating element.
  • the first contact and the second contact are connected in series in the inspection path.
  • Such a control device makes it possible to activate a braking device of the elevator system at a time staggered to the release of at least one of the two control buttons of the inspection control.
  • This delay can be used to stop the elevator system in a controlled manner by regulating a drive of the elevator system before the elevator system is mechanically braked by the braking device.
  • This can reduce the load on load-bearing elements of the elevator system. Wear on the brake disks and brake pads of the braking device can also be reduced.
  • Another advantage is the increased comfort for the maintenance personnel, especially if the maintenance personnel are on the roof of a car when the elevator system is being moved.
  • a safety circuit can be understood as an electric circuit of the elevator system that comprises a series connection of several safety-relevant contacts. These safety contacts can be closed in normal operation, so that the entire safety circuit is closed and thus in particular the car can be moved. Under certain operating conditions, for example in the event of a malfunction or when the elevator system is put into inspection mode, at least one of the safety switches and thus the entire safety circuit can be opened, which shuts down the elevator system. In particular, If the safety circuit is interrupted, an emergency braking of the elevator system can be initiated.
  • An inspection path can be understood as a current path parallel to the series connection of the safety contacts.
  • the inspection path can have a series connection of at least two switching contacts. Bridging of the safety contacts can be achieved by closing all contacts in the inspection path.
  • a control element can generally be understood as a switch that is operated by touching or pressing with a finger or hand and automatically returns to a rest position when the finger or hand is removed or released.
  • the control element can be a mechanical button or a sensor key, such as a capacitive key or a reverb key.
  • the first control element and the second control element can each be coupled to a programmable elevator control of the elevator system.
  • the elevator control can be configured to detect a respective current switching state of the control elements and to control a power converter of the elevator system depending on the switching state.
  • the first control element can be a switch for enabling a travel movement of the elevator system and the second control element can be a switch for specifying a direction of the travel movement.
  • the first switching unit and the second switching unit can, for example, be of identical design.
  • the two switching units can comprise electromechanical and/or electronic components.
  • the two switching units can be implemented entirely in hardware, for example in the form of electromechanical relays. This can reduce the amount of testing required before commissioning an elevator system equipped with such a control device.
  • the respective contacts of the two switching units can be mechanical contacts or semiconductor contacts.
  • the two delay elements can each be an additional capacitor for storing the electrical energy required to actuate the associated contacts.
  • the capacitor can be connected to the associated contacts in such a way that when the capacitor is discharged, the associated contacts can no longer be actuated.
  • the delay elements can each be a (programmable) hardware or software module coupled to a suitable timer.
  • the first delay time and the second delay time can be the same or different.
  • a second aspect of the invention relates to an elevator installation which has a safety circuit with at least one safety contact which is open during an inspection operation of the elevator installation, an inspection path for bridging the at least one safety contact and a control device as described above and below.
  • the elevator system can have at least one car, a drive for driving the at least one car, a power converter for regulating a power supply of the drive and a braking device that can be activated by interrupting the safety circuit for braking the at least one car.
  • the first delay time and the second delay time can each be selected such that the at least one car can be Regulating the power supply to the drive can be stopped before the braking device is activated.
  • the elevator control can be configured to control the power converter as an immediate reaction to the release of at least one of the two control elements so that the drive is stopped.
  • the respective delay times should, if possible, not be shorter than the time that the power converter at least needs to regulate the drive down to a standstill.
  • the delay times can be selected so that the at least one car is not braked to a standstill, but at least to a very low speed before the braking device is activated.
  • a braking device can be understood as a mechanical, for example electrically controlled machine brake or a brake on the elevator car.
  • the first delay time and the second delay time can each be greater than 10 ms.
  • the delay times can also be significantly greater than 10 ms, for example greater than 20 ms, greater than 50 ms, greater than 100 ms, greater than 500 ms, greater than 1 s, greater than 1.5 s and/or up to 2 s.
  • control device can further comprise a third switching unit connected in parallel with the first switching unit and the second switching unit.
  • the third switching unit can comprise a third contact and a third delay element and can be designed to close the third contact in response to the actuation of the first operating element and/or the second operating element and to open it in response to the release of the first operating element and the second operating element.
  • the third delay element can be designed to delay the closing of the third contact by a defined third delay time from the actuation of the first operating element and/or the second operating element.
  • the third contact can be connected in series with the first contact and the second contact in the inspection path.
  • the inspection path is independent of how small the time interval between the actuation of the first control element and the actuation of the second control element is always closed with a certain delay. If the third delay time is, for example, longer than the time interval between the actuation of the first control element and the actuation of the second control element, the inspection path can remain interrupted for a certain time even though both control elements have already been actuated. In this way, a switch-on delay can be implemented.
  • the third switching unit can be designed to prevent closing of at least one of the three contacts in the inspection path in the event of a fault in the third switching unit.
  • the first switching unit can have a first control terminal and can be designed to close the first contact when a control signal is present at the first control terminal and to open the first contact when no control signal is present at the first control terminal.
  • the first operating element can be designed to connect the first control terminal to a signal source for providing the control signal in an actuated position and to disconnect it from the signal source in a rest position.
  • the first delay element can be designed to delay a drop in the control signal at the first control terminal by the first delay time when the first control terminal is disconnected from the signal source.
  • a control signal can be understood as a current signal or a voltage signal, for example.
  • the signal source can be understood as an electrical energy source in the form of a current source or a voltage source.
  • the first control terminal can, for example, be a coil terminal of a relay or a gate or base terminal of a transistor.
  • the second switching unit may have a second control terminal and be designed to close the second contact, when a control signal is present at the second control terminal, and to open the second contact when no control signal is present at the second control terminal.
  • the second operating element can be designed to connect the second control terminal to a signal source for providing the control signal in an actuated position and to disconnect it from the signal source in a rest position.
  • the second delay element can be designed to delay a drop in the control signal at the second control terminal by the second delay time when the second control terminal is disconnected from the signal source.
  • the second control terminal can, for example, be a coil terminal of a relay or a gate or base terminal of a transistor.
  • the first switching unit can have a fourth contact and can be designed to open the fourth contact when the control signal is present at the first control terminal and to close it when no control signal is present at the first control terminal.
  • the second switching unit can have a fifth contact and can be designed to open the fifth contact when the control signal is present at the second control terminal and to close it when no control signal is present at the second control terminal.
  • the third switching unit can also have a third control terminal and can be designed to open the third contact when a control signal is present at the third control terminal and to close it when no control signal is present at the third control terminal.
  • the third delay element can be designed to delay a drop in the control signal at the third control terminal by the third delay time when the third control terminal is disconnected from a signal source for providing the control signal.
  • the third control terminal can be connectable to the signal source via the fourth contact and the fifth contact.
  • the fourth contact and the fifth contact can be connected in series.
  • the third delay element can comprise a capacitor that can provide electrical energy for actuating the third contact (or further contacts) of the third switching unit.
  • the third switching unit can be separated from the signal source by opening the fourth contact or the fifth contact, so that the third switching unit is only supplied with electrical energy via the capacitor.
  • the capacitance of the capacitor determines the third delay time.
  • the third contact in the inspection path only closes when the capacitor is discharged. In other words, the two operating elements must be held in their respective actuating positions at the same time for at least the duration of the third delay time in order for the inspection path to close.
  • the first switching unit can have a sixth contact and can be designed to close the sixth contact when the control signal is present at the first control terminal and to open it when no control signal is present at the first control terminal.
  • the third switching unit can have a seventh contact and can be designed to close the seventh contact when the control signal is present at the third control terminal and to open it when no control signal is present at the third control terminal.
  • the sixth contact can be connected between the first operating element and the first control terminal.
  • the seventh contact can be arranged in a bridging path that bridges the sixth contact.
  • the first control connection can only be connected to the signal source via the first control element if the bridging path is closed. This is the case when the seventh contact is closed by the third switching unit. If the seventh contact cannot be closed for any reason, the first contact that can be controlled via the first control connection can no longer be operated, i.e. closed.
  • the first contact, the fourth contact and the sixth contact can, for example, be positively guided.
  • the first switching unit can assume exactly two switching states. In a first switching state, the first contact and the sixth contact are open while the fourth contact is closed. In a second switching state, the first contact and the sixth contact are closed while the fourth contact is closed.
  • the second switching unit may have an eighth contact and be designed to close the eighth contact when the Control signal is present at the second control terminal, and to open when no control signal is present at the second control terminal.
  • the third switching unit can have a ninth contact and can be designed to close the ninth contact when the control signal is present at the second control terminal, and to open when no control signal is present at the third control terminal.
  • the eighth contact can be connected between the second operating element and the second control terminal.
  • the ninth contact can be arranged in a bridging path that bridges the eighth contact.
  • the second control connection can only be connected to the signal source via the second control element if the bridging path bridging the eighth contact is closed. This is the case when the ninth contact is closed by the third switching unit. If the ninth contact cannot be closed for any reason, the second contact that can be controlled via the second control connection can no longer be operated, i.e. closed.
  • the second contact, the fifth contact and the eighth contact can, for example, be positively guided.
  • the second switching unit can assume exactly two switching states. In a first switching state, the second contact and the eighth contact are open while the fifth contact is closed. In a second switching state, the second contact and the eighth contact are closed while the fifth contact is open.
  • the third contact, the seventh contact and the ninth contact can be positively guided.
  • the third switching unit can assume exactly two switching states. In a first switching state, the third contact is open while the seventh contact and the ninth contact are closed. In a second switching state, the third contact is closed while the seventh contact and the ninth contact are open.
  • the first switching unit can be designed as a first electromechanical relay.
  • the second switching unit can be designed as a second electromechanical relay.
  • the third switching unit can be designed as a third electromechanical relay.
  • Such a relay can comprise a coil and an actuator electromagnetically coupled to the coil, for example in the form of a hinged or tension armature, wherein the actuator is attracted when the coil is switched on and is moved back to a rest position, for example by means of spring force, when the coil is switched off.
  • the actuator can be mechanically coupled to one or more contacts of the relay. In the event that the relay comprises several contacts, the contacts can be positively guided via the actuator. This can, for example, prevent an opener and a closer of the relay from being closed or opened at the same time. This embodiment makes it possible to achieve a high level of robustness of the control device. In addition, the control device can be implemented with relatively little effort.
  • the first delay element can comprise a capacitor that is connected in parallel with a coil of the first relay.
  • the second delay element can comprise a capacitor that is connected in parallel with a coil of the second relay.
  • the third delay element can comprise a capacitor that is connected in parallel with a coil of the third relay.
  • a respective capacitance of the capacitors can be selected depending on the respective delay time to be achieved.
  • the control device can be designed to connect the capacitor of the first relay to a power source in response to the actuation of the first control element in order to charge the capacitor, and to disconnect both the capacitor and the coil of the first relay from the power source in response to the release of the first control element. This can ensure that the coil is supplied with electrical energy exclusively via the capacitor as soon as the first control element is released. This can also apply in an analogous manner to the second relay.
  • Fig.1 shows, by way of example, an elevator system 100 with a car 102 that can be moved up and down by means of a drive 104.
  • the drive 104 is supplied with power via a power converter 106, for example a frequency converter.
  • the elevator system 100 also has a braking device 108 that serves to mechanically brake the car 102 to a standstill and to hold it at a standstill in the event of a malfunction or under certain operating conditions that deviate from normal operation.
  • the elevator system 100 has an inspection control 110.
  • an operator 112 can switch the elevator system 100 to an inspection mode. In doing so, or when opening a shaft door 114 through which the operator 112 gains access to an elevator shaft 116 of the elevator system 100, a safety circuit of the elevator system 100, and thus the power supply of the drive 104, is interrupted. When the safety circuit is interrupted, the braking device 108 is also activated.
  • the inspection control 110 comprises a first control element PB1 for enabling a travel movement and a second control element PB2 for specifying a direction of the travel movement, i.e. up or down.
  • the first control element PB1 and the second control element PB2 must be held in their respective actuating position by the operator 112 at the same time so that the elevator car 102 moves up or down.
  • Fig.2 shows a control device 200 which comprises the two control elements PB1, PB2 Fig.1
  • the control device 200 is designed to close an inspection path 202 upon a corresponding actuation of the two control elements PB1, PB2 and to interrupt it upon release of at least one of the two control elements PB1, PB2.
  • the inspection path 202 is connected to a series circuit of safety contacts 204 in the manner described in connection with Fig.1
  • the safety circuit 206 mentioned above is connected in parallel. In inspection mode, at least one of the safety contacts 204 is open.
  • the functioning of the control device 200 is explained in more detail below.
  • the control device 200 comprises a first switching unit K1, a second switching unit K2 and a third switching unit K3, which are connected in parallel with one another.
  • Each of the three switching units K1, K2, K3 is designed with three contacts, of which two contacts act as normally open contacts and one contact acts as normally closed contacts. These contacts can be designed as mechanical contacts or as semiconductor contacts.
  • the following illustrates a switching logic of the control device 200 using the example of three electromechanical relays. However, the switching logic can just as well be implemented with an electronic system, which can be programmable, for example. In order to ensure the safety of the elevator system, the relays or the electronic system can be constructed with suitable electrical and/or electronic components in such a way that they meet a high safety standard, for example the SIL3 standard (Safety Integrity Level).
  • the first switching unit K1 has a first coil S 1 and three contacts K1-1, K1-2 and K1-3, which can be opened and closed by means of the first coil S1.
  • the contacts K1-1, K1-3 are each designed as make contacts, while the contact K1-2 is designed as break contacts.
  • the first switching unit K1 has a first delay element C1, here a first capacitor C1, which is connected in parallel with the first coil S 1.
  • the second switching unit K2 has a second coil S2 and three contacts K2-1, K2-2 and K2-3, which can be opened and closed by means of the second coil S2.
  • the contacts K2-1, K2-3 are each designed as normally open contacts, while the contact K2-2 is designed as normally closed contacts.
  • the second switching unit 210 has a second delay element C2, here a second capacitor C2, which is connected in parallel with the second coil S2.
  • the third switching unit K3 has a third coil S3 and three contacts K3-1, K3-2 and K3-3, which can be opened and closed by means of the third coil S3.
  • the contacts K3-1, K3-2 are each designed as normally open contacts, while the contact K3-3 is designed as normally closed contacts.
  • the third switching unit K3 has a third delay element C3, here a third capacitor C3, which is connected in parallel with the third coil S3.
  • K3 and C3 are provided to ensure that K1-3 and K2-3 are only closed when PB 1 and PB2 are pressed within a time period determined by the dimensioning of C3.
  • the three delay elements C 1, C2, C3 can also be implemented in other ways, for example as an RC element or diode or as a software module.
  • the three contacts K1-3, K2-3, K3-3 are connected in series in the inspection path 202. If all three contacts K1-3, K2-3, K3-3 are closed, the open safety contacts 204 are bridged in the safety circuit 206. The remaining contacts of the control device 200 are interconnected as follows.
  • the first coil S1 has a first control connection A1, here a first coil connection A1, which can be connected via the first control element PB 1 to an energy source 208 for providing electrical energy, here a current source.
  • the first control element PB 1 is connected in series with the first coil S 1.
  • the contact K1-1 is connected between the first control element PB1 and the first coil connection A1.
  • the contact K3-2 is connected in parallel with the contact K1-1.
  • the contact K3-2 is located in a first bridging path 210, which connects the first coil connection A1 to a line section connecting the contact K1-1 to the first control element PB1.
  • the first capacitor C1 is also connected to the first coil terminal A1, so that the first capacitor C1 is charged when the first coil terminal A1 is connected to the energy source 208, and the first coil S1 is supplied with current for a limited period of time depending on the capacity and state of charge when the first coil terminal A1 is disconnected from the energy source 208.
  • the second coil S2 has a second coil connection A2, which can be connected to the energy source 208 via the second control element PB2.
  • the second control element PB2 is connected in series with the second coil S2.
  • the contact K2-1 is connected between the second control element PB2 and the second coil connection A2.
  • the contact K3-1 is connected in parallel with the contact K2-1.
  • the contact K3-1 is located in a second bridging path 212, which connects the second coil connection A2 with a contact K2-1 with the second Control element PB2 connects.
  • the second capacitor C2 is also connected to the second coil connection A2, so that the second capacitor C2 is charged when the second coil connection A2 is connected to the energy source 208, and the second coil S2 is supplied with current depending on its capacity and state of charge when the second coil connection A2 is disconnected from the energy source 208.
  • a third coil connection A3 of the third coil S3 can be connected to the energy source 208 via the two contacts K1-2, K2-2, with the two contacts K1-2, K2-2 being connected in series with one another.
  • the third coil connection A3 is thus disconnected from the energy source 208 as soon as one of the two contacts K1-2, K2-2 is opened, and is only supplied with power by the energy source 208 when both contacts K1-2, K2-2 are closed.
  • the third capacitor C3 is also connected to the third coil connection A3, so that the third capacitor C3 is charged when the third coil connection A3 is connected to the energy source 208, and the third coil S3 is supplied with power depending on its capacity and state of charge when the third coil connection A3 is disconnected from the energy source 208.
  • control device 200 has a first feedback path FB1 with a first feedback contact 214 and a second feedback path FB2 with a second feedback contact 216.
  • the two feedback paths FB1, FB2 can be connected, for example, to a programmable elevator control of the elevator system 100.
  • the first feedback contact 214 is positively guided with the first control element PB1, so that the first feedback contact 214 is closed as soon as the operator 112 actuates the first control element PB1, and is opened again as soon as the operator 112 releases the first control element PB1.
  • the second feedback contact 216 is positively guided in an analogous manner with the second control element PB2.
  • the elevator control can be informed directly about the respective current switching state of the two control elements PB1, PB2 and control the power converter 106 accordingly.
  • Fig.2 shows the control device 200 in a switched-off state in which the control device 200 is disconnected from the energy source 208, the three capacitors C1, C2, C3 are discharged and the two control elements PB1, PB2 are in a respective rest position. Accordingly, the contacts K1-1, K1-3, K2-1, K2-3, K3-1, K3-2 designed as normally open contacts are open and the contacts K1-2, K2-2, K3-3 designed as normally closed contacts are closed.
  • Fig.3 shows the control device 200 in a switched-on state, in which the control device 200, in contrast to Fig.2 is connected to the energy source 208.
  • the third coil connection A3 is supplied with power via the two closed contacts K1-2, K2-2, so that the third capacitor C3 is charged and the third coil S3 is attracted.
  • the contact K3-1 in the first bridging path 210 and the contact K3-2 in the second bridging path 212 are closed, while the contact K3-3 in the inspection path 202 is opened.
  • the two control elements PB1, PB2 are still in their respective rest positions, so that both the first coil connection A1 and the second coil connection A2 are separated from the energy source 208.
  • the first control element PB1 is actuated, a current flows via the closed first bridging path 210 to the first coil connection A1, so that the first capacitor C1 is charged and the first coil S1 is attracted.
  • the contact K1-1 between the first coil connection A1 and the first control element PB1 and the contact K1-3 in the inspection path 202 are closed, while the contact K1-2 between the third coil connection A3 and the energy source 208 is opened. This disconnects the third coil connection A3 from the energy source 208.
  • the power supply to the third coil S3 is maintained for a limited period of time via the now charged third capacitor C3. As long as the third coil S3 is supplied with power, the contact K3-3 in the inspection path 202 also remains open.
  • the third switching unit K3 is blocked for any reason so that the contacts K3-1, K3-2, K3-3 remain in the rest position, although a current flows through the third coil S3, the two control connections A1, A2 can no longer be connected to the energy source 208. This ensures that in the event of a If the third switching unit K3 malfunctions, the two switching units K1, K2 remain in their respective rest position despite actuation of the respective control elements PB1, PB2 and thus the inspection path 202 is not closed.
  • Fig.5 shows a switching state of the control device 200 when the second control element PB2 is actuated in addition to the first control element PB1.
  • a current flows to the second coil connection A2 via the closed second bridging path 212, so that the second capacitor C2 is charged and the second coil S2 is attracted.
  • the contact K2-1 between the second coil connection A2 and the second control element PB2 and the contact K2-3 in the inspection path 202 are closed, while the contact K2-2 between the third coil connection A3 and the energy source 208 is opened.
  • the third coil S3 is still sufficiently supplied with current via the third capacitor C3, so that the contact K3-3 in the inspection path 202 is still open and the contacts K3-1, K3-2 are still closed.
  • the switching arrangement of the control device 200 shown enables the elevator control to be informed directly about the release of the first control element PB 1 or the second control element PB2 via the first feedback path FB1 or the second feedback path FB2, but the safety circuit 206 is opened with a delay due to a reaction time of the first switching unit K1 or the second switching unit K2, wherein the reaction time depends on a capacitance of the first capacitor C1 or the second capacitor C2.
  • the elevator control can bring about a controlled stop of the car 102 at an early stage before the braking device 108 is activated in response to the interruption of the safety circuit 206.
  • Fig.8 shows an exemplary embodiment of the first switching unit K1 as a relay in the rest position. This makes it clear at a glance which of the contacts function as a normally open contact and which as a normally closed contact. Shown are the first coil S 1, the first capacitor C1 connected in parallel with it, an armature 800 that can be moved electromagnetically between the rest position and an actuated position by means of the coil S1, here an example of a tension rod, and the three contacts K1-1, K1-2, K1-3, each of which is mechanically coupled to the armature 800 and thus positively guided.
  • Fig.9 shows schematically an exemplary embodiment of the second switching unit K2 as a relay in the rest position.
  • Fig.10 shows schematically an exemplary embodiment of the third switching unit K3 as a relay in the rest position.
  • the switching units K2, K3 are each designed analogously to the first switching unit K1.

Landscapes

  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Claims (13)

  1. Dispositif de commande (200) permettant de commander un système d'ascenseur (100) pendant un fonctionnement d'inspection, dans lequel le système d'ascenseur (100) présente un circuit de sécurité (206) comportant au moins un contact de sécurité (204) ouvert pendant le fonctionnement d'inspection et un chemin d'inspection (202) permettant le pontage de l'au moins un contact de sécurité (204), dans lequel le dispositif de commande (200) présente :
    un premier élément de manipulation (PB1) permettant la manipulation du système d'ascenseur (100) pendant le fonctionnement d'inspection ;
    un second élément de manipulation (PB2) permettant la manipulation du système d'ascenseur (100) pendant le fonctionnement d'inspection ;
    une première unité de commutation (K1) qui présente un premier contact (K1-3) et un premier élément de retardement (C1) et qui est configurée pour fermer le premier contact (K1-3) en réponse à un actionnement du premier élément de manipulation (PB1) et pour l'ouvrir en réponse à un relâchement du premier élément de manipulation (PB1) ;
    dans lequel le premier élément de retardement (C1) est configuré pour retarder une ouverture du premier contact (K1-3) d'un premier temps de retardement défini à partir du relâchement du premier élément de manipulation (PB 1) ;
    une deuxième unité de commutation (K2) montée en parallèle avec la première unité de commutation (K1), laquelle deuxième unité de commutation présente un deuxième contact (K2-3) et un deuxième élément de retardement (C2) et est configurée pour fermer le deuxième contact (K2-3) en réponse à un actionnement du second élément de manipulation (PB2) et pour l'ouvrir en réponse à un relâchement du second élément de manipulation (PB2) ;
    dans lequel le deuxième élément de retardement (C2) est configuré pour retarder une ouverture du deuxième contact (K2-3) d'un deuxième temps de retardement défini à partir du relâchement du second élément de manipulation (PB2) ;
    dans lequel le premier contact (K1-3) et le deuxième contact (K2-3) sont montés en série dans le chemin d'inspection (202).
  2. Dispositif de commande (200) selon la revendication 1,
    dans lequel le système d'ascenseur (100) présente au moins une cabine (102), un entraînement (104) pour l'entraînement de l'au moins une cabine (102), un convertisseur de courant (106) pour la régulation d'une alimentation en courant de l'entraînement (104) et un dispositif de freinage (108) pouvant être activé en interrompant le circuit de sécurité (206) pour le freinage de l'au moins une cabine (102) ;
    dans lequel le premier temps de retardement et le deuxième temps de retardement sont respectivement sélectionnés de sorte que l'au moins une cabine (102) peut être arrêtée en régulant l'alimentation en courant de l'entraînement (104) avant que le dispositif de freinage (108) ne soit activé.
  3. Dispositif de commande (200) selon l'une des revendications précédentes,
    dans lequel le premier temps de retardement et le deuxième temps de retardement sont respectivement supérieurs à 10 ms.
  4. Dispositif de commande (200) selon l'une des revendications précédentes, présentant en outre :
    une troisième unité de commutation (K3) montée en parallèle avec la première unité de commutation (K1) et la deuxième unité de commutation (K2), laquelle troisième unité de commutation présente un troisième contact (K3-3) et un troisième élément de retardement (C3) et est configurée pour fermer le troisième contact (K3-3) en réponse à l'actionnement du premier élément de manipulation (PB 1) et/ou du deuxième élément de manipulation (PB2) et pour l'ouvrir en réponse au relâchement du premier élément de manipulation (PB1) et du deuxième élément de manipulation (PB2) ;
    dans lequel le troisième élément de retardement (C3) est configuré pour retarder une fermeture du troisième contact (K3-3) d'un troisième temps de retardement défini à partir de l'actionnement du premier élément de manipulation (PB1) et/ou du deuxième élément de manipulation (PB2) ;
    dans lequel le troisième contact (K3-3) est monté en série avec le premier contact (K1-3) et le deuxième contact (K2-3) dans le chemin d'inspection (202).
  5. Dispositif de commande (200) selon la revendication 4,
    dans lequel la troisième unité de commutation (K3) est configurée pour empêcher une fermeture d'au moins un contact parmi les trois contacts (K1-3, K2-3, K3-3) dans le chemin d'inspection (202) en cas de dysfonctionnement de la troisième unité de commutation (K3).
  6. Dispositif de commande (200) selon l'une des revendications précédentes,
    dans lequel la première unité de commutation (K1) présente une première borne de commande (A1) et est configurée pour fermer le premier contact (K1-3) lorsqu'un signal de commande est appliqué sur la première borne de commande (A1) et pour ouvrir le premier contact (K1-3) lorsqu'aucun signal de commande n'est appliqué sur la première borne de commande (A1) ;
    dans lequel le premier élément de manipulation (PB1) est configuré pour connecter la première borne de commande (A1) dans une position d'actionnement à une source de signal (208) pour la fourniture du signal de commande et pour la séparer de la source de signal (208) dans une position de repos ;
    dans lequel le premier élément de retardement (C1) est configuré pour retarder une chute du signal de commande au niveau de la première borne de commande (A1) du premier temps de retardement lorsque la première borne de commande (A1) est séparée de la source de signal (208).
  7. Dispositif de commande (200) selon l'une des revendications précédentes,
    dans lequel la deuxième unité de commutation (K2) présente une deuxième borne de commande (A2) et est configurée pour fermer le deuxième contact (K2-3) lorsqu'un signal de commande est appliqué sur la deuxième borne de commande (A2) et pour ouvrir le deuxième contact (K2-3) lorsqu'aucun signal de commande n'est appliqué sur la deuxième borne de commande (A2) ;
    dans lequel le deuxième élément de manipulation (PB2) est configuré pour connecter la deuxième borne de commande (A2) dans une position d'actionnement à une source de signal (208) pour la fourniture du signal de commande et pour la séparer de la source de signal (208) dans une position de repos ;
    dans lequel le deuxième élément de retardement (C2) est configuré pour retarder une chute du signal de commande au niveau de la deuxième borne de commande (A2) du deuxième temps de retardement lorsque la deuxième borne de commande (A2) est séparée de la source de signal (208).
  8. Dispositif de commande (200) selon la revendication 7 en combinaison avec les revendications 5 et 6 ou en combinaison avec les revendications 4 et 6,
    dans lequel la première unité de commutation (K1) présente un quatrième contact (K1-2) et est configurée pour ouvrir le quatrième contact (K1-2) lorsque le signal de commande est appliqué sur la première borne de commande (A1) et pour le fermer lorsqu'aucun signal de commande n'est appliqué sur la première borne de commande (A1) ;
    dans lequel la deuxième unité de commutation (K2) présente un cinquième contact (K2-2) et est configurée pour ouvrir le cinquième contact (K2-2) lorsque le signal de commande est appliqué sur la deuxième borne de commande (A2) et pour le fermer lorsqu'aucun signal de commande n'est appliqué sur la deuxième borne de commande (A2) ;
    dans lequel la troisième unité de commutation (K3) présente une troisième borne de commande (A3) et est configurée pour ouvrir le troisième contact (K3-3) lorsqu'un signal de commande est appliqué sur la troisième borne de commande (A3) et pour le fermer lorsqu'aucun signal de commande n'est appliqué sur la troisième borne de commande (A3) ;
    dans lequel le troisième élément de retardement (C3) est configuré pour retarder une chute du signal de commande au niveau de la troisième borne de commande (A3) du troisième temps de retardement lorsque la troisième borne de commande (A3) est séparée d'une source de signal (208) pour la fourniture du signal de commande ;
    dans lequel la troisième borne de commande (A3) peut être connectée à la source de signal (208) par l'intermédiaire du quatrième contact (K1-2) et du cinquième contact (K2-2) ;
    dans lequel le quatrième contact (K1-2) et le cinquième contact (K2-2) sont montés en série.
  9. Dispositif de commande (200) selon la revendication 8,
    dans lequel la première unité de commutation (K1) présente un sixième contact (K1-1) et est configurée pour fermer le sixième contact (K1-1) lorsque le signal de commande est appliqué sur la première borne de commande (A1) et pour l'ouvrir lorsqu'aucun signal de commande n'est appliqué sur la première borne de commande (A1) ;
    dans lequel la troisième unité de commutation (K3) présente un septième contact (K3-2) et est configurée pour fermer le septième contact (K3-2) lorsque le signal de commande est appliqué sur la troisième borne de commande (A3) et pour l'ouvrir lorsqu'aucun signal de commande n'est appliqué sur la troisième borne de commande (A3) ;
    dans lequel le sixième contact (K1-1) est monté entre le premier élément de manipulation (PB1) et la première borne de commande (A1) ;
    dans lequel le septième contact (K3-2) est disposé dans un chemin de pontage (210) pontant le sixième contact (K1-1).
  10. Dispositif de commande (200) selon la revendication 8 ou 9,
    dans lequel la deuxième unité de commutation (K2) présente un huitième contact (K2-1) et est configurée pour fermer le huitième contact (K2-1) lorsque le signal de commande est appliqué sur la deuxième borne de commande (A2) et pour l'ouvrir lorsqu'aucun signal de commande n'est appliqué sur la deuxième borne de commande (A2) ;
    dans lequel la troisième unité de commutation (K3) présente un neuvième contact (K3-1) et est configurée pour fermer le neuvième contact (K3-1) lorsque le signal de commande est appliqué sur la deuxième borne de commande (A2) et pour l'ouvrir lorsqu'aucun signal de commande n'est appliqué sur la troisième borne de commande (A3) ;
    dans lequel le huitième contact (K2-1) est monté entre le deuxième élément de manipulation (PB2) et la deuxième borne de commande (A2) ;
    dans lequel le neuvième contact (K3-1) est disposé dans un chemin de pontage (212) pontant le huitième contact (K2-1).
  11. Dispositif de commande (200) selon l'une des revendications précédentes,
    dans lequel la première unité de commutation (K1) est conçue sous la forme d'un premier relais électromécanique ; et/ou
    dans lequel la deuxième unité de commutation (K2) est conçue sous la forme d'un deuxième relais électromécanique ; et/ou
    dans lequel la troisième unité de commutation (K3) est conçue sous la forme d'un troisième relais électromécanique.
  12. Dispositif de commande (200) selon la revendication 11 en combinaison avec l'une des revendications 1 à 10,
    dans lequel le premier élément de retardement (C1) comprend un condensateur (C1) qui est monté en parallèle avec une bobine (S1) du premier relais ; et/ou
    dans lequel le deuxième élément de retardement (C2) comprend un condensateur (C2) qui est monté en parallèle avec une bobine (S2) du deuxième relais ; et/ou
    dans lequel le troisième élément de retardement (C3) comprend un condensateur (C3) qui est monté en parallèle avec une bobine (S3) du troisième relais.
  13. Système d'ascenseur (100), présentant :
    un circuit de sécurité (206) comportant au moins un contact de sécurité (204) qui est ouvert pendant un fonctionnement d'inspection du système d'ascenseur (100) ;
    un chemin d'inspection (202) pour le pontage de l'au moins un contact de sécurité (204) ; et
    un dispositif de commande (200) selon l'une des revendications précédentes.
EP20811681.4A 2019-12-19 2020-11-30 Dispositif de commande pour un systeme d'ascenseur dans un mode d'inspection et systeme d'ascenseur Active EP4077188B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19218216 2019-12-19
PCT/EP2020/083859 WO2021121920A1 (fr) 2019-12-19 2020-11-30 Dispositif de commande permettant de commander un système de levage dans un mode d'inspection, et système de levage

Publications (2)

Publication Number Publication Date
EP4077188A1 EP4077188A1 (fr) 2022-10-26
EP4077188B1 true EP4077188B1 (fr) 2024-05-08

Family

ID=69410976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20811681.4A Active EP4077188B1 (fr) 2019-12-19 2020-11-30 Dispositif de commande pour un systeme d'ascenseur dans un mode d'inspection et systeme d'ascenseur

Country Status (5)

Country Link
US (1) US20230002192A1 (fr)
EP (1) EP4077188B1 (fr)
CN (1) CN114867677A (fr)
BR (1) BR112022011999A2 (fr)
WO (1) WO2021121920A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115362119A (zh) * 2020-03-31 2022-11-18 因温特奥股份公司 用于对电梯设备进行安全监控的安全监控装置和方法
CN113753695A (zh) * 2021-08-23 2021-12-07 杭州西奥电梯有限公司 一种电梯节能方法及节能控制装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984659A (en) * 1988-02-01 1991-01-15 Mitsubishi Denki Kabushiki Kaisha Elevator control apparatus
JPH1179593A (ja) * 1997-09-16 1999-03-23 Toshiba Corp エレベータの非常時救出運転装置
US6738243B2 (en) * 2001-12-07 2004-05-18 Eaton Corporation Apparatus and method for servicing a distribution bus
JP5450061B2 (ja) * 2006-06-30 2014-03-26 オーチス エレベータ カンパニー 浅いピットおよび/または低いオーバヘッドを備えたエレベータ
JP4803560B2 (ja) * 2008-09-11 2011-10-26 東芝エレベータ株式会社 エレベータの安全装置
NZ599051A (en) 2009-10-26 2014-02-28 Inventio Ag Safety circuit in an elevator system
EP2452907A1 (fr) * 2010-11-11 2012-05-16 Inventio AG Circuit de sécurité d'ascenseur
CN107108152B (zh) * 2014-12-11 2019-04-12 因温特奥股份公司 解锁装置、具有解锁装置的电梯设备和用于操作解锁装置的方法

Also Published As

Publication number Publication date
CN114867677A (zh) 2022-08-05
BR112022011999A2 (pt) 2022-08-30
US20230002192A1 (en) 2023-01-05
WO2021121920A1 (fr) 2021-06-24
EP4077188A1 (fr) 2022-10-26

Similar Documents

Publication Publication Date Title
EP4077188B1 (fr) Dispositif de commande pour un systeme d'ascenseur dans un mode d'inspection et systeme d'ascenseur
EP2845072B1 (fr) Appareil de commutation
EP1618059A1 (fr) Dispositif d'ascenseur et procede pour commander un dispositif d'ascenseur
EP3814267B1 (fr) Système de commutation de sécurité et procédé de commutation d'une installation d'ascenseur entre un mode de fonctionnement normal et un mode de fonctionnement d'inspection
WO2015086271A1 (fr) Circuit de sécurité pour installation d'ascenseur
EP2415058A1 (fr) Circuit modulaire de commutation de puissances électriques et adaptateur associé
WO2006002725A1 (fr) Dispositif pour deconnecter de maniere fiable un consommateur electrique, notamment une machine electrique
EP3704048B1 (fr) Dispositif de surveillance de sécurité destiné à surveiller des conditions relatives à la sécurité dans une installation de transport de personnes ainsi que procédé de fonctionnement d'un tel dispositif
DE2804130B2 (de) Überwachungsvorrichtung für Maschinen mit elektrischer Druckknopfsteuerung
WO2002011165A1 (fr) Commutateur de securite pour la mise hors-circuit sure d'une charge electrique, en particulier d'une machine a entrainement electrique
DE19715013B4 (de) Schaltung zum Start einer Maschine und Verfahren zur Steuerung eines Starts einer Maschine
EP0212147A1 (fr) Dispositif d'évacuation pour ascenseur
DE19826039C2 (de) Überbrückungsschaltung
DE102010051222B4 (de) Sicherheitsschaltung für eine Zweihandsteuerung
DE907783C (de) Schaltung fuer elektrische Antriebe von Weichen, Gleissperren und aehnlichen Einrichtungen in elektrischen Stellwerken, insbesondere fuer Gleisbildstellwerke und aehnliche Stellwerke mit elektrischen Verschluessen
DE607345C (de) Zusatzeinrichtung fuer eine Aufzugssteuerung
DE2658031C2 (de) Schaltvorrichtung für hydraulische Aufzüge
DE10354591B4 (de) Aufzuganlage
DE10220349B4 (de) Verfahren und Vorrichtung zum Verbinden einer Versorgungsgleichspannung mit einer Last und zum Trennen der Versorgungsgleichspannung von der Last
DE3247369A1 (de) Schaltungsanordnung fuer die lastbegrenzung und ueberlastsicherung eines hubwerkantriebes
EP3613691A1 (fr) Panneau de commande d'entretien et commande d'ascenseur permettant de commander de manière contrôlée le freinage des mouvements de déplacement d'une cabine d'ascenseur
EP2336073A1 (fr) Dispositif de commutation pour installations de transport
EP4336537A1 (fr) Dispositif relais et appareil de commutation de sécurité doté d'au moins un dispositif relais
DE1506484C (de) Notschaltung für einen Aufzug
EP2880672B1 (fr) Contacteur disjoncteur électromagnétique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007959

Country of ref document: DE