EP4053065B1 - Dispositif et procédé de commande d'un mécanisme rotatif de grue, ainsi que grue - Google Patents

Dispositif et procédé de commande d'un mécanisme rotatif de grue, ainsi que grue Download PDF

Info

Publication number
EP4053065B1
EP4053065B1 EP22155581.6A EP22155581A EP4053065B1 EP 4053065 B1 EP4053065 B1 EP 4053065B1 EP 22155581 A EP22155581 A EP 22155581A EP 4053065 B1 EP4053065 B1 EP 4053065B1
Authority
EP
European Patent Office
Prior art keywords
pressure
crane
slewing gear
valve
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22155581.6A
Other languages
German (de)
English (en)
Other versions
EP4053065A1 (fr
Inventor
Richard Torghele
Christof Gassner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Werk Nenzing GmbH
Original Assignee
Liebherr Werk Nenzing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Werk Nenzing GmbH filed Critical Liebherr Werk Nenzing GmbH
Publication of EP4053065A1 publication Critical patent/EP4053065A1/fr
Application granted granted Critical
Publication of EP4053065B1 publication Critical patent/EP4053065B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/94Safety gear for limiting slewing movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • B66C13/30Circuits for braking, traversing, or slewing motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/84Slewing gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/84Slewing gear
    • B66C23/86Slewing gear hydraulically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/08Electrical assemblies or electrical control devices for cranes, winches, capstans or electrical hoists
    • B66C2700/082Control of the secondary movements, e.g. travelling, slewing, luffing of the jib, changing of the range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/08Electrical assemblies or electrical control devices for cranes, winches, capstans or electrical hoists
    • B66C2700/084Protection measures

Definitions

  • the present invention relates to a device and a method for controlling a crane slewing gear and a crane, in particular a crawler crane, with such a device.
  • the superstructure can, for example, comprise the boom together with the counter-jib or the boom and the mast, which is mounted on a stationary undercarriage, while in mobile cranes the undercarriage typically has a wheel or crawler chassis for moving the crane, while the rotating superstructure next to the boom a rear ballast and other components such as guy stand, derrick boom, etc. can have.
  • a floating body forms the undercarriage
  • rail cranes have a rail vehicle that can be moved on rails as the undercarriage.
  • the jib (or jib system including guying and, if applicable, ballast) rotates about a vertical axis by an actuation of the slewing gear (which can also be referred to as a slewing ring).
  • the crane slewing gears can usually be driven by one or more hydraulic motors and can have one or more holding brakes to fix the superstructure in a specific position. The latter are often also hydraulically driven.
  • the external influencing variables include the wind and heeling or inclination of the crane, the working load, the working radius, the dead weight and the experience of the crane operator.
  • the properties of the drive and the sensitivity of the crane control can be named as internal influencing variables.
  • the slewing motion of the crane can be driven at maximum power and speed without restriction, regardless of the possible crane configurations and loads.
  • improper operation of the slewing gear during operation for example with crawler cranes, or the actuation of an emergency stop with abrupt braking of the slewing movement can lead to impermissibly high lateral forces and thus to damage or even the crane tipping over.
  • the document US5159813A discloses a device for controlling a crane slewing gear comprising a hydraulic motor by means of which the slewing gear can be driven or braked, a load detection device, an alignment detection device, a hydraulic limiting circuit by means of which a hydraulic pressure applied to the motor can be limited to a limit value, and a control unit which is connected to the limiting circuit connected is.
  • the present invention is therefore based on the task of reducing the risk of damage caused by improper operation or external influences caused by impermissibly high lateral forces or torques in cranes with a slewing gear.
  • the measured load also includes, in particular, traction equipment or hoisting ropes, load handling equipment (e.g. hook blocks), sling equipment and/or hangers.
  • the load detection device can be a load cell.
  • the slewing gear is held in a stationary position by means of the holding brake.
  • a hydraulic limiting circuit by means of which a hydraulic pressure applied to the engine can be limited to a specific limit value.
  • Said hydraulic pressure can be a pressure difference.
  • a control unit is provided according to the invention, which is connected to the limiting circuit and set up, depending on at least the to determine a maximum permissible torque and/or a variable derived therefrom for a current rotational movement of the slewing gear based on the detected load and the detected alignment and, on this basis, to automatically limit an angular acceleration and/or angular velocity of the slewing gear by appropriate control or regulation of the limiting circle. This ensures that the torques acting on the crane structure do not exceed the maximum permissible torque.
  • the variable derived from the maximum permissible torque can be a maximum permissible angular acceleration.
  • the corresponding control of the limiting circuit and thus of the slewing gear motor can take place in that a maximum permissible pressure resulting from the maximum permissible torque (or the derived variable), in particular differential pressure, is calculated for the hydraulic system and the pressure in the hydraulic system is limited to a corresponding range becomes.
  • This can be the pressure difference between the supply lines or control lines of the slewing gear motor that are responsible for a right and a left movement.
  • the derived variable can be this permissible differential pressure, on which the hydraulic control of the slewing gear is based. It is also conceivable that all of the aforementioned variables are calculated in the control unit.
  • the limiting and braking circuits are connected to one another or interconnected and set up such that if the control unit fails or an emergency stop of the crane is triggered, the slewing gear can be braked automatically while maintaining the slewing gear limitation.
  • the load- and geometry-dependent slewing gear torque limitation according to the invention which ensures that the torques acting on the crane structure do not exceed the maximum permissible torque, is effective even when braking due to an emergency stop or a failure of the power supply to the crane.
  • the device according to the invention implements a load and geometry-dependent slewing gear limitation, taking into account the relevant influencing variables, in which the measurements and calculations required for slewing gear limitation and the corresponding control or regulation of the slewing gear drive are carried out automatically.
  • the crane driver does not have to actively intervene in the control process, so that the potential for danger due to incorrect operation is minimized. For safety reasons, an active influence on the control or regulation process can even be completely ruled out.
  • the approach according to the invention is superior to simply limiting the boom head speed and/or acceleration to a maximum permissible value.
  • the interaction of the influences of load capacity and boom dead weight changes significantly with the respective equipment status.
  • the maximum permissible lifting capacity also referred to as SWL - "safe working load" -
  • SWL - safe working load
  • the load and geometry-dependent slewing gear torque limit or slewing gear limitation protects the structure of the crane from being overloaded by the slewing gear.
  • the device according to the invention limits the maximum possible torque when accelerating and/or decelerating the slewing gear to a maximum permissible value, both during operation and in the event of an emergency stop, a power failure or some other fault.
  • the initial value here is in particular the maximum permissible angular acceleration of the superstructure with the existing Utilization of the maximum structure load capacity. From this, a maximum permissible torque or a maximum permissible pressure in the slewing gear is calculated according to the crane configuration, the current load and the current angular positions. In particular, the slewing gear pressure is limited to this maximum permissible pressure by the system. If a constant delay time is to be ensured, the crane rotation speed can also be limited by the device according to the invention.
  • the control unit is set up to take into account current geometry data of the crane for determining the maximum permissible torque and/or the variable derived therefrom. These can be read in directly via suitable sensors and/or stored in the control unit or in a memory to which the control unit has access. So it is conceivable that a database with the relevant data for all possible set-up states is stored in the crane and the crane driver selects the current set-up state (for example the current boom configuration and/or ballasting) in advance. Automatic detection of the current crane configuration via appropriate sensors is also possible. Provision of geometry data via a wireless communication channel is also conceivable, for example access by the control unit to a cloud with the stored data.
  • the geometric data relate to a set-up state, a dimension, a mass, the position of a center of gravity and/or a moment of inertia of the crane and/or at least one of its components.
  • the geometric data contain in particular all relevant component masses, center of gravity coordinates and dimensions of the entire machine or at least of the components of the crane that are decisive for the calculation of the permissible torque.
  • the moments of inertia of the components can also be calculated by the control unit from other geometric data.
  • control unit is set up to determine the maximum permissible torque and/or the variable derived therefrom to take current environmental data into account, with the environmental data preferably relating to a wind direction and/or wind strength detected by at least one wind measuring device. From this, the wind load acting on the crane can be determined, in particular with recourse to the previously mentioned geometric data of the crane.
  • the wind measuring device is preferably positioned at the boom tip (e.g. at the tip of a seesaw needle) and may comprise an anemometer. However, several wind measuring devices distributed over the crane can also be used to determine the instantaneous wind load more precisely.
  • the load currently being picked up by the crane and the current orientation of the crane can be detected in real time and made available to the control unit.
  • This also applies in particular to the measured environmental conditions, in particular the wind load.
  • the measurements can be taken at regular time intervals during the operating life of the crane.
  • the control unit is set up to adapt the maximum permissible torque and/or the variable derived therefrom for the current rotational movement of the slewing gear and the corresponding control or regulation of the limiting circuit as a function of the measurements in real time. Any change in the relevant influencing variables thus immediately leads to an adjustment or recalculation of the limit values on which the slewing gear limitation according to the invention is based, and thus to a change in the actuation of the slewing gear.
  • the current alignment of the crane relates to a current boom angle, a current inclination or heeling of the crane and/or a current slewing gear or slewing platform angle.
  • a more complex boom configuration for example using a main boom and a seesaw attached thereto, multiple angles between the respective boom components may also be measurable to capture the overall alignment. Should it be the outrigger If it is a telescopic jib, the telescoping state or the telescopic length also counts in particular for the detectable alignment.
  • the angle or angles can be measurable via angle sensors.
  • the current working radius in particular results from the measured angles in combination with the known dimensions of the crane.
  • the inclination or heeling can be measured using one or more electrical inclination sensors.
  • a simulation means is provided, which is set up to use a physical simulation model of the crane or at least one crane component, taking into account at least a current set-up status, a current alignment and a current lifted load of the crane, the maximum permissible torque and/or the torque thereof to calculate the derived variable for the current rotary movement of the slewing gear.
  • the simulation means can be provided in the control unit or can be executed by the control unit or can be implemented/executable in a separate simulation unit connected to the control unit.
  • the simulation unit can be located in the crane or outside of the crane (e.g. in the form of a cloud).
  • control unit is set up to calculate a maximum permissible hydraulic differential pressure and, on this basis, an angular acceleration and/or angular velocity of the slewing gear by appropriate control or regulation of the limiting circuit, in particular by appropriate electrical actuation of a limit pressure adjustment valve of the bounding circle to limit automatically.
  • the differential pressure is in particular the pressure difference between the control lines of the drive or motor responsible for a right and a left movement.
  • the brake circuit comprises a first hydraulic accumulator and a brake valve, with the holding brake, in particular a pressure chamber of the holding brake, being connected to a control pressure line via the brake valve in a first position of the brake valve and in a second Position of the brake valve can be connected to a hydraulic tank or a tank line or to the first hydraulic accumulator.
  • the brake valve is preferably electrically controllable and is in the de-energized state in particular in the second position.
  • the control pressure is, in particular, a comparatively low pressure level that is introduced into a control pressure line in order to activate certain functions. At the same time, the control pressure can be applied to a valve of the limiting circuit.
  • the first hydraulic accumulator can preferably be charged with control pressure via a check valve.
  • the brake valve can be a binary directional control valve.
  • the brake circuit includes a changeover valve, via which the brake valve can be connected to the tank or to the first hydraulic accumulator in the second position, the changeover valve preferably being hydraulically controllable via a control connection.
  • the switching valve is preferably a binary directional control valve. In the non-activated state, it preferably connects the brake valve to the tank, with the brake valve connecting in particular the holding brake to the changeover valve in the non-activated state. If the brake and changeover valves are not actuated, the holding brake is preferably relieved to the tank and is therefore applied.
  • the control connection of the switching valve can be connected to the tank or a tank line or to a high-pressure line of the limiting circuit via a first safety valve of the brake circuit.
  • the maximum of the operating pressures of the control lines preferably always prevails in the high-pressure line.
  • the first safety valve can be electrically controllable. Alternatively, it can be hydraulically controllable via a signal line ("slewing gear on") that can be pressurized when the slewing gear is actuated.
  • the first safety valve is preferably switched in a non-controlled state (control current or control pressure below the set control threshold of the valve) in such a way that the control port of the changeover valve connected to the high-pressure line.
  • the first safety valve can preferably be switched electrically or hydraulically together with a second safety valve of the limiting circuit.
  • the brake circuit is set up to automatically switch the brake valve to the second position and to the first hydraulic accumulator in the event of a failure of the control unit (e.g. due to a failure of the power supply) and/or if an emergency stop of the slewing gear is triggered connect to.
  • the first hydraulic accumulator is preferably connected to the tank via a throttle unit, so that the first hydraulic accumulator slowly discharges.
  • the holding brake is initially held open above the pressure level prevailing in the hydraulic accumulator (which in particular corresponds to the control pressure level immediately before the failure/emergency stop). If the pressure level in the accumulator falls below a minimum brake release pressure, the holding brake applies.
  • the slewing gear therefore initially remains controlled and limited in the event of a loss of power supply or an emergency stop.
  • the limiting circuit comprises two hydraulic control lines, each causing a left or right rotation of the slewing gear, and a hydraulic pressure limiting device, the latter being set up to connect the control lines to one another in a hydraulically conductive manner (so that the oil from the line with a higher pressure flows into the line with the lower pressure) if the pressure difference in the control lines exceeds a limit pressure which is dependent on the determined maximum permissible torque.
  • the pressure-limiting device comprises at least one hydraulic pressure-limiting valve, via which the control lines can be connected to one another in a hydraulically conductive manner and which can be hydraulically controlled or pilot-controlled via a pilot control line, the pilot control pressure prevailing in the pilot control line being adjustable via a hydraulic limit pressure circuit as a function of the determined maximum permissible torque.
  • the limit pressure circuit ensures that the at least one pressure relief valve opens when the pressure difference in the control lines exceeds a specific limit value or limit pressure, which is dependent on the permissible torque determined by the control unit or the permissible angular acceleration.
  • One pressure-limiting valve is preferably provided for each control line.
  • the limit pressure circuit comprises a differential pressure valve which is set up to connect the pilot control line to a tank when the limit pressure is exceeded by the pressure difference in the control lines, the differential pressure valve preferably being hydraulically controllable via a limit pressure line.
  • the differential pressure valve can be a pressure compensator, which opens when the pressure present at a high-pressure port exceeds the sum of a limit pressure present at a differential pressure port and a low pressure present at a low-pressure port.
  • the differential pressure valve can be controlled via the limit pressure line in particular in that the limit pressure defines the pressure difference between the other connections at which the differential pressure valve switches or opens.
  • the high-pressure connection is preferably supplied with the maximum and the low-pressure connection with the minimum of the operating pressures prevailing in the control lines, optionally reduced by a defined factor via one or more throttles.
  • the pressure in one of the two control lines is higher and forms the "high pressure" in the high-pressure line, which runs to the high-pressure connection of the differential pressure valve.
  • the pressure of the other line forms the low pressure.
  • the limit pressure circuit comprises a second hydraulic accumulator which is connected to the limit pressure line and which can be connected to a control pressure line via a second safety valve of the limit pressure circuit.
  • the control pressure line is preferably also connected to the brake pressure valve and via a check valve to the first hydraulic accumulator.
  • the second safety valve can be electrically controlled. Alternatively, it can be hydraulically controllable via a signal line ("slewing gear on") that can be pressurized when the slewing gear is actuated. The signal line can operate/control the first safety valve at the same time.
  • the second safety valve can preferably be switched electrically or hydraulically together with a first safety valve of the brake circuit.
  • the limit pressure circuit includes a limit pressure adjustment valve that can be controlled by the control unit, by means of which the limit pressure line can be connected to a control pressure line (in particular the control pressure line described above) and the limit pressure can be adjusted as a function of the determined maximum permissible torque.
  • the limit pressure adjustment valve can have a falling characteristic so that the maximum limit pressure is set when there is no activation (provided that the control pressure in the control pressure line is > zero). The implementation of the load-dependent and geometry-dependent slewing gear limitation according to the invention thus takes place via the limit pressure circuit and in particular via a corresponding setting of the limit pressure by the limit pressure adjustment valve.
  • the limiting circuit is set up to automatically disconnect the second hydraulic accumulator from the control line in the event of a failure of the control unit and/or if an emergency stop of the slewing gear is triggered, so that the pressure of the second hydraulic accumulator prevails in the limit pressure line.
  • the connection can be separated by switching the second safety valve.
  • the high-pressure line is connected to the control lines via a valve arrangement in such a way that the higher pressure of the control lines always prevails in it, with the valve arrangement preferably comprising two valves, in particular check valves, via which one of the control lines each connected to the high-pressure line.
  • the low-pressure line can be connected to the control lines via valves, in particular check valves, in such a way that its pressure level (“low pressure") is always limited to the minimum of the pressures in the control lines.
  • an emergency stop or emergency stop function is provided, which can be triggered by the crane operator and/or automatically by the control unit if an emergency stop is triggered, whereby the power supply can be switched off automatically as a result of the triggering of the emergency stop function and/or the slewing gear can be braked automatically while maintaining the slewing gear limitation.
  • the present invention further relates to a crane with a slewing gear and a device according to the invention for controlling the slewing gear.
  • the slewing gear can include one or more slewing gear motors, which can be limited or controlled via the device according to the invention. This obviously results in the same advantages and properties as for the device according to the invention, which is why a repeated description is dispensed with at this point.
  • the crane can be a crawler crane.
  • the figure 1 shows in a block diagram the components and influencing factors of the device according to the invention and the method according to the invention for controlling a slewing gear 10 of a crane 1.
  • the permissible torque or the permissible angular acceleration for the slewing gear movement is calculated in a control unit 20, which is in the exemplary embodiments considered here are the CPU of the crane controller.
  • a crawler crane 1 is considered, which in the figure 2 is shown.
  • the crawler crane 1 comprises an undercarriage 2 with crawler undercarriages and an uppercarriage 3 mounted on the undercarriage 2 so that it can rotate about a vertical axis via a slewing gear 10.
  • the uppercarriage 3 has a boom 4 that can pivot about a horizontal axis, which in the exemplary embodiment considered here is a main boom 4a and a rocking needle 4a, which are braced over guy structures.
  • the superstructure 3 has a superstructure or rear ballast 5 with two lateral stacks of several ballast plates.
  • the guying of the main boom 4a takes place via a guying frame 7, which is mounted on the superstructure 3 so that it can pivot about a horizontal axis.
  • FIG 2 shows sections of various components of the crane 1 with elements of the device according to the invention, such as crane sensors or slewing gear components.
  • the slewing gear 10 can be seen at the bottom right, which comprises a large-diameter bearing 6 and several motors 12 driving the large-diameter bearing 6 via pinions.
  • an anemometer 19 At the tip of the seesaw needle 4b is an anemometer 19 for determining the current wind load.
  • the crane slewing gear 10 is controlled hydraulically, with an exemplary embodiment of the hydraulic system in FIG figure 3 shown and described below. For the sake of simplicity, in the figure 3 only one slewing gear motor 12 is shown.
  • a load and geometry-dependent slewing gear torque limitation (hereinafter also simply referred to as slewing gear limitation) is selected as a solution.
  • the initial value is the maximum permissible angular acceleration of the superstructure 3 when the maximum structural load is utilized. From this, a maximum permissible torque or a maximum permissible pressure in the slewing gear 10 is calculated according to the crane configuration, the current load and the current angular positions. The device according to the invention limits the slewing gear pressure to this maximum permissible pressure.
  • the crane rotation speed is also limited.
  • the slewing gear limitation also takes effect in the event of an emergency stop or failure of the crane control 20.
  • at least one hydraulic accumulator means that the maximum permissible pressure in the slewing gear 10 continues to be limited to the last permissible value and the holding brake 14 is applied until the slewing movement comes to a standstill, but no longer than for a few seconds, kept open.
  • the slewing gear torque limitation is permanently active, unless switched off via a correction value.
  • ⁇ I AL x + I OW + I WL ⁇ a allowed ⁇ M fq % ⁇ M W ⁇ M K are defined.
  • ⁇ I ( AL ) x denote the sum of the moments of inertia I ( AL ) of the various boom parts, i.e.
  • the following influencing variables are fed to the CPU or control unit 20, ie the physical simulation model executed by it.
  • the geometry information includes all relevant component masses, center of gravity coordinates and dimensions of the entire machine. These are supplied to the physical simulation model by preselecting the device setup state required for safe crane operation.
  • the influencing variables from the current workload and the current working radius are recorded via the force measuring straps 16, angle sensors 18 and pressure sensors and are also supplied to the physical simulation model.
  • the working load is the total load resulting from the hoisting ropes, bottom blocks, slings, hangers and the load to be manipulated.
  • Disturbance variables are those variables that can also have an effect on the crane system from outside, essentially beyond their control. These are in particular the heeling or inclined position of the machine and the wind load. The wind speed is recorded by means of an anemometer 19, the heeling by means of at least one electric inclination sensor 17 and is also supplied to the physical simulation model.
  • the physical simulation model calculates the maximum permissible boom angular accelerations in real time, taking into account all influences from a) - c), which in turn are converted into the maximum permissible slewing gear differential pressures and used to control the crane slewing gear 10 .
  • the hydraulic brake system is combined with the load and geometry-dependent slewing gear limitation to ensure the permissible braking acceleration even in the event of an abrupt loss of energy supply, e.g. if an emergency stop button is pressed or other events that lead to an abrupt loss of energy supply.
  • the basic device is loaded into 3D CAD software and measured in its standard state (superstructure 3, winches, standard equipment, etc.).
  • the mass moment of inertia in the z-axis of the entire superstructure including the winches is included as a constant in the GEO file "superstructure”.
  • the rear ballast 5 and the A-frame 7 are not included in the superstructure model and are calculated separately (e.g. partial ballasting).
  • J OW denotes the mass moment of inertia of the superstructure 3 (geo file specification)
  • J AB the mass moment of inertia of the guy stand or A-frame 7
  • J HB the mass moment of inertia of the rear ballast 5 (e.g. calculated from the mass of the rear ballast 5 multiplied by the radius of the center of gravity to the center of rotation)
  • J D is the mass moment of inertia of the derrick boom (if one is attached)
  • J DB is the mass moment of inertia of the derrick ballast (if one is used).
  • the permissible angular acceleration ⁇ per is calculated with the existing utilization of the maximum structural load as a special load case without wind and heeling, since these permissible forces can only occur in an emergency stop or outside of standard operation.
  • the permissible angular acceleration ⁇ perm is output as a curve (over several points) depending on the utilization of the maximum structural load.
  • J AL ⁇ m AL x ⁇ right AL x 2
  • J WL ⁇ m WL x ⁇ right WL x 2
  • J AL [kgm 2 ] is the mass moment of inertia of the boom system
  • m ( AL ) x [kg] the mass of an individual boom element
  • the pressure difference for controlling the slewing gear can be calculated. If a permanently specified maximum angular acceleration ⁇ max is defined for crane 1, the maximum permissible angular acceleration for crane 1 in the current configuration and alignment is the lower value of ⁇ perm and ⁇ max .
  • the value for ⁇ max is stored in the crane controller or in a memory or in a file loaded at the start of operation. For the sake of simplicity, it is only mentioned below that the relevant value is stored "in the crane controller".
  • M DW J in total ⁇ a allowed or.
  • M DW M engines ⁇ ⁇ p allowed + ⁇ p rub ⁇ f ⁇ i ⁇ Z R Z G .
  • ⁇ p allowed J in total ⁇ a allowed f ⁇ i ⁇ M engines ⁇ Z R Z G ⁇ ⁇ p rub , where ⁇ p friction [bar] is the pressure loss dependent on the crane type due to friction (e.g.
  • the friction loss ⁇ p friction at maximum speeds of the individual slewing gear stages is determined on the basis of tests on the test bench. These are type-dependent and therefore variable.
  • the loss pressure is necessary to maintain a constant speed and is measured at the slewing gear motor 12 by the crane 1 at a constant Rotational speed is rotated in the second stage.
  • the measured pressure loss corresponds to the friction losses in slewing gear stage 2. For practical reasons, a fixed value for ⁇ p friction can also be deducted here.
  • the previously determined maximum permissible differential pressure of the hydraulic system ⁇ p perm is limited to a specified ⁇ p max [bar], which is stored in the crane control. This ensures that crane 1 cannot reach a speed that cannot be slowed down within an integration time set on crane 1.
  • the maximum differential pressure corresponds to the maximum absolute pressure.
  • the maximum differential pressure corresponds to the difference between the maximum absolute pressure and the feed pressure.
  • the required minimum differential pressure ⁇ p min in the hydraulic system depends on the system and is stored in the crane control. If the calculated maximum permissible differential pressure ⁇ p perm is less than ⁇ p min , the calculated value must be set to ⁇ p min . However, it is preferably ensured in advance that there are no crane configurations for which ⁇ p perm is below ⁇ p min (eg 80 bar).
  • the permissible crane slewing speed can be determined in order to safely come to a standstill within the given integration time.
  • the minimum integration time t min is stored in the crane controller and can be a few seconds.
  • the achievable boom head speed depending on the permissible angular acceleration ⁇ perm is described with the following equation or the following algorithm:
  • v(K) [m/min] denotes the boom head speed without limit for a maximum permissible speed
  • t [s] the integration time from the slewing gear slide (set on the device)
  • t min [s] the minimum integration time that can be set on the device (t ⁇ t min )
  • r [m] the working radius of the working load and F Q as the permissible lateral force.
  • v ( K ) can additionally be limited to a specific maximum value, for example to 30 m/min.
  • the crane rotation speed can likewise be limited to a maximum value, for example to 0.2 rpm. This can be done using the following algorithm: where v max,head [m/min] denotes the maximum permitted head speed independent of the working radius and v max,pers [m/min] denotes the maximum permitted head speed independent of the working radius when transporting people.
  • n allowed v K 2 ⁇ ⁇ ⁇ right Max
  • n perm [rpm] the crane rotation speed depending on the maximum permissible angular acceleration ⁇ perm
  • r max the radius of the furthest head
  • the slewing gear limitation is not active in derrick mode.
  • the head speed is reduced to 30 m/min and the maximum rotational speed to 0.2 rpm.
  • the load and geometry-dependent slewing gear torque limitation can be provided, for example, for all operating modes without derrick and can be switched off via a correction value.
  • FIG 3 a circuit diagram of an exemplary embodiment of the hydraulic system of the crane 1 for driving the slewing gear 10 and for controlling the motor 12 is shown.
  • the slewing gear 10 is controlled by a hydraulic motor 12 which drives a shaft 13 in rotation.
  • a hydraulic motor 12 which drives a shaft 13 in rotation.
  • several such motors 12 can also be provided as the slewing gear drive.
  • the two pressure or control lines R and L for hydraulically driving the motor 12 are supplied with hydraulic oil from an energy source not shown here.
  • the control line R For a clockwise rotation of the slewing gear 10, the control line R and for a counterclockwise rotation, the control line L with a corresponding operating pressure.
  • a pressure sensor 30, 32 is connected to each control line R, L.
  • the hydraulic system has a brake circuit 100, a limiting circuit 200 and a limit pressure or differential pressure circuit 201 (the latter can also be regarded as part of the limiting circuit 200).
  • the brake circuit 100 can be housed in its own brake block.
  • the limiting circuit 200 can be accommodated in its own limiting block and/or the limit pressure circuit 201 in its own limit pressure block or differential pressure block.
  • tank line T The lines leading into a hydraulic tank are referred to below as tank line T. For the sake of simplicity, the tank itself is also provided with the reference symbol T.
  • Pilot operated secondary pressure relief valves 220, 222 are installed between the two control lines R, L of the drive 12 in such a way that they direct oil from the high pressure side to the low pressure side when responding.
  • the current operating pressure is taken from the higher-pressure side of the control lines R and L with the "high pressure" signal and fed to the differential pressure control.
  • Different pressures can prevail in the high-pressure line H, which is provided with the reference character H in FIG. 3, since throttles are arranged at different positions.
  • a signal or pressure level is generated via the throttle 218, which is limited via the check valves 214 and 216 to "low pressure", i.e. to the smaller of the pressure levels prevailing in the control lines R, L and is fed to the differential pressure control.
  • "high pressure” denotes the maximum and “low pressure” the minimum of the operating pressures "right” and “left” of the slewing gear 10.
  • the current operating pressure is measured via the throttles 228 and 229 and the differential pressure valve 206, which is designed as a pressure compensator in this exemplary embodiment ("high pressure") converted to a pilot pressure.
  • This pilot pressure acts via the throttles 230 and 232 as pilot control on the pressure-limiting valves 220 and 222.
  • the "high pressure” signal i.e. the pressure prevailing in the high pressure line H after the restrictor 228, acts on the high pressure side of the pressure compensator 206 to open it.
  • the "low pressure” signal i.e. the pressure prevailing in the low-pressure line N
  • the pressure compensator 206 opens when the "high pressure” signal exceeds the value formed from “low pressure” and "pressure difference signal".
  • the pilot pressure i.e. the pressure prevailing after the throttles 230 and 232
  • the pressure setting of the secondary pressure limitations 220, 222 is thus controlled or changed.
  • the differential pressure is controlled via an electrically controllable, proportional limit pressure adjustment valve 204, which is designed here as a pressure-reducing valve.
  • a control pressure which defines the maximum differential pressure between the control lines R, L is present at the limit pressure adjustment valve 204 .
  • the control pressure is converted by the limit pressure setting valve 204 into the limit pressure present at the pressure compensator 206 .
  • the limit pressure adjustment valve 204 has a falling characteristic curve, so that the maximum control pressure is present in the de-energized state, i.e. the maximum possible limit pressure prevails.
  • the limit pressure adjustment valve 204 is electrically controlled directly or indirectly by the control unit 20 .
  • the maximum permissible torque or the permissible angular acceleration ⁇ perm determined via the physical simulation model and the maximum permissible pressure difference ⁇ p perm derived therefrom are used in a corresponding control of the differential pressure present at the pressure compensator 206 or limit pressure implemented.
  • the adjustment of the limit pressure in the limit pressure line G by the valve 204 thus decides at what pressure difference in the control lines R and L the pressure relief valves 220, 222 open and oil flows from the high-pressure side to the low-pressure side.
  • i a pressure signal at the control pressure level of 0-30 bar corresponds to a pressure protection at the operating pressure level of 0-380 bar.
  • a second safety valve 208, a pressure-limiting valve 212 used to limit the maximum pressure of the limit pressure, and a second hydraulic accumulator 202 are inserted into the limit-pressure line G. If a maximum value for the pressure control is exceeded, the pressure relief valve 212 switches and relieves the pressure limit line G against the tank T.
  • a pressure measuring device 210 is provided to measure the current value of the pressure control, which measures the limit pressure prevailing in the pressure limit line G and can be designed as an analog pressure sensor .
  • the second safety valve 208 is a digital, ie binary, directional seated valve (only two switching positions). In the in the figure 3 shown embodiment, this is electrically controlled
  • Brake circuit 100 (or brake block) includes an electrically controlled, digital brake valve 104, an electrically controlled, digital safety valve 108 and a hydraulically controlled, digital changeover valve 106. Brake circuit 100 or brake block also includes a first hydraulic accumulator 102, which has a check valve 112 is acted upon or charged with control pressure from the control line ST.
  • the outlet of the brake valve 104 embodied as a 3/2-way valve in the present exemplary embodiment is connected to a pressure chamber of the holding brake 14 .
  • the holding brake 14 By applying pressure (opening pressure), the holding brake 14 is released against the force applied by a compression spring, so that the shaft 13 can rotate freely. If the hydraulic pressure in the pressure chamber falls below a certain value (minimum brake opening pressure), the holding brake 14 engages and exerts a braking torque on the shaft 13 or the motor 12 .
  • the position of switchover valve 106 defines whether the outlet line of brake valve 104 is connected to the tank or tank line T or to accumulator pressure from first hydraulic accumulator 102 . Pressurized (first position of the brake valve 104) there is a connection to the first hydraulic accumulator 102 (and thus control pressure), pressure relieved (second position of the brake valve in which figure 3 shown) there is a connection to tank T.
  • the first safety valve 108 is a digital, ie binary, directional seated valve (only two switching positions). In the in the figure 3 shown embodiment, it is electrically controlled and designed as a 3/2-way valve.
  • the position of the first safety valve 108 defines whether the hydraulic control of the changeover valve 106 is subjected to the current operating pressure ("high pressure") of the slewing gear 10 (according to the figure 3 switching position shown: the control port of the changeover valve 106 is connected to the high-pressure line H of the limiting circuit 200) or the control port is tank-relieved.
  • the first and second safety valves 108, 208 can be controlled via a common electrical signal. Alternatively, the previously mentioned hydraulic control can take place via a hydraulic signal "slewing gear on”.
  • the safety valves 108, 208 are preferably switched as soon as the "Slewing gear on” signal assumes a specific value, for example a value greater than 5 bar.
  • the system In the de-energized state (diesel engine of crane 1 off, all valves not actuated), the system is depressurized. Any thermal expansion of the enclosed oil volume that may occur is reduced by leakage from the valves involved.
  • the holding brake 14 of the slewing gear 10 is closed.
  • the pressure switch-on stages of the slewing gear motor 12 is at a low pressure stage. If the holding brake 14 is overcome by external forces, the hydraulic motor 12 pumps oil against the resistance of the secondary pressure limitation (valves 220, 222) in accordance with the direction of rotation of the drive. Due to the pressure relief of the pilot control of the pressure-limiting valves 220, 222, the operating pressures that occur here are not sufficient to change anything in the switching state of the system.
  • control pressure is applied to the system (ie a control pressure >zero prevails in the control pressure line ST).
  • the first hydraulic accumulator 102 on the brake block is charged with control pressure from the line ST via the check valve 112 .
  • the control pressure is at the brake valve 104 and at the limit pressure adjustment valve 204. Because of its inverse characteristic, the limit pressure adjustment valve 204 applies control pressure to the second safety valve 208 .
  • the "high pressure" signal between the throttles 228, 229, 230 and 232 rises to the level of the feed (open hydraulic system: usually ⁇ 5 bar; closed hydraulic system: usually around 30-40 bar).
  • the switching threshold of the switchover valve 106 In order to keep the holding brake 14 closed, the switching threshold of the switchover valve 106 must be above the pressure level of the feed so that it is not switched. In a preferred exemplary embodiment, this switching threshold has a value of 5 bar in order to be able to be switched on by the signal “slewing gear on”. For this reason, said exemplary embodiment can only be used for slewing gears 10 operated in an open circuit.
  • the limit pressure adjustment valve 204 When the entry lever is closed, the limit pressure adjustment valve 204 is adjusted to the value specified by the software or the control unit 20 for the maximum permissible drive and braking torque. Due to the design, the limit pressure adjustment valve 204 delivers a minimum value for the pressure difference signal that cannot be undershot when there is full current, i.e. for the limit pressure in line G. Due to the transmission ratio in the pressure compensator 206, there is a minimum pressure protection of the slewing gear operating pressure of, for example, approx. 80 bar.
  • the slewing gear 10 behaves as described in the basic function as long as the operating pressure is below the currently permissible maximum pressure according to the limit pressure adjustment valve 204 .
  • the slewing gear drive 12 should not actively reach the pressure level specified by the limit pressure setting valve 204 by suitably controlling the slewing gear dynamics. This prevents unnecessary heat energy from accumulating.
  • the first and second safety valves 108, 208 are automatically actuated when the crane operator activates the "rotate slewing gear" command.
  • the first safety valve 108 switches to the position in which the control port of the switching valve 106 is connected to the tank line T.
  • the second safety valve 208 switches into the position in which the limit pressure setting valve 204 is connected to the pressure compensator 206, so that a limit pressure generated from the control pressure in accordance with the electrical actuation of the limit pressure setting valve 204 prevails in the limit pressure line G.
  • the limit pressure is not specified by the second hydraulic accumulator 202, but via the control pressure and the limit pressure adjustment valve 204.
  • the second hydraulic accumulator 202 is charged to the current limit pressure and the secondary pressure limitations of the valves 220 and 222 are thus pilot-controlled.
  • the differential pressure valve 206 opens so that oil flows from the pilot chambers of the secondary pressure relief valves 220, 222 into the tank T.
  • the pilot control of the pressure relief valves 220, 222 drops slightly as a result.
  • the operating pressure "right” or “left” (depending on the actuation of the slewing gear 10) opens the associated valve 220, 222 and oil flows from the high to the low pressure side of the slewing gear drive 12.
  • a further increase in the differential pressure i.e. the pressure difference in the control lines R and L, is prevented.
  • the first hydraulic accumulator or brake accumulator 102 is gradually emptied via the throttle 110 and the opening pressure in the holding brake 14 is thus reduced. If the minimum brake opening pressure is not reached, holding brake 14 closes. If, before the first hydraulic accumulator 102 is emptied, the "high pressure" signal in line H falls below the actuating pressure of switchover valve 106, the latter drops and connects holding brake 14 to tank line T, which Holding brake 14 can come up.
  • the entry lever is opened during the movement of the slewing gear, the activation of the energy source and thus the delivery of oil into the control lines R, L are first retracted in an integrated manner.
  • the actuation of the safety valves 108, 208 is canceled by appropriate electrical control.
  • the brake valve 104 is de-energized so that it assumes the second position (cf. figure 3 ).
  • the last value of the differential pressure control or the limit pressure in the line G is initially retained due to the second hydraulic accumulator 202 and gradually decreases via leakage at the differential pressure valve 206 . As long as the operating pressure is above the switching threshold of the changeover valve 106, the holding brake 14 remains open. With the exception of a diesel engine stop, the processes described above with regard to the "emergency stop actuated" state take place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Jib Cranes (AREA)

Claims (15)

  1. Dispositif de commande d'un mécanisme rotatif (10) de grue, comprenant :
    - au moins un moteur hydraulique (12), au moyen duquel le mécanisme rotatif (10) peut être entraîné ou freiné,
    - au moins un frein de maintien (14), au moyen duquel le mécanisme rotatif (10) peut être maintenu à l'arrêt,
    - un circuit de freinage hydraulique (100), au moyen duquel le frein de maintien (14) peut être commandé de manière hydraulique,
    - un système de détection de charge (16), au moyen duquel une charge actuellement manipulée par la grue (1) peut être détectée,
    - un système de détection d'orientation (17, 18), au moyen duquel une orientation actuelle de la grue (1) et/ou au moins d'un composant de grue peut être détectée,
    - un circuit de limitation hydraulique (200), au moyen duquel une pression hydraulique appliquée au moteur (12) peut être limitée à une valeur limite, et
    - une unité de commande (20), qui est reliée au circuit de limitation (200) et configurée pour, en fonction au moins de la charge détectée, de la configuration de la grue et de l'orientation détectée, déterminer un couple maximal admissible et/ou une grandeur dérivée de celui-ci pour un mouvement rotatif actuel du mécanisme rotatif (10) et, sur la base de celui-ci/celle-ci, limiter automatiquement une accélération angulaire et/ou une vitesse angulaire du mécanisme rotatif (10) par une commande ou une régulation correspondante du circuit de limitation (200),
    dans lequel les circuits de limitation et de freinage (100, 200) sont reliés l'un à l'autre et configurés de manière à, lors d'une panne de l'unité de commande (20) ou d'un déclenchement d'un arrêt d'urgence, freiner automatiquement le mécanisme rotatif (10) en conservant la limitation du mécanisme rotatif.
  2. Dispositif selon la revendication 1, caractérisé en ce que l'unité de commande (20) est configurée pour prendre en compte, pour la détermination du couple maximal admissible et/ou de la grandeur dérivée de celui-ci, des données géométriques actuelles de la grue (1), les données géométriques concernant de préférence un état d'équipement, une dimension, une masse, la position d'un centre de gravité et/ou un moment d'inertie de la grue (1) et/ou au moins d'un composant de la grue.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'unité de commande (20) est configurée pour prendre en compte, pour la détermination du couple maximal admissible et/ou de la grandeur dérivée de celui-ci, des données environnementales actuelles, les données environnementales concernant de préférence une direction du vent et/ou une force du vent détectées par le biais d'au moins un système anémomètre (19).
  4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la charge actuellement manipulée par la grue (1) et l'orientation actuelle de la grue (1) peuvent être détectées et mises à disposition de l'unité de commande (20) en temps réel, l'unité de commande (20) étant configurée pour adapter en temps réel le couple maximal admissible et/ou la grandeur dérivée de celui-ci pour le mouvement rotatif actuel du mécanisme rotatif (10) ainsi que la commande ou la régulation correspondante du circuit de limitation (200).
  5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'orientation actuelle de la grue (1) concerne un angle actuel de la flèche, une inclinaison actuelle de la grue (1) et/ou un angle actuel du mécanisme de rotation.
  6. Dispositif selon l'une des revendications précédentes, caractérisé par un moyen de simulation de préférence prévu dans l'unité de commande (20), lequel est configuré pour, à l'aide d'un modèle de simulation physique de la grue (1) ou au moins d'un composant de grue, calculer le couple maximal admissible et/ou la grandeur dérivée de celui-ci pour le mouvement rotatif actuel du mécanisme rotatif (10) en prenant en compte au moins un état d'équipement actuel, une orientation actuelle et une charge levée actuelle de la grue (1).
  7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'unité de commande (20) est configurée pour calculer une pression différentielle hydraulique maximale admissible et pour, sur la base de celle-ci, limiter automatiquement une accélération angulaire et/ou une vitesse angulaire du mécanisme rotatif (10) par une commande ou une régulation correspondante du circuit de limitation (200), en particulier par une commande électrique d'une soupape de réglage de pression limite (204).
  8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le circuit de freinage (100) comprend un premier accumulateur hydraulique (102) et une soupape de freinage (104), le frein de maintien (14) pouvant être relié par le biais de la soupape de freinage (104), dans une première position, à une conduite de pression de commande (ST) et, dans une seconde position, à un réservoir (T) ou au premier accumulateur hydraulique (102) et la soupape de freinage (104) pouvant de préférence être commandée de manière électrique et en ce que le circuit de freinage (100) comprend de préférence une soupape d'inversion (106), par le biais de laquelle la soupape de freinage (104) peut être reliée au réservoir (T) ou au premier accumulateur hydraulique (102) dans la seconde position, la soupape d'inversion (106) pouvant de préférence être commandée de manière hydraulique par le biais d'un raccordement de commande.
  9. Dispositif selon la revendication 8, caractérisé en ce que le raccordement de commande de la soupape d'inversion (106) peut être relié, par le biais d'une première soupape de sécurité (108) du circuit de freinage (100), au réservoir (T) ou à une conduite à haute pression (H) du circuit de limitation (200), la première soupape de sécurité (108) pouvant de préférence être commutée de manière électrique conjointement avec une seconde soupape de sécurité (208) du circuit de limitation (200).
  10. Dispositif selon l'une des revendications 8 ou 9, caractérisé en ce que le circuit de freinage (100) est configuré pour, lors d'une panne de l'unité de commande (20) et/ou lors d'un déclenchement d'un arrêt d'urgence du mécanisme rotatif (10), automatiquement commuter la soupape de freinage (104) dans la seconde position et la relier au premier accumulateur hydraulique (102) ainsi que, de préférence, relier le premier accumulateur hydraulique (102) au réservoir (T) par le biais d'une unité d'étranglement (110).
  11. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le circuit de limitation (200) comprend deux conduites de commande (R, L) hydrauliques provoquant respectivement une rotation vers la gauche ou vers la droite du mécanisme rotatif (10) et un dispositif de limitation de pression hydraulique, qui est configuré pour relier l'une à l'autre de manière conductrice les conduites de commande (R, L) quand la différence de pression dans les conduites de commande (R, L) dépasse une pression limite dépendant du couple maximal admissible déterminé, en ce que le dispositif de limitation de pression comprend de préférence au moins une soupape de limitation de pression (220, 222) hydraulique, par le biais de laquelle les conduites de commande (R, L) peuvent être reliées l'une à l'autre et qui peut être commandée de manière hydraulique par le biais d'une conduite pilote, la pression pilote qui règne dans la conduite pilote pouvant être réglée en fonction du couple maximal admissible déterminé par le biais d'un circuit de pression limite hydraulique (201), en ce que le circuit de pression limite (201) comprend, de manière particulièrement préférée, une soupape de pression différentielle (206) qui est configurée pour, lors d'un dépassement de la pression limite par la différence de pression dans les conduites de commande (R, L), relier la conduite pilote à un réservoir (T), la soupape de pression différentielle (206) pouvant de préférence être commandée de manière hydraulique par le biais d'une conduite de pression limite (G) et en ce que le circuit de pression limite (201) comprend idéalement un second accumulateur hydraulique (202) relié à la conduite de pression limite (G), lequel pouvant être relié à une conduite de pression de commande (ST) par le biais d'une seconde soupape de sécurité (208) du circuit de pression limite (201), la seconde soupape de sécurité (208) pouvant de préférence être commutée de manière électrique conjointement avec une première soupape de sécurité (108) du circuit de freinage (100).
  12. Dispositif selon la revendication 11, caractérisé en ce que le circuit de pression limite (201) comprend une soupape de réglage de pression limite (204) qui peut être commandée par l'unité de commande (20), au moyen de laquelle la conduite de pression limite (G) peut être reliée à une conduite de pression de commande (ST) et la pression limite peut être réglée en fonction du couple maximal admissible déterminé, en ce que le circuit de limitation (200) est de préférence configuré pour, lors d'une panne de l'unité de commande (20) et/ou lors d'un déclenchement d'un arrêt d'urgence du mécanisme rotatif (10), séparer automatiquement le second accumulateur hydraulique (202) de la conduite de commande (ST), de telle sorte que la pression du second accumulateur hydraulique (202) règne dans la conduite de pression limite (G) et en ce que, de manière particulièrement préférée, une fonction d'arrêt d'urgence est prévue, qui peut être déclenchée par le grutier et/ou automatiquement par l'unité de commande (20) en présence d'un état de déclenchement d'arrêt d'urgence, dans lequel, par suite du déclenchement de l'arrêt d'urgence, l'alimentation électrique peut être automatiquement désactivée et/ou le mécanisme rotatif (10) peut être automatiquement freiné au moyen du frein de maintien (14) en conservant la limitation de mécanisme rotatif.
  13. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la conduite à haute pression (H) est reliée aux conduites de commande (R, L) par le biais d'un agencement de soupapes de telle manière que dans la conduite à haute pression (H) règne toujours la pression la plus élevée des conduites de commande (R, L), l'agencement de soupapes comprenant de préférence deux soupapes, en particulier des clapets antiretour (224, 226), par le biais desquels respectivement une des conduites de commande (R, L) est reliée à la conduite à haute pression (H).
  14. Grue (1), en particulier grue à chenilles, comportant un mécanisme rotatif (10) et un dispositif de commande du mécanisme rotatif (10) selon l'une des revendications précédentes.
  15. Procédé de commande d'un mécanisme rotatif (10) de grue au moyen d'un dispositif selon l'une des revendications 1 à 13 comprenant les étapes consistant à :
    - détecter une charge actuellement manipulée par la grue (1),
    - détecter une orientation actuelle de la grue (1) et/ou d'un composant de grue,
    - déterminer un couple maximal admissible et/ou une grandeur dérivée de celui-ci pour un mouvement rotatif actuel du mécanisme rotatif (10) en fonction au moins de la charge détectée et de l'orientation détectée,
    - commander ou réguler le moteur (12) de telle manière que l'accélération angulaire et/ou la vitesse angulaire du mécanisme rotatif (10) est/sont limitées par une valeur dépendante du couple maximal admissible, et
    - lors d'une panne de l'unité de commande (12) ou du déclenchement d'un arrêt d'urgence, freiner automatiquement le mécanisme rotatif (10), de telle sorte que l'accélération angulaire et/ou la vitesse angulaire maximales admissibles du mécanisme rotatif (10) n'est/ne sont pas dépassées.
EP22155581.6A 2021-02-15 2022-02-08 Dispositif et procédé de commande d'un mécanisme rotatif de grue, ainsi que grue Active EP4053065B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021103488.4A DE102021103488A1 (de) 2021-02-15 2021-02-15 Vorrichtung und Verfahren zur Steuerung eines Krandrehwerks sowie Kran

Publications (2)

Publication Number Publication Date
EP4053065A1 EP4053065A1 (fr) 2022-09-07
EP4053065B1 true EP4053065B1 (fr) 2023-06-28

Family

ID=80445578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22155581.6A Active EP4053065B1 (fr) 2021-02-15 2022-02-08 Dispositif et procédé de commande d'un mécanisme rotatif de grue, ainsi que grue

Country Status (3)

Country Link
US (1) US11866304B2 (fr)
EP (1) EP4053065B1 (fr)
DE (1) DE102021103488A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022212754A1 (de) 2022-11-29 2024-05-29 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Ansteuerung einer hydraulischen Haltebremse eines Drehwerks und Belüftungssystem für eine hydraulische Haltebremse eines Drehwerks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69111181T2 (de) 1990-10-18 1995-11-30 Kobe Steel Ltd Verfahren und Vorrichtung zum Steuern des Anhaltens der Drehbewegung eines drehenden Oberteils einer Baumaschine.
DE69025471T2 (de) 1990-03-23 1996-08-22 Kobe Steel Ltd Verfahren und vorrichtung zur steuerung des abbremsens der drehbewegung des oberen drehteils von baumaschinen und rechengerät zur ermittlung des neigungswinkels
DE102011122225A1 (de) 2011-12-15 2013-06-20 Terex Cranes Germany Gmbh Vorrichtung zum Abbremsen von Dreh- und /oder Schwenkwerken, Verfahren zum Steuern einer solchen Vorrichtung sowie Arbeitsmaschine mit einer solchen Abbremsvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600009B2 (ja) * 1990-04-25 1997-04-16 株式会社神戸製鋼所 クレーンの旋回制御装置
DE102008056022B3 (de) 2008-11-05 2010-03-11 Terex-Demag Gmbh Bremsvorrichtung
KR101676779B1 (ko) * 2009-02-03 2016-11-17 볼보 컨스트럭션 이큅먼트 에이비 스윙 시스템 및 스윙 시스템을 포함하는 건설 기계 혹은 차량
JP4839390B2 (ja) * 2009-04-17 2011-12-21 株式会社神戸製鋼所 旋回式作業機械の旋回停止制御装置および方法
DE102011015286A1 (de) 2011-03-28 2012-10-04 Liebherr-Werk Nenzing Gmbh Hydraulische Bremsvorrichtung für einen Kranantreib sowie Kran
DE102011105819A1 (de) * 2011-05-27 2012-11-29 Liebherr-Werk Nenzing Gmbh Kran mit Überlastsicherung
JP6125272B2 (ja) * 2013-02-26 2017-05-10 住友建機株式会社 電動旋回式作業機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69025471T2 (de) 1990-03-23 1996-08-22 Kobe Steel Ltd Verfahren und vorrichtung zur steuerung des abbremsens der drehbewegung des oberen drehteils von baumaschinen und rechengerät zur ermittlung des neigungswinkels
DE69111181T2 (de) 1990-10-18 1995-11-30 Kobe Steel Ltd Verfahren und Vorrichtung zum Steuern des Anhaltens der Drehbewegung eines drehenden Oberteils einer Baumaschine.
DE102011122225A1 (de) 2011-12-15 2013-06-20 Terex Cranes Germany Gmbh Vorrichtung zum Abbremsen von Dreh- und /oder Schwenkwerken, Verfahren zum Steuern einer solchen Vorrichtung sowie Arbeitsmaschine mit einer solchen Abbremsvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Das grosse Buch der Fahrzeugkrane", 1 January 2001, KM VERLAGS GMBH, ISBN: 978-3-934518-00-1, article BECKER RUDOLF: "3.11. Berechnungsgrundsätze/Qualitätssicherung", pages: 60 - 61, XP093180270

Also Published As

Publication number Publication date
EP4053065A1 (fr) 2022-09-07
US20220340396A1 (en) 2022-10-27
US11866304B2 (en) 2024-01-09
DE102021103488A1 (de) 2022-08-18

Similar Documents

Publication Publication Date Title
DE102011107754B4 (de) Winkelbezogenes Verfahren zur Überwachung der Kransicherheit während des Rüstvorgangs, sowie Kran und Kransteuerung
EP2674384B1 (fr) Procédé de surveillance de la sécurité d'une grue et grue
EP2289834B1 (fr) Grue
DE60103451T2 (de) Verfahren und Vorrichtung für das Simulieren von Lasten an Hebezeugen
EP1772333A1 (fr) Engin de travail mobile a stabilisateurs
DE19933917A1 (de) Arbeitsmaschine in Schwenkart und Verfahren zum Einstellen eines Sicherheitsarbeitsbereiches und einer Nennlast bei dieser
EP2524892A1 (fr) Commande de grue
WO2016128119A1 (fr) Grue et procédé pour surveiller la sécurité de surcharge d'une telle grue
EP3256415A1 (fr) Grue et procédé pour surveiller la sécurité de surcharge d'une telle grue
EP1762535A2 (fr) Engin roulant du type muni d'un bras et procédé pour celui-ci
EP4053065B1 (fr) Dispositif et procédé de commande d'un mécanisme rotatif de grue, ainsi que grue
DE102014206123B4 (de) Hydrostatischer Fahrantrieb in geschlossenem hydraulischen Kreis und Verfahren zur Steuerung des hydrostatischen Fahrantriebs
EP3856673B1 (fr) Grue et procédé pour surveiller le fonctionnement d'une telle grue
EP2746212B1 (fr) Procédé d'ajustement du régime d'un entraînement de grue et entraînement de grue
DE102012011726C5 (de) Verfahren zum Betreiben eines Krans mit Überwachungseinheit sowie Kran
DE4231441B4 (de) Verfahren zur Sicherung eines Krans oder Hubrettungsfahrzeugs vor einem Kippen sowie Kippsicherung zur Durchführung des Verfahrens
EP2733110B1 (fr) Machine mobile avec un dispositif de chargement, la machine peut fonctionner dans deux modes de commande d'urgence
DE102020003044A1 (de) Baumaschine und verfahren zur erhöhung der standsicherheit einer baumaschine
EP2733268A2 (fr) Machine dotée d'une installation de chargement
DE202013101202U1 (de) Standsicherheitskontrolleinrichtung sowie Nutzfahrzeug
EP3428112A1 (fr) Palan, en particulier une grue mobile ou une pelleteuse à câbles, doté d'un dispositif de surveillance du processus de dressage et d'enlèvement d'un système de rampe et procédé correspondant
EP1440211B1 (fr) Engin de travail et procede pour faire fonctionner un engin de travail
WO2014173609A1 (fr) Surveillance au moyen de capteurs de la direction du vent et du rayonnement thermique incident pour un engin de travail mobile
WO2022090041A1 (fr) Procédé et dispositif de commande de mise en fonctionnement d'un engin de chantier à auto-entraînement
EP2733036A2 (fr) Machine mobile comprenant une installation de chargement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221027

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1582561

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502022000045

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502022000045

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 3

26 Opposition filed

Opponent name: MANITOWOC CRANE GROUP GERMANY GMBH

Effective date: 20240328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240227

Year of fee payment: 3

Ref country code: BE

Payment date: 20240222

Year of fee payment: 3