EP4041955B1 - Verfahren und vorrichtung zum betrieb einer werkzeugmaschine - Google Patents

Verfahren und vorrichtung zum betrieb einer werkzeugmaschine Download PDF

Info

Publication number
EP4041955B1
EP4041955B1 EP20790144.8A EP20790144A EP4041955B1 EP 4041955 B1 EP4041955 B1 EP 4041955B1 EP 20790144 A EP20790144 A EP 20790144A EP 4041955 B1 EP4041955 B1 EP 4041955B1
Authority
EP
European Patent Office
Prior art keywords
gas
valve assembly
cylinder
chamber
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20790144.8A
Other languages
English (en)
French (fr)
Other versions
EP4041955A1 (de
Inventor
Igor Strashny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Global Mining LLC
Original Assignee
Caterpillar Global Mining LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Global Mining LLC filed Critical Caterpillar Global Mining LLC
Publication of EP4041955A1 publication Critical patent/EP4041955A1/de
Application granted granted Critical
Publication of EP4041955B1 publication Critical patent/EP4041955B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31529Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31535Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/885Control specific to the type of fluid, e.g. specific to magnetorheological fluid
    • F15B2211/8855Compressible fluids, e.g. specific to pneumatics

Definitions

  • This disclosure is directed towards an apparatus for mounting to a work tool.
  • the disclosure is further directed towards method of operating a machine comprising a work tool and an apparatus mounted to the work tool.
  • Machines including backhoe loaders, excavators, loaders and the like, commonly comprise a hydraulic control system for controlling one or more work tools, such as buckets, booms, backhoes, arms, grapples and the like.
  • the hydraulic control system may comprise one or more actuators connected to each work tool and configured to move the work tool to perform work.
  • a gas spring may be used in such machines in conjunction with the actuator to recover energy during movement of the work tool.
  • EP-A-3033531 describes a system for the automatic adaptation of a pre-definable gas input quantity in a working system.
  • the system components can be moved relative to one another, and pressure of the gas input quantity can be changed during operation.
  • An accumulated system is connected via a control device to the working system.
  • US-B-6266959 describes a device for saving energy, whilst using hydraulically operated active working assemblies having a piston accumulator.
  • the present disclosure therefore provides a method of operating a machine comprising a work tool and an apparatus mounted to the work tool, the apparatus comprising:
  • the present disclosure also provides an apparatus for mounting to a work tool, the apparatus comprising:
  • the present disclosure also provides a machine comprising an apparatus according to the present disclosure, wherein the machine is optionally a vehicle.
  • the present disclosure is generally directed towards an apparatus for storing and recovering energy for operating a work tool of a machine and methods of operating gas spring arrangements.
  • the apparatus comprises a gas spring arrangement that biases a piston to extend from a cylinder to provide a biasing force that can be used during operation of the work tool.
  • the gas spring arrangement may recover energy using the gravitational down force of the weight of the work tool and release the energy during operation of the work tool to assist an actuator in moving the work tool.
  • Figure 1 illustrates a machine 10 of the present disclosure, which may comprise a main body 11 and a work tool 12 attached to the main body 11.
  • the work tool 12 may comprise an arm arrangement 13 mounted to the main body 11 and an implement 14 attached to the arm arrangement 13 as illustrated.
  • the work tool 12, particularly the arm arrangement 13, may be controlled by at least one actuator 15 to move the implement 14 and perform work.
  • the machine 10 comprises an excavator, although the machine 10 may be any other type comprising at least one actuator 15, such as a truck (e.g. a dump truck), backhoe loader, another type of loader such as a wheel loader or track loader, dozer, shovel, material handler or telehandler.
  • the machine 10 may further comprise an apparatus 120 of the present disclosure for storing energy for operating the work tool 12.
  • the machine 10 may comprise a plurality of apparatuses 120.
  • the apparatus 120 is illustrated in further detail in Figures 2 to 5 . Note, the key showing valve assembly configurations provided in Figure 2 applies to all of the figures and valve assemblies of the present disclosure.
  • the apparatus 120 may comprise a gas spring arrangement 150 comprising first and second gas chambers 151, 152 formed by a piston 122 having a piston head 136 moveably mounted inside a cylinder 121.
  • the piston 122 may be at least partially sealed and slidably mounted within the cylinder 121 and they are moveable relative to one another between an extended configuration and a retracted configuration.
  • the cylinder 121 and piston 122 may have a generally round cross-section.
  • the cylinder 121 may comprise a cylinder wall 124 extending between first and second cylinder ends 125, 126.
  • the first and second cylinder ends 125, 126 may be formed by first and second cylinder end caps 128, 129, which may seal the cylinder wall 124.
  • the first cylinder end cap 128 may comprise a first mount 130 for mounting the cylinder 121 to the work tool 12 and/or main body 11.
  • the piston 122 may comprise a piston rod 135 attached to a piston head 136 mounted and sealed in the cylinder 121.
  • the piston head 136 may comprise first and second head surfaces 137, 138 and the second head surface 138 may have a lower surface area than that of the first head surface 137.
  • the first head surface 137 may oppose and be located towards the first cylinder end 125 and the second head surface 138 may oppose and be located towards the second cylinder end 126.
  • a piston head seal 139 may be mounted to and extend around the piston head 136, particularly its side, for forming a seal between the piston head 136 and cylinder 121.
  • the second cylinder end 126 and second cylinder end cap129 may comprise a rod passageway 140 in which the piston rod 135 is mounted and through which the piston rod 135 may slidably move.
  • a piston rod seal 141 may extend around and be mounted to the rod passageway140 for forming a seal between the piston rod 135 and cylinder 121.
  • Lubricating oil 147 may be located inside the cylinder 121 adjacent to the piston rod seal 141 for providing lubrication and sealing.
  • the piston rod 135 may comprise an outer piston end 142 at the opposite end of the piston rod 135 to the piston head 136.
  • the gas spring arrangement 150 is configured to store and release energy to assist in the operation of the work tool 12.
  • the first gas chamber 151 may extend between the first head surface 137, the first cylinder end 125 and the cylinder wall 124.
  • the second gas chamber 152 may extend from the second head surface 138 towards the second cylinder end 126 and may, as illustrated, extend between the piston rod 135 and the cylinder wall 124.
  • the first and second gas chambers 151, 152 may have variable volume based upon the movement of the piston 122 relative to the cylinder 121 and particularly based upon the position of the piston head 136 within the cylinder 121.
  • the first gas chamber 151 is configured to reduce in volume
  • the second gas chamber 152 is configured to increase in volume, when the piston head 136 moves towards the first cylinder end 125 and vice-versa.
  • the machine 10 may comprise at least one actuator 15 mounted to the work tool 12 for operating the work tool 12 and at least one apparatus 120 mounted to the work tool 12 to store and release energy.
  • An actuator fluid system 170 for operating the work tool 12 by actuation of the actuator 15 may be operable to apply force to the piston head (directly or via the work tool) 136 to extend and retract the piston 122 from the cylinder 121.
  • the apparatus 120 may therefore be a separate component from the actuators 15 and may therefore provide a separate means of storing energy.
  • the gas spring arrangement 150 may further comprise a gas connection arrangement 153 for fluidly connecting the first gas chamber 151 to the second gas chamber 152.
  • the gas connection arrangement 153 is configured to enable gas to be transmitted between the first and second gas chambers 151, 152 when the piston 122 moves relative to the cylinder 121 during use of the work tool.
  • the gas spring arrangement 150 may be charged by supplying gas to the first and second gas chambers 151,152 up to an initial usage pressure through the gas connection arrangement 153.
  • the gas spring arrangement 150 may further comprise a pressurised gas, such a nitrogen gas, located within the first and second gas chambers 151, 152 and gas connection arrangement 153.
  • a pressurised gas such as a nitrogen gas
  • the gas connection arrangement 153 may comprise at least one gas spring conduit 190.
  • the at least one gas spring conduit 190 may extend from the first gas chamber 151 out of the cylinder 121 and to the second gas chamber 152.
  • the at least one gas spring conduit 190 may extend through the cylinder wall 124 or may extend through the first and/or second cylinder ends 125, 126 as illustrated.
  • the at least one gas spring conduit 190 may comprise at least one pipe, hose or the like.
  • the gas connection arrangement 153 may comprise at least one gas spring valve 191 for controlling the flow of gas through the at least one gas spring conduit 190.
  • the at least one gas spring valve 191 may be actuated to move it into various configurations as described below.
  • the present disclosure further provides a gas supply apparatus 193 fluidly connected to at least one gas chamber 151, 152.
  • the apparatus 120 of the present disclosure comprises the gas supply apparatus 193, which may be fluidly connected to the at least one gas spring conduit 190 of the gas connection arrangement 153 and may be connected between the gas spring valve 191 and the first gas chamber 151.
  • the gas supply apparatus 193 may be applied to any gas spring arrangement 150 for a machine 10 having at least one gas chamber 151, 152.
  • the gas supply apparatus 193 may comprise at least one gas supply conduit 194 to which at least one gas storage tank 195 is fluidly connected, such as by at least one gas storage adapter 197.
  • the at least one gas storage adapter 197 may comprise valves or the like, a relief valve (such as a burst disc arrangement) and an adapter connector, such as screw threads, to which the at least one gas storage tank 195 may be releasably attached.
  • the at least one gas storage tank 195 may have a fixed volume.
  • the at least one gas storage tank 195 may be a gas cylinder and/or pressure vessel configured to store gas at a relatively high pressure (i.e. at least at the pre-charge and retracted pressures) and may comprise a tank adapter, such as screw threads, for releasably attaching to an adapter connector.
  • the at least one gas storage tank 195 may be mounted outside of and/or separated from the cylinder 121, such as by being mounted to outside of the cylinder 121, machine 10 and/or work tool 12.
  • the at least one gas storage tank 195 is a gas bottle or bottled gas, which are commercially and commonly available.
  • the at least one gas storage tank 195 may comprise a transportable gas storage tank that complies with a regional standard, such as ISO 24431:2016(en).
  • the gas supply apparatus 193 may be fluidly connected to the cylinder 121 for charging and discharging the gas spring arrangement 150.
  • the at least one gas storage tank 195 may be removable such that it can be disconnected from the machine 10 when charging or discharging of the gas spring arrangement 150 is not taking place.
  • the gas supply conduit 194 may be fluidly coupled to the at least one gas spring conduit 190 at a junction103.
  • the gas supply apparatus 193 may therefore be fluidly connected to the first and second gas chamber 151, 152 by the at least one gas spring conduit 190.
  • a gas supply valve 101 for selectively controlling the flow of gas from the at least one gas storage tank 195 may be provided on the gas supply conduit 194.
  • a main valve for may be provided for isolating the gas spring arrangement 150 from the gas supply conduit 194.
  • the main valve 102 may be provided on the gas supply conduit 194 between the gas supply valve 101 and the gas spring conduit 190.
  • the gas spring valve 191, the gas supply valve 101 and the main valve 102 may be actuated into particular configurations such that the cylinder 121 may act as a pump to draw gas from the at least one gas storage tank 195 to charge the gas spring arrangement 150 to an initial operating pressure.
  • the gas spring valve 191 may be moveable between:
  • the gas supply valve 101 may be moveable between:
  • the main valve 102 may be moveable between:
  • the main valve 102 may be configured to allow flow in any direction therethrough.
  • valves may be moveable to an “off” configuration in which no flow through the valve is permitted.
  • all of the valves except the gas spring valve 191 may be moveable to an "off" configuration.
  • the present disclosure therefore also provides a method of charging and discharging the gas spring arrangement 150, such as during maintenance, installation or uninstallation, using the at least one gas storage tanks 195 of the storage and/or gas supply apparatus 193.
  • the method of charging the gas spring arrangement 150 comprises moving the piston head 136 in the cylinder 121 to increase the volume of the first gas chamber 151 to decrease the pressure of gas in the at least one gas storage tank 195, while preventing return of gas from the cylinder 121 to the at least one gas storage tank195 during the charging step. Preventing return of gas from the cylinder 121 to the at least one gas storage tank 195 during the charging step may comprise actuating the gas supply valve 101 into a charging configuration in which any flow through the gas supply valve 101 is in a direction from the at least one gas storage tank 195 towards the cylinder 121.
  • the method may comprise actuating the gas spring valve 191 into a configuration in which any flow through the gas spring valve 191 is in a direction towards the second gas chamber 152 during the charging step.
  • Valve configurations for charging the cylinder 121 may be as shown in Figure 3 , with gas flow illustrated by directional arrows in the conduits.
  • a method of charging a gas spring arrangement 150 to an initial operating pressure may comprise the following steps:
  • the cylinder 121 may be charged to a test pressure which is different to the operating pressure, for example for testing purposes.
  • the gas spring arrangement 150 may be arranged in a use configuration, in which the gas supply conduit 194 is blocked (for example, by the gas supply valve 101).
  • Valve configurations for the use configuration may be as shown in Figure 4 , with gas flow illustrated by directional arrows in the conduits.
  • the gas spring valve 191 may be in a configuration in which flow of gas through the gas spring conduit 190 is allowed both from the first gas chamber 151 to the second gas chamber 152 and from the second gas chamber 152 to the first gas chamber 151 (as indicated by the arrows in Figure 4 ). Any flow of gas in the gas spring arrangement 150 in the use configuration may therefore be between the first and second gas chambers 151,152 on movement of the piston 122, and no gas enters or leaves from the gas spring arrangement 150 (except by normal operational losses).
  • the gas storage tanks 195 may be configured to be removable during normal use of the gas spring arrangement 150 (i.e. when the work tool 12 is in use, rather than during charging and discharging of the gas spring arrangement 150).
  • An example method of using the gas spring arrangement 150 may comprise the following steps:
  • the present disclosure may further comprise a method of discharging the gas spring arrangement 150.
  • This method may comprise actuating the gas supply valve 101 into a configuration in which any flow through the gas supply valve 101 is in a direction from the cylinder towards the least one gas storage tank 195, and actuating the gas spring valve 191 into a configuration in which any flow through the gas spring valve 191 is in a direction away from the second gas chamber 152.
  • Valve configurations for discharging the cylinder 121 may be as shown in Figure 5 , with gas flow illustrated by directional arrows in the conduits.
  • the discharging method may comprise the following steps:
  • the piston may be moved by the actuator fluid system 170 during discharge.
  • the system pressure after discharge may be between 100kPa and 1000kPa (atmospheric pressure being 100kPa).
  • the apparatus may be placed in a locked configuration, as shown in Figure 2 , in which the gas supply valve 101 and main valve 102 (if present) are in configurations preventing flow therethrough, and the gas spring valve 191 is configured to allow flow therethrough both from first gas chamber 151 towards the second gas chamber 152 and from the second gas chamber 152 towards the first gas chamber 151.
  • the valves may be moved to the required configurations in the following order: gas spring valve, main valve, supply valve.
  • the apparatus may be kept in the locked configuration whenever it is not being operated.
  • the gas in the gas spring arrangement 150 may also be ventilated to the environment to remove any remaining pressurised gas such that the gas in the gas spring arrangement 150 reaches the ambient pressure.
  • the apparatus 120 may comprise additional venting and/or relief valves (for example a ball valve) to assist with such removal. Relief valves may be actuated automatically to prevent over-pressurisation of the system.
  • FIGS 6 to 9 illustrate an apparatus according to a further aspect of the present disclosure.
  • the apparatus is as in the previous aspect, but comprises one or more top-off tanks 200 for adding additional gas into the system during use or maintenance, for example to compensate for leakage.
  • the top-off tank(s) 200 may be removable.
  • the top-off tanks 200 may be connected to the rest of the apparatus only during maintenance.
  • the one or more top-off tanks 200 may be fluidly connected to the gas supply conduit 194 at a junction 202 arranged between the main valve 102 and the gas supply valve 101.
  • a top-off valve 201 arranged between the one or more top-off tanks 200 and the gas supply conduit 194 may be actuated into a configuration in which flow is prevented therethrough.
  • the top-off valve 201 When the apparatus is in the use configuration (as in Figure 8 ), the top-off valve 201 may be actuated into a configuration in which any flow through the top-of valve 201 is in a direction from the one or more top-off tanks 200 into the gas supply conduit 194. As an alternative to closing the top-off valve 201 in the use configuration, in the use configuration the top-off valve 201 may be actuated into a configuration in which any flow through the top-of valve 201 is in a direction from the one or more top-off tanks 200 into the gas supply conduit 194.
  • the top-off valve 201 may be provided with a pressure regulator 203 to enable gas to flow from the at least one top off tank 200 into the gas supply conduit 194 when the pressure in the cylinder 121 when extended reduces below the required pressure. As a result, the pressure of the gas spring arrangement 150 may be maintained at the required pressure in use.
  • the top-off tank 200 and the top-off valve 201 may be configured to provide automatic top off only when the cylinder 121 is fully extended.
  • FIG 10 shows an exemplar schematic arrangement of an apparatus according to the present disclosure.
  • the apparatus comprises a single top-off tank 200 and four gas storage tanks 195.
  • Top-off valve 201 may be provided in the form of a valve assembly comprising an on-off valve and a check valve arranged in series.
  • the valves 101, 102 and 191 and 201 may be controlled according to the configurations described in Figures 6 to 9 and above.
  • a control system may be provided for automatic for control of the valves and valve assemblies
  • a ball valve 207 (or other suitable valve) may be provided for venting the system or for use in testing.
  • Figure 11 illustrates an apparatus according to a further aspect of the present disclosure.
  • the apparatus is as in the previous aspect, but comprises both one or more top off tanks and one or more expansion tanks 204.
  • the one or more expansion tanks 204 may be configured to withstand repeated pressurisation and depressurisation cycles.
  • the one or more expansion tanks 204 may be fluidly connected to the gas spring arrangement 150 to provide additional volume during use of the gas spring arrangement 150 in order to vary the compression ratio which may be achieved in the gas spring arrangement 150, preferably to lower the compression ratio. This may assist in reducing adiabatic losses.
  • the one or more expansion tanks 204 may be fluidly connected to the gas spring arrangement 150 using an expansion tank valve 205, which may be connected to the gas supply conduit 194.
  • the gas may be discharged to the either the one or more gas storage tanks 195 or to the one or more expansion tanks 204.
  • the cylinder 121 may be charged with gas from either the one or more gas storage tanks 195 or from the one or more expansion tanks 204.
  • Charging from the one or more gas storage tanks 195 may be as described for other aspects of the present disclosure. Charging from the one or more expansion tanks 204 may be achieved by equalisation of pressure, without movement of the piston head 136.
  • the valve configurations for the various modes of operation may be illustrated in Figure 12 .
  • gas supply valve 101 main valve 102 and gas spring valve 191 and their configurations may be as described for the aspects of the disclosure above.
  • top-off tank 200 and associated valves may optionally be omitted, such that the apparatus comprises one or more expansion tanks 204 in the absence of any top-off tanks 200.
  • the apparatus and methods are described with reference to a gas spring arrangement which is separate to the work tool 12 and actuator 15.
  • the gas spring arrangement may alternatively be combined with the actuator 15, for example as shown in Figure 13 .
  • Figure 13 illustrates an apparatus 220 according to the present disclosure in which the gas spring arrangement 250 is a part of a combined actuator and gas spring arrangement 215.
  • the apparatus 220 may comprise a gas spring arrangement 250 that biases a piston to extend from a cylinder to provide a biasing force that can be used during operation of the work tool.
  • the gas spring arrangement 250 may recover energy using the gravitational down force of the weight of the work tool 12 and release the energy during operation of the work tool 12 to assist an actuator 15 in moving the work tool 12.
  • the apparatus 220 may also comprise an actuator fluid system such that the apparatus 220 is an integrated gas spring 250 and actuator 215.
  • the gas spring arrangement 250 including the gas spring piston 236 and gas spring piston rod 235 may be formed in the cylinder 221 whilst the actuator fluid system including the hydraulic cylinder piston 271 and hydraulic cylinder rod 272 may be arranged in the piston.
  • the hydraulic fluid for the actuator is shown as 273.
  • the gas spring arrangement 250 may generally be formed around the actuator fluid system.
  • the apparatus may be as described for the other aspects described herein.
  • the valve configurations for the various modes of operation may be as illustrated in Figure 12 .
  • a machine 10 comprising an apparatus 220 as illustrated in Figure 13 is shown in Figure 14 .
  • Any apparatus comprises a number of valves as described above, for example the gas supply valve and the gas spring valve.
  • Each of these valves may be moveable between a number of different configurations (i.e. components of the valve may be moved between different set positions), each configuration allowing or permitting flow through the valve in a specified direction.
  • a valve when a valve is described as being in a configuration in which flow through the valve is in a particular direction, this means that the valve in that configuration only permits flow through the valve only in the specified direction, flow in the any other direction being prevented by the valve.
  • the valve may remain in that configuration throughout that method step.
  • FIG 15 illustrates a further an exemplar schematic arrangement of an apparatus according to the present disclosure, in which top-off valve 201 is in the form of a valve assembly comprising a check valve and an on-off valve and gas spring valve 191 is also in the form of a valve assembly.
  • the apparatus further comprises a control system 206.
  • Other features and the valve configurations for the various modes of operation may be as illustrates in Figures 6 to 9 .
  • the actuation of the gas supply valve and/or the gas spring valve into the required configurations may controlled by a control system.
  • the control system may be configured to use energy from gas contained in the apparatus to actuate the valve or valves, for example as shown in Figure 16 .
  • One or more of the valves of the present disclosure may be ball valves, which must be rotated to change the configuration of the valve.
  • the torque required to rotate the ball in a ball valve may depend on pressure that the ball is subjected to by the flow of gas, which may result in high actuation forces
  • Actuation of the ball valve may be achieved using a rack and pinion actuated by a hydraulic cylinder (i.e. using and external energy source).
  • a control system for one or more valves may comprise a resolver valve or at least two check valves configured to act as a resolver, using the higher of two pressures from the system to actuate the valve.
  • Figure 16 illustrates an example control system 206 for actuation of the valves. The system is otherwise as shown in Figure 11 , and the valve configurations for the various modes or configurations of the system are as shown in Figure 12 .
  • a control system of this type may be used in any apparatus of the present disclosure, for example in the system shown in Figure 15 .
  • the charging step may comprise flow of gas resulting from equalisation of pressure when the or each gas storage tank is connected to the gas spring arrangement and the valves are configured to allow flow therethrough, further flow of gas may then occur due to movement of the piston in the cylinder, for example as a result of movement of the work tool.
  • the discharging step may comprise a flow of gas resulting from movement of the piston in the cylinder.
  • the piston may move in a reciprocating movement.
  • This movement may comprise one or more complete cycles of movement (one cycle being complete once the piston head has reached each extent of the its range of motion and returned to its starting position).
  • the movement may comprise at least two cycles of movement.
  • the apparatus of the present disclosure may comprise a control system configured to operate the valves and piston of the apparatus to carry out at least one, preferably of the methods of the present disclosure.
  • the main valve 102 may be omitted. If present, the main valve 102 may be in a closed configuration when the gas spring is in use to provide isolation of the gas spring from the gas supply apparatus. In any aspect, the apparatus may comprise any number of top-off tanks 200.
  • the apparatus of the present disclosure may be mounted to a machine 10 comprising a work tool 12 as in Figure 1 .
  • the machine 10 may, for example, be a vehicle or other type of machine.
  • the movement of the piston head may be controlled during the charging and/or discharging steps by actuation of a work tool attached to the machine.
  • the work tool may be actuated by a hydraulic or other actuator, the gas supply conduit 194 and the gas spring conduit 190 therefore being independent of each other.
  • the gas supply conduit 194 may be fluidly coupled to the at least one gas spring conduit 190.
  • the gas supply conduit 194 may be fluidly coupled directly and mounted to the first or second gas chamber 151, 152.
  • the first gas chamber is the chamber defined by the first head surface 137 and the second gas chamber is the chamber defined by the second head surface 138.
  • the second gas chamber may be the chamber defined by the first head surface 137 and the first gas chamber may the chamber defined by the second head surface 138.
  • the one or more gas storage tanks may be provided with gas tank valves.
  • the method of the present disclosure may comprise the step of opening the gas tank valves. In the "locked" configuration or during use of the work tool, when the gas supply apparatus may be removed from the rest of the apparatus, the method may comprise the step of closing the gas tank valves.
  • the top-off valve may have no configuration in which flow is allowed in a direction from the cylinder into the top-off tank or tanks.
  • one or more of the valves of the present disclosure may be provided with locking devices.
  • valve which is moveable into a configuration allowing a particular flow pattern
  • this valve may comprise a valve assembly comprising one or more valves, for example arranged in series, moveable into a configuration allowing the required flow pattern.
  • the gas spring valve 191 may be a gas spring valve assembly.
  • this valve assembly may comprise a single valve moveable into a configuration allowing the required flow pattern.
  • the method and apparatus of the present disclosure may therefore provide a more efficient way of charging a gas spring system.
  • the gas may be drawn from the pressurised storage tank by movement of the piston head, for example by a hydraulic or other motor. Gas may therefore be provided from a gas supply apparatus at any pressure. This may reduce number of gas supply apparatus required to fully charge the system as more of the gas can be retrieved from each gas supply apparatus into the gas spring.
  • the method and apparatus of the present disclosure may allow for reciprocal movement of the piston to continue drawing gas from the gas supply apparatus during aspiration without the need to reconfigure the valves between strokes of the piston during the aspiration step and during discharging.
  • control system pressure to actuate valves may ensure there is always sufficient pressure to actuate the valves, with no external power source required.
  • the method and apparatus of the present disclosure may also provide a system in which the work tool or actuator may be arranged in any position at the start of the charging or discharging step. It may therefore be unnecessary to return the work tool or actuator to a start position (typically the top or bottom of its range of movement) before charging or discharging the gas spring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (18)

  1. Verfahren zum Betreiben einer Maschine (10), umfassend ein Arbeitswerkzeug (12) und eine Vorrichtung (120), die an dem Arbeitswerkzeug (12) montiert ist, die Vorrichtung (120) umfassend:
    eine Gasfederanordnung (150), umfassend eine erste Gaskammer (151), die durch einen Kolbenkopf (136) definiert ist, der innerhalb eines Zylinders (121) bewegbar montiert ist;
    eine Gaszufuhrvorrichtung (193), umfassend mindestens einen Gaslagertank (195), der ein festes Volumen aufweist und ein Gas enthält, wobei der mindestens eine Gaslagertank (195) durch eine Gaszufuhrleitung (194) mit dem Zylinder (121) fluidisch verbunden ist; und
    eine Gaszufuhrventilanordnung, die in der Gaszufuhrleitung (194) bereitgestellt ist;
    wobei das Verfahren einen Füllschritt zum Ansaugen von Gas aus dem mindestens einen Gaslagertank (195) in den Zylinder (121) umfasst, der Füllschritt umfassend:
    Bewegen des Kolbenkopfes (136) in den Zylinder (121), um das Volumen der ersten Gaskammer (151) zu erhöhen, um einen Gasdruck in dem mindestens einen Gaslagertank (195) derart zu verringern, dass sich Gas von dem mindestens einen Gaslagertank (195) in den Zylinder (121) bewegt;
    dadurch gekennzeichnet, dass die Gaszufuhrventilanordnung bewegt wird zu:
    einer Füllkonfiguration, in der eine beliebige Strömung durch die Gaszufuhrventilanordnung in einer Richtung von dem mindestens einen Gaslagertank (195) zu dem Zylinder (121) hin derart ist, dass die Rückkehr von Gas aus dem Zylinder (121) zu dem mindestens einen Gaslagertank (195) während des Füllschritts verhindert wird; oder
    einer Verwendungskonfiguration, wobei die Gaszufuhrventilanordnung die Strömung dahindurch verhindert.
  2. Verfahren nach einem der Ansprüche 1, ferner umfassend einen Ausstoßschritt, wobei der Kolbenkopf (136) bewegt wird, um Gas aus dem Zylinder (121) zu verdrängen;
    wobei der Ausstoßschritt ein Betätigen der Gaszufuhrventilanordnung in eine Konfiguration umfasst, in der eine beliebige Strömung durch die Gaszufuhrventilanordnung in einer Richtung von dem Zylinder (121) zu dem mindestens einen Gaslagertank (195) hin ist;
    und optional wobei das verdrängte Gas zu dem mindestens einen Gaslagertank (195) bewegt wird.
  3. Verfahren nach Anspruch 1, ferner umfassend einen Ausstoßschritt, wobei der Kolbenkopf (136) bewegt wird, um Gas aus dem Zylinder (121) zu verdrängen, und optional wobei das verdrängte Gas zu dem mindestens einen Gaslagertank (195) bewegt wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend das Bewegen des Kolbenkopfes (136) in einer Hin- und Herbewegung während des Füllschritts.
  5. Verfahren nach einem der vorstehenden Ansprüche, wobei:
    eine zweite Gaskammer (152) innerhalb des Zylinders (121) definiert ist, wobei die erste Gaskammer (151) und die zweite Gaskammer (152) durch den Kolbenkopf (136) derart begrenzt sind, dass ein Volumen der ersten Gaskammer (151) und ein Volumen der zweiten Gaskammer (152) durch eine Bewegung des Kolbenkopfes (136) variabel sind;
    eine Gasfederleitung (190) eine Fluidverbindung zwischen der ersten Gaskammer (151) und der zweiten Gaskammer (152) definiert; und
    eine Gasfederventilanordnung in der Gasfederleitung (190) angeordnet ist;
    das Verfahren ferner umfassend das Betätigen der Gasfederventilanordnung in eine Füllkonfiguration, in der eine beliebige Strömung durch die Gasfederventilanordnung während des Füllschritts in einer Richtung zu der zweiten Gaskammer (152) hin ist.
  6. Verfahren nach Anspruch 5, wobei die Gaszufuhrleitung (194) eine Fluidverbindung zwischen dem mindestens einen Gaslagertank (195) und der ersten und/oder der zweiten Gaskammer (151/152) bereitstellt; und optional wobei die Gaszufuhrleitung (194) mit der Gasfederleitung (190) an einer Verbindungsstelle verbunden ist, die zwischen der ersten Gaskammer (151) und der Gasfederventilanordnung derart angeordnet ist, dass die Strömung von der Gaszufuhrleitung (194) zu der ersten Gaskammer (151) und zu der Gasfederventilanordnung strömen kann.
  7. Verfahren nach Anspruch 5 oder 6, wenn abhängig von Anspruch 1, ferner umfassend einen Ausstoßschritt, wobei der Kolbenkopf (136) bewegt wird, um Gas aus dem Zylinder (121) zu verdrängen, und optional wobei das verdrängte Gas zu dem mindestens einen Gaslagertank (195) bewegt wird;
    wobei der Ausstoßschritt das Betätigen der Gaszufuhrventilanordnung in eine Konfiguration umfasst, in der eine beliebige Strömung durch die Gaszufuhrventilanordnung in einer Richtung von dem Zylinder (121) zu dem mindestens einen Gaslagertank (195) hin ist; und
    wobei der Ausstoßschritt das Betätigen der Gasfederventilanordnung in eine Konfiguration umfasst, in der eine beliebige Strömung durch die Gasfederventilanordnung in einer Richtung weg von der zweiten Gaskammer (152) ist.
  8. Verfahren nach einem der Ansprüche 5 bis 7, ferner umfassend einen Schritt zum Verwenden des Arbeitswerkzeugs (12), wobei;
    die Gasfederventilanordnung in eine Verwendungskonfiguration betätigt wird, in der die Strömung durch die Gasfederventilanordnung sowohl von der ersten Gaskammer (151) zu der zweiten Gaskammer (152) hin als auch von der zweiten Gaskammer (152) zu der ersten Gaskammer (151) hin zugelassen ist; und
    die Gaszufuhrventilanordnung in eine Verwendungskonfiguration betätigt wird, in der die Strömung dahindurch nicht erlaubt ist.
  9. Verfahren nach einem der vorstehenden Ansprüche, wobei die Gaszufuhrventilanordnung und/oder die Gasfederventilanordnung, sofern vorhanden, durch ein Steuersystem (206) gesteuert wird, und wobei optional das Steuersystem (206) Energie aus in der Vorrichtung enthaltenem Gas verwendet, um diese Ventilanordnung oder -anordnungen zu betätigen.
  10. Verfahren nach einem der vorstehenden Ansprüche, wobei die Bewegung des Kolbenkopfes (136) während des Füll- und/oder des Ausstoßschrittes durch Betätigung des Arbeitswerkzeugs (12) gesteuert wird; wobei das Arbeitswerkzeug (12) optional durch einen hydraulischen oder anderen Stellantrieb betätigt wird.
  11. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend ein Entfernen der Gaszufuhrvorrichtung (193) von der Maschine (10) während der Verwendung des Arbeitswerkzeugs (12).
  12. Vorrichtung (120) zum Montieren an einem Arbeitswerkzeug (12), die Vorrichtung (120) umfassend:
    eine Gasfederanordnung (150), umfassend eine erste Gaskammer (151), die durch einen Kolbenkopf (136) definiert ist, der innerhalb eines Zylinders (121) bewegbar montiert ist; und
    eine Gaszufuhrvorrichtung (193), umfassend mindestens einen Gaslagertank (195), der ein festes Volumen aufweist, wobei der mindestens eine Gaslagertank (195) über eine Gaszufuhrleitung (194) mit der ersten Gaskammer (151) fluidisch verbindbar ist;
    wobei:
    der Kolbenkopf (136) konfiguriert ist, um in dem Zylinder (121) bewegbar zu sein, um das Volumen der ersten Gaskammer (151) während eines Füllschritts zu erhöhen, um Gas aus dem mindestens einen Gaslagertank (195) in den Zylinder (121) anzusaugen; und
    eine Gaszufuhrventilanordnung in der Gasversorgungsleitung (194) bereitgestellt ist, wobei die Gaszufuhrventilanordnung eine Füllkonfiguration aufweist;
    dadurch gekennzeichnet, dass die Gaszufuhrventilanordnung bewegbar ist zwischen:
    einer Füllkonfiguration, wobei eine beliebige Strömung durch die Gaszufuhrventilanordnung in einer Richtung von dem mindestens einen Gaslagertank (195) zu dem Zylinder (121) hin ist und die Rückkehr von Gas aus dem Zylinder (121) zu dem mindestens einen Gaslagertank (195) hin während des Füllschritts verhindert; und
    einer Verwendungskonfiguration, wobei die Gaszufuhrventilanordnung die Strömung dahindurch verhindert.
  13. Vorrichtung (120) nach Anspruch 12, wobei die Gaszufuhrventilanordnung auch in eine Ausstoßkonfiguration bewegbar ist, in der eine beliebige Strömung durch die Gaszufuhrventilanordnung in einer Richtung von dem Zylinder (121) zu dem wenigstens einen Gaslagertank (195) hin ist.
  14. Vorrichtung (120) nach einem der Ansprüche 12 bis 13, wobei:
    eine zweite Gaskammer (152) durch den Zylinder (121) und den Kolbenkopf (136) definiert ist, wobei die erste Gaskammer (151) und die zweite Gaskammer (152) durch den Kolbenkopf (136) derart begrenzt sind, dass ein Volumen der ersten Gaskammer (151) und ein Volumen der zweiten Gaskammer (152) durch Bewegung des Kolbenkopfes (136) innerhalb des Zylinders (121) variabel sind;
    eine Gasfederleitung (190) eine Fluidverbindung zwischen der ersten Gaskammer (151) und der zweiten Gaskammer (152) definiert; und
    eine Gasfederventilanordnung in der Gasfederleitung (190) angeordnet ist, wobei die Gasfederventilanordnung eine Ausstoßkonfiguration aufweist, in der während des Füllschritts eine beliebige Strömung durch die Gasfederventilanordnung in einer Richtung zu der zweiten Gaskammer (152) hin ist.
  15. Vorrichtung (120) nach Anspruch 14, wobei die Gasfederventilanordnung bewegbar ist zwischen mindestens:
    einer Füllkonfiguration, in der eine beliebige Strömung durch die Gasfederventilanordnung in einer Richtung von der ersten Gaskammer (151) zu der zweiten Gaskammer (152) hin ist; und
    einer Verwendungskonfiguration, in der eine beliebige Strömung durch die Gasfederventilanordnung sowohl von der ersten Gaskammer (151) zu der zweiten Gaskammer (152) hin als auch von der zweiten Gaskammer (152) zu der ersten Gaskammer (151) hin zugelassen ist;
    und optional einer Ausstoßkonfiguration, in der eine beliebige Strömung durch die Gasfederventilanordnung in einer Richtung weg von der zweiten Gaskammer (152) ist.
  16. Vorrichtung (120) nach Anspruch 14 oder 15, wobei die Gaszufuhrleitung (194) mit der Gasfederleitung (190) an einer Verbindungsstelle verbunden ist, die zwischen der ersten Gaskammer (151) und der Gasfederventilanordnung derart angeordnet ist, dass die Strömung von der Gaszufuhrleitung (194) in die Gasfederanordnung (150) zu der ersten Gaskammer (151) und/oder zu der Gasfederventilanordnung strömen kann.
  17. Vorrichtung (120) nach einem der Ansprüche 12 bis 16, ferner umfassend ein Steuersystem (206), das konfiguriert ist, um mindestens die Gaszufuhrventilanordnung und/oder die Gasfederventilanordnung zu betätigen, sofern vorhanden, wobei das Steuersystem (206) konfiguriert ist, um Energie aus dem Gas in der Vorrichtung (120) für die Betätigung dieser Ventilanordnung oder -anordnungen zu verwenden.
  18. Maschine (10), umfassend eine Vorrichtung (120) nach einem der Ansprüche 12 bis 17, wobei die Maschine (10) optional ein Fahrzeug ist.
EP20790144.8A 2019-10-07 2020-09-28 Verfahren und vorrichtung zum betrieb einer werkzeugmaschine Active EP4041955B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1914474.0A GB2588116B (en) 2019-10-07 2019-10-07 Method and apparatus for operating a machine work tool
PCT/US2020/053020 WO2021071687A1 (en) 2019-10-07 2020-09-28 Method and apparatus for operating a machine work tool

Publications (2)

Publication Number Publication Date
EP4041955A1 EP4041955A1 (de) 2022-08-17
EP4041955B1 true EP4041955B1 (de) 2024-04-03

Family

ID=68541399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20790144.8A Active EP4041955B1 (de) 2019-10-07 2020-09-28 Verfahren und vorrichtung zum betrieb einer werkzeugmaschine

Country Status (4)

Country Link
EP (1) EP4041955B1 (de)
CN (1) CN114502801B (de)
GB (1) GB2588116B (de)
WO (1) WO2021071687A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266959B1 (en) * 1996-05-04 2001-07-31 Hydac Technology Gmbh Device for saving energy
EP3033531B1 (de) * 2013-08-16 2019-11-13 Hydac Technology GmbH System zur automatischen anpassung einer vorgebbaren gaseintragsmenge und betätigungseinrichtung mit einem solchen system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT391801B (de) * 1987-10-30 1990-12-10 Bock Orthopaed Ind Hydraulische steuerung
SE9700297D0 (sv) * 1997-01-31 1997-01-31 Lars Bruun Anordning vid hydrauliskt manövrerade arbetsredskap
US6516696B2 (en) * 1998-02-03 2003-02-11 Diebolt International, Inc. Sleeve-type gas spring
US8348249B2 (en) * 2008-10-07 2013-01-08 Dadco, Inc. Reaction device for forming equipment
DE102010051651A1 (de) * 2010-11-17 2012-05-24 Liebherr-Hydraulikbagger Gmbh Arbeitsgerät
DE102011120228A1 (de) * 2011-12-03 2013-06-06 Hydac Fluidtechnik Gmbh System zur Verbesserung der Energieeffizienz bei Hydrauliksystemen sowie für ein derartiges System vorgesehener Kolbenspeicher
CN103806482B (zh) * 2014-03-19 2015-02-18 樊硕 挖掘机辅助动力节能装置
SE540425C2 (sv) * 2015-04-16 2018-09-11 Freevalve Ab Aktuator för axiell förskjutning av ett objekt
CN109372042A (zh) * 2018-12-17 2019-02-22 程春雷 动臂自重抵消的液压挖掘机装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266959B1 (en) * 1996-05-04 2001-07-31 Hydac Technology Gmbh Device for saving energy
EP3033531B1 (de) * 2013-08-16 2019-11-13 Hydac Technology GmbH System zur automatischen anpassung einer vorgebbaren gaseintragsmenge und betätigungseinrichtung mit einem solchen system

Also Published As

Publication number Publication date
CN114502801B (zh) 2024-03-08
GB2588116B (en) 2022-02-23
EP4041955A1 (de) 2022-08-17
GB201914474D0 (en) 2019-11-20
CN114502801A (zh) 2022-05-13
GB2588116A (en) 2021-04-21
WO2021071687A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
US6918247B1 (en) Assisted hydraulic system for moving a structural member
US4783106A (en) Method and apparatus for automatically controlling pressure in fluid-actuated systems
US20070068754A1 (en) Gas-biased hydraulic cylinder
KR101675390B1 (ko) 성형장비용 반응장치
EP3102834B1 (de) Bewegung- und arbeitsfunktionen integriert in einem hydraulischen hybrid-system
US9086061B2 (en) Energy recovery hydraulic system
US5802847A (en) Hydraulic system for a mobile work device, in particular a wheel loader
CZ295658B6 (cs) Zařízení pro úsporu energie
JP2005249198A (ja) 作業器具用の閉回路エネルギ回収システム
EP1863701A1 (de) Vorrichtung und verfahren zum ausgleich von unterwasserdruck auf einen hydraulikkreis
KR102586623B1 (ko) 작업유닛 방출에너지 회생 시스템 및 방법
EP2426271A2 (de) Vorrichtung zur Betätigung einer Kontaminationsabdeckung für einen Flüssigkeitsverbinder
US7703616B2 (en) Telescopable sliding beam
CN112639221B (zh) 用于操作机器作业工具的装置
JPH03121714A (ja) 液圧装置及び液圧回路と救命器具
CN103154382A (zh) 联接配置
CN103189572A (zh) 联接配置
CN103154381A (zh) 联接配置
US8037786B2 (en) Hydraulic circuit device
EP4041955B1 (de) Verfahren und vorrichtung zum betrieb einer werkzeugmaschine
CN211039191U (zh) 液压驱动***
US10690151B2 (en) Device for recovering hydraulic energy by connecting two differential cylinders
CN103154383A (zh) 联接配置
EP1733996A1 (de) Hydraulische Vorrichtung zum Heben und Senken eines an einer Arbeitsmaschine schwenkbaren Arms
WO2017062040A1 (en) Accumulator

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230223

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240213

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020028435

Country of ref document: DE