EP4028274A1 - Module de refroidissement pour véhicule automobile à turbomachine tangentielle - Google Patents

Module de refroidissement pour véhicule automobile à turbomachine tangentielle

Info

Publication number
EP4028274A1
EP4028274A1 EP20780771.0A EP20780771A EP4028274A1 EP 4028274 A1 EP4028274 A1 EP 4028274A1 EP 20780771 A EP20780771 A EP 20780771A EP 4028274 A1 EP4028274 A1 EP 4028274A1
Authority
EP
European Patent Office
Prior art keywords
cooling module
heat exchanger
air inlet
cooling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20780771.0A
Other languages
German (de)
English (en)
Inventor
Kamel Azzouz
Sébastien Garnier
Amrid MAMMERI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP4028274A1 publication Critical patent/EP4028274A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/10Controlling of coolant flow the coolant being cooling-air by throttling amount of air flowing through liquid-to-air heat exchangers

Definitions

  • the invention relates to a cooling module for a motor vehicle, preferably for an electric motor vehicle, with a tangential turbomachine.
  • the invention also relates to a motor vehicle provided with such a cooling module.
  • a cooling module (or heat exchange module) of a motor vehicle conventionally comprises at least one heat exchanger and a ventilation device suitable for generating an air flow in contact with at least one heat exchanger.
  • the ventilation device thus makes it possible, for example, to generate a flow of air in contact with the heat exchanger, when the vehicle is stationary.
  • the at least one heat exchanger is of substantially square shape, the ventilation device then being a propeller fan whose diameter is substantially equal to the side of the square formed by the heat exchanger .
  • the heat exchanger is then placed opposite at least two cooling bays, formed in the front face of the body of the motor vehicle.
  • a first cooling bay is located above the bumper while a second bay is located below the bumper.
  • Such a configuration is preferred because the heat engine must also be supplied with air, the engine air intake conventionally being located in the passage of the air flow passing through the upper cooling bay.
  • electric vehicles are preferably provided only with cooling bays located under the bumper, more preferably with a single cooling bay located under the bumper.
  • the electric motor does not need to be supplied with air.
  • the reduction in the number of cooling bays improves the aerodynamic characteristics of the electric vehicle. This also translates by better autonomy and higher top speed of the motor vehicle.
  • An object of the invention is to provide a cooling module for a motor vehicle, preferably for an electric motor vehicle, which does not have at least some of the aforementioned drawbacks.
  • a cooling module for a motor vehicle, preferably with an electric motor, comprising at least one heat exchanger, at least one tangential turbomachine capable of creating an air flow in contact with said at least one heat exchanger, and an air inlet part shaped to bring an air flow into the module and to guide said air flow at least as far as said at least one heat exchanger.
  • the heat exchanger (s) has / have dimensions suitable for being cooled only by means of one or more lower cooling bays.
  • the tangential turbomachine makes it possible to create an air flow through the heat exchanger (s) with a much better efficiency than if a propeller fan were used.
  • the air inlet piece provides better sealing of the cooling module, thereby improving the performance thereof.
  • the inlet part allows adaptation of the cooling module to the dimensions of the cooling bay on the one hand and to the dimensions of the heat exchanger on the other hand.
  • the air inlet part comprises an air inlet and an air guide wall between said air inlet and said at least one heat exchanger.
  • the guide wall in an installed position of the cooling module in the vehicle, has a converging shape in a horizontal plane from the air inlet to said at least one heat exchanger.
  • the guide wall in an installed position of the cooling module in the vehicle, has a divergent shape in a vertical plane from the air inlet to said at least one heat exchanger.
  • the air inlet piece has a depth of between 10 cm and 30 cm.
  • the air inlet piece has a depth of between 15 cm and 20 cm.
  • the module comprises a fairing for housing said at least one heat exchanger.
  • the fairing has a depth of between 10 cm and 20 cm.
  • the fairing has a depth of between 10 cm and 15 cm.
  • the module comprises a housing housing of said at least one tangential turbomachine, the depth of which is between 10 cm and 20 cm.
  • the invention also relates to a motor vehicle, comprising a body, a bumper and a cooling module as described above, the body defining at least one cooling bay arranged under the bumper, the module cooling being disposed opposite the at least one cooling bay.
  • FIG. 1 shows schematically the front part of a motor vehicle, seen from the side.
  • FIG. 2 is a perspective view of part of the front face of the figure
  • FIG. 3 is a perspective view of the cooling module of FIG.
  • FIG. 4 is a side view of the module of FIG. 3.
  • FIG. 5 is a partially exploded perspective view of the module of FIG. 3. Description of the embodiments
  • the turbomachine operates in suction, that is to say that it sucks the ambient air to bring it into contact with the various heat exchangers, as will be detailed .
  • each turbomachine operates by blowing, blowing air to the various heat exchangers.
  • FIG. 1 schematically illustrates the front part of a motor vehicle 10 may include an electric motor 12.
  • the vehicle 10 comprises in particular a body 14 and a bumper 16 carried by a frame (not shown) of the vehicle automobile 10.
  • the body 14 defines a cooling bay 18, that is to say an opening through the body 14.
  • the cooling bay 18 is unique here.
  • This cooling bay 18 is located in the lower part of the front face 14a of the body 14. In the example illustrated, the cooling bay 18 is located under the bumper 16.
  • a grid 20 can be used. arranged in the cooling bay 18 to prevent projectiles from passing through the cooling bay 18.
  • a cooling module 22 is placed opposite the cooling bay 18.
  • the grid 20 makes it possible in particular to protect this module from cooling 22.
  • a first direction corresponds to a longitudinal direction of the vehicle. It also corresponds to the direction of travel of the vehicle.
  • a second direction, denoted Y is a lateral or transverse direction.
  • a third direction, denoted Z is vertical.
  • the directions, X, Y, Z are two by two orthogonal.
  • cooling module according to the present invention is illustrated in a functional position, that is to say when it equips a motor vehicle.
  • the cooling module 22 comprises at least one heat exchanger.
  • the ventilation device 1 comprises three heat exchangers 24, 26, 28. However, it could include more or less depending on the desired design.
  • each of the heat exchangers has a general parallelepipedal shape determined by a length, a thickness and a height.
  • the length extends along the Y direction, the thickness along the X direction, and the height in the Z direction.
  • the cooling module 22 also comprises at least one tangential fan, also called tangential turbomachine below, which sucks an air flow F intended for the heat exchangers 24, 26, 28.
  • the cooling module comprises a turbomachine 30.
  • the cooling module may however include several turbomachines 30 which can be arranged in various configurations (not described in this application).
  • the tangential turbomachine 30 comprises a rotor or turbine 32 (or tangential propeller).
  • the turbine has a substantially cylindrical shape.
  • the turbine advantageously comprises several stages of blades (or vanes), not illustrated.
  • the turbine is rotatably mounted around an axis of rotation A, for example parallel to the direction Y.
  • the turbomachine 30 is housed in a housing 34 comprising an outlet 36 forming the air outlet of the module 22.
  • the cooling module 22 comprises an air inlet part 38 shaped to bring an air flow F into the module 22 and to guide said air flow F at least up to the heat exchangers 24, 26 and 28.
  • the cooling module 22 also comprises a housing or shroud 40 forming an internal air channel.
  • the fairing 40 makes it possible to house at least the heat exchangers 24, 26, 28.
  • the entry part 38 is integral with the fairing 40 and the housing 34.
  • the entry part 38 and the fairing 40 could also form a single single part.
  • the inlet part 38 comprises an inlet 42.
  • the inlet 42 forms the inlet of the cooling module 22.
  • the inlet part 38 also includes an air guide wall 44.
  • the wall 44 is shaped to guide the flow of air F between the air inlet 42 and the heat exchangers 24, 26, 28.
  • the air inlet 42 is disposed in the cooling bay 18 by being preferably hermetically connected to the calender Cal.
  • the inlet 42 is advantageously provided with a grid 46 for protecting the exchangers.
  • the grille can be fitted with movable or fixed mounted shutters.
  • the guide wall 44 is composed of an upper wall 48, a lower wall 50 and two side walls 52 extending between the air inlet 42 and the fairing 40.
  • the set of upper 48, lower 50 and side walls 52 ensures that the guide wall 44 forms a sealed channel between the air inlet 42 and the fairing 40.
  • the guide wall 48 has a converging shape in a horizontal plane (X, Y) from the air inlet 42 to the exchangers 24, 26, 28.
  • a length L1 of the upper wall 48 at the level of the air inlet 42 is greater than a length L2 of the upper wall 48 at the level of the fairing 40.
  • a length L1 of the lower wall 50 at the level of the air inlet 42 is greater than a length L2 of the lower wall 50 at the level of the fairing 40.
  • the length L1 corresponds to the length of the air inlet 42, while the length L2 corresponds to the length of the fairing 40.
  • the guide wall has a divergent shape in a vertical plane (X, Z) from the air inlet 42 to the heat exchangers 24, 26, 28.
  • a height H1 of the side walls 52 at the level of the air inlet 42 is less than a height H2 of the side walls 52 at the level of the fairing 40.
  • This convergent-divergent configuration ensures that the inlet part 38 constitutes an adaptive interface between the air inlet 42 and the fairing 40.
  • the inlet part 38 a large inlet can be provided. air and smaller exchangers, without increasing pressure drops.
  • the depth P of the inlet part 38 corresponds to the distance (in the X direction) between the air inlet 42 and the fairing 40.
  • the depth P is between 10 cm and 30 cm, in particular between 15 cm and 20 cm, preferably between 18.1 cm and 18.5 cm.
  • the fairing for its part has a depth P '(in the X direction) of between 10 cm and 20 cm, advantageously between 10 cm and 15 cm, preferably between 13.5 cm and 14 cm.
  • the housing 34 has a depth P ”of between 10 cm and 20 cm, advantageously between 15 cm and 20 cm, preferably between 15.5 cm and 16 cm.
  • a maximum height H ”of the case 48 is between 25 cm and 35 cm, advantageously between 28 cm and 32 cm, preferably of the order of 30 cm.
  • the length L2 for its part is between 65 cm and 75 cm, advantageously between 65 cm and 70 cm, preferably between 66 cm and 67 cm.
  • the fairing 40 comprises two indentations 54-1, 54-2, 56-1, 56-2, 58-1, 58-2 associated two by two respectively with the heat exchanger 24, 26, 28.
  • the indentations make it possible to improve the sealing of the module 22 and to keep each exchanger in position in the fairing 40.
  • outlet 36 of the housing 48 is advantageously provided with a grid 76 (dotted in Figure 4), in order to protect the module 22 against projectiles which, without the grid, could reach up to turbomachine or heat exchangers.
  • the cooling module 22 may include an opening and / or closing device.
  • This device can be in different forms, for example in the form of a plurality of flaps 78 pivotally mounted between an open position and a closed position.
  • the open position is particularly advantageous at high vehicle speed, when the turbomachine is stopped, while the closed position is advantageous at low vehicle speed, when the turbomachine is in operation.
  • the flaps 78 are mounted parallel to the axis of rotation A of the turbomachine 30.
  • the invention is not limited to this configuration, and the flaps 78 can also be arranged perpendicular to axis A.
  • the flaps 78 are arranged in a plane I (shown by dotted lines in Figure 4) forming a non-zero angle with a direction Z 'opposite to the direction Z, preferably between 5 and 20 °. This angle ensures a homogeneous distribution of the air on the heat exchangers 24, 26, 28.
  • the fairing 40 is advantageously made from a plastic material, for example a PP or PA6 polymer, or even based on a set of two materials, a rigid plastic forming frames and a foam placed between the frames .
  • the cooling module 22 is advantageously integrated by force in the cooling bay 18, a sealing element, such as a lip seal and / or foam, which can be integrated between the entrance 42 and bay 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

L'invention concerne un module de refroidissement (22) pour véhicule automobile, de préférence à moteur électrique, comprenant : - au moins un échangeur thermique (24, 26, 28), - au moins une turbomachine tangentielle (30) apte à créer un flux d'air au contact dudit au moins un échangeur thermique (24, 26,28), et - un carénage (40) pour loger ledit au moins un échangeur thermique (24, 26,28) dans lequel le carénage (40) comporte au moins une empreinte (34-1, 34-2, 36-1, 36-2, 38-1, 38-2) de maintien au moins un échangeur thermique.

Description

MODULE DE REFROIDISSEMENT POUR VÉHICULE AUTOMOBILE À TURBOMACHINE TANGENTIELLE
Domaine technique
[0001] L’invention se rapporte à un module de refroidissement pour véhicule automobile, de préférence pour véhicule automobile électrique, à turbomachine tangentielle. L’invention vise également un véhicule automobile muni d’un tel module de refroidissement.
Technique antérieure
[0002] Un module de refroidissement (ou module d’échange de chaleur) d’un véhicule automobile comporte classiquement au moins un échangeur thermique et un dispositif de ventilation adapté à générer un flux d’air au contact du au moins un échangeur thermique. Le dispositif de ventilation permet ainsi, par exemple, de générer un flux d’air au contact de l’échangeur thermique, à l’arrêt du véhicule.
[0003] Dans les véhicules automobiles à moteur thermique classiques, le au moins un échangeur thermique est de forme sensiblement carrée, le dispositif de ventilation étant alors un ventilateur à hélice dont le diamètre est sensiblement égal au côté du carré formé par l’échangeur thermique.
[0004] Classiquement, l’échangeur thermique est alors placé en regard d’au moins deux baies de refroidissement, formées dans la face avant de la carrosserie du véhicule automobile. Une première baie de refroidissement est située au-dessus du pare-chocs tandis qu’une deuxième baie est située au-dessous du pare-chocs. Une telle configuration est préférée car le moteur thermique doit également être alimenté en air, l’admission d’air du moteur étant classiquement située dans le passage du flux d’air traversant la baie de refroidissement supérieure.
[0005] Cependant, les véhicules électriques sont de préférence munis uniquement de baies de refroidissement situées sous le pare-chocs, de préférence encore d’une unique baie de refroidissement située sous le pare-chocs.
[0006] En effet, le moteur électrique n’a pas besoin d’être alimenté en air. Et la diminution du nombre de baies de refroidissement permet d’améliorer les caractéristiques aérodynamiques du véhicule électrique. Ceci se traduit également par une meilleure autonomie et une plus grande vitesse de pointe du véhicule automobile.
[0007] Dans ces conditions, la mise en oeuvre d’un module de refroidissement classique apparait peu satisfaisante. En effet, une grande partie des échangeurs thermiques ne sont plus correctement refroidis par le flux d’air provenant uniquement de la ou des baies de refroidissement inférieure/s.
[0008] Un but de l’invention est de proposer un module de refroidissement pour véhicule automobile, préférentiellement pour véhicule automobile électrique ne présentant pas au moins certains des inconvénients susmentionnés.
Résumé
[0009] A cet effet, il est proposé un module de refroidissement pour véhicule automobile, de préférence à moteur électrique, comprenant au moins un échangeur thermique, au moins une turbomachine tangentielle apte à créer un flux d’air au contact dudit au moins un échangeur thermique, et une pièce d’entrée d’air conformée pour faire entrer un flux d’air dans le module et pour guider ledit flux d’air au moins jusqu’audit au moins un échangeur thermique.
[0010] Ainsi, avantageusement, le ou les échangeurs thermiques présente/nt des dimensions adaptées pour n’être refroidi/s qu’au moyen d’une ou plusieurs baies de refroidissement inférieures. En outre, la turbomachine tangentielle permet de créer un flux d’air à travers le ou les échangeurs thermiques avec un bien meilleur rendement que si un ventilateur à hélice était mis en oeuvre.
[0011] De surcroît, la pièce d’entrée d’air assure une meilleure étanchéité du module de refroidissement, améliorant de ce fait les performances de celui-ci.
[0012] De plus, la pièce d’entrée permet une adaptation du module de refroidissement aux dimensions de la baie de refroidissement d’une part et aux dimensions de l’échangeur thermique d’autre part.
[0013] Selon un autre aspect, la pièce d’entrée d’air comprend une entrée d’air et une paroi de guidage d’air entre ladite entrée d’air et ledit au moins un échangeur thermique. [0014] Selon un autre aspect, dans une position installée du module de refroidissement dans le véhicule, la paroi de guidage présente une forme convergente dans un plan horizontal depuis l’entrée d’air vers ledit au moins un échangeur thermique.
[0015] Selon un autre aspect, dans une position installée du module de refroidissement dans le véhicule, la paroi de guidage présente une forme divergente dans un plan vertical depuis l’entrée d’air vers ledit au moins un échangeur thermique.
[0016] Selon un autre aspect, la pièce d’entrée d’air présente une profondeur comprise entre 10 cm et 30 cm.
[0017] Selon un autre aspect, la pièce d’entrée d’air présente une profondeur comprise entre 15 cm et 20 cm.
[0018] Selon un autre aspect, le module comprend un carénage pour loger ledit au moins un échangeur thermique.
[0019] Selon un autre aspect, le carénage présente une profondeur comprise entre 10 cm et 20 cm.
[0020] Selon un autre aspect, le carénage présente une profondeur comprise entre 10 cm et 15 cm.
[0021] Selon un autre aspect, le module comprend un boîtier de logement de ladite au moins une turbomachine tangentielle, dont une profondeur est comprise entre 10 cm et 20 cm.
[0022] L’invention a également pour objet un véhicule automobile, comprenant une carrosserie, un pare-chocs et un module de refroidissement tel que décrit précédemment, la carrosserie définissant au moins une baie de refroidissement disposée sous le pare-chocs, le module de refroidissement étant disposé en regard de la au moins une baie de refroidissement.
Brève description des dessins
[0023] D’autres caractéristiques, détails et avantages de l’invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels : Fig. 1
[0024] [Fig. 1] représente schématiquement la partie avant d’un véhicule automobile, vu de côté.
Fig. 2 [0025] [Fig. 2] est une vue en perspective d’une partie de la face avant de la figure
1 , comprenant un module de refroidissement selon un mode de réalisation.
Fig. 3
[0026] [Fig. 3] est une vue en perspective du module de refroidissement de la figure
2. Fig. 4
[0027] [Fig. 4] est une vue de côté du module de la figure 3.
Fig. 5
[0028] [Fig. 5] est une vue en perspective partiellement éclatée du module de la figure 3. Description des modes de réalisation
[0029] On note que, dans le mode de réalisation illustré, la turbomachine fonctionne en aspiration, c'est-à-dire qu’elle aspire l’air ambiant pour le conduire au contact des différents échangeurs thermiques, comme il va être détaillé. Alternativement, cependant, chaque turbomachine fonctionne par soufflage, soufflant l’air vers les différents échangeurs thermiques.
[0030] La figure 1 illustre de manière schématique la partie avant d’un véhicule automobile 10 pouvant comporter un moteur électrique 12. Le véhicule 10 comporte notamment une carrosserie 14 et un pare-chocs 16 portés par un châssis (non représenté) du véhicule automobile 10. La carrosserie 14 définit une baie de refroidissement 18, c'est-à-dire une ouverture à travers la carrosserie 14. La baie de refroidissement 18 est ici unique. Cette baie de refroidissement 18 se trouve en partie basse de la face avant 14a de la carrosserie 14. Dans l’exemple illustré, la baie de refroidissement 18 est située sous le pare-chocs 16. Une grille 20 peut être disposée dans la baie de refroidissement 18 pour éviter que des projectiles puissent traverser la baie de refroidissement 18. Un module de refroidissement 22 est disposé en vis-à-vis de la baie de refroidissement 18. La grille 20 permet notamment de protéger ce module de refroidissement 22.
[0031] Sur les figures 1 à 5, une première direction, notée X, correspond à une direction longitudinale du véhicule. Elle correspond également à la direction d’avancement du véhicule. Une deuxième direction, notée Y, est une direction latérale ou transversale. Enfin, une troisième direction, notée Z, est verticale. Les directions, X, Y, Z sont orthogonales deux à deux.
[0032] Sur les figures 1 à 5, le module de refroidissement selon la présente invention est illustré dans une position fonctionnelle, c’est-à-dire quand il équipe un véhicule automobile.
[0033] Le module de refroidissement 22 comprend au moins un échangeur thermique. Sur les figures 2 à 5, le dispositif de ventilation 1 comprend trois échangeurs thermiques 24, 26, 28. Il pourrait toutefois en comporter plus ou moins suivant le design souhaité.
[0034] Sur le mode de réalisation illustré, chacun des échangeurs thermiques présente une forme générale parallélépipédique déterminée par une longueur, une épaisseur et une hauteur. La longueur s’étend le long de la direction Y, l’épaisseur le long de la direction X et la hauteur dans la direction Z.
[0035] Le module de refroidissement 22 comprend également au moins un ventilateur tangentiel, aussi nommé turbomachine tangentielle ci-après, qui aspire un flux d’air F à destination des échangeurs de chaleur 24, 26, 28. Sur le mode de réalisation illustré, le module de refroidissement comprend une turbomachine 30. Le module de refroidissement peut toutefois comporter plusieurs turbomachines 30 pouvant être disposées dans des configurations variées (non décrites dans cette demande).
[0036] La turbomachine tangentielle 30 comprend un rotor ou turbine 32 (ou hélice tangentielle). La turbine a une forme sensiblement cylindrique. La turbine comporte avantageusement plusieurs étages de pales (ou aubes), non illustrées. La turbine est montée rotative autour d’un axe de rotation A, par exemple parallèle à la direction Y.
[0037] La turbomachine 30 est logée dans un boîtier 34 comprenant une sortie 36 formant sortie d’air du module 22.
[0038] Comme il ressort également des figures, le module de refroidissement 22 comprend une pièce d’entrée d’air 38 conformée pour faire entrer un flux d’air F dans le module 22 et pour guider ledit flux d’air F au moins jusqu’aux échangeurs thermiques 24, 26 et 28.
[0039] Le module de refroidissement 22 comprend aussi un boîtier ou carénage 40 formant un canal interne d’air. Le carénage 40 permet de loger au moins les échangeurs thermiques 24, 26, 28.
[0040] La pièce d’entrée 38 est solidaire du carénage 40 et du boîtier 34. La pièce d’entrée 38 et le carénage 40 pourraient également composer une seule pièce unique.
[0041] La pièce d’entrée 38 est maintenant détaillée.
[0042] Comme illustré sur les figures 2 à 4, la pièce d’entrée 38 comprend une entrée 42. L’entrée 42 forme l’entrée du module de refroidissement 22.
[0043] La pièce d’entrée 38 comprend également une paroi 44 de guidage d’air. La paroi 44 est conformée pour guider le flux d’air F entre l’entrée 42 d’air et les échangeurs de chaleur 24, 26, 28.
[0044] L’entrée d’air 42 est disposée dans la baie de refroidissement 18 en étant de préférence hermétiquement raccordée à la calandre Cal.
[0045] L’entrée 42 est avantageusement munie d’une grille 46 de protection des échangeurs. La grille peut être munie de volets montés mobiles ou fixes.
[0046] La paroi de guidage 44 est composée par une paroi supérieure 48, une paroi inférieure 50 et deux parois latérales 52 s’étendant entre l’entrée d’air 42 et le carénage 40.
[0047] L’ensemble des parois supérieure 48, inférieure 50 et latérales 52 assure que la paroi de guidage 44 forme un canal étanche entre l’entrée d’air 42 et le carénage 40. [0048] Comme particulièrement visible sur la figure 5, la paroi de guidage 48 présente une forme convergente dans un plan horizontal (X, Y) depuis l’entrée d’air 42 vers les échangeurs 24, 26, 28.
[0049] Autrement dit, une longueur L1 de la paroi supérieure 48 au niveau de l’entrée d’air 42 est supérieure à une longueur L2 de la paroi supérieure 48 au niveau du carénage 40.
[0050] De même, une longueur L1 de la paroi inférieure 50 au niveau de l’entrée d’air 42 est supérieure à une longueur L2 de la paroi inférieure 50 au niveau du carénage 40.
[0051] La longueur L1 correspond à la longueur de l’entrée d’air 42, tandis que la longueur L2 correspond à la longueur du carénage 40.
[0052] Comme particulièrement visible sur la figure 4, la paroi de guidage présente une forme divergente dans un plan vertical (X, Z) depuis l’entrée d’air 42 vers les échangeurs thermiques 24, 26, 28.
[0053] Autrement dit, une hauteur H1 des parois latérales 52 au niveau de l’entrée d’air 42 est inférieure à une hauteur H2 des parois latérales 52 au niveau du carénage 40.
[0054] Cette configuration convergente-divergente assure que la pièce d’entrée 38 constitue une interface adaptative entre l’entrée d’air 42 et le carénage 40. Ainsi, grâce à la pièce d’entrée 38, on peut prévoir une grande entrée d’air et des échangeurs plus petits, sans augmenter les pertes de charge.
[0055] On fait référence maintenant à certaines dimensions du module de refroidissement 22, illustrées sur les figures 3 et 4.
[0056] La profondeur P de la pièce d’entrée 38 correspond à la distance (dans la direction X) entre l’entrée d’air 42 et le carénage 40. Avantageusement, la profondeur P est comprise entre 10 cm et 30 cm, en particulier entre 15 cm et 20 cm, de préférence entre 18,1 cm et 18,5 cm.
[0057] Le carénage présente quant à lui une profondeur P’ (dans la direction X) comprise entre 10 cm et 20 cm, avantageusement entre 10 cm et 15 cm, de préférence entre 13,5 cm et 14 cm. [0058] Le boîtier 34 présente une profondeur P” comprise entre 10 cm et 20 cm, avantageusement entre 15 cm et 20 cm, de préférence entre 15,5 cm et 16 cm. Une hauteur maximale H” du boîtier 48 est comprise entre 25 cm et 35 cm, avantageusement entre 28 cm et 32 cm, de préférence de l’ordre de 30 cm.
[0059] La longueur L2 quant à elle est comprise entre 65 cm et 75 cm, avantageusement entre 65 cm et 70 cm, de préférence entre 66 cm et 67 cm.
[0060] On note que carénage 40 comprend deux empreintes 54-1 , 54-2, 56-1 , 56- 2, 58-1 , 58-2 associées deux à deux respectivement à l’échangeur thermique 24, 26, 28. Les empreintes permettent d’améliorer l’étanchéité du module 22 et de maintenir chaque échangeur en position dans le carénage 40.
[0061] On note aussi que la sortie 36 du boîtier 48 est avantageusement munie d’une grille 76 (en pointillés sur la figure 4), afin de protéger le module 22 contre des projectiles qui, sans la grille, pourraient parvenir jusqu’à la turbomachine ou aux échangeurs thermiques.
[0062] Comme plus particulièrement visible sur la figure 4, le module de refroidissement 22 peut comporter un dispositif d’ouverture et/ou de fermeture. Ce dispositif peut se présenter sous différentes formes comme par exemple ous la forme d’une pluralité de volets 78 montés pivotants entre une position d’ouverture et une position de fermeture. La position d’ouverture est particulièrement avantageuse à vitesse élevée du véhicule, quand la turbomachine est à l’arrêt, tandis que la position de fermeture est avantageuse à faible vitesse du véhicule, quand la turbomachine fonctionne.
[0063] Sur le mode de réalisation illustré, les volets 78 sont montés parallèles à l’axe de rotation A de la turbomachine 30. Néanmoins, l’invention n’est pas limitée à cette configuration, et les volets 78 peuvent également être disposés perpendiculairement à l’axe A.
[0064] En position de fermeture, les volets 78 sont disposés dans un plan I (représenté par des pointillés sur la figure 4) formant un angle a non nul avec une direction Z’ opposée à la direction Z, de préférence compris entre 5 et 20°. Cet angle assure une distribution homogène de l’air sur les échangeurs de chaleur 24, 26, 28. [0065] On note que le carénage 40 est avantageusement réalisé à base de matière plastique, par exemple un polymère PP ou PA6, voire à base d’un ensemble de deux matériaux, un plastique rigide formant des armatures et une mousse disposée entre les armatures. [0066] On note également que le module de refroidissement 22 est avantageusement intégré à force dans la baie de refroidissement 18, un élément d’étanchéité, tel qu’un joint à lèvre et/ou de la mousse, pouvant être intégré entre l’entrée 42 et la baie 18.

Claims

Revendications
[Revendication 1] Module de refroidissement (22) pour véhicule automobile (10), de préférence à moteur électrique (12), comprenant :
- au moins un échangeur thermique (24, 26, 28),
- au moins une turbomachine tangentielle (30) apte à créer un flux d’air au contact dudit au moins un échangeur thermique (24, 26,28), et une pièce d’entrée d’air (38) conformée pour faire entrer un flux d’air (F) dans le module et pour guider ledit flux d’air (F) au moins jusqu’audit au moins un échangeur thermique (24, 26, 28).
[Revendication 2] Module de refroidissement selon la revendication 1 , dans lequel la pièce d’entrée d’air (38) comprend une entrée d’air (42) et une paroi de guidage d’air (44) entre ladite entrée d’air (42) et ledit au moins un échangeur thermique (24, 26, 28).
[Revendication 3] Module de refroidissement selon la revendication précédente, dans lequel, dans une position installée du module de refroidissement dans le véhicule, la paroi de guidage (44) présente une forme convergente dans un plan horizontal (X, Y) depuis l’entrée d’air (42) vers ledit au moins un échangeur thermique (24, 26, 28).
[Revendication 4] Module de refroidissement selon l’une des revendications 2 ou 3, dans lequel, dans une position installée du module de refroidissement dans le véhicule, la paroi de guidage (44) présente une forme divergente dans un plan vertical (X, Z) depuis l’entrée d’air (42) vers ledit au moins un échangeur thermique (24, 26, 28).
[Revendication 5] Module de refroidissement selon l’une des revendications précédentes, dans lequel la pièce d’entrée d’air (38) présente une profondeur (P) comprise entre 10 cm et 30 cm.
[Revendication 6] Module de refroidissement selon la revendication précédente, dans lequel la pièce d’entrée d’air (38) présente une profondeur (P) comprise entre 15 cm et 20 cm.
[Revendication 7] Module de refroidissement selon l’une des revendications précédentes, comprenant un carénage (40) pour loger ledit au moins un échangeur thermique (24, 26,28), le carénage présentant une profondeur (P’) comprise entre 10 cm et 20 cm.
[Revendication 8] Module de refroidissement selon la revendication précédente, dans lequel le carénage (40) présente une profondeur comprise entre 10 cm et 15 cm.
[Revendication 9] Module de refroidissement selon l’une des revendications précédentes, comprenant un boîtier de logement de ladite au moins une turbomachine tangentielle (30), dont une profondeur est comprise entre 10 cm et 20 cm.
[Revendication 10] Véhicule automobile, de préférence à moteur électrique, comprenant une carrosserie (14), un pare-chocs (16) et un module de refroidissement (22) selon l’une quelconque des revendications précédentes, la carrosserie (14) définissant au moins une baie de refroidissement (18) disposée sous le pare-chocs, le module de refroidissement (22) étant disposé en regard de la au moins une baie de refroidissement (18).
EP20780771.0A 2019-09-10 2020-09-08 Module de refroidissement pour véhicule automobile à turbomachine tangentielle Pending EP4028274A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1909957A FR3100484B1 (fr) 2019-09-10 2019-09-10 Module de refroidissement pour véhicule automobile à turbomachine tangentielle
PCT/FR2020/051547 WO2021048495A1 (fr) 2019-09-10 2020-09-08 Module de refroidissement pour véhicule automobile à turbomachine tangentielle

Publications (1)

Publication Number Publication Date
EP4028274A1 true EP4028274A1 (fr) 2022-07-20

Family

ID=69158011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20780771.0A Pending EP4028274A1 (fr) 2019-09-10 2020-09-08 Module de refroidissement pour véhicule automobile à turbomachine tangentielle

Country Status (5)

Country Link
US (1) US20220348072A1 (fr)
EP (1) EP4028274A1 (fr)
CN (1) CN114364560A (fr)
FR (1) FR3100484B1 (fr)
WO (1) WO2021048495A1 (fr)

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1488257A (en) * 1975-02-26 1977-10-12 Covrad Ltd Vehicle cooling installations
DE3211149A1 (de) * 1982-03-26 1983-10-13 Ford-Werke AG, 5000 Köln Motorkuehleinrichtung fuer kraftfahrzeuge
AT404057B (de) * 1986-02-03 1998-08-25 Avl Verbrennungskraft Messtech Wärmetauschersystem mit einem querstromlüfter
AT404286B (de) * 1987-04-28 1998-10-27 Avl Verbrennungskraft Messtech Wärmetauschersystem, insbesondere zur kühlung von brennkraftmaschinen
JPH01152019U (fr) * 1988-04-11 1989-10-19
US6298906B1 (en) * 1997-12-02 2001-10-09 Caterpillar Inc. Apparatus for securing and sealing a radiator to an engine cowling of a work machine
JP2000320856A (ja) * 1999-05-10 2000-11-24 Denso Corp クロスフローファン
DE10114058A1 (de) * 2001-03-22 2002-09-26 Porsche Ag Luftführungskanal für ein Kraftfahrzeug
JP4179088B2 (ja) * 2003-07-24 2008-11-12 株式会社デンソー 車両の冷却システム
CN1957165B (zh) * 2004-05-26 2013-03-20 贝洱公司 冷却***
SE530033C2 (sv) * 2006-06-30 2008-02-12 Scania Cv Abp Kylanordning för ett motorfordon
US7814966B2 (en) * 2007-02-05 2010-10-19 Gm Global Technology Operations, Inc. Variable flow heat exchanger system and method
SE531200C2 (sv) * 2007-03-15 2009-01-13 Scania Cv Ab Kylararrangemang i ett fordon
JP2009138635A (ja) * 2007-12-06 2009-06-25 Mitsubishi Heavy Ind Ltd 内燃機関の吸気冷却装置およびこれを用いた自動車
US8463493B2 (en) * 2010-04-01 2013-06-11 GM Global Technology Operations LLC Powertrain thermal control with grille airflow shutters
CN103038081B (zh) * 2010-08-03 2015-12-16 丰田自动车株式会社 车辆用冷却结构
KR101601050B1 (ko) * 2010-10-06 2016-03-22 현대자동차주식회사 차량용 냉각장치
FR2981887B1 (fr) * 2011-11-02 2015-04-17 Renault Sas Guide d'air structurel et modulaire a fonction de face avant technique de moteur de vehicule automobile et vehicule ainsi equipe.
US10226985B2 (en) * 2012-12-31 2019-03-12 Thermo King Corporation Device and method for enhancing heat exchanger airflow
DE102013103551A1 (de) * 2013-04-09 2014-10-09 Hbpo Gmbh Luftführung
FR3020602B1 (fr) * 2014-04-30 2017-12-22 Valeo Systemes Thermiques Guide d'air et module de guide d'air
KR101542992B1 (ko) * 2014-05-08 2015-08-07 현대자동차 주식회사 자동차의 냉각 장치
EP3243679B1 (fr) * 2016-05-11 2019-07-10 Ningbo Geely Automobile Research & Development Co., Ltd. Obturateur d'air de suralimentation
WO2018055943A1 (fr) * 2016-09-22 2018-03-29 株式会社デンソー Module de refroidissement

Also Published As

Publication number Publication date
CN114364560A (zh) 2022-04-15
FR3100484B1 (fr) 2022-05-20
FR3100484A1 (fr) 2021-03-12
US20220348072A1 (en) 2022-11-03
WO2021048495A1 (fr) 2021-03-18

Similar Documents

Publication Publication Date Title
FR3100584A1 (fr) Dispositif de ventilation pour module de refroidissement de véhicule automobile
FR2917714A1 (fr) Turboreacteur pour aeronef
WO2021048494A1 (fr) Procédé de fabrication d'un dispositif de ventilation pour module de refroidissement de véhicule automobile à turbomachine tangentielle
WO2020188188A1 (fr) Module de refroidissement pour vehicule automobile electrique a turbomachine tangentielle
EP4077012A1 (fr) Module de dispositif de ventilation pour module de refroidissement de véhicule automobile, dispositif de ventilation comportant un tel module et module de refroidissement pour véhicule automobile comprenant un tel dispositif de ventilation
WO2020188191A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
WO2022200168A1 (fr) Module de refroidissement pour vehicule automobile electrique ou hybride
EP4028274A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
FR3100483A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
WO2022106147A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle avec échangeur de chaleur supplémentaire
FR3100488A1 (fr) Module de refroidissement pour véhicule automobile à deux turbomachines tangentielles et au moins un échangeur thermique
FR3067398B1 (fr) Dispositif de ventilation pour vehicule automobile
WO2020239485A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
WO2020188192A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
FR3093763A1 (fr) Module de refroidissement à zone sacrificielle pour véhicule automobile électrique
EP4028654A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
FR3121075A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle
WO2021123557A1 (fr) Module de refroidissement pour véhicule automobile à turbomachine tangentielle
WO2021123552A1 (fr) Dispositif de ventilation pour module de refroidissement de véhicule automobile et module de refroidissement pour véhicule automobile comprenant un tel dispositif de ventilation
FR3093762A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
EP4314511A1 (fr) Module de refroidissement pour vehicule automobile electrique ou hybride
FR3046755B1 (fr) Systeme de gestion d'entree d'air pour face avant de vehicule automobile
WO2012084499A1 (fr) Hélice de ventilateur et module de refroidissement associé
FR3115734A1 (fr) Module de refroidissement pour véhicule automobile électrique ou hybride à turbomachine tangentielle
FR3093757A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528