EP3984089A1 - Proton-exchange-membrane fuel cell - Google Patents

Proton-exchange-membrane fuel cell

Info

Publication number
EP3984089A1
EP3984089A1 EP20742341.9A EP20742341A EP3984089A1 EP 3984089 A1 EP3984089 A1 EP 3984089A1 EP 20742341 A EP20742341 A EP 20742341A EP 3984089 A1 EP3984089 A1 EP 3984089A1
Authority
EP
European Patent Office
Prior art keywords
plate
cathode
anode
pipe
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20742341.9A
Other languages
German (de)
French (fr)
Inventor
Christophe Baverel
Julien Rapior
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symbio SAS
Original Assignee
Symbio SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symbio SAS filed Critical Symbio SAS
Publication of EP3984089A1 publication Critical patent/EP3984089A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • H01M4/8631Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the field of fuel cells and more particularly to an advantageous embodiment of an end anode and / or cathode plate.
  • a hydrogen cell or fuel cell of the proton exchange membrane type or in English: “Proton Exchange Membrane Fuel Cell” or PEMFC makes it possible, in a known manner, to produce electrical energy, by producing by means of an assembly membrane electrode, comprising an electrolyte surrounded by two layers of catalyst, a chemical synthesis reaction of water.
  • Hydrogen H2 is brought to the level of an anode, placed on one side of the membrane. It decomposes, by oxidation: 2 H2 -> 4 H + + 4 e-, into two protons hydrogen H + and two electrons e-.
  • the two H + protons migrate through the membrane electrode assembly to a cathode, located on the other side of the membrane electrode assembly.
  • O2 oxygen is supplied, advantageously in the form of air, at the cathode. If an electrical circuit is established between the anode and the cathode, allowing a circulation of the e- electrons, they join the cathode. There, they allow a reduction of oxygen O 2 into two oxygen ions O 2 -: 02 + 4 e- -> 2 02-. The hydrogen protons and the oxygen ions combine at the cathode to form water: 4 H + + 2 02- -> 2 H20. This reaction is strongly exothermic. The circulation of electrons e- creates electrical energy.
  • Each anode, respectively cathode, of a cell is then in electrical contact with the cathode, respectively anode, of the next, respectively previous cell.
  • the cells are connected in series.
  • the electrical circuit then connects the first anode / cathode with the last cathode / anode of the stack.
  • An anode, respectively cathode, respectively membrane electrode assembly is integrated in an anode plate, respectively a cathode plate, respectively a membrane plate.
  • a plate comprises its element: anode or cathode or membrane electrode assembly, completed by assembly elements, as well as pipes allowing the supply of reactive gases or the outlet of reaction products.
  • all types of plate anode, cathode, bipolar (described later) or membrane, have a similar or at least superimposable shape in order to be able to be stacked.
  • All the plates are pierced with at least one superimposed and facing slot so as to form at least one pipe transporting hydrogen so as to supply this gas to the anodes.
  • All the plates are pierced with at least one superimposed and facing lumen so as to form at least one pipe carrying air so as to supply oxygen to the cathodes and extract the water produced by the chemical reaction.
  • All the plates are also pierced with at least one superimposed and facing slot so as to form at least one pipe in which a cooling fluid circulates making it possible to remove the significant heat produced by the chemical reaction.
  • a fuel cell can be produced by stacking in order: a first terminal T1, an end anode plate EA, a plurality of membrane plates ME, a bipolar plate B1 being interposed between each two successive ME membrane plates, an EK extremal cathode plate and a second T2 terminal.
  • a first terminal T1 an end anode plate EA
  • a plurality of membrane plates ME a plurality of membrane plates ME
  • a bipolar plate B1 being interposed between each two successive ME membrane plates
  • an EK extremal cathode plate and a second T2 terminal.
  • the invention proposes to reduce the number of different parts, here to four.
  • the invention proposes to reuse a bipolar plate B1 at at least one and advantageously at both ends of the stack and to produce both the anode end plate EA and the cathode end plate EK.
  • the subject of the invention is a fuel cell of the proton exchange membrane type, comprising, stacked in order: a first terminal, an end anode plate, a plurality of membrane plates, a bipolar plate being interposed between each two successive membrane plates, an extremal cathode plate and a second terminal, a bipolar plate comprising pre-assembled in this order: a middle cathode plate and a middle anode plate, each middle anode plate, extremal anode, middle cathode and extremal cathode comprising at least one pipe for dispensing a reagent, where the anode end plate is produced by means of a bipolar plate, of the same orientation, and an anode closure means capable of blocking all the pipes of said at least one pipe of the plate middle cathode of said bipolar plate, and / or the cathode end plate is produced by means of a bipolar plate, of the same orientation, and of a means of cathode sealing capable of sealing all the pipes of said at least one pipe
  • At least one pipe comprises at least one main pipe passing through the plates of the stack and at least one secondary pipe for distributing reagent to a plate, an anode or cathode sealing means closes a pipe by blocking a secondary pipe,
  • an anode or cathode closure means closes a secondary pipe by blocking an inlet of the secondary pipe
  • an anode or cathode closure means closes a secondary pipe by blocking an outlet of the secondary pipe
  • an anode or cathode sealing means closes a pipe by blocking a main pipe
  • an anode or cathode sealing means comprises a seal arranged between a terminal and an adjacent end plate, preferably by depositing on the terminal and / or on the end plate,
  • the seal is deposited simultaneously with a seal providing the seal between the terminal and the end plate
  • a gasket comprises a resin, a polymer and / or an adhesive.
  • FIG. 1 illustrates in perspective view a fuel cell
  • FIG. 2 illustrates in perspective view a stack of a fuel cell and its operating principle
  • FIG. 3 illustrates a front view of a half bipolar plate, anode side
  • FIG. 4 illustrates a front view of a half bipolar plate, cathode side
  • FIG. 5 illustrates a sectional view of the stack and the various pipes
  • FIG. 6 illustrates a cutaway profile view of the same stack at the interface with a terminal
  • FIG. 7 illustrates in perspective view the interface with a terminal according to the prior art
  • FIG. 8 illustrates in perspective view the interface with a terminal according to a first embodiment of the invention
  • FIG. 9 illustrates in perspective view the interface with a terminal according to a second embodiment of the invention
  • FIG. 10 illustrates in perspective view the interface with a terminal according to a third embodiment of the invention.
  • a fuel cell P of the proton exchange membrane type comprises, stacked in order: a first terminal T1, an end anode plate EA, a plurality of membrane plates ME, a bipolar plate B1 being interposed between each two successive membrane plates ME, an extremal cathode plate EK and a second terminal T2.
  • the terminals T1, T2 serve as electrodes, here Tl is the anode and T2 is the cathode of the cell P. They still perform a function of maintaining the assembly of the plates EA, ME, Bl, EK as well as the connection networks: reactive gases (Air and H2) and coolant, via the IO ports.
  • a membrane plate ME comprises a membrane 1 around which the chemical reaction takes place and is organized. For this, each membrane 1 must be supplied with hydrogen by an anode, arranged on one side of the membrane 1, here below, and must be supplied with air by a cathode, arranged on the other side of the membrane 1, here above. Also, a membrane plate ME is surrounded by an anode plate: a median anode plate MA or an end anode plate EA, arranged on one side and by a cathode plate: a median cathode plate MK or an end cathode plate EA. An anode plate MA, EA, a membrane plate ME and a cathode plate MK, EK form a CE cell.
  • the number of ME membrane plates in a stack can be any and reach several tens or hundreds. Between two membrane plates is systematically arranged an assembly comprising a median anode plate MA and a median cathode plate MK. These two MA, MK plates are advantageously pre-assembled in the form of a bipolar plate B1. In a stack P, the bipolar plates B1 all have the same orientation: thus for FIG. 1, the median anode plate MA below (in order to end up with above a membrane) and middle cathode MK plate above (in order to end up below a membrane). The stack is framed by an end anode plate EA, here placed below, and by an end cathode plate EK, here placed above.
  • each plate EA, ME, B1, EK comprises at least one pipe 2, 3, 6, 7.
  • each plate EA, EK, ME, Bl and therefore MA and MK is drilled in an identical plane, in order to be superimposable, by six holes 10, 11, 12, 13, 14, 15. The stack of each of the holes forms a main pipe 2, 6.
  • a first series of holes, for example holes 10, passes through all the plates of the stack and forms a main pipe 2 allowing air to be supplied to all the plates which need it, namely the cathode plates MK, EK.
  • a second series of holes, for example holes 11, passes through all the plates of the stack and forms a main pipe 2 allowing a return of the air not consumed from these same cathode plates MK, EK.
  • Each cathode plate MK, EK also comprises at least one secondary pipe 3 making a tap on the main air supply line 2 and at least one secondary pipe 3 making a tap on the main air return pipe 2.
  • a first series of holes, for example holes 12, passes through all the plates of the stack and forms a main pipe 6 allowing a supply of hydrogen to all the plates which need it, namely the anode plates MA, EA.
  • a second series of holes, for example holes 13, passes through all the plates of the stack and forms a main pipe 6 allowing a return of the hydrogen not consumed from these same anode plates MA, EA.
  • Each anode plate MA, EA further comprises at least one secondary pipe 7 making a tap on the main hydrogen supply pipe 6 and at least one secondary pipe 7 making a tap on the main hydrogen return pipe 6.
  • the holes 14, 15 form two pipes in which a cooling fluid circulates, in order to absorb the thermal production of the reaction. This fluid circulates between the bipolar plates B1 so as to remove the heat of reaction.
  • the air is supplied by the holes 10.
  • the cathode plate MK takes it through its hole 10 and distributes it, via a first diffuser 5, by its lower face to the upper face of the ME membrane located below.
  • the surplus air, not used by the reaction is recovered, via a second diffuser 5, by the same MK cathode plate which returns it through its hole 11. This is repeated for all the MK, EK cathode plates and ME membranes.
  • the hydrogen is supplied through the holes 12.
  • the anode plate MA picks it up through its hole 12 and distributes it, via a first diffuser 9, through its upper face to the lower face of the ME membrane located above. .
  • the surplus hydrogen, not used by the reaction is recovered, via a second diffuser 9, by the same anode plate MA which returns it through its hole 13. This is repeated for all the anode plates MA, EA and membranes ME.
  • FIG. 3 shows a front view of a bipolar half-plate B1, ie an assembly comprising, superimposed, a middle anode plate MA and a middle cathode plate MK, here seen from the anode side MA.
  • a bipolar half-plate B1 ie an assembly comprising, superimposed, a middle anode plate MA and a middle cathode plate MK, here seen from the anode side MA.
  • a hydrogen diffuser 9 makes it possible to spread this hydrogen in the direction of the adjacent surface of the membrane 1.
  • the other half-plate (not shown) similarly ensures, through the hole 12, a recovery of the excess hydrogen.
  • FIG. 4 shows a front view of a bipolar half-plate B1, here seen from the cathode side MK. It is possible to see secondary pipes 3, connecting the main pipe 2 formed by the hole 10 to outlets 4 opening out to the surface of the cathode plate MK. An air diffuser 5 makes it possible to spread this air in the direction of the adjacent surface of the membrane 1. The other half-plate (not shown) similarly ensures, through the hole 11, a recovery of the excess air.
  • FIG. 5 shows a sectional side view of a stack of half plates.
  • a membrane plate ME There is thus successively a membrane plate ME, a cathode MK or anode MA plate, an anode MA or cathode MK plate, and again a membrane plate ME, and this periodically.
  • a membrane plate ME and its two immediately adjacent anode MA, EA and cathode MK, EK plates form a CE cell.
  • Two adjacent anode MA and cathode MK plates, therefore belonging to two adjacent but distinct CE cells are assembled, for example by means of welds 20, to form a bipolar plate B1.
  • There are holes 10-13 which form the main pipes 2, 6 in which circulates a main flow 16.
  • This secondary flow 17 opens at the level of the outputs 4, 8 for come into contact with a membrane 1.
  • the sealing of the membrane plate ME with its adjacent cathode plate MK is achieved by means of gaskets 21.
  • the sealing of the membrane plate ME with its adjacent anode plate MA is carried out by means of gaskets 22.
  • FIG. 6 showing a cut profile view of a stack of half-plates near a terminal, for example T2.
  • the ME membrane plate closest to terminal T2 only requires a cathode plate between it and the terminal to complete the last CE cell. However, this would lead to the production of a specific part.
  • the last cathode plate or extremal cathode plate EK is on the contrary made by a bipolar plate B1.
  • This bipolar plate B1 is correctly oriented to provide a cathode plate MK in contact with the last membrane plate ME .
  • the bipolar plate B1 used as extremal cathode plate EK is oriented like the other bipolar plates B1 of the stack, ie as here with the cathode plate MK below and the anode plate MA above.
  • a well-oriented bipolar plate B1 provides the last membrane plate ME with a cathode plate MK which provides all the functions expected of such a cathode plate and in particular the supplies / returns of reactive gas, here air, and the seals.
  • the accompanying MA anode plate while functionally unnecessary, is in no way bothersome.
  • the only drawback of this arrangement is that the accompanying anode plate MA leaves at least one line 2, 3, 6, 7 of reactive gas, here hydrogen, which is also useless allowing a possible unnecessary circulation of reactive gas to persist.
  • a bipolar plate B1 as end cathode plate EK must be advantageously accompanied by the addition of an OK closure means condemning said at least one pipe 2, 3, 6, 7.
  • This closure means concerning here the extremal cathode plate EK is called cathode plugging means OK.
  • Such means must be capable of closing off all the possible ramifications of said at least one pipe 2, 3, 6, 7, in order to prevent or limit any unnecessary flow of reactive gas, here hydrogen.
  • the membrane plate ME closest to the terminal T1 requires, between it and the terminal only an anode plate to complete the last cell CE.
  • the last anode plate or end anode plate EA is produced by a bipolar plate B1.
  • This plate bipolar B1 is correctly oriented to provide an anode plate MA in contact with the last membrane plate ME.
  • the bipolar plate B1 used as the extremal anode plate EA is oriented like the other bipolar plates B1 of the stack, ie for example as here with the cathode plate MK below and the anode plate MA above.
  • a well-oriented bipolar plate B1 provides the last membrane plate ME with an anode plate MA which performs all the functions expected of such an anode plate and in particular the reactive gas feeds / returns and the seals.
  • the accompanying MK cathode plate while functionally unnecessary, is in no way bothersome.
  • the only drawback of this arrangement is that the accompanying cathode plate MK leaves at least one line 2, 3, 6, 7 of reactive gas, here air, which is also useless leaving a possible unnecessary circulation of reactive gas to persist.
  • a bipolar plate B1 as an end anode plate EA must advantageously be accompanied by the addition of a closure means OA condemning said at least one pipe 2, 3, 6, 7.
  • This closure means concerning here the extremal anode plate EA is called anode sealing means OA.
  • Such means must be capable of closing off all the possible ramifications of said at least one pipe 2, 3, 6, 7, in order to prevent or limit any unnecessary flow of reactive gas, here air.
  • the stack comprises only two different parts of the membrane plates ME and of the bipolar plates B1.
  • the anode closure means OA does not constitute an additional part, with what this entails: additional management reference, separate range and production line, but only an additional or modified manufacturing step during the assembly of a P cell.
  • a reagent distribution line 2, 3, 6, 7 passes through a plate MA, MK, EA, EK and comprises at least one main line 2, 6 and at least one secondary line 3, 7 for reagent distribution.
  • an OA anode or OK cathode closure means can block a pipe at any point of said pipe 2, 3, 6, 7.
  • the sealing of a pipe 2, 3, 6, 7 is carried out by blocking a secondary pipe 3, 7. According to this characteristic, several options are possible. According to a first option, the sealing of a secondary pipe 3, 7 is carried out by blocking an inlet of the secondary pipe 3, 7. According to another option, more particularly illustrated in FIG. 6, the sealing of a pipe secondary 3, 7 is produced by closing an outlet 4, 8 of the secondary pipe 3, 7.
  • the sealing of a pipe 2, 3, 6, 7 is carried out by closing off at the level of a main pipe 2, 6.
  • an anode or cathode closure means OA, OK comprises a seal 24 disposed between a terminal T1, T2 and an adjacent end plate EA, EK.
  • This seal 24 is preferably produced by deposit. This deposit can be made on the terminal T1, T2, on the end plate EA, EK, or even on both.
  • FIG. 7 illustrates the prior art, where the seal between the terminal T1 and the end anode plate EA is produced by at least one seal 21 providing the seal around the openings 10, 13, 15 and by at least one seal 23 sealing around the edge of the EA plate.
  • the seal 24 is deposited so as to fill an outlet 4, 8 of the pipe 2, 3, 6, 7.
  • FIG. 10 illustrates another characteristic, where the closure is produced at the level of the main pipe, by filling its opening, here a seal 24 fills the opening 11.
  • the seal (s) 24 are advantageously deposited during the same operation of depositing the other seals 21, 23 providing the seal between the terminal T1, T2 and the end plate EA, EK.
  • the invention does not add any part or reference, nor any manufacturing operation. Only the pre-existing seal deposition operation 21, 23 is modified in that it adds the seal (s) 24, according to the invention.
  • the material used to make a seal 24, like the pre-existing seals 21, 23, can be a resin, a polymer and / or an adhesive.
  • EA anode end plate
  • EK cathode end plate
  • MA anode middle plate
  • ME membrane plate
  • MK cathode middle plate
  • OA anode shutter
  • Tl, T2 terminals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a fuel cell (P), of proton-exchange-membrane type, comprising, stacked in the following order: a first terminal (T1), an end anode plate (EA), a plurality of membrane plates (ME), a bipolar plate (BI) being inserted between every two membrane plates (ME) in succession, an end cathode plate (EK) and a second terminal (T2), a bipolar plate (BI) comprising, preassembled in the following order: a medial cathode plate (MK) and a medial anode plate (MA), each medial anode (MA), end anode (EA), medial cathode (MK) and end cathode (MK) plate comprising at least one duct for distributing a reactant, where the anode end plate (EA) is produced by means of a bipolar plate (BI), of the same orientation, and of an anode obturating means capable of obturating all of the ducts of said at least one duct of the medial cathode plate (MK) of said bipolar plate (BI), and the cathode end plate (EK) is produced by means of a bipolar plate (BI), of the same orientation, and of a cathode obturating means capable of obturating all of the ducts of said at least one duct of the medial anode plate (MA) of said bipolar plate (BI).

Description

PILE À COMBUSTIBLE À MEMBRANE ÉCHANGEUSE DE PROTONS PROTON EXCHANGER MEMBRANE FUEL CELL
DESCRIPTION DESCRIPTION
La présente invention concerne le domaine de piles à combustible et plus particulièrement un mode de réalisation avantageux d'une plaque anode et/ou cathode extrémale. The present invention relates to the field of fuel cells and more particularly to an advantageous embodiment of an end anode and / or cathode plate.
Une pile à hydrogène ou pile à combustible de type à membrane échangeuse de proton ou en anglais : « Proton Exchange Membrane Fuel Cell » ou PEMFC permet, de manière connue, de produire de l'énergie électrique, en réalisant au moyen d'un assemblage membrane électrode, comprenant un électrolyte entouré de deux couches de catalyseur, une réaction chimique de synthèse de l'eau. De l'hydrogène H2 est apporté au niveau d'une anode, disposée d'un côté de la membrane. Il se décompose, par une oxydation : 2 H2 -> 4 H+ + 4 e-, en deux protons hydrogène H+ et en deux électrons e- . Les deux protons H+ migrent au travers de l'assemblage membrane électrode jusqu'à une cathode, disposée de l'autre côté de l'assemblage membrane électrode. De l'oxygène 02 est apporté, avantageusement sous forme d'air, au niveau de la cathode. Si un circuit électrique est établi entre l'anode et la cathode, permettant une circulation des électrons e-, ceux-ci rejoignent la cathode. Là, ils permettent une réduction de l'oxygène 02 en deux ions oxygène 02- : 02 + 4 e- -> 2 02-. Les protons hydrogène et les ions oxygène se combinent, au niveau de la cathode, pour former de l'eau : 4 H+ + 2 02- -> 2 H20. Cette réaction est fortement exothermique. La circulation des électrons e- crée l'énergie électrique. A hydrogen cell or fuel cell of the proton exchange membrane type or in English: “Proton Exchange Membrane Fuel Cell” or PEMFC makes it possible, in a known manner, to produce electrical energy, by producing by means of an assembly membrane electrode, comprising an electrolyte surrounded by two layers of catalyst, a chemical synthesis reaction of water. Hydrogen H2 is brought to the level of an anode, placed on one side of the membrane. It decomposes, by oxidation: 2 H2 -> 4 H + + 4 e-, into two protons hydrogen H + and two electrons e-. The two H + protons migrate through the membrane electrode assembly to a cathode, located on the other side of the membrane electrode assembly. O2 oxygen is supplied, advantageously in the form of air, at the cathode. If an electrical circuit is established between the anode and the cathode, allowing a circulation of the e- electrons, they join the cathode. There, they allow a reduction of oxygen O 2 into two oxygen ions O 2 -: 02 + 4 e- -> 2 02-. The hydrogen protons and the oxygen ions combine at the cathode to form water: 4 H + + 2 02- -> 2 H20. This reaction is strongly exothermic. The circulation of electrons e- creates electrical energy.
Il est connu pour réaliser une cellule de pile à combustible de superposer une anode, avantageusement métallique, un assemblage membrane électrode et une cathode, avantageusement métallique, avantageusement sous forme de couches minces. It is known to make a fuel cell cell to superimpose an anode, advantageously metallic, a membrane electrode assembly and a cathode, advantageously metallic, advantageously in the form of thin layers.
Une cellule ne produisant individuellement qu'une faible énergie électrique, il est encore connu de superposer plusieurs dizaines ou centaines de telles cellules dans un empilage. Chaque anode, respectivement cathode, d'une cellule est alors en contact électrique avec la cathode, respectivement anode, de la cellule suivante, respectivement précédente. Les cellules sont connectées en série. Le circuit électrique relie alors la première anode/cathode avec la dernière cathode/anode de l'empilage. Since a cell individually produces only a small amount of electrical energy, it is still known to superimpose several tens or hundreds of such cells in a stack. Each anode, respectively cathode, of a cell is then in electrical contact with the cathode, respectively anode, of the next, respectively previous cell. The cells are connected in series. The electrical circuit then connects the first anode / cathode with the last cathode / anode of the stack.
Une anode, respectivement cathode, respectivement assemblage membrane électrode, est intégrée dans une plaque anode, respectivement une plaque cathode, respectivement une plaque membrane. Une plaque comprend son élément : anode ou cathode ou assemblage membrane électrode, complété par des éléments d'assemblage, ainsi que des canalisations permettant l'amenée des gaz réactifs ou la sortie des produits de réaction. An anode, respectively cathode, respectively membrane electrode assembly, is integrated in an anode plate, respectively a cathode plate, respectively a membrane plate. A plate comprises its element: anode or cathode or membrane electrode assembly, completed by assembly elements, as well as pipes allowing the supply of reactive gases or the outlet of reaction products.
Ainsi, tous les types de plaque : anode, cathode, bipolaire (décrite plus loin) ou membrane, présentent une forme similaire ou du moins superposable afin de pouvoir être empilées. Toutes les plaques sont percées d'au moins une lumière superposée et en regard de manière à former au moins une canalisation transportant de l'hydrogène de manière à apporter ce gaz aux anodes. Toutes les plaques sont percées d'au moins une lumière superposée et en regard de manière à former au moins une canalisation transportant de l'air de manière à apporter de l'oxygène aux cathodes et extraire l'eau produite par la réaction chimique. Toutes les plaques sont encore percées d'au moins une lumière superposée et en regard de manière à former au moins une canalisation dans laquelle circule un fluide de refroidissement permettant d'évacuer la chaleur importante produite par la réaction chimique. Thus, all types of plate: anode, cathode, bipolar (described later) or membrane, have a similar or at least superimposable shape in order to be able to be stacked. All the plates are pierced with at least one superimposed and facing slot so as to form at least one pipe transporting hydrogen so as to supply this gas to the anodes. All the plates are pierced with at least one superimposed and facing lumen so as to form at least one pipe carrying air so as to supply oxygen to the cathodes and extract the water produced by the chemical reaction. All the plates are also pierced with at least one superimposed and facing slot so as to form at least one pipe in which a cooling fluid circulates making it possible to remove the significant heat produced by the chemical reaction.
Il est encore connu de pré assembler dos à dos une plaque anode et une plaque cathode, pour obtenir une plaque bipolaire. Une pile peut ensuite être assemblée en empilant périodiquement une plaque bipolaire et une plaque membrane. Si toutes les plaques bipolaires sont disposées dans le même sens, on retrouve bien la succession périodique : anode, assemblage membrane électrode, cathode, anode, etc... Seules les deux extrémités de la pile diffèrent en ce qu'elles comportent une unique anode ou cathode extrémale ainsi que des terminaux, permettant de connecter la pile à combustible aux différents flux de gaz réactifs et de fluide de refroidissement. Telle qu'illustrée à la figure 1, une pile à combustible peut être réalisée en empilant dans l'ordre : un premier terminal Tl, une plaque anode extrémale EA, une pluralité de plaques membranes ME, une plaque bipolaire Bl étant intercalée entre chaque deux plaques membranes ME successives, une plaque cathode extrémale EK et un deuxième terminal T2. Un tel assemblage nécessite six pièces différentes, avec six références de gestion différentes, et six circuits de fabrication différents. Ceci conduit à des coûts de productions inutilement augmentés. It is also known practice to pre-assemble back to back an anode plate and a cathode plate, to obtain a bipolar plate. A stack can then be assembled by periodically stacking a bipolar plate and a membrane plate. If all the bipolar plates are arranged in the same direction, we find the periodic succession: anode, membrane electrode assembly, cathode, anode, etc ... Only the two ends of the cell differ in that they have a single anode or extremal cathode as well as terminals, making it possible to connect the fuel cell to the various streams of reactive gases and of cooling fluid. As illustrated in Figure 1, a fuel cell can be produced by stacking in order: a first terminal T1, an end anode plate EA, a plurality of membrane plates ME, a bipolar plate B1 being interposed between each two successive ME membrane plates, an EK extremal cathode plate and a second T2 terminal. Such an assembly requires six different parts, with six different management references, and six different manufacturing circuits. This leads to unnecessarily increased production costs.
L'invention se propose de réduite le nombre de pièces différentes, ici à quatre. The invention proposes to reduce the number of different parts, here to four.
Pour cela, l'invention se propose de réutiliser une plaque bipolaire Bl à l'une au moins et avantageusement aux deux extrémités de l'empilement et de pour réaliser tant la plaque extrémale anode EA que la plaque extrémale cathode EK. For this, the invention proposes to reuse a bipolar plate B1 at at least one and advantageously at both ends of the stack and to produce both the anode end plate EA and the cathode end plate EK.
L'invention a pour objet une pile à combustible, du type à membrane échangeuse de protons, comprenant, empilés dans l'ordre : un premier terminal, une plaque anode extrémale, une pluralité de plaques membranes, une plaque bipolaire étant intercalée entre chaque deux plaques membranes successives, une plaque cathode extrémale et un deuxième terminal, une plaque bipolaire comprenant préassemblées dans cet ordre : une plaque cathode médiane et une plaque anode médiane, chaque plaque anode médiane, anode extrémale, cathode médiane et cathode extrémale comprenant au moins une canalisation de distribution d'un réactif, où la plaque extrémale anode est réalisée au moyen d'une plaque bipolaire, de même orientation, et d'un moyen d'obturation anode apte à obturer toutes les canalisations de ladite au moins une canalisation de la plaque cathode médiane de ladite plaque bipolaire, et/ou la plaque extrémale cathode est réalisée au moyen d'une plaque bipolaire, de même orientation, et d'un moyen d'obturation cathode apte à obturer toutes les canalisations de ladite au moins une canalisation de la plaque anode médiane de ladite plaque bipolaire. The subject of the invention is a fuel cell of the proton exchange membrane type, comprising, stacked in order: a first terminal, an end anode plate, a plurality of membrane plates, a bipolar plate being interposed between each two successive membrane plates, an extremal cathode plate and a second terminal, a bipolar plate comprising pre-assembled in this order: a middle cathode plate and a middle anode plate, each middle anode plate, extremal anode, middle cathode and extremal cathode comprising at least one pipe for dispensing a reagent, where the anode end plate is produced by means of a bipolar plate, of the same orientation, and an anode closure means capable of blocking all the pipes of said at least one pipe of the plate middle cathode of said bipolar plate, and / or the cathode end plate is produced by means of a bipolar plate, of the same orientation, and of a means of cathode sealing capable of sealing all the pipes of said at least one pipe of the middle anode plate of said bipolar plate.
Des caractéristiques ou des modes de réalisation particuliers, utilisables seuls ou en combinaison, sont : - ladite au moins une canalisation comprend au moins une canalisation principale traversant les plaques de l'empilement et au moins une canalisation secondaire de distribution de réactif à une plaque, un moyen d'obturation anode ou cathode obture une canalisation en obturant une canalisation secondaire, Particular characteristics or embodiments, which can be used alone or in combination, are: - Said at least one pipe comprises at least one main pipe passing through the plates of the stack and at least one secondary pipe for distributing reagent to a plate, an anode or cathode sealing means closes a pipe by blocking a secondary pipe,
- un moyen d'obturation anode ou cathode obture une canalisation secondaire en obturant une entrée de la canalisation secondaire, - an anode or cathode closure means closes a secondary pipe by blocking an inlet of the secondary pipe,
- un moyen d'obturation anode ou cathode obture une canalisation secondaire en obturant une sortie de la canalisation secondaire, - an anode or cathode closure means closes a secondary pipe by blocking an outlet of the secondary pipe,
- un moyen d'obturation anode ou cathode obture une canalisation en obturant une canalisation principale, - an anode or cathode sealing means closes a pipe by blocking a main pipe,
- un moyen d'obturation anode ou cathode comprend un joint disposé entre un terminal et une plaque extrémale adjacente, préférentiellement par dépôt sur le terminal et/ou sur la plaque extrémale, - an anode or cathode sealing means comprises a seal arranged between a terminal and an adjacent end plate, preferably by depositing on the terminal and / or on the end plate,
- le joint est déposé de manière à remplir une sortie de la canalisation, - the seal is placed so as to fill an outlet of the pipe,
- le joint est déposé de manière à entourer une sortie de la canalisation - the seal is placed so as to surround an outlet of the pipe
- le joint est déposé simultanément avec un joint réalisant l'étanchéité entre le terminal et la plaque extrémale, - the seal is deposited simultaneously with a seal providing the seal between the terminal and the end plate,
- un joint comprend une résine, un polymère et/ou un adhésif. - a gasket comprises a resin, a polymer and / or an adhesive.
L'invention sera mieux comprise à la lecture de la description qui suit, faite uniquement à titre d'exemple, et en référence aux figures en annexe dans lesquelles The invention will be better understood on reading the description which follows, given solely by way of example, and with reference to the appended figures in which
[Fig. 1] illustre en vue perspective une pile à combustible; [Fig. 1] illustrates in perspective view a fuel cell;
[Fig. 2] illustre en vue perspective un empilement d'une pile à combustible et son principe de fonctionnement, [Fig. 2] illustrates in perspective view a stack of a fuel cell and its operating principle,
[Fig. 3] illustre en vue de face une demie plaque bipolaire, côté anode, [Fig. 4] illustre en vue de face une demie plaque bipolaire, côté cathode, [Fig. 5] illustre en vue de profil coupée l'empilement et les différentes canalisations, [Fig. 6] illustre en vue de profil coupée le même empilement au niveau de l'interface avec un terminal, [Fig. 3] illustrates a front view of a half bipolar plate, anode side, [Fig. 4] illustrates a front view of a half bipolar plate, cathode side, [Fig. 5] illustrates a sectional view of the stack and the various pipes, [Fig. 6] illustrates a cutaway profile view of the same stack at the interface with a terminal,
[Fig. 7] illustre en vue perspective l'interface avec un terminal selon l'art antérieur, [Fig. 7] illustrates in perspective view the interface with a terminal according to the prior art,
[Fig. 8] illustre en vue perspective l'interface avec un terminal selon un premier mode de réalisation de l'invention, [Fig. 8] illustrates in perspective view the interface with a terminal according to a first embodiment of the invention,
[Fig. 9] illustre en vue perspective l'interface avec un terminal selon un deuxième mode de réalisation de l'invention, [Fig. 9] illustrates in perspective view the interface with a terminal according to a second embodiment of the invention,
[Fig. 10] illustre en vue perspective l'interface avec un terminal selon un troisième mode de réalisation de l'invention. [Fig. 10] illustrates in perspective view the interface with a terminal according to a third embodiment of the invention.
En référence à la figure 1, une pile à combustible P du type à membrane échangeuse de protons, comprend, empilés dans l'ordre : un premier terminal Tl, une plaque anode extrémale EA, une pluralité de plaques membranes ME, une plaque bipolaire Bl étant intercalée entre chaque deux plaques membranes ME successives, une plaque cathode extrémale EK et un deuxième terminal T2. With reference to FIG. 1, a fuel cell P of the proton exchange membrane type, comprises, stacked in order: a first terminal T1, an end anode plate EA, a plurality of membrane plates ME, a bipolar plate B1 being interposed between each two successive membrane plates ME, an extremal cathode plate EK and a second terminal T2.
Les terminaux Tl, T2 servent d'électrodes, ici Tl est l'anode et T2 est la cathode de la pile P. Ils assurent encore une fonction de maintien de l'assemblage des plaques EA, ME, Bl, EK ainsi que la connexion aux réseaux : gaz réactifs (Air et H2) et liquide de refroidissement, via les ports IO. The terminals T1, T2 serve as electrodes, here Tl is the anode and T2 is the cathode of the cell P. They still perform a function of maintaining the assembly of the plates EA, ME, Bl, EK as well as the connection networks: reactive gases (Air and H2) and coolant, via the IO ports.
Une plaque membrane ME comporte une membrane 1 autour de laquelle se déroule et s'organise la réaction chimique. Pour cela, chaque membrane 1 doit être alimentée en hydrogène par une anode, disposée d'un côté de la membrane 1, ici en dessous, et doit être alimentée en air par une cathode, disposée de l'autre côté de la membrane 1, ici au-dessus. Aussi, une plaque membrane ME est encadrée par une plaque anode : une plaque anode médiane MA ou une plaque anode extrémale EA, disposée d'un côté et par une plaque cathode : une plaque cathode médiane MK ou une plaque cathode extrémale EA. Une plaque anode MA, EA, une plaque membrane ME et une plaque cathode MK, EK forment une cellule CE. Le nombre de plaques membranes ME d'un empilement peut être quelconque et atteindre plusieurs dizaines ou centaines. Entre deux plaques membranes est systématiquement disposée un ensemble comprenant une plaque anode médiane MA et une plaque cathode médiane MK. Ces deux plaques MA, MK sont avantageusement préassemblées sous forme d'une plaque bipolaire Bl. Dans une pile P, les plaques bipolaires Bl ont toutes la même orientation : ainsi pour la figure 1, plaque anode médiane MA en dessous (afin de se retrouver au-dessus d'une membrane) et plaque cathode médiane MK au-dessus (afin de se retrouver en dessous d'une membrane). L'empilement est encadré par une plaque anode extrémale EA, ici disposée en dessous, et par une plaque cathode extrémale EK, ici disposée au-dessus. A membrane plate ME comprises a membrane 1 around which the chemical reaction takes place and is organized. For this, each membrane 1 must be supplied with hydrogen by an anode, arranged on one side of the membrane 1, here below, and must be supplied with air by a cathode, arranged on the other side of the membrane 1, here above. Also, a membrane plate ME is surrounded by an anode plate: a median anode plate MA or an end anode plate EA, arranged on one side and by a cathode plate: a median cathode plate MK or an end cathode plate EA. An anode plate MA, EA, a membrane plate ME and a cathode plate MK, EK form a CE cell. The number of ME membrane plates in a stack can be any and reach several tens or hundreds. Between two membrane plates is systematically arranged an assembly comprising a median anode plate MA and a median cathode plate MK. These two MA, MK plates are advantageously pre-assembled in the form of a bipolar plate B1. In a stack P, the bipolar plates B1 all have the same orientation: thus for FIG. 1, the median anode plate MA below (in order to end up with above a membrane) and middle cathode MK plate above (in order to end up below a membrane). The stack is framed by an end anode plate EA, here placed below, and by an end cathode plate EK, here placed above.
Afin de permettre une circulation des réactifs, depuis un port de connexion IO, jusqu'aux membranes 1, via les plaques anodes MA, EA et cathodes MK, EK, chaque plaque EA, ME, Bl, EK comprend au moins une canalisation 2, 3, 6, 7. Tel qu'illustré à la figure 2, chaque plaque EA, EK, ME, Bl et donc MA et MK, est percée selon un plan identique, afin d'être superposable, par six trous 10, 11, 12, 13, 14, 15. L'empilement de chacun des trous forme une canalisation principale 2, 6. In order to allow circulation of the reagents, from a connection port IO, to the membranes 1, via the anode plates MA, EA and cathodes MK, EK, each plate EA, ME, B1, EK comprises at least one pipe 2, 3, 6, 7. As illustrated in Figure 2, each plate EA, EK, ME, Bl and therefore MA and MK, is drilled in an identical plane, in order to be superimposable, by six holes 10, 11, 12, 13, 14, 15. The stack of each of the holes forms a main pipe 2, 6.
Les trous 10 et 11, disposés de part et d'autre des plaques, permettent une circulation de l'air. Une première série de trous, par exemple les trous 10, traverse toutes les plaques de l'empilement et forme une canalisation principale 2 permettant une alimentation en air de toutes les plaques qui en ont besoin, soit les plaques cathodes MK, EK. Une deuxième série de trous, par exemple les trous 11, traverse toutes les plaques de l'empilement et forme une canalisation principale 2 permettant un retour de l'air non consommé depuis ces mêmes plaques cathodes MK, EK. Chaque plaque cathode MK, EK comporte encore au moins une canalisation secondaire 3 réalisant un piquage sur la canalisation principale 2 d'alimentation en air et au moins une canalisation secondaire 3 réalisant un piquage sur la canalisation principale 2 de retour d'air. The holes 10 and 11, arranged on either side of the plates, allow air to circulate. A first series of holes, for example holes 10, passes through all the plates of the stack and forms a main pipe 2 allowing air to be supplied to all the plates which need it, namely the cathode plates MK, EK. A second series of holes, for example holes 11, passes through all the plates of the stack and forms a main pipe 2 allowing a return of the air not consumed from these same cathode plates MK, EK. Each cathode plate MK, EK also comprises at least one secondary pipe 3 making a tap on the main air supply line 2 and at least one secondary pipe 3 making a tap on the main air return pipe 2.
Les trous 12 et 13, disposés de part et d'autre des plaques, permettent une circulation de l'hydrogène. Une première série de trous, par exemple les trous 12, traverse toutes les plaques de l'empilement et forme une canalisation principale 6 permettant une alimentation en hydrogène de toutes les plaques qui en ont besoin, soit les plaques anodes MA, EA. Une deuxième série de trous, par exemple les trous 13, traverse toutes les plaques de l'empilement et forme une canalisation principale 6 permettant un retour de l'hydrogène non consommé depuis ces mêmes plaques anodes MA, EA. Chaque plaque anode MA, EA comporte encore au moins une canalisation secondaire 7 réalisant un piquage sur la canalisation principale 6 d'alimentation en hydrogène et au moins une canalisation secondaire 7 réalisant un piquage sur la canalisation principale 6 de retour d'hydrogène. The holes 12 and 13, arranged on either side of the plates, allow hydrogen to circulate. A first series of holes, for example holes 12, passes through all the plates of the stack and forms a main pipe 6 allowing a supply of hydrogen to all the plates which need it, namely the anode plates MA, EA. A second series of holes, for example holes 13, passes through all the plates of the stack and forms a main pipe 6 allowing a return of the hydrogen not consumed from these same anode plates MA, EA. Each anode plate MA, EA further comprises at least one secondary pipe 7 making a tap on the main hydrogen supply pipe 6 and at least one secondary pipe 7 making a tap on the main hydrogen return pipe 6.
Les trous 14, 15 forment deux canalisations dans lesquelles circule un fluide de refroidissement, afin d'absorber la production thermique de la réaction. Ce fluide circule entre les plaques bipolaires Bl de manière à évacuer la chaleur de réaction. The holes 14, 15 form two pipes in which a cooling fluid circulates, in order to absorb the thermal production of the reaction. This fluid circulates between the bipolar plates B1 so as to remove the heat of reaction.
Tel qu'illustré à la figure 2, où l'empilement est partiellement éclaté autour d'une plaque membrane ME, l'air est apporté par les trous 10. La plaque cathode MK le prélève par son trou 10 et le distribue, via un premier diffuseur 5, par sa face inférieure à la face supérieure de la membrane ME située en dessous. L'air en surplus, non utilisé par la réaction, est récupéré, via un deuxième diffuseur 5, par la même plaque cathode MK qui le rend par son trou 11. Ceci se reproduit pour toutes les plaques cathodes MK, EK et membranes ME. De manière analogue, l'hydrogène est apporté par les trous 12. La plaque anode MA le prélève par son trou 12 et le distribue, via un premier diffuseur 9, par sa face supérieure à la face inférieure de la membrane ME située au- dessus. L'hydrogène en surplus, non utilisé par la réaction, est récupéré, via un deuxième diffuseur 9, par la même plaque anode MA qui le rend par son trou 13. Ceci se reproduit pour toutes les plaques anodes MA, EA et membranes ME. As illustrated in FIG. 2, where the stack is partially broken up around a membrane plate ME, the air is supplied by the holes 10. The cathode plate MK takes it through its hole 10 and distributes it, via a first diffuser 5, by its lower face to the upper face of the ME membrane located below. The surplus air, not used by the reaction, is recovered, via a second diffuser 5, by the same MK cathode plate which returns it through its hole 11. This is repeated for all the MK, EK cathode plates and ME membranes. Similarly, the hydrogen is supplied through the holes 12. The anode plate MA picks it up through its hole 12 and distributes it, via a first diffuser 9, through its upper face to the lower face of the ME membrane located above. . The surplus hydrogen, not used by the reaction, is recovered, via a second diffuser 9, by the same anode plate MA which returns it through its hole 13. This is repeated for all the anode plates MA, EA and membranes ME.
Le détail des canalisations principales et secondaires est plus particulièrement illustré en référence aux figures 3, 4, 5. The detail of the main and secondary pipes is more particularly illustrated with reference to Figures 3, 4, 5.
La figure 3 montre en vue de face une demi-plaque bipolaire Bl, soit un assemblage comprenant, superposées, une plaque anode médiane MA et une plaque cathode médiane MK, ici vue du côté anode MA. On peut voir des canalisations secondaires 7, reliant la canalisation principale 6 formée par le trou 13 à des sorties 8 débouchant à la surface de la plaque anode MA. Un diffuseur d'hydrogène 9 permet de répandre cet hydrogène en direction de la surface adjacente de la membrane 1. L'autre demi-plaque (non représentée) assure de manière analogue, par le trou 12 une récupération de l'hydrogène en surplus. FIG. 3 shows a front view of a bipolar half-plate B1, ie an assembly comprising, superimposed, a middle anode plate MA and a middle cathode plate MK, here seen from the anode side MA. We can see secondary pipes 7, connecting the main pipe 6 formed by the hole 13 to outputs 8 emerging at the surface of the anode plate MA. A hydrogen diffuser 9 makes it possible to spread this hydrogen in the direction of the adjacent surface of the membrane 1. The other half-plate (not shown) similarly ensures, through the hole 12, a recovery of the excess hydrogen.
La figure 4 montre en vue de face une demi-plaque bipolaire Bl, ici vue du côté cathode MK. On peut voir des canalisations secondaires 3, reliant la canalisation principale 2 formée par le trou 10 à des sorties 4 débouchant à la surface de la plaque cathode MK. Un diffuseur d'air 5 permet de répandre cet air en direction de la surface adjacente de la membrane 1. L'autre demi-plaque (non représentée) assure de manière analogue, par le trou 11 une récupération de l'air en surplus. FIG. 4 shows a front view of a bipolar half-plate B1, here seen from the cathode side MK. It is possible to see secondary pipes 3, connecting the main pipe 2 formed by the hole 10 to outlets 4 opening out to the surface of the cathode plate MK. An air diffuser 5 makes it possible to spread this air in the direction of the adjacent surface of the membrane 1. The other half-plate (not shown) similarly ensures, through the hole 11, a recovery of the excess air.
La figure 5 montre en vue de profil coupé un empilement de demi- plaques. On trouve ainsi successivement une plaque membrane ME, une plaque cathode MK ou anode MA, une plaque anode MA ou cathode MK, et à nouveau une plaque membrane ME, et ce périodiquement. Une plaque membrane ME et ses deux plaques anode MA, EA et cathode MK, EK immédiatement adjacentes forment une cellule CE. Deux plaques anode MA et cathode MK adjacentes, donc appartenant à deux cellules CE adjacentes mais distinctes sont assemblées, par exemples au moyen de soudures 20, pour former une plaque bipolaire Bl. On retrouve les trous 10-13 qui forment les canalisations principales 2, 6 dans lesquelles circule un flot principal 16. Des aménagements dans les plaques anode MA et cathode MK ou entre elles, forment les canalisations secondaires 3, 6 qui permettent un flot secondaire 17. Ce flot secondaire 17 débouche au niveau des sorties 4, 8 pour venir en contact avec une membrane 1. FIG. 5 shows a sectional side view of a stack of half plates. There is thus successively a membrane plate ME, a cathode MK or anode MA plate, an anode MA or cathode MK plate, and again a membrane plate ME, and this periodically. A membrane plate ME and its two immediately adjacent anode MA, EA and cathode MK, EK plates form a CE cell. Two adjacent anode MA and cathode MK plates, therefore belonging to two adjacent but distinct CE cells are assembled, for example by means of welds 20, to form a bipolar plate B1. There are holes 10-13 which form the main pipes 2, 6 in which circulates a main flow 16. Arrangements in the anode MA and cathode MK plates or between them, form the secondary pipes 3, 6 which allow a secondary flow 17. This secondary flow 17 opens at the level of the outputs 4, 8 for come into contact with a membrane 1.
L'étanchéité de la plaque membrane ME avec sa plaque cathode adjacente MK est réalisée au moyen de joints 21. L'étanchéité de la plaque membrane ME avec sa plaque anode adjacente MA est réalisée au moyen de joints 22. The sealing of the membrane plate ME with its adjacent cathode plate MK is achieved by means of gaskets 21. The sealing of the membrane plate ME with its adjacent anode plate MA is carried out by means of gaskets 22.
L'invention est plus particulièrement décrite en référence à la figure 6 montrant en vue de profil coupé un empilement de demi-plaques à proximité d'un terminal, par exemple T2. La plaque membrane ME la plus proche du terminal T2 nécessite, entre elle et le terminal uniquement une plaque cathode pour terminer la dernière cellule CE. Cependant ceci conduirait à réaliser une pièce spécifique. The invention is more particularly described with reference to FIG. 6 showing a cut profile view of a stack of half-plates near a terminal, for example T2. The ME membrane plate closest to terminal T2 only requires a cathode plate between it and the terminal to complete the last CE cell. However, this would lead to the production of a specific part.
Aussi selon une caractéristique importante de l'invention, la dernière plaque cathode ou plaque cathode extrémale EK est au contraire réalisée par une plaque bipolaire Bl. Cette plaque bipolaire Bl est correctement orientée pour fournir une plaque cathode MK au contact de la dernière plaque membrane ME. Autrement dit la plaque bipolaire Bl employée comme plaque cathode extrémale EK est orientée à l'instar des autres plaques bipolaires Bl de l'empilement, soit comme ici avec la plaque cathode MK en dessous et la plaque anode MA au-dessus. Also according to an important characteristic of the invention, the last cathode plate or extremal cathode plate EK is on the contrary made by a bipolar plate B1. This bipolar plate B1 is correctly oriented to provide a cathode plate MK in contact with the last membrane plate ME . In other words, the bipolar plate B1 used as extremal cathode plate EK is oriented like the other bipolar plates B1 of the stack, ie as here with the cathode plate MK below and the anode plate MA above.
Cette (ré)utilisation d'une plaque bipolaire Bl comme plaque cathode extrémale EK est rendue possible par les quelques constations ingénieuses suivantes. Une plaque bipolaire Bl bien orientée fournit à la dernière plaque membrane ME une plaque cathode MK qui assure toutes les fonctions attendues d'une telle plaque cathode et notamment les alimentations/retours de gaz réactif, ici de l'air, et les étanchéités. La plaque anode MA accompagnante, bien que fonctionnellement inutile, n'est aucunement gênante. Le seul inconvénient de cette disposition est que la plaque anode MA accompagnante laisse persister au moins une canalisation 2, 3, 6, 7 de gaz réactif, ici de l'hydrogène, elle aussi inutile laissant persister une possible circulation inutile de gaz réactif. Aussi l'utilisation d'une plaque bipolaire Bl comme plaque cathode extrémale EK doit être avantageusement accompagnée d'un ajout d'un moyen d'obturation OK condamnant ladite au moins une canalisation 2, 3, 6, 7. Ce moyen d'obturation concernant ici la plaque cathode extrémale EK est nommé moyen d'obturation cathode OK. Un tel moyen doit être capable d'obturer toutes les possibles ramifications de ladite au moins une canalisation 2, 3, 6, 7, afin d'empêcher ou de limiter tout flot inutile de gaz réactif, ici de l'hydrogène. This (re) use of a bipolar plate B1 as an extremal cathode plate EK is made possible by the following ingenious observations. A well-oriented bipolar plate B1 provides the last membrane plate ME with a cathode plate MK which provides all the functions expected of such a cathode plate and in particular the supplies / returns of reactive gas, here air, and the seals. The accompanying MA anode plate, while functionally unnecessary, is in no way bothersome. The only drawback of this arrangement is that the accompanying anode plate MA leaves at least one line 2, 3, 6, 7 of reactive gas, here hydrogen, which is also useless allowing a possible unnecessary circulation of reactive gas to persist. Also the use of a bipolar plate B1 as end cathode plate EK must be advantageously accompanied by the addition of an OK closure means condemning said at least one pipe 2, 3, 6, 7. This closure means concerning here the extremal cathode plate EK is called cathode plugging means OK. Such means must be capable of closing off all the possible ramifications of said at least one pipe 2, 3, 6, 7, in order to prevent or limit any unnecessary flow of reactive gas, here hydrogen.
De manière pendante, la plaque membrane ME la plus proche du terminal Tl nécessite, entre elle et le terminal uniquement une plaque anode pour terminer la dernière cellule CE. Aussi, selon l'invention, la dernière plaque anode ou plaque anode extrémale EA est réalisée par une plaque bipolaire Bl. Cette plaque bipolaire Bl est correctement orientée pour fournir une plaque anode MA au contact de la dernière plaque membrane ME. Autrement dit la plaque bipolaire Bl employée comme plaque anode extrémale EA est orientée à l'instar des autres plaques bipolaires Bl de l'empilement, soit par exemple comme ici avec la plaque cathode MK en dessous et la plaque anode MA au-dessus. Meanwhile, the membrane plate ME closest to the terminal T1 requires, between it and the terminal only an anode plate to complete the last cell CE. Also, according to the invention, the last anode plate or end anode plate EA is produced by a bipolar plate B1. This plate bipolar B1 is correctly oriented to provide an anode plate MA in contact with the last membrane plate ME. In other words, the bipolar plate B1 used as the extremal anode plate EA is oriented like the other bipolar plates B1 of the stack, ie for example as here with the cathode plate MK below and the anode plate MA above.
Cette (ré)utilisation d'une plaque bipolaire Bl comme plaque anode extrémale EA est rendue possible par les quelques constations ingénieuses suivantes. Une plaque bipolaire Bl bien orientée fournit à la dernière plaque membrane ME une plaque anode MA qui assure toutes les fonctions attendues d'une telle plaque anode et notamment les alimentations/retours de gaz réactif et les étanchéités. La plaque cathode MK accompagnante, bien que fonctionnellement inutile, n'est aucunement gênante. Le seul inconvénient de cette disposition est que la plaque cathode MK accompagnante laisse persister au moins une canalisation 2, 3, 6, 7 de gaz réactif, ici de l'air, elle aussi inutile laissant persister une possible circulation inutile de gaz réactif. Aussi l'utilisation d'une plaque bipolaire Bl comme plaque anode extrémale EA doit être avantageusement accompagnée d'un ajout d'un moyen d'obturation OA condamnant ladite au moins une canalisation 2, 3, 6, 7. Ce moyen d'obturation concernant ici la plaque anode extrémale EA est nommé moyen d'obturation anode OA. Un tel moyen doit être capable d'obturer toutes les possibles ramifications de ladite au moins une canalisation 2, 3, 6, 7, afin d'empêcher ou de limiter tout flot inutile de gaz réactif, ici de l'air. This (re) use of a bipolar plate B1 as an end anode plate EA is made possible by the following ingenious observations. A well-oriented bipolar plate B1 provides the last membrane plate ME with an anode plate MA which performs all the functions expected of such an anode plate and in particular the reactive gas feeds / returns and the seals. The accompanying MK cathode plate, while functionally unnecessary, is in no way bothersome. The only drawback of this arrangement is that the accompanying cathode plate MK leaves at least one line 2, 3, 6, 7 of reactive gas, here air, which is also useless leaving a possible unnecessary circulation of reactive gas to persist. Also the use of a bipolar plate B1 as an end anode plate EA must advantageously be accompanied by the addition of a closure means OA condemning said at least one pipe 2, 3, 6, 7. This closure means concerning here the extremal anode plate EA is called anode sealing means OA. Such means must be capable of closing off all the possible ramifications of said at least one pipe 2, 3, 6, 7, in order to prevent or limit any unnecessary flow of reactive gas, here air.
Cette caractéristique permet ainsi de réduire sensiblement le nombre de pièces. L'empilement ne comporte que deux pièces différentes des plaques membranes ME et des plaques bipolaires Bl. This characteristic thus makes it possible to significantly reduce the number of parts. The stack comprises only two different parts of the membrane plates ME and of the bipolar plates B1.
Selon un mode de réalisation avantageux, le moyen d'obturation anode OA, respectivement le moyen d'obturation cathode OK, ne constitue pas une pièce supplémentaire, avec ce que cela entraîne : référence de gestion supplémentaire, gamme et chaîne de fabrication distinctes, mais uniquement une étape de fabrication supplémentaire ou modifiée lors de l'assemblage d'une pile P. Une canalisation 2, 3, 6, 7 de distribution de réactif traverse une plaque MA, MK, EA, EK et comprend au moins une canalisation principale 2, 6 et au moins une canalisation secondaire 3, 7 de distribution de réactif. Aussi, un moyen d'obturation anode OA ou cathode OK peut obturer une canalisation en tout point de ladite canalisation 2, 3, 6, 7. According to an advantageous embodiment, the anode closure means OA, respectively the cathode closure means OK, does not constitute an additional part, with what this entails: additional management reference, separate range and production line, but only an additional or modified manufacturing step during the assembly of a P cell. A reagent distribution line 2, 3, 6, 7 passes through a plate MA, MK, EA, EK and comprises at least one main line 2, 6 and at least one secondary line 3, 7 for reagent distribution. Also, an OA anode or OK cathode closure means can block a pipe at any point of said pipe 2, 3, 6, 7.
Selon une première caractéristique, l'obturation d'une canalisation 2, 3, 6, 7 est réalisée en obturant une canalisation secondaire 3, 7. Selon cette caractéristique, plusieurs options sont possibles. Selon une première option, l'obturation d'une canalisation secondaire 3, 7 est réalisée en obturant une entrée de la canalisation secondaire 3, 7. Selon une autre option, plus particulièrement illustrée à la figure 6, l'obturation d'une canalisation secondaire 3, 7 est réalisée en obturant une sortie 4, 8 de la canalisation secondaire 3, 7. According to a first characteristic, the sealing of a pipe 2, 3, 6, 7 is carried out by blocking a secondary pipe 3, 7. According to this characteristic, several options are possible. According to a first option, the sealing of a secondary pipe 3, 7 is carried out by blocking an inlet of the secondary pipe 3, 7. According to another option, more particularly illustrated in FIG. 6, the sealing of a pipe secondary 3, 7 is produced by closing an outlet 4, 8 of the secondary pipe 3, 7.
Selon une autre caractéristique, l'obturation d'une canalisation 2, 3, 6, 7 est réalisée en obturant au niveau d'une canalisation principale 2, 6. According to another characteristic, the sealing of a pipe 2, 3, 6, 7 is carried out by closing off at the level of a main pipe 2, 6.
Selon une caractéristique particulièrement avantageuse, un moyen d'obturation anode ou cathode OA, OK comprend un joint 24 disposé entre un terminal Tl, T2 et une plaque extrémale EA, EK adjacente. Ce joint 24 est préférentiellement réalisé par dépôt. Ce dépôt peut être réalisé sur le terminal Tl, T2, sur la plaque extrémale EA, EK, ou encore sur les deux. According to a particularly advantageous characteristic, an anode or cathode closure means OA, OK comprises a seal 24 disposed between a terminal T1, T2 and an adjacent end plate EA, EK. This seal 24 is preferably produced by deposit. This deposit can be made on the terminal T1, T2, on the end plate EA, EK, or even on both.
La figure 7 illustre l'art antérieur, où l'étanchéité entre le terminal Tl et la plaque anode extrémale EA est réalisée par au moins un joint 21 assurant l'étanchéité autour des ouvertures 10, 13, 15 et par au moins un joint 23 assurant l'étanchéité sur le pourtour de la plaque EA. FIG. 7 illustrates the prior art, where the seal between the terminal T1 and the end anode plate EA is produced by at least one seal 21 providing the seal around the openings 10, 13, 15 and by at least one seal 23 sealing around the edge of the EA plate.
Selon une autre caractéristique, plus particulièrement illustrée à la figure 8, le joint 24 est déposé de manière à remplir une sortie 4, 8 de la canalisation 2, 3, 6, 7. According to another characteristic, more particularly illustrated in FIG. 8, the seal 24 is deposited so as to fill an outlet 4, 8 of the pipe 2, 3, 6, 7.
Selon une caractéristique complémentaire ou alternative, plus particulièrement illustrée à la figure 9, le joint 24 peut encore être déposé de manière à entourer une sortie 4, 8 de la canalisation 2, 3, 6, 7. La figure 10 illustre une autre caractéristique, où l'obturation est réalisée au niveau de la canalisation principale, en remplissant son ouverture, ici un joint 24 remplit l'ouverture 11. According to a complementary or alternative characteristic, more particularly illustrated in FIG. 9, the seal 24 can also be deposited so as to surround an outlet 4, 8 of the pipe 2, 3, 6, 7. FIG. 10 illustrates another characteristic, where the closure is produced at the level of the main pipe, by filling its opening, here a seal 24 fills the opening 11.
Selon une autre caractéristique avantageuse, le ou les joints 24 sont avantageusement déposés au cours de la même opération de dépôt des autres joints 21, 23 réalisant l'étanchéité entre le terminal Tl, T2 et la plaque extrémale EA, EK. Ainsi l'invention n'ajoute aucune pièce ou référence, ni aucune opération de fabrication. Seule l'opération de dépôt de joints 21, 23, préexistante, est modifiée en ce qu'elle ajoute le ou les joints 24, selon l'invention. According to another advantageous characteristic, the seal (s) 24 are advantageously deposited during the same operation of depositing the other seals 21, 23 providing the seal between the terminal T1, T2 and the end plate EA, EK. Thus the invention does not add any part or reference, nor any manufacturing operation. Only the pre-existing seal deposition operation 21, 23 is modified in that it adds the seal (s) 24, according to the invention.
Le matériau utilisé pour réaliser un joint 24, à l'instar des joints préexistants 21, 23, peut être une résine, un polymère et/ou un adhésif. The material used to make a seal 24, like the pre-existing seals 21, 23, can be a resin, a polymer and / or an adhesive.
L'invention a été illustrée et décrite en détail dans les dessins et la description précédente. Celle-ci doit être considérée comme illustrative et donnée à titre d'exemple et non comme limitant l'invention à cette seule description. De nombreuses variantes de réalisation sont possibles. The invention has been illustrated and described in detail in the drawings and the preceding description. This should be considered as illustrative and given by way of example and not as limiting the invention to this description alone. Many variant embodiments are possible.
Liste des signes de référence List of reference signs
1 : membrane, 1: membrane,
2 : canalisation principale air, 2: main air line,
3 : canalisation secondaire air, 3: secondary air duct,
4 : sortie canalisation secondaire air, 4: secondary air duct outlet,
5 : diffuseur air, 5: air diffuser,
6 : canalisation principale hydrogène, 6: main hydrogen line,
7 : canalisation secondaire hydrogène, 7: secondary hydrogen pipeline,
8 : sortie canalisation secondaire hydrogène, 8: secondary hydrogen pipe outlet,
9 : diffuseur hydrogène, 9: hydrogen diffuser,
10 : alimentation air, 10: air supply,
11 : retour air, 11: return air,
12 : alimentation hydrogène, 13 : retour hydrogène,12: hydrogen supply, 13: hydrogen return,
14, 15 : refroidissement,14, 15: cooling,
16 : flot principal, 16: main stream,
17 : flot secondaire, 17: secondary flow,
20 : joint soudé, 20: welded joint,
21 : joint terminal/EA, 21: terminal / EA seal,
22 : joint ME 22: ME seal
23 : joint extérieur, 23: outer seal,
24 : joint invention, 24: invention seal,
Bl : plaque bipolaire, Bl: bipolar plate,
CE : cellule, CE: cell,
EA : plaque extrémale anode, EK : plaque extrémale cathode, MA : plaque médiane anode, ME : plaque membrane, EA: anode end plate, EK: cathode end plate, MA: anode middle plate, ME: membrane plate,
MK : plaque médiane cathode, OA : obturateur anode,MK: cathode middle plate, OA: anode shutter,
OK : obturateur cathode,OK: cathode shutter,
P : pile, P: battery,
Tl, T2 : terminaux. Tl, T2: terminals.

Claims

REVENDICATIONS
1. Pile à combustible (P), du type à membrane échangeuse de protons, comprenant, empilés dans l'ordre : un premier terminal (Tl), une plaque anode extrémale (EA), une pluralité de plaques membranes (ME), une plaque bipolaire (Bl) étant intercalée entre chaque deux plaques membranes (ME) successives, une plaque cathode extrémale (EK) et un deuxième terminal (T2), une plaque bipolaire (Bl) comprenant préassemblées dans cet ordre : une plaque cathode médiane (MK) et une plaque anode médiane (MA), chaque plaque anode médiane (MA), anode extrémale (EA), cathode médiane (MK) et cathode extrémale (EK) comprenant au moins une canalisation (2, 3, 6, 7) de distribution d'un réactif, caractérisé en ce que la plaque extrémale anode (EA) est réalisée au moyen d'une plaque bipolaire (Bl), de même orientation, et d'un moyen d'obturation anode (OA) apte à obturer toutes les canalisations de ladite au moins une canalisation (2, 3, 6, 7) de la plaque cathode médiane (MK) de ladite plaque bipolaire (Bl), et la plaque extrémale cathode (EK) est réalisée au moyen d'une plaque bipolaire (Bl), de même orientation, et d'un moyen d'obturation cathode (OK) apte à obturer toutes les canalisations de ladite au moins une canalisation (2, 3, 6, 7) de la plaque anode médiane (MA) de ladite plaque bipolaire (Bl). 1. Fuel cell (P), of the proton exchange membrane type, comprising, stacked in order: a first terminal (T1), an end anode plate (EA), a plurality of membrane plates (ME), a bipolar plate (Bl) being interposed between each two successive membrane plates (ME), an extremal cathode plate (EK) and a second terminal (T2), a bipolar plate (Bl) comprising preassembled in this order: a median cathode plate (MK ) and a middle anode plate (MA), each middle anode plate (MA), extremal anode (EA), middle cathode (MK) and extremal cathode (EK) comprising at least one pipe (2, 3, 6, 7) of distribution of a reagent, characterized in that the end anode plate (EA) is produced by means of a bipolar plate (B1), of the same orientation, and of an anode sealing means (OA) capable of sealing all the pipes of said at least one pipe (2, 3, 6, 7) of the middle cathode plate (MK) of said bipolar plate (Bl), and the cathode end plate (EK) is produced by means of a bipolar plate (B1), of the same orientation, and of a cathode closure means (OK) capable of blocking all the pipes of said at least one pipe ( 2, 3, 6, 7) of the middle anode plate (MA) of said bipolar plate (B1).
2. Pile à combustible (P) selon la revendication 1, où ladite au moins une canalisation (2, 3, 6, 7) comprend au moins une canalisation principale (2, 6) traversant les plaques (EA, ME, Bl, EK) de l'empilement et au moins une canalisation secondaire (3, 7) de distribution de réactif à une plaque (EA, Bl, EK), où un moyen d'obturation anode ou cathode (OA, OK) obture une canalisation (2, 3, 6, 7) en obturant une canalisation secondaire (3, 7). 2. Fuel cell (P) according to claim 1, wherein said at least one pipe (2, 3, 6, 7) comprises at least one main pipe (2, 6) passing through the plates (EA, ME, Bl, EK ) of the stack and at least one secondary pipe (3, 7) for distributing reagent to a plate (EA, Bl, EK), where an anode or cathode closure means (OA, OK) closes a pipe (2 , 3, 6, 7) by closing off a secondary pipe (3, 7).
3. Pile à combustible (P) selon la revendication 2, où un moyen d'obturation anode ou cathode (OA, OK) obture une canalisation secondaire (3, 7) en obturant une entrée de la canalisation secondaire (3, 7). 3. Fuel cell (P) according to claim 2, wherein an anode or cathode closure means (OA, OK) closes a secondary pipe (3, 7) by closing an inlet of the secondary pipe (3, 7).
4. Pile à combustible (P) selon l'une quelconque des revendications 2 ou 3, où un moyen d'obturation anode ou cathode (OA, OK) obture une canalisation secondaire (3, 7) en obturant une sortie (4, 8) de la canalisation secondaire (3, 7). 4. Fuel cell (P) according to any one of claims 2 or 3, where an anode or cathode closure means (OA, OK) closes a secondary pipe (3, 7) by closing an outlet (4, 8). ) of the secondary pipe (3, 7).
5. Pile à combustible (P) selon l'une quelconque des revendications 2 à 4, où un moyen d'obturation anode ou cathode (OA, OK) obture une canalisation (2, 3, 6, 5. Fuel cell (P) according to any one of claims 2 to 4, where an anode or cathode closure means (OA, OK) closes a pipe (2, 3, 6,
7) en obturant une canalisation principale (2, 6). 7) by blocking a main pipe (2, 6).
6. Pile à combustible (P) selon l'une quelconque des revendications 1 à 5, où un moyen d'obturation anode ou cathode (OA, OK) comprend un joint (24) disposé entre un terminal (Tl, T2) et une plaque extrémale (EA, EK) adjacente, préférentiellement par dépôt sur le terminal (Tl, T2) et/ou sur la plaque extrémale (EA, EK). 6. Fuel cell (P) according to any one of claims 1 to 5, wherein an anode or cathode sealing means (OA, OK) comprises a seal (24) disposed between a terminal (T1, T2) and a adjacent end plate (EA, EK), preferably by deposition on the terminal (T1, T2) and / or on the end plate (EA, EK).
7. Pile à combustible (P) selon la revendication 6, où le joint (24) est déposé de manière à remplir une sortie (4, 8) de la canalisation (2, 3, 6, 7). 7. Fuel cell (P) according to claim 6, wherein the seal (24) is deposited so as to fill an outlet (4, 8) of the pipe (2, 3, 6, 7).
8. Pile à combustible (P) selon l'une quelconque des revendications 6 ou 7, où le joint (24) est déposé de manière à entourer une sortie (4, 8) de la canalisation (2, 3, 6, 7). 8. Fuel cell (P) according to any one of claims 6 or 7, wherein the seal (24) is deposited so as to surround an outlet (4, 8) of the pipe (2, 3, 6, 7) .
9. Pile à combustible (P) selon l'une quelconque des revendications 6 à 8, où le joint (24) est déposé simultanément avec un joint (21, 23) réalisant l'étanchéité entre le terminal (Tl, T2) et la plaque extrémale (EA, EK). 9. Fuel cell (P) according to any one of claims 6 to 8, wherein the seal (24) is deposited simultaneously with a seal (21, 23) providing the seal between the terminal (Tl, T2) and the end plate (EA, EK).
10. Pile à combustible (P) selon l'une quelconque des revendications 6 à 9, où un joint (24) comprend une résine, un polymère et/ou un adhésif. 10. Fuel cell (P) according to any one of claims 6 to 9, wherein a gasket (24) comprises a resin, a polymer and / or an adhesive.
EP20742341.9A 2019-06-17 2020-06-16 Proton-exchange-membrane fuel cell Pending EP3984089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1906445A FR3097377B1 (en) 2019-06-17 2019-06-17 PEMFC fuel cell
PCT/FR2020/051027 WO2020254752A1 (en) 2019-06-17 2020-06-16 Proton-exchange-membrane fuel cell

Publications (1)

Publication Number Publication Date
EP3984089A1 true EP3984089A1 (en) 2022-04-20

Family

ID=69375378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20742341.9A Pending EP3984089A1 (en) 2019-06-17 2020-06-16 Proton-exchange-membrane fuel cell

Country Status (5)

Country Link
US (1) US20220320525A1 (en)
EP (1) EP3984089A1 (en)
CN (1) CN114375516A (en)
FR (1) FR3097377B1 (en)
WO (1) WO2020254752A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878476B2 (en) * 2002-02-28 2005-04-12 Delphi Technologies, Inc. Method and apparatus for alignment of fuel cell components
US7186476B2 (en) * 2003-11-07 2007-03-06 General Motors Corporation One piece bipolar plate with spring seals
FR2902930B1 (en) * 2006-06-21 2009-11-27 Commissariat Energie Atomique BIPOLAR PLATE FOR FUEL CELL, AND FUEL CELL WITH IMPROVED FLUID DISCHARGE USING SUCH PLATES
US8802326B2 (en) * 2010-11-23 2014-08-12 GM Global Technology Operations LLC Fuel cell separator plate
GB2502519A (en) * 2012-05-28 2013-12-04 Intelligent Energy Ltd A Bipolar Plate for a fuel cell
DE102014202215A1 (en) * 2014-02-06 2015-08-06 Volkswagen Aktiengesellschaft Fuel cell stack and method for its assembly
CN104157895B (en) * 2014-07-30 2016-05-11 清华大学 The light-duty pile of polymer dielectric film fuel cell and manufacture method thereof
JP6343638B2 (en) * 2016-08-02 2018-06-13 本田技研工業株式会社 Fuel cell stack

Also Published As

Publication number Publication date
CN114375516A (en) 2022-04-19
FR3097377B1 (en) 2022-04-22
US20220320525A1 (en) 2022-10-06
FR3097377A1 (en) 2020-12-18
WO2020254752A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
EP1672726B1 (en) Bipolar plate for fuel cell
EP3183379B1 (en) Method for high-temperature electrolysis or co-electrolysis, method for producing electricity by means of an sofc fuel cell, and associated interconnectors, reactors and operating methods
EP1807895B1 (en) Fuel cell module provided with flexible interconnectors
EP2707921B1 (en) Multiple injection fuel cell and operating method thereof
EP3012892B1 (en) Electrochemical device with stack
FR2902930A1 (en) BIPOLAR PLATE FOR FUEL CELL, AND FUEL CELL WITH IMPROVED FLUID DISCHARGE USING SUCH PLATES
EP3707296B1 (en) Stack assembly of solid oxide type soec/sofc, clamping system and hermetic coupling system
EP2707920B1 (en) Fuel cell comprising manifolds having individual injector seals
FR3023981A1 (en) BIPOLAR PLATE FOR ELECTROCHEMICAL REACTOR HAVING A COMPACT AND LOW DIFFERENTIAL PRESSURE REGION
EP3136492B1 (en) Stack of electrochemical cells distributed into separate groups comprising a homogenisation compartment
WO2020254752A1 (en) Proton-exchange-membrane fuel cell
EP2909883B1 (en) Improved fuel cell
EP3195392A1 (en) Fluid flow guide plate for electrochemical reactor, and assembly comprising said plate
FR3100932A1 (en) Set of a SOEC / SOFC type solid oxide stack and a high temperature sealed coupling system
WO2007045652A1 (en) Tubular fuel cell module and the sealing device thereof
EP2729983B1 (en) Manifold and compression structure for a fuel cell module and fuel cell system
EP2725646A1 (en) Fuel cell plate and stack comprising such a plate
WO2021014104A1 (en) Polymer electrolyte membrane fuel cell
EP2729980B1 (en) Separator plate having intermediate gas injection means, fuel cell and process for supplying gas
EP3799173B1 (en) Fuel cell with pcb type support plates comprising compartments for supply and drainage of reactant fluids
EP2614176B1 (en) High-temperature electrolyser (hte) with improved operating safety

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SYMBIO FRANCE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524