EP3980260A1 - Method for producing a steel composite material - Google Patents

Method for producing a steel composite material

Info

Publication number
EP3980260A1
EP3980260A1 EP20727599.1A EP20727599A EP3980260A1 EP 3980260 A1 EP3980260 A1 EP 3980260A1 EP 20727599 A EP20727599 A EP 20727599A EP 3980260 A1 EP3980260 A1 EP 3980260A1
Authority
EP
European Patent Office
Prior art keywords
steel
composite material
manganese
composite
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20727599.1A
Other languages
German (de)
French (fr)
Inventor
Reinhard Hackl
Christoph Etzlstorfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP3980260A1 publication Critical patent/EP3980260A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/12Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material

Definitions

  • the present invention relates to a method for producing a steel composite material and a steel composite material component which is produced according to this method.
  • Hardened steel components have the advantage, especially in the body shop of motor vehicles, that their excellent mechanical properties make it possible to create a particularly stable passenger cell without having to use components that would be much more massive and therefore heavier with normal strengths.
  • types of steel that can be hardened by quench hardening are used.
  • Such types of steel are, for example, boron-alloyed manganese carbon steels, the most widely used being the 22MnB5 or 20MnB8. However, other boron-alloyed manganese carbon steels are also used for this purpose.
  • the steel material In order to produce hardened components from these types of steel, the steel material must be heated to the austenitizing temperature (> AC3) and wait until the steel material is austenitized. Depending on the degree of hardness desired, partial or full austenitization can be achieved here.
  • a sheet steel blank is separated from a steel strip, e.g. Cut or punched and then deep-drawn into the finished component in a conventional, for example five-stage deep-drawing process.
  • This finished component is here Dimensioned slightly smaller in order to compensate for a subsequent thermal expansion during austenitizing.
  • the component produced in this way is then austenitized and then placed in a form hardening tool, in which it is pressed, but not or only slightly deformed, and the heat flows out of the component into the pressing tool as a result of the compression, at a rate above the critical hardening speed Speed.
  • the second, alternative method is the so-called press hardening, in which a blank is separated from a sheet steel strip, e.g. cut or punched, then the blank is austenitized and the hot blank is formed in a single-stage or multi-stage forming step and at the same time with a hardening speed above the critical hardening speed Speed is cooled.
  • metallic corrosion protection layers can be used, e.g. plates provided with zinc or an alloy based on zinc can be used.
  • Press hardening is also known as an indirect process and press hardening as a direct process. The advantage of the indirect process is that more complex workpiece geometries can be implemented.
  • the advantage of the direct process is that a higher degree of material utilization can be achieved.
  • the component complexity that can be achieved is lower, especially in the one-step forming process.
  • ready-formed and usually ready-perforated construction parts are passed through an oven and heated to austenitizing temperature during press hardening. These components are placed on furnace supports for transport.
  • the blanks must be conveyed through the furnace using chain conveyors or walking bars.
  • TPP Tailored Property Parts
  • Such components which are also referred to as Tailor Welded Parts (TWP), consist, for example, of a boron-manganese steel that can be hardened in the form or press hardening process, such as a 22MnB5 and, in addition, a microalloyed steel and other steels that are hardened show a different behavior compared to hardenable steels.
  • TWP Tailor Welded Parts
  • a press-hardened or form-hardened component has zones of different sheet metal thicknesses and thus also different properties.
  • Areas of different sheet metal thickness can also be made from different steel grades so that a thinner area consists of a first steel grade and a thicker area consists of a second steel grade, and both areas can also consist of one and the same steel grade.
  • edge carburization is carried out, the carbon diffusing into a workpiece from the outside, so that, depending on the carbon content, the edges can be hardened to a greater extent or by machining, in particular thermal treatment Edge decalcification is thereby compensated for again.
  • edge decarburization can be provided.
  • the corresponding temperature control and the corresponding gas control must be ensured in a relatively complex manner.
  • a steel sheet as a composite, the outer surfaces consisting of a different steel grade than the core.
  • three sheets for example a sequence of ABA, are rolled on top of one another, the A standing for steel grades that are located on the outer surface of the finished steel strip and the B for a steel quality that is embedded between the two outer steel grades.
  • the company ThyssenKrupp has published corresponding sandwich structures under the title BP3-Metall-Metallverbunde, whereby the outer sheets are high-carbon steels, while the inner steel sheet is a so-called low carbon steel.
  • This product is also known in reverse composition under the brand name Tribond®.
  • the high carbon content in one of the layers makes processing more difficult in production, especially during cold rolling.
  • WO 2017/054862 A1 a multilayer composite with an edge area and a core area is known, the edge area being designed to be softer and the total of carbon, silicon, manganese, chromium and nickel to be greater than 1.45% by weight.
  • chassis components with high operational stability consist of a multilayer composite and an optional remuneration consisting of flaring and tempering can be carried out.
  • a motor vehicle component is known from DE 10 2016 108836 A1, with so-called tailor-heated snow heating being carried out so that only certain areas are heated up quickly, the tensile strength R m preferably being 2000 MPa and thus 20 W> 6%. It can also be a multi-layer sheet, with an increased bending angle and optional partial annealing being disclosed here.
  • the object of the invention is to create a method for producing a steel composite material with which a steel composite material is obtained which has improved properties with regard to crash properties and formability.
  • a further object is to create a steel composite material which has improved crash properties and improved deformation properties.
  • edge decarburization for setting a strength / ductility profile is known, with the bending angle also being significantly increased here.
  • the optimum from bending angle to strength to yield limit comes up against a limit in spite of cladding layers with a higher-strength core.
  • the maximum or optimal performance can only be achieved in the resulting gradient material through an optimal structure of the composite material and ideal thermal conditioning of the individual layers. Accordingly, if the yield point or the strength properties are retained, the bending angle should be increased to improve the deformation properties.
  • a higher yield point and a higher strength should be achieved, with each layer being loaded to the maximum, with a higher bending angle being available at the same time and folding being made possible.
  • the possible edge materials should have a relatively low carbon content in order to improve the processability, i.e. the ductility in the edge area. These should contain little manganese and chromium and the loss of carbon should have little effect on the strength of the material. It also makes sense if the edge active substance contains few alloying elements and is therefore a so-called micro-alloyed steel. Steels of the following grades have proven to be suitable materials: 340LA; 420LA and conditionally 500LA. These are common material names that can be determined in the steel key, for example. The 340LA can also be found in ⁇ NORM EN 10346, for example. The designation can also be HX340LA or H340LA, the abbreviation in front of it denotes the various processing states and does not refer to the chemical composition itself.
  • Hardenable steels of the general alloy composition are also particularly suitable for the invention (all data in% by mass):
  • the remainder is iron and impurities from the melting process.
  • Hardenable steels of the preferred alloy composition are also particularly suitable for the invention (all data in% by mass):
  • the remainder is iron and impurities from the melting process.
  • Hardenable, manganese-containing steels of this alloy composition are particularly suitable for the invention (all data in% by mass):
  • Remainder iron and impurities caused by the melting process in particular the alloy elements boron, manganese, carbon and optionally chromium and molybdenum are used as conversion retarders in such steels.
  • At least one side of the composite material can be provided with a metallic coating, preferably before the form hardening process or press hardening process.
  • the coating metal can consist of a wide variety of alloys, nickel, copper, chromium, aluminum, magnesium, zinc or its alloy combination are preferred.
  • Aluminum-silicon alloys also known as usibor
  • zinc alloys based on zinc can particularly stand out.
  • the application can be carried out by means of conventional coating devices such as a hot-dip galvanizing plant or hot-dip aluminizing plant or an electrolytic coating plant.
  • the two outer sheets should each have a maximum of 25% of the total composite thickness, preferably less than 15%, particularly preferably less than 5%.
  • the entire composite has a thickness between 0.5 and 5 mm, preferably 0.5 to 3 mm.
  • the usual structure is thus A-B-A, with A being the outer layers made of a ferritic steel material and B the inner layer made of a hardenable boron-manganese steel material.
  • A-B-A can also be reversed into B-A-B.
  • the outer layers are harder than the middle layers.
  • a wear layer can be created or the composite can achieve a higher flexural strength, which enables higher power transmission.
  • the steel composite is formed from more than two different steel materials.
  • this can serve to ensure that, for example, in a five-day steel composite, the hardness decreases from the inside out and the elongation at break of each individual layer increases accordingly.
  • With the same ductility / same bending angle, a higher strength of the bond can be achieved.
  • FIG. 2 The shift in the bending angle in a steel composite material compared to a pure press-hardening boron-manganese steel without heat treatment according to the invention, ie. State of the art bending angle;
  • FIG. 3 The force profile in a bending angle test with the material according to the invention, on a comparison material made of a monolithic martensitic press-hardening steel and the material according to the invention at different heat treatment temperatures or durations;
  • FIG. 4 an exemplary temperature profile according to the invention for direct annealing after the press hardening process
  • FIG. 5 An exemplary temperature profile according to the invention for intermediate cooling to room temperature after the press hardening process.
  • an increase in the bending angle by at least 5 °, in particular at least 10 ° is to be achieved, with heat treatment being carried out at temperatures between 150 ° C. and 300 ° C.
  • the effect is rather low, while at 300 ° C a loss in strength can be observed. Therefore, ranges between 160 ° C and 250 ° C and more preferably between 175 ° C and 225 ° C are preferred.
  • the sensible annealing times range from 15 minutes (rather weak effect) to one hour (strong effect, however, the strength drops) so that 20 to 40 minutes are particularly preferred.
  • test results show bending angle improvements of up to 40 ° with an increase in the yield point and retention of the tensile strength. This effect can be observed in particular in FIG. All tests were carried out with a sample size of 30x60 mm and 1.5 mm thick sheet material.
  • FIG. 2 shows the shift in the curve of the monolithic material (in this example a phs-ultraform 1500) with a higher-strength composite material (1700s) too slightly improved bending angle, but this improvement is bought at the expense of strength. Furthermore, the total area under the curve remains essentially constant. This shows that when selecting the materials for the composite material alone, ie. Without heat treatment according to the invention, no significant improvements in the mechanical characteristics can be achieved.
  • FIG. 3 it can be seen how, compared with the composite material from FIG. 2, the composite materials are shifted significantly to improved values after a temperature treatment with regard to the bending angle, without there being any loss of strength or at most slight loss of strength.
  • the significant improvement in the mechanical properties is particularly evident from the significant increase in the area under the curve.
  • FIGS. 4 and 5 show possible temperature profiles for the method according to the invention.
  • the residual heat after the press hardening process can be used for the heat treatment, as shown in FIG.
  • the cooling must take place at least to below the respective Ms point in any case above the critical cooling rate, since otherwise no martensitic structure would form.
  • This method offers the advantage that it requires less energy or heat input, since cooling is stopped at the desired target temperature.
  • the invention has the advantage that the bending angle and thus the crash behavior and deformation behavior is improved by a heat treatment at low temperatures without the strength properties of the steel composite material being impaired.

Abstract

The invention relates to a method for producing a steel composite, wherein: - at least two steel sheets, which consist of at least two different steel grades, in particular a first steel grade composed of a hardenable steel containing manganese and a second steel grade composed of a microalloyed steel, are laid one on top of the other and subjected to a plating process by means of hot-rolling and the composite material thereby achieved is subsequently optionally cold-rolled; - after the rolling process, the composite material composed of at least two layers having a different steel composition is hot stamped or press hardened; - and the composite material is subjected to subsequent thermal treatment, the composite material being heat-treated between 150°C and 300°C for 15 minutes to 60 minutes in order to increase the bending angle by at least 5°.

Description

Verfahren zum Erzeugen eines Stahlverbundwerkstoffs Method for producing a steel composite material
Die vorliegende Erfindung betrifft ein Verfahren zum Erzeugen eines Stahlverbundwerkstoffs sowie einen Stahlverbundwerkstoffbauteil, der nach diesem Verfahren hergestellt ist. The present invention relates to a method for producing a steel composite material and a steel composite material component which is produced according to this method.
Gehärtete Stahlbauteile haben insbesondere im Karosseriebau von Kraftfahrzeugen den Vor teil, dass durch ihre herausragenden mechanischen Eigenschaften eine Möglichkeit besteht, eine besonders stabile Fahrgastzelle zu erstellen, ohne dass Bauteile verwendet werden müs sen, die bei normalen Festigkeiten viel massiver und dadurch schwerer ausgebildet wären. Hardened steel components have the advantage, especially in the body shop of motor vehicles, that their excellent mechanical properties make it possible to create a particularly stable passenger cell without having to use components that would be much more massive and therefore heavier with normal strengths.
Zur Erzeugung derartiger gehärteter Stahlbauteile werden Stahlsorten, die durch eine Ab schreckhärtung härtbar sind, verwendet. Derartige Stahlsorten sind zum Beispiel borlegierte Mangankohlenstoffstähle, wobei der am weitesten eingesetzte, hier der 22MnB5 oder auch 20MnB8 ist. Aber auch andere borlegierte Mangankohlenstoffstähle werden hierfür verwendet. To produce such hardened steel components, types of steel that can be hardened by quench hardening are used. Such types of steel are, for example, boron-alloyed manganese carbon steels, the most widely used being the 22MnB5 or 20MnB8. However, other boron-alloyed manganese carbon steels are also used for this purpose.
Um die aus diesen Stahlsorten gehärtete Bauteile zu erzeugen, muss das Stahlmaterial auf die Austenitisierungstemperatur (>AC3) erhitzt werden und abgewartet werden, bis der Stahlwerk stoff austenitisiert ist. Je nach gewünschtem Flärtegrad können hier Teil- oder Vollausteniti sierungen erzielt werden. In order to produce hardened components from these types of steel, the steel material must be heated to the austenitizing temperature (> AC3) and wait until the steel material is austenitized. Depending on the degree of hardness desired, partial or full austenitization can be achieved here.
Wird ein solches Stahlmaterial nach der Austenitisierung mit einer über der kritischen Härte geschwindigkeit liegenden Geschwindigkeit abgekühlt, wandelt die austenitische Struktur in eine martensitische, sehr harte Struktur um. Auf diese Weise sind Zugfestigkeiten Rm bis über 1500 MPa erzielbar. If such a steel material is cooled after austenitizing at a speed above the critical hardness speed, the austenitic structure is transformed into a martensitic, very hard structure. In this way, tensile strengths R m of over 1500 MPa can be achieved.
Zur Erzeugung der Stahlbauteile sind derzeit zwei Verfahrenswege üblich. There are currently two ways of producing the steel components.
Beim sogenannten Formhärten wird eine Stahlblechplatine aus einem Stahlband abgetrennt bsp. ausgeschnitten oder gestanzt und anschließend in einem üblichen, beispielsweise fünf stufigen Tiefziehprozess zum fertigen Bauteil tiefgezogen. Dieses fertige Bauteil wird hierbei etwas kleiner dimensioniert, um eine nachfolgende Wärmedehnung beim Austenitisieren zu kompensieren. In the so-called form hardening, a sheet steel blank is separated from a steel strip, e.g. Cut or punched and then deep-drawn into the finished component in a conventional, for example five-stage deep-drawing process. This finished component is here Dimensioned slightly smaller in order to compensate for a subsequent thermal expansion during austenitizing.
Das so erzeugte Bauteil wird anschließend austenitisiert und dann in ein Formhärtewerkzeug eingelegt, in dem es gepresst, aber nicht oder nur sehr gering umgeformt wird und durch die Pressung die Wärme aus dem Bauteil in das Presswerkzeug fließt, und zwar mit der über der kritischen Härtegeschwindigkeit liegenden Geschwindigkeit. The component produced in this way is then austenitized and then placed in a form hardening tool, in which it is pressed, but not or only slightly deformed, and the heat flows out of the component into the pressing tool as a result of the compression, at a rate above the critical hardening speed Speed.
Der zweite, alternative Verfahrensweg ist das sogenannte Presshärten, bei dem eine Platine aus einem Stahlblechband abgetrennt bspw. ausgeschnitten oder gestanzt wird, anschließend die Platine austenitisiert wird und die heiße Platine in einem einstufigen oder mehrstufigen Umformschritt umgeformt und gleichzeitig mit einer über der kritischen Härtegeschwindigkeit liegenden Geschwindigkeit abgekühlt wird. The second, alternative method is the so-called press hardening, in which a blank is separated from a sheet steel strip, e.g. cut or punched, then the blank is austenitized and the hot blank is formed in a single-stage or multi-stage forming step and at the same time with a hardening speed above the critical hardening speed Speed is cooled.
In beiden Fällen können mit metallischen Korrosionsschutzschichten z.B. mit Zink oder einer Legierung auf Basis von Zink versehene Platinen verwendet werden. Das Formhärten wird auch als indirekter Prozess bezeichnet und das Presshärten als direkter Prozess. Der Vorteil des indirekten Prozesses ist, dass aufwändigere Werkstückgeometrien realisierbar sind. In both cases, metallic corrosion protection layers can be used, e.g. plates provided with zinc or an alloy based on zinc can be used. Press hardening is also known as an indirect process and press hardening as a direct process. The advantage of the indirect process is that more complex workpiece geometries can be implemented.
Der Vorteil des direkten Prozesses ist, dass ein höherer Materialnutzungsgrad erreicht werden kann. Jedoch ist die erreichbare Bauteilkomplexität vor allem beim einstufigen Umformprozess geringer. The advantage of the direct process is that a higher degree of material utilization can be achieved. However, the component complexity that can be achieved is lower, especially in the one-step forming process.
Somit werden beim Formhärten fertig geformte und üblicherweise auch fertig gelochte Bau teile durch einen Ofen geführt und auf Austenitisierungstemperatur erhitzt. Für den Trans port werden diese Bauteile auf Ofenträgern abgesetzt. Thus, ready-formed and usually ready-perforated construction parts are passed through an oven and heated to austenitizing temperature during press hardening. These components are placed on furnace supports for transport.
Beim Presshärten müssen die Platinen durch den Ofen mittels Kettenförderern oder Hubbal ken befördert werden. During press hardening, the blanks must be conveyed through the furnace using chain conveyors or walking bars.
Aus der Literatur ist bekannt, für solch hergestellte Materialien neben den üblichen Kennwer ten wie Zugfestigkeit und Bruchdehnung auch Kennwerte in Bezug auf die Crasheignung zu ermitteln. Beispielsweise wird in„Press-hardening of zinc coated Steel - characterization of a new material for a new process" von T. Kurz et.al. in IOP Conf. Series: Materials Science and Engineering 159 (2016) 012025 doi: 10.1088/1757-899X/159/l/01205 ein Zusammenhang zwischen der Crasheignung und des Biegewinkels für pressgehärtete Stähle dargestellt. Ins gesamt kann man dem Paper entnehmen, dass aufgrund zahlreicher Versuche und einer be rechneten Trendlinie die Stähle ein Biegewinkel zwischen 80 und 90° es dem Bauteil ermög licht den Axial-Crash rissfrei zu überstehen. It is known from the literature that, in addition to the usual characteristics such as tensile strength and elongation at break, characteristics relating to crash suitability can also be determined for materials produced in this way. For example, in "Press-hardening of zinc coated steel - characterization of a new material for a new process" by T. Kurz et.al. in IOP Conf. Series: Materials Science and Engineering 159 (2016) 012025 doi: 10.1088 / 1757 -899X / 159 / l / 01205 a connection between the suitability for a crash and the bending angle for press-hardened steels. Overall, it can be seen from the paper that, based on numerous tests and a calculated trend line, steels with a bending angle of between 80 and 90 ° enable the component to withstand the axial crash without cracking.
Ferner ist es bekannt, derartige formgehärtete oder pressgehärtete Bauteile mit Zonen un terschiedlicher Eigenschaften insbesondere bereichsweise unterschiedliche mechanische Kennwerte wie Zugfestigkeit und Bruchdehnung herzustellen. Furthermore, it is known to produce such form-hardened or press-hardened components with zones of different properties, in particular in areas with different mechanical parameters such as tensile strength and elongation at break.
Hierbei ist es zum Beispiel üblich, bestimmte Bereiche der Platine oder des Bauteils nicht bis zur Austenitisierungstemperatur aufzuheizen, so dass beim anschließenden Abschrecken diese Bereiche auch nicht gehärtet werden. Here it is common, for example, not to heat certain areas of the blank or the component up to the austenitizing temperature, so that these areas are not hardened during the subsequent quenching.
Hierdurch können Zonen mit einer geringeren Härte und höherer Duktilität erzeugt werden. Es ist bekannt, derartige weichere Zonen durch das Anlegen von Absorptionsmassen, das Abschirmen dieser Bereiche vor Wärmestrahlung oder das Nichtaussetzen dieser Bereiche ei ner zusätzlichen Wärmestrahlung zu erzielen. This allows zones with a lower hardness and higher ductility to be created. It is known to achieve such softer zones by applying absorption masses, shielding these areas from thermal radiation or not exposing these areas to additional thermal radiation.
Es handelt sich hierbei um sogenannte Tailored Property Parts (TPP). These are so-called Tailored Property Parts (TPP).
Darüber hinaus ist es bekannt, Bauteile mit unterschiedlichen Bereichen dadurch zu erzeu gen, dass unterschiedliche Stahlgüten verwendet werden, d.h. zum Beispiel Stahlgüten, die mit einem Form- oder Presshärteverfahren härtbar sind, mit Stahlgüten zu kombinieren, die zum Beispiel nicht oder nicht so hoch härtbar sind. In addition, it is known to produce components with different areas by using different steel grades, i. E. For example, to combine steel grades that can be hardened with a form or press hardening process with steel grades that, for example, are not or not so highly hardenable.
Derartige Bauteile, die auch als Tailor Welded Parts (TWP) bezeichnet werden, bestehen bei spielsweise aus einem im Form- oder Presshärteverfahren härtbaren Bor-Mangan-Stahl, wie zum Beispiel einem 22MnB5 und zusätzlich einem mikrolegierten Stahl und anderen Stählen, die bezüglich der Härtung ein unterschiedliches Verhalten zu den härtbaren Stählen zeigen. Such components, which are also referred to as Tailor Welded Parts (TWP), consist, for example, of a boron-manganese steel that can be hardened in the form or press hardening process, such as a 22MnB5 and, in addition, a microalloyed steel and other steels that are hardened show a different behavior compared to hardenable steels.
Darüber hinaus ist es bekannt, unterschiedliche Eigenschaften auch durch unterschiedliche Blechdicken zu realisieren, so dass ein press- oder formgehärtetes Bauteil Zonen unter schiedlicher Blechdicken und damit auch unterschiedlicher Eigenschaften besitzt. Bereiche unterschiedlicher Blechdicke können dabei auch aus unterschiedlichen Stahlgüten hergestellt sein, so dass ein dünnerer Bereich aus einer ersten Stahlgüte besteht und ein dickerer Be reich aus einer zweiten Stahlgüte besteht, darüber hinaus können auch beide Bereiche aus ein und derselben Stahlgüte bestehen. In addition, it is known to realize different properties by different sheet metal thicknesses, so that a press-hardened or form-hardened component has zones of different sheet metal thicknesses and thus also different properties. Areas of different sheet metal thickness can also be made from different steel grades so that a thinner area consists of a first steel grade and a thicker area consists of a second steel grade, and both areas can also consist of one and the same steel grade.
Wie zuvor ausgeführt, gibt es viele Möglichkeiten, die Duktilität über die Breite bzw. Ausdeh nung eines Bauteils zu beeinflussen. As stated above, there are many ways of influencing the ductility over the width or expansion of a component.
In vergangener Zeit wurden aber auch Überlegungen vorgenommen, wie man auch in der Dicke eines Bauteils unterschiedliche Eigenschaften einstellen kann. In the past, however, considerations were also made as to how different properties could be set in the thickness of a component.
Insbesondere ist es wünschenswert, die äußeren Randzonen von Stahlblechen zu beeinflus sen, während der Kern in den üblichen Eigenschaften verbleibt. Bei herkömmlichen Stahlver arbeitungsverfahren gelingt dies beispielsweise dadurch, dass eine Randaufkohlung vorge nommen wird, wobei der Kohlenstoff in ein Werkstück von außen eindiffundiert, so dass ab hängig vom Kohlenstoffgehalt die Ränder stärker gehärtet werden können oder eine durch eine Bearbeitung, insbesondere eine thermische Behandlung, stattgefundene Randentkoh lung dadurch wieder ausgeglichen wird. In particular, it is desirable to influence the outer edge zones of steel sheets, while the core retains its usual properties. In conventional steel processing methods, this is achieved, for example, in that edge carburization is carried out, the carbon diffusing into a workpiece from the outside, so that, depending on the carbon content, the edges can be hardened to a greater extent or by machining, in particular thermal treatment Edge decalcification is thereby compensated for again.
Um solche Randzonen gegebenenfalls für nachfolgende Umformprozesse nicht härter zu ma chen sondern eher weicher, sprich duktiler, kann eine Randentkohlung vorgesehen sein. Bei diesen Aufkohlungs- und Entkohlungsverfahren müssen jedoch in relativ aufwändiger Weise die entsprechende Temperaturführung und die entsprechende Gasführung sichergestellt sein. In order to make such edge zones not harder for subsequent forming processes, but rather softer, i.e. more ductile, edge decarburization can be provided. In these carburizing and decarburizing processes, however, the corresponding temperature control and the corresponding gas control must be ensured in a relatively complex manner.
Bei Stahlblechen bzw. Stahlbändern ist dies selbstverständlich auch möglich, jedoch müssten dann in einem kontinuierlichen Verfahren die Oberflächen des Stahlbandes entsprechend be handelt werden, oder im sogenannten„OpenCoil Verfahren", mittels Abstandshaltern aufge rollten Blechen, der entkohlenden Atmosphäre ausgesetzt werden. In the case of steel sheets or steel strips, this is of course also possible, but then the surfaces of the steel strip would have to be treated accordingly in a continuous process, or exposed to the decarburizing atmosphere in the so-called "OpenCoil process", sheets rolled up by means of spacers.
Darüber hinaus ist es bekannt, ein Stahlblech als Verbund auszubilden, wobei die äußeren Oberflächen aus einer anderen Stahlgüte bestehen als der Kern. Hierzu werden drei Bleche, beispielsweise einer Folge A-B-A aufeinander gewalzt, wobei das A für Stahlgüten steht, die an der Außenfläche des fertigen Stahlbandes sich befinden und das B für eine Stahlgüte, die sich zwischen den beiden äußeren Stahlgüten eingebettet befindet. Die Firma ThyssenKrupp hat hierzu unter dem Titel BP3-Metall-Metallverbunde entspre chende Sandwich-Strukturen veröffentlicht, wobei die äußeren Bleche hochkohlenstoffhaltige Stähle sind, während das innere Stahlblech ein sogenannter Low Carbon Steel ist. Auch in umgekehrter Zusammensetzung ist dieses Produkt unter dem Markennamen Tribond® be kannt. In addition, it is known to form a steel sheet as a composite, the outer surfaces consisting of a different steel grade than the core. For this purpose, three sheets, for example a sequence of ABA, are rolled on top of one another, the A standing for steel grades that are located on the outer surface of the finished steel strip and the B for a steel quality that is embedded between the two outer steel grades. The company ThyssenKrupp has published corresponding sandwich structures under the title BP3-Metall-Metallverbunde, whereby the outer sheets are high-carbon steels, while the inner steel sheet is a so-called low carbon steel. This product is also known in reverse composition under the brand name Tribond®.
Hierbei konnte beobachtet werden, dass der Kohlenstoff bei hohen Temperaturen welche bsp. beim Verzinkungsprozess oder Presshärteprozess auftreten, vom höheren Kohlenstoff material in das niedrigere kohlenstoffhaltige Material hinein diffundiert. It could be observed that the carbon at high temperatures which ex. occur during the galvanizing process or press hardening process, diffused from the higher carbon material into the lower carbonaceous material.
Ein solches Diffusionsverhalten ist selbstverständlich ungünstig, denn es würde dazu führen, dass während einer Wärmebehandlung und einer anschließenden Walzbehandlung sich die Kohlenstoffgehalte und damit die Härten ausgleichen. Such a diffusion behavior is of course unfavorable, because it would lead to the carbon content and thus the hardness equalizing each other during a heat treatment and a subsequent rolling treatment.
Außerdem führt der hohe Kohlenstoffgehalt in einer der Lagen zu einer schwierigeren Verar beitung in der Herstellung, hier insbesondere beim Kaltwalzen. In addition, the high carbon content in one of the layers makes processing more difficult in production, especially during cold rolling.
Aus der WO 2017/054862 Al ist ein Mehrlagenverbund mit Randbereich und Kernbereich be kannt, wobei der Randbereich weicher ausgebildet sein soll und die Summe an Kohlenstoff, Silizium, Mangan, Chrom und Nickel insgesamt größer 1,45 Gewichts-% sein soll. From WO 2017/054862 A1 a multilayer composite with an edge area and a core area is known, the edge area being designed to be softer and the total of carbon, silicon, manganese, chromium and nickel to be greater than 1.45% by weight.
Aus der EP 2 286 332 Bl ist ein Sandwichblech zum Presshärten bekannt, welches einen fes ten Kern aus einem Stahl mit 0,26 % Kohlenstoff und weiche Decklagen, die durch Wälzplat tieren erzeugt wurden höchstens 0,13 % Kohlenstoff aufweisen soll. From EP 2 286 332 B1 a sandwich sheet for press hardening is known, which should have a solid core made of a steel with 0.26% carbon and soft cover layers, which were produced by Wälzplat animals, at most 0.13% carbon.
Aus der EP 2 271 541 Bl ist die Verwendung eines Verbundwerkstoffs in einer Fahr zeugstruktur bekannt. The use of a composite material in a vehicle structure is known from EP 2 271 541 B1.
Aus der DE 10 2016 115 036 Al sind Fahrwerkskomponenten mit hoher Betriebsfestigkeit bekannt, wobei diese aus einem Mehrlagenverbund bestehen und eine optionale Vergütung bestehend aus Flärten und Anlassen durchgeführt werden kann. From DE 10 2016 115 036 A1, chassis components with high operational stability are known, whereby these consist of a multilayer composite and an optional remuneration consisting of flaring and tempering can be carried out.
Aus der DE 10 2016 108836 Al ist ein Kraftfahrzeugbauteil bekannt, wobei eine sogenannte Tailor Heated Schneilaufheizung vorgenommen wird, sodass nur bestimmte Bereiche schnell aufgeheizt werden, wobei die Zugfestigkeit Rm bevorzugt 2000 MPa beträgt und derart 20 W > 6 % betragen soll. Auch kann es sich hierbei um ein Mehrlagenblech halten, wobei hier ein erhöhter Biegewinkel also auch ein optionales partielles Anlassen offenbart sind. Aufgabe der Erfindung ist es ein Verfahren zum Herstellen eines Stahlverbundwerkstoffs zu schaffen, mit dem ein Stahlverbundwerkstoff erzielt wird, der bezüglich der Crasheigenschaf ten und der Umformbarkeit, verbesserte Eigenschaften besitzt. A motor vehicle component is known from DE 10 2016 108836 A1, with so-called tailor-heated snow heating being carried out so that only certain areas are heated up quickly, the tensile strength R m preferably being 2000 MPa and thus 20 W> 6%. It can also be a multi-layer sheet, with an increased bending angle and optional partial annealing being disclosed here. The object of the invention is to create a method for producing a steel composite material with which a steel composite material is obtained which has improved properties with regard to crash properties and formability.
Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. The object is achieved with a method having the features of claim 1.
Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet. Advantageous further developments are characterized in the subclaims.
Es ist darüber hinaus eine Aufgabe ein Stahlverbundwerkstoff zu schaffen, der verbesserte Crasheigenschaften und verbesserte Verformungseigenschaften besitzt. A further object is to create a steel composite material which has improved crash properties and improved deformation properties.
Die Aufgabe wird mit einem Werkstoff mit den Merkmalen des Anspruchs 13 gelöst. The object is achieved with a material having the features of claim 13.
Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeich net. Advantageous further developments are identified in the dependent claims.
Geringe Temperaturen und Glühdauern z. B. 180°C für 25 Minuten haben bei Bormangan- stählen, wie z. B. dem 22 MnB5, einen geringen positiven Effekt auf die Streckgrenze, er niedrigen dafür aber die Festigkeit und erhöhen den Biegewinkel geringfügig. Verbundwerk stoffe mit martensitischen Kern und ferritischen Außenauflagen werden in gleicher Weise ge fertigt. Die duktile Außenauflage erhöht hierbei den Biegewinkel. Low temperatures and glow durations e.g. B. 180 ° C for 25 minutes with boron manganese steels, such. B. the 22 MnB5, a slight positive effect on the yield point, but it lowers the strength and increases the bending angle slightly. Composite materials with a martensitic core and ferritic outer layers are produced in the same way. The ductile outer layer increases the bending angle.
Zudem ist die Randentkohlung zur Einstellung eines Festigkeits- /Duktilitätsverlauf bekannt, wobei der Biegewinkel hier ebenfalls deutlich erhöht wird. In addition, edge decarburization for setting a strength / ductility profile is known, with the bending angle also being significantly increased here.
Erfindungsgemäß wurde erkannt, dass das Optimum von Biegewinkel zu Festigkeit zu Streck grenze trotz Plattierschichten bei höher festem Kern an eine Grenze stößt. Erfindungsgemäß wurde erkannt, dass nur durch einen optimalen Aufbau des Verbundmaterials und einer ideal thermischen Konditionierung der einzelnen Schichten, im ergebenen Gradientenwerkstoff die maximale bzw. optimale Leistungsfähigkeit erzielt wird. Dementsprechend soll bei einer Bei behaltung der Streckgrenze bzw. der Festigkeitseigenschaften der Biegewinkel erhöht wer den um die Verformungseigenschaften zu verbessern. Hierbei soll eine höhere Streckgrenze und eine höhere Festigkeit erzielt werden, wobei jede Lage bis zum Maximum belastet wird, wobei gleichzeitig ein höherer Biegewinkel vorhanden ist und eine Faltung ermöglicht wird. Überraschend hat sich herausgestellt, dass bei einer Temperaturbehandlung des fertig her gestellten Verbundes in einem Temperaturbereich von 150°C bis 300° C, insbesondere von 160°C bis 250° C und insbesondere bei 175C° bis 225° C und einer Glühzeit von 15 Minuten bis zu einer Stunde und insbesondere von 20 bis 40 Minuten bei Erhöhung der Streckgrenze eine deutliche Biegewinkelverbesserung von bis zu 20° erzielt wird wobei darüber hinaus die Zugfestigkeit im Wesentlichen erhalten bleibt. Die maximale Änderung des Zugfestigkeits wertes kann dabei weniger als 5% betragen. According to the invention, it was recognized that the optimum from bending angle to strength to yield limit comes up against a limit in spite of cladding layers with a higher-strength core. According to the invention, it was recognized that the maximum or optimal performance can only be achieved in the resulting gradient material through an optimal structure of the composite material and ideal thermal conditioning of the individual layers. Accordingly, if the yield point or the strength properties are retained, the bending angle should be increased to improve the deformation properties. Here, a higher yield point and a higher strength should be achieved, with each layer being loaded to the maximum, with a higher bending angle being available at the same time and folding being made possible. Surprisingly, it has been found that during a temperature treatment of the finished composite in a temperature range from 150 ° C to 300 ° C, in particular from 160 ° C to 250 ° C and in particular at 175 ° to 225 ° C and an annealing time of 15 minutes up to one hour and in particular from 20 to 40 minutes when the yield point is increased a significant improvement in the bending angle of up to 20 ° is achieved, while the tensile strength is essentially retained. The maximum change in the tensile strength value can be less than 5%.
Der Effekt bei Verbundmaterialien ist hierbei erheblich höher ausgeprägt als bei reinen Bor- manganstahlgüten, sodass vermutet wird, dass der Einfluss auf den Ferrit des weicheren Partners, z. B. eines 340LA, erst im Verbund wirksam wird oder ein Zwischenoberflächenef fekt (Interface Effekt) aktiviert wird. Erfindungsgemäß ist hierfür eine geeignete Auswahl des Verbundmaterials notwendig, wobei sich herausgestellt hat, dass eine besondere Gütekombi nation z. B. ein Bor-Mangan-Stahl des Typs 34MnB5 mit einer ferritischen Außenauflage z B. einem 340LA ist. The effect with composite materials is considerably more pronounced than with pure boron-manganese steel grades, so that it is assumed that the influence on the ferrite of the softer partner, e.g. B. a 340LA, only becomes effective in the network or an intermediate surface effect (interface effect) is activated. According to the invention a suitable selection of the composite material is necessary for this, it has been found that a special Gütekombi nation z. B. is a boron-manganese steel of the type 34MnB5 with a ferritic outer layer, e.g. a 340LA.
Dementsprechend hat sich erfindungsgemäß herausgestellt, dass die möglichen Randwerk stoffe einen relativ geringen Kohlenstoffanteil besitzen sollen, um die Verarbeitbarkeit, sprich die Duktilität im Randbereich zu verbessern. Diese sollten wenig Mangan und Chrom enthal ten und der Verlust von Kohlenstoff sollte wenig Einfluss auf die Festigkeit des Werkstoffs haben. Ferner ist es sinnvoll, wenn der Randwirkstoff wenige Legierungselemente enthält und damit ein so genannter mikrolegierter Stahl ist. Als geeignete Werkstoffe haben sich Stähle der folgenden Güten herausgestellt: 340LA; 420LA und bedingt 500LA. Dies sind übli che Werkstoffbezeichnungen, welche beispielsweise im Stahlschlüssel ermittelt werden kön nen. Des Weiteren findet sich zb der 340LA auch in der ÖNORM EN 10346. Die Bezeichnung kann auch HX340LA oder H340LA lauten, das Kürzel davor bezeichnet die verschiedenen Verarbeitungszustände und bezieht sich nicht auf die chemische Zusammensetzung selbst. Accordingly, it has been found according to the invention that the possible edge materials should have a relatively low carbon content in order to improve the processability, i.e. the ductility in the edge area. These should contain little manganese and chromium and the loss of carbon should have little effect on the strength of the material. It also makes sense if the edge active substance contains few alloying elements and is therefore a so-called micro-alloyed steel. Steels of the following grades have proven to be suitable materials: 340LA; 420LA and conditionally 500LA. These are common material names that can be determined in the steel key, for example. The 340LA can also be found in ÖNORM EN 10346, for example. The designation can also be HX340LA or H340LA, the abbreviation in front of it denotes the various processing states and does not refer to the chemical composition itself.
Für die Erfindung sind insbesondere auch härtbare Stähle der allgemeinen Legierungszusam mensetzung geeignet (alle Angaben in Masse-%): Hardenable steels of the general alloy composition are also particularly suitable for the invention (all data in% by mass):
Kohlenstoff (C) 0,08-0,6 Carbon (C) 0.08-0.6
Mangan (Mn) 0, 5-3,0 Manganese (Mn) 0.5-3.0
Aluminium (AI) 0,01-0,07 Aluminum (AI) 0.01-0.07
Silizium (Si) 0,01-0,7 Silicon (Si) 0.01-0.7
Chrom (Cr) 0,02-0,6 Titan (Ti) 0,01-0,08 Chromium (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.08
Stickstoff (N) < 0,02 Nitrogen (N) <0.02
Bor (B) 0,002-0,02 Boron (B) 0.002-0.02
Phosphor (P) < 0,01 Phosphorus (P) <0.01
Schwefel (S) < 0,01 Sulfur (S) <0.01
Molybdän (Mo) < 1 Molybdenum (Mo) <1
Rest Eisen und erschmelzungsbedingte Verunreinigungen. The remainder is iron and impurities from the melting process.
Für die Erfindung sind insbesondere auch härtbare Stähle der bevorzugten Legierungszusam mensetzung geeignet (alle Angaben in Masse-%): Hardenable steels of the preferred alloy composition are also particularly suitable for the invention (all data in% by mass):
Kohlenstoff (C) 0,08-0,30 Carbon (C) 0.08-0.30
Mangan (Mn) 1,00- 3,00 Manganese (Mn) 1.00-3.00
Aluminium (AI) 0,03-0,06 Aluminum (AI) 0.03-0.06
Silizium (Si) 0,01-0,20 Silicon (Si) 0.01-0.20
Chrom (Cr) 0,02-0,3 Chromium (Cr) 0.02-0.3
Titan (Ti) 0,03-0,04 Titanium (Ti) 0.03-0.04
Stickstoff (N) < 0,007 Nitrogen (N) <0.007
Bor (B) 0,002-0,006 Boron (B) 0.002-0.006
Phosphor(P) < 0,01 Phosphorus (P) <0.01
Schwefel (S) < 0,01 Sulfur (S) <0.01
Molybdän (Mo) < 1 Molybdenum (Mo) <1
Rest Eisen und erschmelzungsbedingte Verunreinigungen. The remainder is iron and impurities from the melting process.
Für die Erfindung besonders geeignet sind härtbare manganhaltige Stähle dieser Legierungs zusammensetzung (alle Angaben in Masse-%): Hardenable, manganese-containing steels of this alloy composition are particularly suitable for the invention (all data in% by mass):
C Si Mn P S AI Cr Ti B N C Si Mn P S AI Cr Ti B N
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
0,36 0,23 1,85 0,0057 0,001 0,05 0,11 0,03 0,0030 0,00440.36 0.23 1.85 0.0057 0.001 0.05 0.11 0.03 0.0030 0.0044
Rest Eisen und erschmelzungsbedingte Verunreinigungen, wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungsele mente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden. Remainder iron and impurities caused by the melting process, in particular the alloy elements boron, manganese, carbon and optionally chromium and molybdenum are used as conversion retarders in such steels.
Um den Korrosionsschutz zu verbessern kann es vorgesehen sein mindestens eine Seite des Verbundwerkstoffs bevorzugt vor dem Formhärtevorgang oder Presshärtevorgang mit einer metallischen Beschichtung zur versehen. In order to improve the corrosion protection, at least one side of the composite material can be provided with a metallic coating, preferably before the form hardening process or press hardening process.
Grundsätzlich kann das Überzugsmetall aus den verschiedensten Legierungen bestehen, be vorzugt sind dabei Nickel, Kupfer, Chrom, Aluminium, Magnesium, Zink bzw. dessen Legie rungskombination. In principle, the coating metal can consist of a wide variety of alloys, nickel, copper, chromium, aluminum, magnesium, zinc or its alloy combination are preferred.
Besonders auszeichnen können sich Aluminium-Silizium Legierungen (auch bekannt als Usi- bor) als auch Zinklegierungen auf Basis von Zink. Aluminum-silicon alloys (also known as usibor) and zinc alloys based on zinc can particularly stand out.
Die Auftragung kann mittels üblicher Beschichtungsvorrichtungen vorgenommen werden wie beispielsweise einer Feuerverzinkungsanlage bzw. Feueraluminierungsanlage oder einer elektrolytischen Beschichtungsanlage. The application can be carried out by means of conventional coating devices such as a hot-dip galvanizing plant or hot-dip aluminizing plant or an electrolytic coating plant.
Bezüglich der Dickenverhältnisse und Dickenbereiche sollten die beiden äußeren Bleche je weils maximal 25 % der Gesamt Verbunddicke aufweisen, bevorzugt weniger als 15 %, be sonders bevorzugt weniger als 5 %. Der gesamte Verbund besitzt eine Dicke zwischen 0,5 und 5 mm, bevorzugt 0,5 bis 3 mm. Der übliche Aufbau ist somit A-B-A, wobei A die Außen schichten aus einem ferritischen Stahlmaterial sind und B die Innenschicht aus einem härtba ren Bor-Mangan-Stahlmaterial. With regard to the thickness ratios and thickness ranges, the two outer sheets should each have a maximum of 25% of the total composite thickness, preferably less than 15%, particularly preferably less than 5%. The entire composite has a thickness between 0.5 and 5 mm, preferably 0.5 to 3 mm. The usual structure is thus A-B-A, with A being the outer layers made of a ferritic steel material and B the inner layer made of a hardenable boron-manganese steel material.
Selbstverständlich ist der beschriebene Aufbau A-B-A auch umkehrbar in B-A-B. Dies bedeu tet, dass unter bestimmten Voraussetzungen die Randschichten härter sind als die Mittel schichten. Mit der B-A-B Kombination kann eine Verschleißschicht erzeugt werden bzw. kann der Verbund eine höhere Biegefestigkeit erreichen, welche eine höhere Kraftübertragung er möglichen kann. Of course, the described structure A-B-A can also be reversed into B-A-B. This means that under certain conditions the outer layers are harder than the middle layers. With the B-A-B combination, a wear layer can be created or the composite can achieve a higher flexural strength, which enables higher power transmission.
Vorteilhafterweise kann auch vorgesehen sein, dass der Stahlverbund aus mehr als zwei ver schiedenen Stahlwerkstoffen ausgebildet ist. Dies kann bei einer entsprechenden Anordnung von geeigneten Materialien dazu dienen, dass beispielsweise bei einem fünftägigen Stahlver bund die Härte von innen nach außen abnimmt und die Bruchdehnung jeder einzelnen Lage entsprechend zunimmt. Damit kann bei gleicher Duktilität/ gleichem Biegewinkel eine höhere Festigkeit des Verbundes erreicht werden. Advantageously, it can also be provided that the steel composite is formed from more than two different steel materials. With a corresponding arrangement of suitable materials, this can serve to ensure that, for example, in a five-day steel composite, the hardness decreases from the inside out and the elongation at break of each individual layer increases accordingly. With the same ductility / same bending angle, a higher strength of the bond can be achieved.
Die Erfindung wird anhand von Zeichnungen beispielhaft erläutert. Es zeigen dabei: Figur 1: VDA283[API] -100 in Abhängigkeit von der Wärme behandlung bei einem erfindungsgemäßen Verbundwerkstoff im Vergleich zu einem nicht wärmebehandelten Referenzwerkstoff; The invention is explained by way of example with reference to drawings. It shows: Figure 1: VDA283 [API] -100 as a function of the heat treatment of a composite material according to the invention compared to a reference material that has not been heat-treated;
Figur 2: Die Verschiebung des Biegewinkels bei einem Stahlver-bundwerkstoff gegenüber ei nem reinen presshärtendem Bor-Mangan-Stahl ohne einererfindungsgemäße Wärme behandlung, dh. Biegewinkel nach dem Stand der Technik; FIG. 2: The shift in the bending angle in a steel composite material compared to a pure press-hardening boron-manganese steel without heat treatment according to the invention, ie. State of the art bending angle;
Figur 3: Der Kraftverlauf bei einem Biegewinkeltest bei dem erfindungsgemäßen Werkstoff, an einem Vergleichswerkstoff aus einem monolithischem martensitischen presshär tenden Stahl und dem erfindungsgemäßen Werkstoff bei unterschiedli chen Wärmebehandlungstemperaturen bzw. -dauern; FIG. 3: The force profile in a bending angle test with the material according to the invention, on a comparison material made of a monolithic martensitic press-hardening steel and the material according to the invention at different heat treatment temperatures or durations;
Figur 4: Einen beispielhaften erfindungsgemäßen Temperaturverlauf für direkte Glühung nach dem Presshärtevorgang; FIG. 4: an exemplary temperature profile according to the invention for direct annealing after the press hardening process;
Figur 5: Einen beispielhaften erfindungsgemäßen Temperaturverlauf für zwischenzeitliche Abkühlung auf Raumtemperatur nach dem Presshärtevorgang. FIG. 5: An exemplary temperature profile according to the invention for intermediate cooling to room temperature after the press hardening process.
Erfindungsgemäß soll eine Biegewinkelerhöhung um zumindest 5° insbesondere zumindest 10° erzielt werden, wobei bei Temperaturen zwischen 150°C und 300°C wärmebehandelt wird. Bei 150°C ist der Effekt eher gering während bei 300°C eine Einbuße bei der Festigkeit zu beobachten ist. Daher sind bevorzugt Bereiche zwischen 160°C und 250°C und weiter be vorzugt zwischen 175°C und 225°C. Die sinnvollen Glühzeiten reichen von 15 Minuten (eher schwacher Effekt) bis zu einer Stunde (starker Effekt jedoch die Festigkeit abfallend) sodass insbesondere 20 bis 40 Minuten bevorzugt sind. According to the invention, an increase in the bending angle by at least 5 °, in particular at least 10 °, is to be achieved, with heat treatment being carried out at temperatures between 150 ° C. and 300 ° C. At 150 ° C the effect is rather low, while at 300 ° C a loss in strength can be observed. Therefore, ranges between 160 ° C and 250 ° C and more preferably between 175 ° C and 225 ° C are preferred. The sensible annealing times range from 15 minutes (rather weak effect) to one hour (strong effect, however, the strength drops) so that 20 to 40 minutes are particularly preferred.
Bei einer Temperaturbehandlung bei ca. 200°C für ca. 20 bis 25 Minuten zeigen die Ver suchsergebnisse Biegewinkelverbesserungen von bis zu 40° bei einer Erhöhung der Streck grenze und Beibehaltung der Zugfestigkeit. Insbesondere in der Figur 1 kann dieser Effekt beobachtet werden. Dabei wurden alle Versuche mit einer Probengröße von 30x60 mm bei 1,5mm dicken Blechmaterial durchgeführt. With a temperature treatment at approx. 200 ° C for approx. 20 to 25 minutes, the test results show bending angle improvements of up to 40 ° with an increase in the yield point and retention of the tensile strength. This effect can be observed in particular in FIG. All tests were carried out with a sample size of 30x60 mm and 1.5 mm thick sheet material.
Betrachtet man Figur 1 erkennt man dort, dass bei 200°C und 20 Minuten der Biegewinkel bereits auf über 80° ansteigt. Bei 150°C und 25 Minuten ist dieser Effekt deutlich weniger ausgeprägt, sodass ein Biegewinkel von etwa 72° erzielt wird. Bereits bei einer Erhöhung der Temperatur auf 180°C wird ebenfalls ein Biegewinkel von 80° erreicht während bei einer Er höhung der Temperatur auf 250°C und 300°C Biegewinkel von fast 95° erreicht werden. Figur 2 zeigt die Verschiebung der Kurve des monolithischen Werkstoffs (in diesem Beispiel eines phs-ultraform 1500) bei einem höherfesteren Verbundwerkstoff (1700er) zu geringfü gig verbesserten Biegewinkel, allerdings wird diese Verbesserung durch Einbußen der Festig keit erkauft. Des Weiteren verbleibt die Gesamtfläche unter der Kurve im Wesentlichen kon stant. Damit ist gezeigt, dass sich bei der Auswahl der Materialien für den Verbundwerkstoff allein, dh. ohne erfindungsgemäße Wärmebehandlung keine wesentlichen Verbesserungen der mechanischen Kennwerte erzielen lassen. If you look at Figure 1, you can see that at 200 ° C and 20 minutes, the bending angle already increases to over 80 °. At 150 ° C and 25 minutes, this effect is much less pronounced, so that a bending angle of around 72 ° is achieved. Even when the temperature is increased to 180 ° C, a bending angle of 80 ° is also achieved, while when the temperature is increased to 250 ° C and 300 ° C, bending angles of almost 95 ° are achieved. FIG. 2 shows the shift in the curve of the monolithic material (in this example a phs-ultraform 1500) with a higher-strength composite material (1700s) too slightly improved bending angle, but this improvement is bought at the expense of strength. Furthermore, the total area under the curve remains essentially constant. This shows that when selecting the materials for the composite material alone, ie. Without heat treatment according to the invention, no significant improvements in the mechanical characteristics can be achieved.
In Figur 3 erkennt man, wie gegenüber dem Verbundwerkstoff aus Figur 2, die Verbund werkstoffe nach einer Temperaturbehandlung bezüglich des Biegewinkels, deutlich zu ver besserten Werten verschoben werden, ohne dass es zu Festigkeitseinbußen bzw. zu höchs tens geringfügigen Festigkeitseinbußen kommt. Die deutliche Verbesserung der mechani schen Eigenschaften wird insbesondere durch die signifikante Erhöhung der Fläche unter der Kurve deutlich. In FIG. 3 it can be seen how, compared with the composite material from FIG. 2, the composite materials are shifted significantly to improved values after a temperature treatment with regard to the bending angle, without there being any loss of strength or at most slight loss of strength. The significant improvement in the mechanical properties is particularly evident from the significant increase in the area under the curve.
Die Figuren 4 und 5 zeigen mögliche Temperaturverläufe für das erfindungsgemäße Verfah ren. Einerseits kann die Restwärme nach dem Presshärtevorgang für die Wärmebehandlung genutzt werden wie in Figur 4 dargestellt. Allerdings muss die Abkühlung zumindest bis unter den jeweiligen Ms Punkt in jedem Fall über der kritischen Abkühlrate erfolgen da sich ander- falls kein martensitisches Gefüge bilden würde. Dieses Verfahren bietet den Vorteil, dass es weniger Energie bzw. Wärmeeintrag benötigt, da die Abkühlung bei der gewünschten Ziel temperatur gestoppt wird. FIGS. 4 and 5 show possible temperature profiles for the method according to the invention. On the one hand, the residual heat after the press hardening process can be used for the heat treatment, as shown in FIG. However, the cooling must take place at least to below the respective Ms point in any case above the critical cooling rate, since otherwise no martensitic structure would form. This method offers the advantage that it requires less energy or heat input, since cooling is stopped at the desired target temperature.
Es ist aber auch möglich bis auf Raumtemperatur abzukühlen und danach in einem separa ten Schritt die Wärmebehandlung des abgekühlten Materials vorzunehmen (siehe Figur 5). Dies bietet den Vorteil, dass die Flexibilität erhöht werden kann und auf allfällige Kunden wünsche auch später noch eingegangen werden kann. However, it is also possible to cool down to room temperature and then carry out the heat treatment of the cooled material in a separate step (see FIG. 5). This has the advantage that flexibility can be increased and any customer requests can also be dealt with later.
Bei der Erfindung ist von Vorteil, dass durch eine Wärmebehandlung bei niedrigen Tempera turen der Biegewinkel und damit das Crashverhalten und Umform verhalten verbessert wird ohne das die Festigkeitseigenschaften des Stahlverbundwerkstoffs verschlechtert werden. The invention has the advantage that the bending angle and thus the crash behavior and deformation behavior is improved by a heat treatment at low temperatures without the strength properties of the steel composite material being impaired.

Claims

Internationale Patentanmeldung International patent application
voestalpine Stahl GmbH voestalpine Stahl GmbH
Patentansprüche Claims
1. Verfahren zum Erzeugen eines Stahl Verbundes, wobei mindestens zwei Stahlbleche, die aus mindestens zwei unterschiedlichen Stahlgüten einer ersten Stahlgüte aus einem härtbaren manganhaltigen Stahl und einer zweiten Stahlgüte aus einem mikrolegierten Stahl bestehen, aufeinandergelegt und durch Warmwalzen plattiert werden und der dadurch erzielte Verbundwerkstoff nachfolgend kaltgewalzt wird, wobei anschließend an das Walzen der Verbundwerkstoff aus zumindest zwei Schichten mit unterschiedlicher Stahlzusammensetzung form- oder pressgehärtet und anschließend mit einer Abkühlrate über der kritischen Abkühlrate zur Erzeugung eines martensitischen Gefüges des zumin dest härtbaren manganhaltigen Stahls abgekühlt wird, 1. A method for producing a steel composite, wherein at least two steel sheets, which consist of at least two different steel grades of a first steel grade made of a hardenable manganese-containing steel and a second steel grade made of a micro-alloyed steel, are placed on top of one another and plated by hot rolling, and the composite material thus obtained is subsequently is cold-rolled, the composite material consisting of at least two layers with different steel compositions being form or press hardened and then cooled at a cooling rate above the critical cooling rate to produce a martensitic structure of the at least hardenable manganese-containing steel,
dadurch gekennzeichnet, characterized,
dass der Verbundwerkstoff nachfolgend zur Erhöhung des Biegewinkels um zumindest 5° bevorzugt zumindest 10° zwischen 150°C und 300°C für 15 Minuten bis 60 Minuten wärmebehandelt wird. that the composite material is subsequently heat treated to increase the bending angle by at least 5 °, preferably at least 10 ° between 150 ° C. and 300 ° C. for 15 minutes to 60 minutes.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
dadurch gekennzeichnet, characterized,
dass der härtbare manganhaltige Stahl, die folgende Zusammensetzung besitzt: that the hardenable manganese-containing steel has the following composition:
Kohlenstoff (C) 0,08-0,6 Carbon (C) 0.08-0.6
Mangan (Mn) 0, 5-3,0 Manganese (Mn) 0.5-3.0
Aluminium (AI) 0,01-0,07 Aluminum (AI) 0.01-0.07
Silizium (Si) 0,01-0,7 Silicon (Si) 0.01-0.7
Chrom (Cr) 0,02-0,6 Chromium (Cr) 0.02-0.6
Titan (Ti) 0,01-0,08 Titanium (Ti) 0.01-0.08
Stickstoff (N) < 0,02 Nitrogen (N) <0.02
Bor (B) 0,002-0,02 Boron (B) 0.002-0.02
Phosphor (P) < 0,01 Phosphorus (P) <0.01
Schwefel (S) < 0,01 Molybdän (Mo) < 1 Sulfur (S) <0.01 Molybdenum (Mo) <1
Rest Eisen und erschmelzungsbedingte Verunreinigungen. The remainder is iron and impurities from the melting process.
3. Verfahren nach einem der vorhergehenden Ansprüche, 3. The method according to any one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass der härtbare Stahl eine Stahlzusammensetzung wie folgt besitzt (alle Angaben in Masse-%): that the hardenable steel has a steel composition as follows (all data in% by mass):
Kohlenstoff (C) 0,08-0,30 Carbon (C) 0.08-0.30
Mangan (Mn) 1,00- 3,00 Manganese (Mn) 1.00-3.00
Aluminium (AI) 0,03-0,06 Aluminum (AI) 0.03-0.06
Silizium (Si) 0,01-0,20 Silicon (Si) 0.01-0.20
Chrom (Cr) 0,02-0,3 Chromium (Cr) 0.02-0.3
Titan (Ti) 0,03-0,04 Titanium (Ti) 0.03-0.04
Stickstoff (N) < 0,007 Nitrogen (N) <0.007
Bor (B) 0,002-0,006 Boron (B) 0.002-0.006
Phosphor(P) < 0,01 Phosphorus (P) <0.01
Schwefel (S) < 0,01 Sulfur (S) <0.01
Molybdän (Mo) < 1 Molybdenum (Mo) <1
Rest Eisen und erschmelzungsbedingte Verunreinigungen. The remainder is iron and impurities from the melting process.
Verfahren nach einem der vorhergehenden Ansprüche, Method according to one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass als ferritisches Partnermaterial für den härtbaren insbesondere martensitisch härt baren Bor-Mangan-Stahl ein mikrolegierter Stahl verwendet wird, mit der folgenden Zu sammensetzung (alle Angaben in Masse-%): that a microalloyed steel is used as the ferritic partner material for the hardenable, in particular martensitically hardenable, boron-manganese steel, with the following composition (all data in% by mass):
Kohlenstoff (C) 0,02-0,12 Carbon (C) 0.02-0.12
Mangan (Mn) 0, 2-2,0 Manganese (Mn) 0.2-2.0
Aluminium (AI) 0,01-0,07 Aluminum (AI) 0.01-0.07
Silizium (Si) < 0,5 Silicon (Si) <0.5
Chrom (Cr) < 0,3 Chromium (Cr) <0.3
Titan (Ti) + Niob (Nb) 0,01-0,15 Titanium (Ti) + niobium (Nb) 0.01-0.15
Stickstoff (N) < 0,02 Bor (B) < 0,02 Nitrogen (N) <0.02 Boron (B) <0.02
Phosphor(P) < 0,01 Phosphorus (P) <0.01
Schwefel (S) < 0,01 Sulfur (S) <0.01
Molybdän (Mo) < 1 Molybdenum (Mo) <1
Rest Eisen und erschmelzungsbedingte Verunreinigungen. The remainder is iron and impurities from the melting process.
5. Verfahren nach einem der vorhergehenden Ansprüche, 5. The method according to any one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die eine Stahlgüte aus einem martensitisch härtbaren Bor-Mangan-Stahl und die andere Stahlgüte aus einem Stahl der Güten 340LA, 420LA oder 500LA besteht. that one steel grade consists of a martensitically hardenable boron-manganese steel and the other steel grade consists of a steel of the grades 340LA, 420LA or 500LA.
6. Verfahren nach einem der vorhergehenden Ansprüche, 6. The method according to any one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass drei Stahlbleche aufeinander gelegt und miteinander warmgewalzt werden, wobei das mittlere Stahlblech aus einem martensitisch härtbaren Bor-Mangan-Stahl besteht und die beiden äußeren Bleche aus einem 340LA, 420LA oder 500LA ausgebildet sind. that three steel sheets are placed on top of one another and hot-rolled together, the middle steel sheet being made of a martensitically hardenable boron-manganese steel and the two outer sheets being made of a 340LA, 420LA or 500LA.
7. Verfahren nach einem der vorhergehenden Ansprüche, 7. The method according to any one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass die äußeren Bereiche eine Gesamtdicke von 25 %, vorzugsweise < 15 %, weiter bevorzugt 5% der Dicke des gesamten Stahlblechs nach dem Verwalzen ausmachen. that the outer regions make up a total thickness of 25%, preferably <15%, more preferably 5% of the thickness of the entire steel sheet after rolling.
8. Verfahren nach einem der vorhergehenden Ansprüche, 8. The method according to any one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass der Verbundwerkstoff zwischen 160° C und 250° C und insbesondere zwischen 175°C und 225°C wärmebehandelt wird. that the composite material is heat-treated between 160 ° C and 250 ° C and in particular between 175 ° C and 225 ° C.
9. Verfahren nach einem der vorhergehenden Ansprüche, 9. The method according to any one of the preceding claims,
dadurch gekennzeichnet, characterized,
dass der Verbundwerkstoff 20 bis 40 Minuten wärmebehandelt wird. that the composite is heat treated for 20 to 40 minutes.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine Seite des Verbundwerkstoffs vor dem Formhärtevorgang oder Presshär tevorgang eine metallische Beschichtung mit Aluminium oder einer Legierung enthaltend im Wesentlichen Aluminium oder einer Legierung aus Aluminium und Zink und/oder ei ner anderen Zinklegierung enthaltend im Wesentlichen Zink erfährt. 10. The method according to any one of the preceding claims, characterized in that at least one side of the composite material prior to the form hardening process or press hardening process a metallic coating with aluminum or an alloy containing essentially aluminum or an alloy of aluminum and zinc and / or another zinc alloy containing essentially zinc.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stahlverbund aus drei oder vier oder mehr unterschiedlichen Stahlwerk stoffen gewalzt wird, wobei der Stahlverbund mit drei, vier, fünf oder mehr Schichten ausgebildet ist. 11. The method according to any one of the preceding claims, characterized in that the steel composite is rolled from three or four or more different steel materials, the steel composite being formed with three, four, five or more layers.
12. Stahlblechverbundwerkstoff insbesondere hergestellt nach einem der Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Verbund press- oder formgehärtet ist, wobei die weicheren Blechschichten nach dem Press- oder Formhärten des Verbunds eine Zugfestigkeit Rm von 0,3 bis 0,9 GPa entwickeln und die härteren Blechschichten eine Zugfestigkeit Rm zwischen 1 GPa und 2,8 GPa entwickeln. 12. Sheet steel composite material in particular produced according to one of the methods according to one of claims 1 to 11, characterized in that the composite is press-hardened or form-hardened, the softer sheet metal layers having a tensile strength R m of 0.3 to after the press-hardening or press hardening of the composite Develop 0.9 GPa and the harder sheet metal layers develop a tensile strength R m between 1 GPa and 2.8 GPa.
13. Stahlblechverbundwerkstoff nach Anspruch 12, dadurch gekennzeichnet, dass der Stahlblechverbund weichere Stahlsorten außen und eine härtere Stahlsorte dazwischen oder umgekehrt besitzt. 13. Sheet steel composite material according to claim 12, characterized in that the sheet steel composite has softer types of steel on the outside and a harder type of steel in between or vice versa.
14. Verwendung eines Stahlblechverbundwerkstoffs nach Anspruch 12 oder 13 zum 14. Use of a sheet steel composite material according to claim 12 or 13 for
Herstellen pressgehärteter oder formgehärteter Bauteile, bei denen das Bauteil kalt umgeformt, danach austenitisiert und anschließend abschreckgehärtet wird oder austenitisiert, umgeformt und abschreckgehärtet wird Manufacture of press-hardened or form-hardened components in which the component is cold formed, then austenitized and then quench hardened or austenitized, reshaped and quench hardened
15. Gehärtetes Bauteil aus einem Stahlblechverbundwerkstoff nach Anspruch 12 oder 13, hergestellt mit einem Verfahren nach einem der Ansprüche 1 bis 11. 15. Hardened component made of a sheet steel composite material according to claim 12 or 13, produced with a method according to one of claims 1 to 11.
EP20727599.1A 2019-06-05 2020-05-18 Method for producing a steel composite material Pending EP3980260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019115165.1A DE102019115165A1 (en) 2019-06-05 2019-06-05 Method for producing a steel composite material
PCT/EP2020/063835 WO2020244915A1 (en) 2019-06-05 2020-05-18 Method for producing a steel composite material

Publications (1)

Publication Number Publication Date
EP3980260A1 true EP3980260A1 (en) 2022-04-13

Family

ID=70802846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20727599.1A Pending EP3980260A1 (en) 2019-06-05 2020-05-18 Method for producing a steel composite material

Country Status (3)

Country Link
EP (1) EP3980260A1 (en)
DE (1) DE102019115165A1 (en)
WO (1) WO2020244915A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022709A1 (en) 2008-05-07 2009-11-19 Thyssenkrupp Steel Ag Use of a metallic composite material in a vehicle structure
WO2009141500A1 (en) 2008-05-20 2009-11-26 Nokia Corporation Method and apparatus for signaling time-shift support
DE102014112755B4 (en) * 2014-09-04 2018-04-05 Thyssenkrupp Ag Method for forming a workpiece, in particular a blank, from sheet steel
MX2018003984A (en) 2015-09-30 2018-06-22 Thyssenkrupp Steel Europe Ag Steel workpiece with improved surface quality.
DE102016108836B4 (en) 2016-05-12 2018-05-24 Benteler Automobiltechnik Gmbh Motor vehicle component and method for its production
DE102016115036A1 (en) * 2016-08-12 2018-02-15 Thyssenkrupp Ag Suspension component with high durability
EP3584341A1 (en) * 2017-02-20 2019-12-25 Nippon Steel Corporation Hot stamp moulded body
DE102017110851B3 (en) * 2017-05-18 2018-08-02 Voestalpine Stahl Gmbh Method for producing steel composite materials

Also Published As

Publication number Publication date
WO2020244915A1 (en) 2020-12-10
DE102019115165A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
EP2547800B1 (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
DE102009052210B4 (en) Method for producing components with regions of different ductility
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
EP2227574B1 (en) Steel for high-strength components comprising bands, sheets or tubes having excellent formability and particular suitability for high-temperature coating processes
DE102017218704A1 (en) Process for producing a steel component provided with a metallic, corrosion-protective coating
WO2021156101A1 (en) Steel sheet for hot forming, method for producing a hot-formed sheet-steel component, and hot-formed sheet-steel component
EP3877564B1 (en) Hardened component, comprising a steel substrate and an anti-corrosion coating, corresponding component for producing the hardened component, production method, and use
DE102007033950A1 (en) Workpiece made of a high-strength steel alloy and its use
WO2022058531A1 (en) Sheet metal component and method for producing same
WO2018210414A1 (en) Hot-working material, component and use
EP3625044B1 (en) Hot-working material, component and use
DE102017110851B3 (en) Method for producing steel composite materials
EP3877555A1 (en) Method for producing a sheet-metal component from a steel-plate product which is provided with an anti-corrosion coating
EP3853385A1 (en) Method of producing ultrahigh-strength steel sheets and steel sheet therefor
EP3980260A1 (en) Method for producing a steel composite material
EP3625048A1 (en) Hot-working material, component and use
DE102020113397A1 (en) Coated sheet metal blank for the production of a hot-formed and press-hardened sheet steel component
DE102022123742A1 (en) Semi-finished product for hot forming
EP4174207A1 (en) Flat steel product having improved processing properties
EP4283003A1 (en) Method for producing a sheet metal part
DE102020200808A1 (en) Method for producing a sheet metal component hardened at least partially from steel and an at least partially hardened sheet metal component made from steel
DE102022102111A1 (en) Uncoated cold-rolled steel sheet for hot forming, method of manufacturing a hot-formed sheet steel component and hot-formed sheet steel component
DE102020130543A1 (en) Steel material and method for its manufacture
EP4339324A1 (en) Flat steel product with an activation layer for hot forming
DE102022123741A1 (en) FAL-coated steel sheet for hot forming

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)