EP3931185A1 - Polyisocyanurate materials as electrical potting compounds - Google Patents

Polyisocyanurate materials as electrical potting compounds

Info

Publication number
EP3931185A1
EP3931185A1 EP20706286.0A EP20706286A EP3931185A1 EP 3931185 A1 EP3931185 A1 EP 3931185A1 EP 20706286 A EP20706286 A EP 20706286A EP 3931185 A1 EP3931185 A1 EP 3931185A1
Authority
EP
European Patent Office
Prior art keywords
weight
casting resin
polyisocyanate
alkyl
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20706286.0A
Other languages
German (de)
French (fr)
Inventor
Mathias Matner
Michael Ehlers
Dirk Achten
Ralf Rott
Bengt ARHEDEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Covestro Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG, Covestro Intellectual Property GmbH and Co KG filed Critical Covestro Deutschland AG
Publication of EP3931185A1 publication Critical patent/EP3931185A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D273/00Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00
    • C07D273/02Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00 having two nitrogen atoms and only one oxygen atom
    • C07D273/04Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • C08G18/163Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1825Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3406Components, e.g. resistors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2115/00Oligomerisation
    • C08G2115/02Oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present invention relates to potting compounds which cure to form polyisocyanurate plastics, the production of said potting compounds and the use of the potting compounds for the production of electrical components.
  • plastics are often used to embed electrical components, for example to protect them from dirt, moisture or contact.
  • the prior art describes the use of epoxy resins, polyurethanes and silicones for this purpose.
  • plastics mentioned above are often made up of two components.
  • the mixing ratio of the two components must be carefully observed in order to obtain optimum properties.
  • Polyurethane casting compounds are often based on polymeric methylene di (phenyl diisocyanate) (MDI) and castor oil.
  • MDI polymeric methylene di (phenyl diisocyanate)
  • castor oil polymeric methylene di (phenyl diisocyanate)
  • MDI has an intrinsically low viscosity in the range of 200 mPas, which allows high filler contents to be incorporated. These are desirable for reasons of flame protection and because of the high cost of the starting materials.
  • the two-component reaction mixtures also often have a short pot life. There is therefore a need for casting resins which do not have the disadvantages mentioned above.
  • Plastics that can be obtained by crosslinking isocyanate groups with one another are known in principle in the prior art (WO 2015/166983; WO 2016/170059; European Polymer Journal (1980) 16: 147-148).
  • Composite materials which contain such plastics as a matrix are disclosed in WO 2017/191175.
  • WO 2014/147072 describes reaction mixtures with a high filler content, which are based on bisphenol A diglycidyl ether and diphenylmethane diisocyanate, ie an aromatic polyisocyanate.
  • the crosslinking of the reaction mixture does not take place through the formation of isocyanurate groups, but rather through the reaction of epoxy groups with isocyanate groups to form oxazolidinones.
  • the electrical properties of polyisocyanurate plastics in particular permissivity and loss factor, are advantageous for use in electrical potting compounds.
  • the reaction mixture had a sufficiently low viscosity to enable the production of electro-casting compounds.
  • the present invention therefore relates to a casting resin having a molar ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1 and a solvent content of at most 10% by weight, the casting resin
  • At least one inorganic filler B which contains silicon oxide units, with an oil number of at most 25 g / 100 g, determined according to DIN EN ISO 787-5 (October 1995) and a Mohs ' hardness of at least 4;
  • a “casting resin” is a reactive resin which contains the components defined above and cures to form a polyisocyanurate composite material.
  • a polyisocyanurate plastic obtained from polyisocyanate A forms a polymer matrix in which the inorganic filler B is embedded.
  • the term "casting resin” denotes thus a reaction mixture in which the components defined above are present in reactive form and mixed, so that the polyisocyanate A can be crosslinked by the trimerization catalyst C.
  • the casting resin according to the invention is advantageously used for embedding electrical components, i.e. as an electrical potting compound.
  • the complete or partial embedding of electrical components in the cast resin according to the invention serves to protect against environmental influences, protection against contact, electrical insulation or mechanical stabilization.
  • a polyisocyanurate material is obtained by curing the casting resin.
  • This is a composite material made up of a polyisocyanurate plastic as the matrix material and an inorganic filler B. It also contains residues of the trimerization catalyst C and optional additives such as UV stabilizers, flow agents or pigments.
  • the electrical component is preferably selected from the group consisting of transformers, insulators, capacitors, semiconductors, sleeves for protecting cable connections and underground cable branches.
  • Polyisocyanurate art fabric is preferably selected from the group consisting of transformers, insulators, capacitors, semiconductors, sleeves for protecting cable connections and underground cable branches.
  • polyisocyanurate plastic denotes a plastic which is obtained by crosslinking isocyanate groups with one another. This is achieved in that the casting resin contains a catalyst C suitable for this crosslinking and at the same time has a high molar ratio of isocyanate groups to groups reactive with isocyanate groups. As a result, only other isocyanate groups are predominantly available as reactants for the isocyanate groups.
  • groups reactive with isocyanate groups is understood to mean epoxy, hydroxyl, amino and thiol groups.
  • the molar ratio of isocyanate groups to groups reactive with isocyanate groups in the casting resin is at least 3: 1, preferably at least 5: 1, even more preferably at least 10: 1 and most preferably at least 20: 1.
  • the casting resin according to the invention therefore contains a maximum of 10% by weight, preferably a maximum of 5% by weight and more preferably a maximum of 2% by weight of solvent.
  • solvents are all organic solvents that are liquid at room temperature and water. Chemical compounds with at least a group reactive with isocyanate groups as defined above or at least one isocyanate group are not solvents for the purposes of the present patent application, since they can be crosslinked with the polyisocyanate A via the relevant functional groups.
  • At least 50 mol%, preferably at least 60 mol%, particularly preferably at least 70 mol%, in particular at least 80 mol% and very particularly preferably 90 mol% of the free isocyanate groups present in polyisocyanate A are used converted to isocyanurate structural units.
  • Corresponding proportions of the nitrogen originally contained in polyisocyanate A are thus bound in isocyanurate structures in the finished polyisocyanurate plastic.
  • Side reactions in particular those to uretdione, allophanate and / or iminooxadiazinedione structures, however, usually occur and can even be used in a targeted manner, e.g. to influence the glass transition temperature (Tg) of the polyisocyanurate plastic obtained advantageously.
  • the term "polyisocyanate A” stands for all of them Compounds containing reaction mixture with an average of at least two isocyanate groups per molecule.
  • the polyisocyanate A can thus consist of a single polyisocyanate. But it can also be a mixture of several different polyisocyanates. In the context of the embodiments defined below, the polyisocyanate A can also contain admixtures of isocyanates with an average functionality of less than two.
  • polyisocyanates can be used to produce a large number of polymers (e.g. polyurethanes, polyureas and polyisocyanurates) and low molecular weight compounds (e.g. those with uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or Oxadiazintrione structure).
  • polymers e.g. polyurethanes, polyureas and polyisocyanurates
  • low molecular weight compounds e.g. those with uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or Oxadiazintrione structure.
  • polyisocyanates refers to monomeric and / or oligomeric polyisocyanates. In order to understand many aspects of the invention, however, it is important to distinguish between monomeric diisocyanates and oligomeric polyisocyanates.
  • oligomeric polyisocyanates are used in this application, then polyisocyanates are meant which are composed of at least two monomeric diisocyanate molecules, ie they are compounds which represent or contain a reaction product of at least two monomeric diisocyanate molecules.
  • oligomeric polyisocyanates from monomeric diisocyanates is also referred to here as modification of monomeric diisocyanates.
  • modification means the reaction of monomeric diisocyanates to form oligomeric polyisocyanates with a uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure.
  • hexamethylene 1,6-diisocyanate is a "monomeric diisocyanate” because it contains two isocyanate groups and is not a reaction product of at least two polyisocyanate molecules:
  • reaction products of at least two HDI molecules which still have at least two isocyanate groups are "oligomeric polyisocyanates" within the meaning of the invention.
  • oligomeric polyisocyanates are, based on the monomeric HDI, e.g. the HDI isocyanurate and the HDI biuret, which are each made up of three monomeric HDI molecules:
  • the proportion by weight of isocyanate groups based on the total amount of polyisocyanate A is at least 15% by weight.
  • polyisocyanate A can consist essentially of monomeric polyisocyanates or essentially of oligomeric polyisocyanates. However, it can also contain oligomeric and monomeric polyisocyanates in any mixing ratio.
  • the polyisocyanate A used as starting material is low in monomers (i.e. low in monomeric diisocyanates) and already contains oligomeric polyisocyanates.
  • the terms “low in monomer” and “low in monomeric diisocyanates” are used synonymously in relation to polyisocyanate A.
  • polyisocyanate A has a proportion of monomeric diisocyanates of not more than 20% by weight, in particular not more than 15% by weight or not more than 10% by weight, based in each case on the weight of polyisocyanate A.
  • polyisocyanate A has a monomeric diisocyanate content of at most 5% by weight, preferably at most 2.0% by weight, particularly preferably at most 1.0% by weight, based in each case on the weight of polyisocyanate A.
  • Particularly good results are obtained when the polyisocyanate A is essentially free from monomeric diisocyanates. Essentially free here means that the monomeric diisocyanate content is at most 0.5% by weight, based on the weight of the polyisocyanate A.
  • the polyisocyanate A consists entirely or at least 80, 85, 90, 95, 98, 99 or 99.5% by weight, based in each case on the weight of the polyisocyanate A, of oligomeric polyisocyanates.
  • a content of oligomeric polyisocyanates of at least 99% by weight is preferred here.
  • This oligomeric polyisocyanate content relates to polyisocyanate A as provided. I.e. the oligomeric polyisocyanates are not formed as an intermediate product during the process according to the invention, but are already present in the polyisocyanate A used as starting material at the beginning of the reaction.
  • Polyisocyanate compositions which are low in monomer or essentially free from monomeric isocyanates can be obtained by carrying out at least one further process step in each case to separate off the unreacted excess monomeric diisocyanates after the actual modification reaction.
  • This separation of monomers can be carried out in a particularly practical manner by processes known per se, preferably by thin-film distillation in a high vacuum or by extraction with suitable solvents which are inert towards isocyanate groups, for example aliphatic or cycloaliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane or cyclohexane.
  • polyisocyanate A is obtained by modifying monomeric diisocyanates with subsequent removal of unreacted monomers.
  • a low-monomer polyisocyanate A contains a monomeric foreign diisocyanate.
  • “monomeric foreign diisocyanate” means that it differs from the monomeric diisocyanates which were used to prepare the oligomeric polyisocyanates contained in polyisocyanate A.
  • isocyanate A has a proportion of monomeric foreign diisocyanate of at most 20% by weight, in particular at most 15% by weight or at most 10% by weight, based in each case on the weight of polyisocyanate A.
  • the isocyanate A preferably has a monomeric content External diisocyanate of at most 5% by weight, preferably at most 2.0% by weight, particularly preferably at most 1.0% by weight, based in each case on the weight of the polyisocyanate A.
  • polyisocyanate A contains monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two, i.e. with more than two isocyanate groups per molecule.
  • the addition of monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two has proven to be advantageous in order to influence the network density of the coating. Particularly practical results are obtained if isocyanate A has a proportion of monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two in polyisocyanate A of at most 20% by weight, in particular at most 15% by weight or at most 10% by weight, each based on the weight of the
  • Polyisocyanate A has.
  • the polyisocyanate A preferably has a monomeric content
  • no monomeric monoisocyanate or monomeric isocyanate with an isocyanate functionality greater than two is used in the trimerization reaction according to the invention.
  • the oligomeric polyisocyanates can in particular have uretdione, isocyanurate, aliophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure.
  • the oligomeric polyisocyanates have at least one of the following oligomeric structure types or mixtures thereof:
  • a polyisocyanate A is used whose isocyanurate structural fraction is at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, even more preferably at least 80 mol%, even more preferably at least 90 mol -% and particularly preferably at least 95 mol% based on the sum of the oligomeric structures present from the group consisting of uretdione, isocyanurate, aliophanate, biuret, iminooxadiazinedione and oxadiazinetrione structure in polyisocyanate A is.
  • a polyisocyanate A is used in the process according to the invention which, in addition to the isocyanurate structure, contains at least one further oligomeric polyisocyanate with uretdione, biuret, allophanate, iminooxadiazinedione and oxadiazinetrione structure and mixtures thereof.
  • the proportions of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure in polyisocyanate A can e.g. can be determined by NMR spectroscopy. 13C-NMR spectroscopy, preferably proton-decoupled, can preferably be used here, since the oligomeric structures mentioned provide characteristic signals.
  • an oligomeric polyisocyanate A to be used in the process according to the invention preferably has an (average) NCO functionality of 2.0 to 5 , 0, preferably from 2.3 to 4.5.
  • the polyisocyanate A to be used according to the invention has an isocyanate group content of 8.0 to 28.0% by weight, preferably from 14.0 to 25.0% by weight, based in each case on the weight of the Polyisocyanate A has.
  • the polyisocyanate A is defined in that it contains oligomeric polyisocyanates which are obtained from monomeric diisocyanates regardless of the type of modification reaction used while maintaining a degree of oligomerization of 5 to 45%, preferably 10 to 40%, particularly preferred 15 to 30%.
  • "Degree of oligomerization” is to be understood as the percentage of isocyanate groups originally present in the starting mixture that is consumed during the production process with the formation of urethane, uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structures.
  • Suitable polyisocyanates for preparing the polyisocyanate A to be used in the process according to the invention and the monomeric and / or oligomeric polyisocyanates contained therein are any polyisocyanates accessible in various ways, for example by phosgenation in the liquid or gas phase or by phosgene-free route, such as for example by thermal urethane cleavage . Particularly good results are obtained when it comes to the polyisocyanates monomeric diisocyanates.
  • Preferred monomeric diisocyanates are those which have a molecular weight in the range from 140 to 400 g / mol, with aliphatically, cycloaliphatically, araliphatically and / or aromatically attached isocyanate groups, such as. B.
  • 1,4-diisocyanatobutane 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane , 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3, 5- trimethylcyclohexane, l, 3-diisocyanato-2-methylcyclohexane, l, 3-diisocyanato-4-methylcyclohexane, 1- isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate;
  • Suitable monomeric monoisocyanates which can optionally be used in isocyanate component A are, for example, n-butyl isocyanate, n-amyl isocyanate, n-hexyl isocyanate, n-heptyl isocyanate, n-octyl isocyanate, undecyl isocyanate, dodecyl isocyanate, tetradecyl isocyanate, cetyl isocyanate, stearyl isocyanate, cyclohexyl isocyanate, cyclohexyl isocyanate, 3- or 4-methylcyclohexyl isocyanate or any mixtures of such monoisocyanates.
  • An example of a monomeric isocyanate with an isocyanate functionality greater than two, which can optionally be added to isocyanate component A, is 4-isocyanatomethyl-1,8-octane diisocyanate (triisocyanatononane; TIN).
  • the polyisocyanate A contains at most 30% by weight, in particular at most 20% by weight, at most 15% by weight, at most 10% by weight, at most 5% by weight or at most 1% by weight %, based in each case on the weight of the polyisocyanate A, of aromatic polyisocyanates.
  • aromatic polyisocyanate means a polyisocyanate which has at least one aromatically bound isocyanate group.
  • Aromatically bound isocyanate groups are understood to mean isocyanate groups which are bound to an aromatic hydrocarbon radical. According to a preferred embodiment of the process according to the invention, a polyisocyanate A is used which has exclusively aliphatically and / or cycloaliphatically bound isocyanate groups.
  • Aliphatically or cycloaliphatically bound isocyanate groups are understood to mean isocyanate groups which are bound to an aliphatic or cycloaliphatic hydrocarbon radical.
  • a polyisocyanate A is used which consists of or contains one or more oligomeric polyisocyanates, the one or more oligomeric polyisocyanates exclusively having aliphatically and / or cycloaliphatically bound isocyanate groups.
  • polyisocyanate A consists of at least 70, 80, 85, 90, 95, 98 or 99% by weight, based in each case on the weight of polyisocyanate A, of polyisocyanates which are exclusively aliphatically and / or cycloaliphatically bound Have isocyanate groups. Practical tests have shown that particularly good results can be achieved with polyisocyanates A in which the oligomeric polyisocyanates contained therein exclusively have aliphatically and / or cycloaliphatically bound isocyanate groups.
  • a polyisocyanate A which consists of or contains one or more oligomeric polyisocyanates, the one or more oligomeric polyisocyanates based on 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), isophorone diisocyanate (I PDI) or 4,4'-diisocyanatodicyclohexylmethane (H 12 M Dl) or mixtures thereof.
  • BDI 1,4-diisocyanatobutane
  • PDI 1,5-diisocyanatopentane
  • HDI 1,6-diisocyanatohexane
  • I PDI isophorone diisocyanate
  • H 12 M Dl 4,4'-diisocyanatodicyclohexylmethane
  • the inorganic filler B has a Mohs ' hardness of at least 4.0, preferably of at least 5.0 and more preferably at least 5.5.
  • Those fillers which contain silicon oxide units are according to the invention. These are in particular silicates and quartz.
  • the filler B is particularly preferably quartz or feldspar.
  • high filler contents are desirable in order to keep material costs low and to achieve good fire resistance.
  • high filler contents have the disadvantage that they increase the viscosity of the casting resins. This is less of a problem when using polymeric MDI (pMDl) as a structural component of a polyurethane, since pMDl has a viscosity of approximately 90-200 mPas. If pMDI is to be replaced by aliphatic isocyanates, the viscosity of the casting resin reaches a critical limit for processing more quickly because oligomeric aliphatic isocyanates often have viscosities in the range of 1,500 mPas and higher. Therefore, the selection of special fillers is necessary, which lead to low viscosities of the casting resin even with high filler contents in combination with aliphatic isocyanates.
  • the critical parameter here is the oil number.
  • the exemplary embodiments show that after storage of the reaction mixture at 60 ° C. for one hour, a viscosity of 110 Pas was not exceeded if the oil number of the inorganic filler B was at most 25 g / 100.
  • Comparative examples C6 and C7 show that even the use of a filler according to the invention, the oil number of which is slightly above the value according to the invention, already achieved high viscosities or the production of a liquid reaction mixture was no longer possible.
  • V4 shows that fillers that do not contain any silicon oxide units, even with an extremely low oil number (15 g / 100 g in V4 compared to 21 g / 100 g in E10), have a 40% higher viscosity after storage have one hour at 60 ° C.
  • the inorganic filler B therefore has an oil number of at most 25 g / 100 g, determined according to DIN EN ISO 787-5 (October 1995), preferably at most 22 g / 100 g and more preferably at most 20 g
  • the filler can be provided with conventional coatings such as fatty acids, silanes or titanates.
  • the casting resin preferably consists of 30 to 90% by weight, preferably 40 to 80% by weight, more preferably 50 to 80% by weight and particularly preferably 50 to 65% by weight of the inorganic filler B.
  • a casting resin for a highly filled material in particular for a material with a filler content of up to 65% by weight, still has a viscosity that is sufficiently low for processing.
  • the casting resin according to the invention is therefore preferably characterized in that when using up to 65% by weight of an inorganic filler according to the invention with an oil number of up to 25 g / 100 g determined according to DIN EN ISO 787-5 (October 1995) at 60 ° C has a viscosity of at most 200 Pas, preferably at most 150 Pas and this pot life is not exceeded even after at least one hour of storage at this temperature.
  • the viscosity is determined with an MCR301 rheometer from AntonPaar.
  • the polyisocyanate A has a viscosity of at most 20,000 mPas, preferably at most 10,000 mPas and more preferably at most 5,000 mPas at 25 ° C.
  • the viscosity here is preferably at least 500 mPas.
  • the trimerization catalyst C can be mixed from one or different types of catalyst, but contains at least one catalyst which effects the trimerization of isocyanate groups to form isocyanurates or iminooxadiazinediones.
  • Suitable catalysts for the process according to the invention are, for example, simple tertiary amines, e.g. Triethylamine, tributylamine, N, N-dimethylaniline, N-ethylpiperidine or N, N'-dimethylpiperazine.
  • Suitable catalysts are also the tertiary hydroxyalkylamines described in GB 2 221 465, e.g. Triethanolamine, N-methyl-diethanolamine, dimethylethanolamine, N-isopropyldiethanolamine and 1- (2-hydroxyethyl) pyrrolidine, or those known from GB 2 222 161, from mixtures of tertiary bicyclic amines, e.g. DBU, with simple low molecular weight aliphatic alcohols existing catalyst systems.
  • simple tertiary amines e.g. Triethylamine, tributylamine, N, N-dimethylaniline, N-ethy
  • a large number of different metal compounds are also suitable as trimerization catalysts for the process according to the invention.
  • the alkali or alkaline earth metal salts known from EP-A 0 100 129 of aliphatic, cycloaliphatic or aromatic mono- and polycarboxylic acids having 2 to 20 carbon atoms, such as sodium or potassium benzoate,
  • trimerization catalysts suitable for the process according to the invention are, for example, the quaternary ammonium hydroxides known from DE-A 1 667 309, EP-A 0 013 880 and EP-A 0 047 452, e.g.
  • N-methyl-N, N, N-trialkylammonium fluoride with C8-C10-alkyl radicals N, N, N, N-tetra-n-butylammonium fluoride, N, N, N-trimethyl-N-benzylammonium fluoride, tetra methylphosphonium fluoride ,
  • Phosphonium polyfluorides such as, for example, benzyltrimethylammonium hydrogen polyfluoride, the tetraalkylammonium alkyl carbonates known from EP-A 0 668 271, which are obtainable by reacting tertiary amines with dialkyl carbonates, or betaine-structured quaternary ammonio alkyl carbonates, the quaternary ammonium carbonates known from WO 1999/023128, such as, for example, cholinium hydrogen carbonate bicarbonate, the quaternary ammonium salts known from EP 0 102 482 and obtainable from tertiary amines and alkylating esters of acids of phosphorus, such as reaction products of triethylamine, DABCO or N-methylmorpholine with dimethyl methanephosphonate, or the tetra-substituted ones known from WO 2013/167404 Ammonium salts of lactams, for example trioctylammonium cap
  • Carboxylates and phenates with metal or ammonium ions as counterions are particularly preferred.
  • Suitable carboxylates are the anions of all aliphatic or cycloaliphatic carboxylic acids, preferably those with mono- or polycarboxylic acids having 1 to 20 carbon atoms.
  • Suitable metal ions are derived from alkali or alkaline earth metals, manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium, tin, titanium, hafnium or lead.
  • Preferred alkali metals are lithium, sodium and potassium, particularly preferably sodium and potassium.
  • Preferred alkaline earth metals are magnesium, calcium, strontium and barium.
  • the octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead or their mixtures with acetates of lithium, sodium, potassium, calcium, described as catalysts in DE-A 3 240 613 are very particularly preferred or barium.
  • sodium or potassium benzoate the alkali metal phenolates known from GB-PS 1,391,066 and GB-PS 1,386,399, such as. B. sodium or potassium phenolate, and also the alkali and alkaline earth oxides, hydroxides, carbonates, alcoholates and phenolates known from GB 809 809.
  • the trimerization catalyst C preferably contains a polyether. This is particularly preferred when the catalyst contains metal ions. Preferred polyethers are selected from the group consisting of crown ethers, diethylene glycol, polyethylene and polypropylene glycols. In the process according to the invention, it has proven to be particularly practical to use a trimerization catalyst B which contains a polyethylene glycol or a crown ether, particularly preferably 18-crown-6 or 15-crown-5, as polyether.
  • the trimerization catalyst B preferably contains a polyethylene glycol with a number average molecular weight of 100 to 1000 g / mol, preferably 300 g / mol to 500 g / mol and in particular 350 g / mol to 450 g / mol.
  • R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6-alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl;
  • A is selected from the group consisting of O, S and NR 3 , where R 3 is selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl and isobutyl; and
  • B is selected independently of A from the group consisting of OH, SH NHR 4 and NH, where R 4 is selected from the group consisting of methyl, ethyl and propyl
  • A is NR 3 , where R 3 is selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl and isobutyl.
  • R 3 is preferably methyl or ethyl.
  • R 3 is particularly preferably methyl.
  • B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B is SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B is NHR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6-alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R4 is selected from the group consisting of methyl, ethyl and propyl.
  • R 4 is preferably methyl or ethyl.
  • R 4 is particularly preferably methyl.
  • BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • A is oxygen
  • B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B is SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B is NHR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6-alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • R 4 is selected from the group consisting of methyl, ethyl and propyl.
  • R 4 is preferably methyl or ethyl.
  • R 4 is particularly preferably methyl.
  • BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • Prefers R 1 and R 2 are independently methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • A is sulfur
  • B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B is SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • B is NHR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6-alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • R 4 is selected from the group consisting of methyl, ethyl and propyl.
  • R 4 is preferably methyl or ethyl.
  • R 4 is particularly preferably methyl.
  • BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl.
  • R 1 and R 2 are preferably, independently of one another, methyl or ethyl.
  • R 1 and R 2 are particularly preferably methyl.
  • Adducts of a compound of the formula (I) and a compound having at least one isocyanate group are also suitable.
  • adduct includes urethane, thiourethane and urea adducts of a compound according to formula (I) with a compound having at least one isocyanate group Roger that.
  • a urethane adduct is particularly preferred.
  • the adducts according to the invention arise from the fact that an isocyanate reacts with the functional group B of the compound defined in formula (I). When B is a hydroxyl group, a urethane adduct is formed. When B is a thiol group, a thiourethane adduct is formed. And when BNH or N is HR 4 , a urea adduct is formed.
  • phosphines of the general formula (II) or mixtures of such phosphines are phosphines of the general formula (II) or mixtures of such phosphines
  • RI, R2 and R3 stand for identical or different radicals and each is an alkyl or
  • Cycloalkyl group with up to 10 carbon atoms preferably an alkyl group with 2 to 8 carbon atoms or a cycloalkyl group with 3 to 8 carbon atoms, an aralkyl group with 7 to 10, preferably with 7 carbon atoms or optionally with alkyl radicals with up to 10, preferably 1 to 6, Carbon atoms are substituted aryl groups with 6 to 10, preferably 6 carbon atoms, with the proviso that at most one of the radicals is an aryl group and at least one of the radicals is an alkyl or cycloalkyl group, or in which
  • RI and R2 are aliphatic in nature and, linked together, together with the
  • Phosphorus atom form a heterocyclic ring with 4 to 6 ring members, where R3 stands for an alkyl group with up to 4 carbon atoms,
  • Suitable tertiary organic phosphines are, for example, tertiary phosphines with linear aliphatic substituents, such as trimethylphosphine, triethylphosphine, tri-n-propylphosphine, tripropylphosphine, dibutylethylphosphine, tri-n-butylphosphine, triisobutylphosphine, tri-tert.-butyl-pentylphosphine, tri-tert.-butylphosphine, penthylphosphine, tri-tert.-butylphosphine, pentyl-di-propylphosphine, Pentyldibutylphosphin, Pentyldihexylphosphin, Dipentylmethylphosphin, Dipentylethylphosphin, Dipentylpropylphosphin, Dipentylbutylphos
  • tertiary organic phosphines which are suitable for the process according to the invention are, for example, those known from EP 1 422 223 A1.
  • -Phosphines which have at least one cycloaliphatic radical bonded directly to phosphorus, such as.
  • Cyclopentyldiisopropylphosphin Cyclopentyldibutyl-phosphine with any isomeric butyl radicals
  • Cyclopentyldihexylphosphine with any isomeric hexyl radicals
  • the isomeric Cyclopentyldioctylphosphin with any isomeric octyl radicals Dicyclopentylmethylphosphin, Dicyclopentylethylphosphin, cyclopentyl-n-propylphosphine, Dicyclopentylisopropylphosphin, Dicyclopentylbutylphosphin with any isomeric butyl, Dicyclopentylhexylphosphin with any isomeric hexyl, Dicyclopentyloctylphosphin with any Octyl radical, tricyclopentylphosphine, cyclohexyldimethylphosphine,
  • Cyclohexyl-di-isopropylphosphin Cyclohexyldibutylphosphine with any isomeric butyl radicals
  • Cyclohexyldihexylphosphin with any isomeric hexyl radicals the isomeric octyl radicals
  • tertiary organic phosphines for the process according to the invention are, for example, those known from EP 1 982 979 A1.
  • -Phosphines which have one or two tertiary alkyl radicals bonded directly to phosphorus, such as. B.
  • tert-butyldimethylphosphine tert-butyldiethylphosphine, tert-butyldi-n-propylphosphine, tert-butyldiisopropylphosphine, tert-butyldibutylphosphine with any isomeric butyl radicals for the non-tertiary butyl radicals
  • the catalyst preferably contains at least one compound from the group of the tertiary phosphines mentioned with linear aliphatic substituents.
  • Very particularly preferred phosphine catalysts are tri-n-butylphosphine and / or trioctylphosphine or mixtures thereof.
  • Components with a very high degree of hardness can be produced from the casting compounds according to the invention.
  • the potting compound according to the invention is a one-component system. In contrast to two-component systems, no stoichiometry has to be adhered to exactly between two reactants in order to obtain good results. Slight deviations in the catalyst concentration used in the potting compound according to the invention may lead to slight variations in pot life and curing time, but do not affect the properties of the finished material.
  • the potting compounds still have such low viscosities that processing is possible without major problems.
  • the casting compounds according to the invention have a pot life of at least one hour, so that their processing is also facilitated as a result.
  • the casting compounds according to the invention have a pot life of at least one hour, even at elevated temperatures.
  • the casting compounds according to the invention have a lower fire load compared to the known polyurethane casting compounds.
  • the present invention relates to the use of a potting compound as defined above in this application as an electrical potting compound, i. for the production of an electrical component.
  • the electrical component is preferably selected from the group consisting of transformers, insulators, capacitors, semiconductors, sleeves for protecting cable connections and underground cable branches.
  • the term "production of an electrical component” refers to a method in which at least part of an electrical component is embedded in the potting compound according to the invention According to this application, a finished electrical component thus contains the potting compound according to the invention.
  • the present invention relates to a method for producing an electrical component comprising the steps a) providing a casting resin with a molar ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1 and a solvent content of at most 10% by weight containing
  • At least one trimerization catalyst C At least one trimerization catalyst C; b) encapsulating an electrical component that is not yet embedded with the casting resin provided in method step a); c) Catalytic trimerization of the casting resin.
  • provision of the casting resin in the context of this application only means that the casting resin mentioned is available at the end of process step a) in such a way that it is suitable for casting and can be catalytically trimerized.
  • An electrical component that has not yet been embedded can be potted by all methods known in the prior art for the use of potting compounds, in particular electrical potting compounds.
  • the catalytic trimerization takes place under reaction conditions under which the selected trimerization catalyst C effects the crosslinking of isocyanate groups to form isocyanurate groups.
  • an upper limit for the temperature of the reaction mixture that is harmless to the component in question is preferably maintained.
  • the "catalytic trimerization” is a process in which the isocyanate groups contained in polyisocyanate A form at least one structure selected from the group consisting of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and oxadiazinetrione structures with one another or with urethane groups that are already present This uses up the isocyanate groups originally present in polyisocyanate A. As a result of the formation of the aforementioned groups, the monomeric and oligomeric polyisocyanates contained in polyisocyanate A are linked to form a polymer network.
  • the isocyanate groups contained in the reaction mixture are crosslinked predominantly by trimerization of at least 50 mol%, preferably at least 60 mol%, particularly preferably at least 70 mol%, in particular at least 80 mol% and very particularly preferably 90 mol% % of the free isocyanate groups present in polyisocyanate A to form isocyanurate structural units.
  • trimerization of at least 50 mol%, preferably at least 60 mol%, particularly preferably at least 70 mol%, in particular at least 80 mol% and very particularly preferably 90 mol% % of the free isocyanate groups present in polyisocyanate A to form isocyanurate structural units.
  • Corresponding proportions of the nitrogen originally contained in polyisocyanate A are thus bound in isocyanurate structures in the finished polyisocyanurate material.
  • the catalytic trimerization is preferably carried out at temperatures between 50 ° C and 200 ° C, more preferably between 80 ° C and 180 ° C and even more preferably between 100 ° C and 150 ° C.
  • the abovementioned temperatures are maintained during the crosslinking of the isocyanate groups until at least 50 mol%, preferably at least 75 mol% and even more preferably at least 90 mol% of the free isocyanate groups present at the beginning of the crosslinking of the isocyanate groups in the semifinished product according to the invention have been consumed.
  • the percentage of isocyanate groups still present can be determined by comparing the content of isocyanate groups in the isocyanate component A present at the beginning of the crosslinking of the isocyanate groups with the content of isocyanate groups in the reaction product, for example by comparing the intensity of the isocyanate band at approx. 2270 cm 1 using ATR IR spectroscopy.
  • the present invention relates to an electrical component which has been produced according to the method defined above.
  • the polymer matrix formed by the casting resin is preferably characterized in that the temperature at which 5% by weight loss of mass occurs is at least 370 ° C, preferably at least 400 ° C and most preferably at least 420 ° C.
  • the following exemplary embodiments only serve to illustrate the invention. They are not intended to limit the scope of protection of the claims in any way.
  • Isocyanate 1 HDI polyisocyanate containing isocyanurate groups, prepared on the basis of Example 11 of EP-A 330 966, with the change that the catalyst solvent used was 2-ethylhexanol instead of 2-ethyl-1,3-hexanediol. The reaction was stopped by adding dibutyl phosphate when the NCO content of the crude mixture was 42% by weight. Unreacted HDI was then separated off by thin-film distillation at a temperature of 130 ° C. and a pressure of 0.2 mbar.
  • OH number 515 mg KOH / g
  • Monomeric HDI ⁇ 0.5% by weight
  • Isocyanate 3 Is a low-viscosity mixture of diphenylmethane-4,4'-diisocyanate (MDI) with isomers and higher functional homologues. NCO content: 31.5% by weight
  • Polyol 1 Is a linear polypropylene ether polyol produced by the propoxylation of 1,2-propanediol.
  • Polyol 2 Glycerine (1,2,3-propanetriol) was obtained from Calbiochem with a purity of 99.0%.
  • Silbond 126 EST is a quartz filler coated with epoxysilane and was obtained from Quarzwerke GmbH. According to the technical data sheet, the filler absorbs 11 g of oil per 100 g of filler (DIN ISO 787-5); the Mohs' hardness is 7.
  • Microdol 1-KN is a dolomite filler and was obtained from Omya. According to the technical data sheet, the filler absorbs 15 g of oil per 100 g of filler (ISO 787/5). According to Wikipedia (accessed 02-2019), the Mohs' hardness of dolomite is 3.5 - 4.
  • Unispar PG W13 is a feldspar filler and was obtained from Sibelco. According to the technical data sheet, the filler absorbs 22 g of oil per 100 g of filler (ISO 787/5); the Mohs' hardness is 6.2.
  • Unispar PG W20 is a feldspar filler and was obtained from Sibelco. According to the technical data sheet, the filler absorbs 19 g of oil per 100 g of filler (ISO 787/5); the Mohs' hardness is 6.2.
  • Filler 5 Omycarb 2T-AV is a calcium carbonate filler and was obtained from Omya. According to the technical data sheet, the filler absorbs 16 g of oil per 100 g of filler (ISO 787/5). According to Wikipedia (accessed in February 2019), the Mohs hardness of calcium carbonate (limestone) is 3. Filler 6 Silbond 800 EST is a quartz filler coated with epoxysilane and was obtained from Quarzwerke GmbHFI. According to the technical data sheet, the filler absorbs 26 g of oil per 100 g of filler (ISO 787/5).
  • Filler 7 Silbond 6000 MST is a methacrylsilane-coated cristobalite filler and was obtained from Quarzwerke GmbHFI. According to the technical data sheet, the filler absorbs 27 g of oil per 100 g of filler (ISO 787/5).
  • Filler 8 Sikron SF 800 is a quartz filler and was obtained from Quarzwerke GmbHFI. According to the technical data sheet, the filler absorbs 28 g of oil per 100 g of filler (ISO 787/5)
  • Filler 9 Chinafill 200 is a kaolin filler and was made by Amberger Kaolinwerke
  • the filler absorbs 46 g of oil per 100 g of filler (ISO 787/5).
  • the Mohs' hardness of kaolin is 2.5.
  • Silitin Z 86 is a mixture of corpuscular silica and lamellar kaolinite and was obtained from Floffmann Mineral GmbHFI. According to the technical data sheet, the filler absorbs 55 g of oil per 100 g of filler (ISO 787/5); the Mohs hardness is 7 for the silica component and 2.5 for the kaolinite component.
  • Silbond 006 MST is a methacrylsilane-coated cristobalite filler and was obtained from Quarzwerke GmbHFI. According to the technical data sheet, the filler absorbs 21 g of oil per 100 g of filler (ISO 787/5); the Mohs' hardness is 6.5.
  • the fillers were dried for 12 hours at 80 ° C. with regular shaking.
  • Catalyst 1 Desmorapid AP 100 was obtained from Covestro AG.
  • Trioctylphosphine was obtained from but GmbHFI in a purity of 97%.
  • Catalyst 3 Is a mixture of potassium acetate, [18] crown-6 and diethylene glycol in a ratio of 1.0: 2.7: 17.6 (obtained from Sigma-Aldrich in PA qualities and used as supplied).
  • the electrical properties of the materials were determined using a Keithley Model 8009 device, which operates on the basis of ASTM D 257 (May 2007). The measurements were carried out at 25 ° C.
  • the glass transition temperature was determined by means of DSC (differential scanning calorimetry) with a Mettler DSC 12E (Mettler Toledo GmbH, Giessen, DE) in accordance with DIN EN 61006 (November 2004). A calibration was carried out by the temperature of the melting onset of indium and lead. 10 mg of substance were weighed into normal capsules. The measurement was carried out by two heatings from -50 ° C to +200 ° C at a heating rate of 20 K / min with subsequent cooling at a cooling rate of 20 K / min. Liquid nitrogen was used for cooling. Nitrogen was used as the purge gas. The stated values are based on the evaluation of the 2nd heating curve.
  • the mass loss was determined using TGA (thermogravimetric analysis) in accordance with DIN EN ISO 11358-1: 2014-10. For this purpose, approx. 5.5 mg of the product were heated from 25 ° C. to 600 ° C. in an open platinum crucible in a TGA-8000 micro-thermal balance (Perkin-Elmer) under a constant stream of nitrogen. The heating rate was 20 k / minute. The temperature at which the mass loss accumulated over the measurement time reached 5% by weight was evaluated.
  • TGA thermogravimetric analysis
  • the two components were mixed and measured in a rheometer at 60 ° C. for one hour.
  • the viscosity value stated was that which was determined exactly after one hour.
  • An MCR301 rheometer from AntonPaar was used.
  • the plate / plate PP25 with the Peltier heater C-PTD200 was used.
  • T 60 ° C, 60 min.
  • test samples were cured in an oven at 180 ° C within 30 minutes.

Abstract

The invention relates to potting compounds which cure to polyisocyanurate plastics, to the production of said potting compounds and to the use of the potting compounds for manufacturing electrical components.

Description

Polyisocyanuratwerkstoffe als Elektrovergussmassen Polyisocyanurate materials as electrical casting compounds
Die vorliegende Erfindung betrifft Vergussmassen, die zu Polyisocyanuratkunststoffen aushärten, die Herstellung besagter Vergussmassen sowie die Verwendung der Vergussmassen zur Herstellung von elektrischen Bauteilen. The present invention relates to potting compounds which cure to form polyisocyanurate plastics, the production of said potting compounds and the use of the potting compounds for the production of electrical components.
Kunststoffe werden wegen ihrer guten Isolationseigenschaften häufig zur Einbettung von elektrischen Bauteilen verwendet, um diese beispielsweise vor Verschmutzung, Feuchtigkeit oder Berührung zu schützen. Im Stand der Technik wird hierfür die Verwendung von Epoxidharzen, Polyurethanen und Silikonen beschrieben. Because of their good insulation properties, plastics are often used to embed electrical components, for example to protect them from dirt, moisture or contact. The prior art describes the use of epoxy resins, polyurethanes and silicones for this purpose.
Allerdings werden die oben genannten Kunststoffe vielfach aus zwei Komponenten aufgebaut. Hierbei muss das Mischungsverhältnis der beiden Komponenten genau beachtet werden, um optimale Eigenschaften zu erhalten. However, the plastics mentioned above are often made up of two components. The mixing ratio of the two components must be carefully observed in order to obtain optimum properties.
Polyurethanvergussmassen basieren häufig auf polymerem Methylendi(phenyldiisocyanat) (MDI) und Rizinusöl. MDI hat intrinsisch eine niedrige Viskosität im Bereich von 200 mPas, die es erlaubt hohe Füllstoffgehalte einzuarbeiten. Diese sind aus Gründen des Flammschutzes und wegen der hohen Kosten der Edukte erwünscht. Polyurethane casting compounds are often based on polymeric methylene di (phenyl diisocyanate) (MDI) and castor oil. MDI has an intrinsically low viscosity in the range of 200 mPas, which allows high filler contents to be incorporated. These are desirable for reasons of flame protection and because of the high cost of the starting materials.
Auch haben die zweikomponentigen Reaktionsgemische häufig eine geringe Topfzeit. Deswegen besteht Bedarf nach Gießharzen, welche die oben genannten Nachteile nicht aufweisen. The two-component reaction mixtures also often have a short pot life. There is therefore a need for casting resins which do not have the disadvantages mentioned above.
Kunststoffe, die durch die Vernetzung von Isocyanatgruppen untereinander erhältlich sind, sind im Stand der Technik grundsätzlich bekannt (WO 2015/166983; WO 2016/170059; European Polymer Journal (1980) 16: 147-148). Verbundwerkstoffe, die derartige Kunststoffe als Matrix enthalten, werden in WO 2017/191175 offenbart. Plastics that can be obtained by crosslinking isocyanate groups with one another are known in principle in the prior art (WO 2015/166983; WO 2016/170059; European Polymer Journal (1980) 16: 147-148). Composite materials which contain such plastics as a matrix are disclosed in WO 2017/191175.
US 2015/0344726 beschreibt Reaktionsgemische mit hohem NCO/OH-Verhältnis und hohem Füllstoffgehalt. Diese Gemische enthalten aber auch mehr als 20 Gew.-% organische Lösemittel und sind deswegen zwar zur Herstellung von Beschichtungen, nicht aber zur Herstellung von Formkörpern geeignet. US 2015/0344726 describes reaction mixtures with a high NCO / OH ratio and a high filler content. However, these mixtures also contain more than 20% by weight of organic solvents and are therefore suitable for producing coatings, but not for producing moldings.
WO 2014/147072 beschreibt Reaktionsgemische mit hohem Füllstoffgehalt, die auf Bisphenol-A- Diglycidylether und Diphenylmethandiisocyanat, d.h. einem aromatischen Polyisocyanat, basieren. Die Vernetzung des Reaktionsgemisches erfolgt nicht durch Bildung von Isocyanuratgruppen, sondern durch die Reaktion von Epoxidgruppen mit Isocyanatgruppen zu Oxazolidinonen. In der vorliegenden Studie wurde überraschend gefunden, dass die elektrischen Eigenschaften von Polyisocyanuratkunststoffen, insbesondere Permissivität und Verlustfaktor, für die Verwendung in Elektrovergussmassen vorteilhaft sind. Gleichzeitig wies das Reaktionsgemisch bei Verwendung geeigneter Füllstoffe eine hinreichend niedrige Viskosität auf, um die Herstellung von Elektrovergussmassen zu ermöglichen. WO 2014/147072 describes reaction mixtures with a high filler content, which are based on bisphenol A diglycidyl ether and diphenylmethane diisocyanate, ie an aromatic polyisocyanate. The crosslinking of the reaction mixture does not take place through the formation of isocyanurate groups, but rather through the reaction of epoxy groups with isocyanate groups to form oxazolidinones. In the present study it was surprisingly found that the electrical properties of polyisocyanurate plastics, in particular permissivity and loss factor, are advantageous for use in electrical potting compounds. At the same time, when suitable fillers were used, the reaction mixture had a sufficiently low viscosity to enable the production of electro-casting compounds.
Deswegen betrifft die vorliegende Erfindung in einer ersten Ausführungsform ein Gießharz mit einem molaren Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen von wenigstens 3 : 1 und einem Lösemittelgehalt von höchstens 10 Gew.-%, wobei das Gießharz In a first embodiment, the present invention therefore relates to a casting resin having a molar ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1 and a solvent content of at most 10% by weight, the casting resin
(i) Wenigstens ein monomeres oder oligomeres Polyisocyanat A mit einem Isocyanatgehalt von wenigstens 15 Gew.-%; (i) At least one monomeric or oligomeric polyisocyanate A with an isocyanate content of at least 15% by weight;
(ii) Wenigstens einen anorganischen Füllstoff B, welcher Siliziumoxid-Einheiten enthält, mit einer Ölzahl von höchstens 25 g / 100 g bestimmt nach DIN EN ISO 787-5 (Oktober 1995) und einer Mohs'schen Härte von wenigstens 4; und (ii) At least one inorganic filler B, which contains silicon oxide units, with an oil number of at most 25 g / 100 g, determined according to DIN EN ISO 787-5 (October 1995) and a Mohs ' hardness of at least 4; and
(iii) Wenigstens einen Trimerisierungskatalysator C enthält. (iii) Contains at least one trimerization catalyst C.
Ein„Gießharz" ist ein reaktives Harz, welches die oben definierten Bestandteile enthält, und unter Ausbildung eine Polyisocyanuratverbundwerkstoffs aushärtet. Hierbei bildet ein aus dem Polyisocyanat A erhaltener Polyisocyanuratkunststoff eine Polymermatrix, in die der anorganische Füllstoff B eingebettet ist. Der Begriff„Gießharz" kennzeichnet somit ein Reaktionsgemisch, in dem die oben definierten Komponenten in reaktiver Form und vermischt vorliegen, so dass das Polyisocyanat A durch den Trimerisierungskatalysator C vernetzt werden kann. Das erfindungsgemäße Gießharz wird vorteilhaft zur Einbettung von elektrischen Bauteilen, d.h. als Elektrovergussmasse, verwendet. Die vollständige oder teilweise Einbettung von elektrischen Bauteilen in das erfindungsgemäße Gießharz dient dem Schutz vor Umwelteinflüssen, dem Schutz vor Berührung, der elektrischen Isolation oder der mechanischen Stabilisierung. A "casting resin" is a reactive resin which contains the components defined above and cures to form a polyisocyanurate composite material. A polyisocyanurate plastic obtained from polyisocyanate A forms a polymer matrix in which the inorganic filler B is embedded. The term "casting resin" denotes thus a reaction mixture in which the components defined above are present in reactive form and mixed, so that the polyisocyanate A can be crosslinked by the trimerization catalyst C. The casting resin according to the invention is advantageously used for embedding electrical components, i.e. as an electrical potting compound. The complete or partial embedding of electrical components in the cast resin according to the invention serves to protect against environmental influences, protection against contact, electrical insulation or mechanical stabilization.
Durch Aushärten des Gießharzes wird ein Polyisocyanuratwerkstoff erhalten. Dieser ist ein Verbundwerkstoff, der aus einem Polyisocyanuratkunststoff als Matrixmaterial und einem anorganischen Füllstoff B aufgebaut ist. Er enthält weiterhin Reste des Trimerisierungskatalysators C und optionale Additive wie beispielsweise UV-Stabilisatoren, Fließmittel oder Pigmente. A polyisocyanurate material is obtained by curing the casting resin. This is a composite material made up of a polyisocyanurate plastic as the matrix material and an inorganic filler B. It also contains residues of the trimerization catalyst C and optional additives such as UV stabilizers, flow agents or pigments.
Das elektrische Bauteil ist vorzugsweise ausgewählt aus der Gruppe bestehend aus Transformatoren, Isolatoren, Kondensatoren, Halbleitern, Muffen zum Schutz von Kabelverbindungen und Erdkabelverzweigungen. Polyisocyanuratkunst Stoff The electrical component is preferably selected from the group consisting of transformers, insulators, capacitors, semiconductors, sleeves for protecting cable connections and underground cable branches. Polyisocyanurate art fabric
Der Begriff„Polyisocyanuratkunststoff" bezeichnet einen Kunststoff, der durch die Vernetzung von Isocyanatgruppen untereinander erhalten wird. Dies wird dadurch erreicht, dass das Gießharz einen für diese Vernetzung geeigneten Katalysator C enthält und gleichzeitig ein hohes molares Verhältnis von Isocyanatgruppen zu mit Isocyanatgruppen reaktiven Gruppen aufweist. Dadurch stehen den Isocyanatgruppen ganz überwiegend nur andere Isocyanatgruppen als Reaktionspartner zur Verfügung. Unter dem Begriff„mit Isocyanatgruppen reaktive Gruppen" werden in der vorliegenden Anmeldung Epoxid-, Hydroxyl-, Amino- und Thiolgruppen verstanden. The term "polyisocyanurate plastic" denotes a plastic which is obtained by crosslinking isocyanate groups with one another. This is achieved in that the casting resin contains a catalyst C suitable for this crosslinking and at the same time has a high molar ratio of isocyanate groups to groups reactive with isocyanate groups. As a result, only other isocyanate groups are predominantly available as reactants for the isocyanate groups. In the present application, the term “groups reactive with isocyanate groups” is understood to mean epoxy, hydroxyl, amino and thiol groups.
Das molare Verhältnis von Isocyanatgruppen zu mit Isocyanatgruppen reaktiven Gruppen im Gießharz liegt wenigstens bei 3 : 1, bevorzugt wenigstens bei 5 : 1, noch stärker bevorzugt wenigstens bei 10 : 1 und am stärksten bevorzugt wenigstens bei 20 : 1. The molar ratio of isocyanate groups to groups reactive with isocyanate groups in the casting resin is at least 3: 1, preferably at least 5: 1, even more preferably at least 10: 1 and most preferably at least 20: 1.
Bei der Herstellung von Formkörpern sind hohe Lösemittelgehalte im Reaktionsgemisch nachteilig, da das Lösemittel verdampft und Hohlräume oder Risse im Formkörper hinterlässt. Deswegen enthält das erfindungsgemäße Gießharz höchsten 10 Gew.-%, bevorzugt höchstens 5 Gew.-% und stärker bevorzugt höchstens 2 Gew.-% Lösemittel.„Lösemittel" sind alle organischen Lösemittel, die bei Zimmertemperatur flüssig sind und Wasser. Chemische Verbindungen mit wenigstens einer mit Isocyanatgruppen reaktiven Gruppe wie oben definiert oder wenigstens einer Isocyanatgruppe sind keine Lösemittel im Sinne der vorliegenden Patentanmeldung, da sie über die betreffenden funktionellen Gruppen mit dem Polyisocyanat A vernetzt werden können. In the production of moldings, high solvent contents in the reaction mixture are disadvantageous since the solvent evaporates and leaves cavities or cracks in the moldings. The casting resin according to the invention therefore contains a maximum of 10% by weight, preferably a maximum of 5% by weight and more preferably a maximum of 2% by weight of solvent. "Solvents" are all organic solvents that are liquid at room temperature and water. Chemical compounds with at least a group reactive with isocyanate groups as defined above or at least one isocyanate group are not solvents for the purposes of the present patent application, since they can be crosslinked with the polyisocyanate A via the relevant functional groups.
Bei der Reaktion des Reaktionsgemisches zum Polyisocyanuratkunststoff werden mindestens 50 mol -%, vorzugsweise mindestens 60 mol-%, besonders bevorzugt mindestens 70 mol-%, insbesondere mindestens 80 mol-% und ganz besonders bevorzugt 90 mol-% der im Polyisocyanat A vorliegenden freien Isocyanatgruppen zu Isocyanuratstruktureinheiten umgesetzt. Somit sind im fertigen Polyisocyanuratkunststoff entsprechende Anteile des im Polyisocyanat A ursprünglich enthaltenen Stickstoffs in Isocyanuratstrukturen gebunden. Nebenreaktionen, insbesondere solche zu Uretdion-, Allophanat-, und/oder Iminooxadiazindionstrukturen treten jedoch üblicherweise auf und können sogar gezielt genutzt werden, um z.B. die Glasübergangstemperatur (Tg) des erhaltenen Polyisocyanuratkunststoffs vorteilhaft zu beeinflussen. During the reaction of the reaction mixture to form the polyisocyanurate plastic, at least 50 mol%, preferably at least 60 mol%, particularly preferably at least 70 mol%, in particular at least 80 mol% and very particularly preferably 90 mol% of the free isocyanate groups present in polyisocyanate A are used converted to isocyanurate structural units. Corresponding proportions of the nitrogen originally contained in polyisocyanate A are thus bound in isocyanurate structures in the finished polyisocyanurate plastic. Side reactions, in particular those to uretdione, allophanate and / or iminooxadiazinedione structures, however, usually occur and can even be used in a targeted manner, e.g. to influence the glass transition temperature (Tg) of the polyisocyanurate plastic obtained advantageously.
Da im Reaktionsgemisch erfindungsgemäß ein deutlicher molarer Überschuss von Isocyanatgruppen gegenüber mit Isocyanat reaktiven Gruppen vorliegt, werden höchstens 50 mol-%, bevorzugt höchstens 30 mol-%, besonders bevorzugt höchstens 10 mol-%, ganz besonders bevorzugt höchstens 5 mol-% und insbesondere höchstens 3 mol-% der im Reaktionsgemisch enthaltenen reaktiven Isocyanatgruppen im Polyisocyanuratkunststoff als Urethan- und/oder Allophanatgruppen vorliegen. Da der anorganische Füllstoff, wie in der Polyurethanchemie üblich, nur einen geringen Feuchtigkeitsgehalt aufweisen darf, ist er gegenüber Isocyanatgruppen inert und kann bei den oben dargelegten Berechnungen außer Betracht bleiben. Since according to the invention there is a clear molar excess of isocyanate groups over isocyanate-reactive groups in the reaction mixture, at most 50 mol%, preferably at most 30 mol%, particularly preferably at most 10 mol%, very particularly preferably at most 5 mol% and in particular at most 3 mol% of the reactive isocyanate groups contained in the reaction mixture are present in the polyisocyanurate plastic as urethane and / or allophanate groups. Since the inorganic filler, as is customary in polyurethane chemistry, may only have a low moisture content, it is inert towards isocyanate groups and can be disregarded in the calculations presented above.
Polyisocyanat A Polyisocyanate A
Der Begriff„Polyisocyanat", wie hier verwendet, ist eine Sammelbezeichnung für Verbindungen, die im Molekül zwei oder mehrere Isocyanat-Gruppen (hierunter versteht der Fachmann freie Isocyanat- Gruppen der allgemeinen Struktur -N=C=0) enthalten. Einfachste und wichtigste Vertreter dieser Polyisocyanate sind die Diisocyanate. Diese haben die allgemeinen Struktur 0=C=N-R-N=C=0, wobei R üblicherweise für aliphatische, alicyclische und/oder aromatische Reste steht. In dieser Anmeldung steht der Begriff „Polyisocyanat A" für die Gesamtheit aller im Reaktionsgemisch enthaltenen Verbindungen mit durchschnittlich wenigstens zwei Isocyanatgruppen pro Molekül. Das Polyisocyanat A kann somit aus einem einzelnen Polyisocyanat bestehen. Es kann aber auch ein Gemisch aus mehreren unterschiedlichen Polyisocyanaten sein. Das Polyisocyanat A kann im Rahmen der unten definierten Ausführungsformen auch Beimengungen von Isocyanaten mit einer durchschnittlichen Funktionalität von weniger als zwei enthalten. The term “polyisocyanate”, as used here, is a collective name for compounds which contain two or more isocyanate groups in the molecule (the person skilled in the art understands this to mean free isocyanate groups with the general structure -N = C = 0). Simplest and most important representatives of these polyisocyanates are the diisocyanates. These have the general structure 0 = C = NRN = C = 0, where R usually stands for aliphatic, alicyclic and / or aromatic radicals. In this application, the term "polyisocyanate A" stands for all of them Compounds containing reaction mixture with an average of at least two isocyanate groups per molecule. The polyisocyanate A can thus consist of a single polyisocyanate. But it can also be a mixture of several different polyisocyanates. In the context of the embodiments defined below, the polyisocyanate A can also contain admixtures of isocyanates with an average functionality of less than two.
Aus Polyisocyanaten lassen sich wegen der Mehrfachfunktionalität (> 2 Isocyanatgruppen pro Molekül) eine Vielzahl von Polymeren (z.B. Polyurethane, Polyharnstoffe und Polyisocyanurate) und niedermolekularen Verbindungen (z.B. solche mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur) hersteilen. Because of their multiple functionality (> 2 isocyanate groups per molecule), polyisocyanates can be used to produce a large number of polymers (e.g. polyurethanes, polyureas and polyisocyanurates) and low molecular weight compounds (e.g. those with uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or Oxadiazintrione structure).
Der Begriff „Polyisocyanate" bezeichnet in dieser Anmeldung monomere und/oder oligomere Polyisocyanate gleichermaßen. Zum Verständnis vieler Aspekte der Erfindung ist es jedoch wichtig, zwischen monomeren Diisocyanaten und oligomeren Polyisocyanaten zu unterscheiden. Wenn in dieser Anmeldung von„oligomeren Polyisocyanaten" die Rede ist, dann sind damit Polyisocyanate gemeint, die aus mindestens zwei monomeren Diisocyanatmolekülen aufgebaut sind, d.h. es sind Verbindungen, die ein Reaktionsprodukt aus mindestens zwei monomeren Diisocyanatmolekülen darstellen oder enthalten. In this application, the term "polyisocyanates" refers to monomeric and / or oligomeric polyisocyanates. In order to understand many aspects of the invention, however, it is important to distinguish between monomeric diisocyanates and oligomeric polyisocyanates. When "oligomeric polyisocyanates" are used in this application, then polyisocyanates are meant which are composed of at least two monomeric diisocyanate molecules, ie they are compounds which represent or contain a reaction product of at least two monomeric diisocyanate molecules.
Die Herstellung oligomerer Polyisocyanate aus monomeren Diisocyanaten wird hier auch als Modifizierung monomerer Diisocyanate bezeichnet. Diese „Modifizierung", wie hier verwendet, bedeutet dabei die Reaktion monomerer Diisocyanate zu oligomeren Polyisocyanaten mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur. The production of oligomeric polyisocyanates from monomeric diisocyanates is also referred to here as modification of monomeric diisocyanates. This “modification”, as used here, means the reaction of monomeric diisocyanates to form oligomeric polyisocyanates with a uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure.
So ist z.B. Hexamethylen-l,6-diisocyanat (HDI) ein „monomeres Diisocyanat", da es zwei Isocyanatgruppen enthält und kein Reaktionsprodukt aus mindestens zwei Polyisocyanatmolekülen darstellt: For example, hexamethylene 1,6-diisocyanate (HDI) is a "monomeric diisocyanate" because it contains two isocyanate groups and is not a reaction product of at least two polyisocyanate molecules:
HDI HDI
Reaktionsprodukte aus mindestens zwei HDI-Molekülen, die immer noch über mindestens zwei Isocyanatgruppen verfügen, sind demgegenüber„oligomere Polyisocyanate" im Sinne der Erfindung. Vertreter solcher„oligomerer Polyisocyanate" sind ausgehend von dem monomeren HDI z.B. das HDI-Isocyanurat und das HDI-Biuret, die jeweils aus drei monomeren HDI Molekülen aufgebaut sind: In contrast, reaction products of at least two HDI molecules which still have at least two isocyanate groups are "oligomeric polyisocyanates" within the meaning of the invention. Representatives of such "oligomeric polyisocyanates" are, based on the monomeric HDI, e.g. the HDI isocyanurate and the HDI biuret, which are each made up of three monomeric HDI molecules:
HDI- Isocyanurat HDI-Biuret HDI isocyanurate HDI biuret
(idealisierte Strukturformeln) (idealized structural formulas)
Erfindungsgemäß beträgt der Gewichtsanteil an Isocyanatgruppen bezogen auf die Gesamtmenge des Polyisocyanats A wenigstens 15 Gew.-%. According to the invention, the proportion by weight of isocyanate groups based on the total amount of polyisocyanate A is at least 15% by weight.
Grundsätzlich sind monomere und oligomere Polyisocyanate zur Verwendung im erfindungsgemäßen Reaktionsgemisch gleichermaßen geeignet. Folglich kann das Polyisocyanat A im Wesentlichen aus monomeren Polyisocyanaten oder im Wesentlichen aus oligomeren Polyisocyanaten bestehen. Es kann aber auch oligomere und monomere Polyisocyanate in beliebigen Mischungsverhältnissen enthalten. In principle, monomeric and oligomeric polyisocyanates are equally suitable for use in the reaction mixture according to the invention. Consequently, the polyisocyanate A can consist essentially of monomeric polyisocyanates or essentially of oligomeric polyisocyanates. However, it can also contain oligomeric and monomeric polyisocyanates in any mixing ratio.
In einer bevorzugten Ausführungsform der Erfindung ist das als Edukt eingesetzte Polyisocyanat A monomerarm (d.h. arm an monomeren Diisocyanaten) und enthält bereits oligomere Polyisocyanate. Die Begriffe„monomerarm" und„arm an monomeren Diisocyanaten" werden hier in Bezug auf das Polyisocyanat A synonym verwendet. In a preferred embodiment of the invention, the polyisocyanate A used as starting material is low in monomers (i.e. low in monomeric diisocyanates) and already contains oligomeric polyisocyanates. The terms “low in monomer” and “low in monomeric diisocyanates” are used synonymously in relation to polyisocyanate A.
Besonders praxisgerechte Ergebnisse stellen sich ein, wenn das Polyisocyanat A einen Anteil an monomeren Diisocyanaten von höchstens 20 Gew.-%, insbesondere höchstens 15 Gew.-% oder höchstens 10 Gew.-%, jeweils bezogen auf das Gewicht des Polyisocyanats A, aufweist. Vorzugsweise weist das Polyisocyanat A einen Gehalt an monomeren Diisocyanaten von höchstens 5 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.-%, jeweils bezogen auf das Gewicht des Polyisocyanats A, auf. Besonders gute Ergebnisse stellen sich ein, wenn das Polyisocyanat A im Wesentlichen frei von monomeren Diisocyanaten ist. Im Wesentlichen frei bedeutet dabei, dass der Gehalt an monomeren Diisocyanaten höchstens 0,5 Gew.-%, bezogen auf das Gewicht des Polyisocyanats A, beträgt. Particularly practical results are obtained when the polyisocyanate A has a proportion of monomeric diisocyanates of not more than 20% by weight, in particular not more than 15% by weight or not more than 10% by weight, based in each case on the weight of polyisocyanate A. Preferably polyisocyanate A has a monomeric diisocyanate content of at most 5% by weight, preferably at most 2.0% by weight, particularly preferably at most 1.0% by weight, based in each case on the weight of polyisocyanate A. Particularly good results are obtained when the polyisocyanate A is essentially free from monomeric diisocyanates. Essentially free here means that the monomeric diisocyanate content is at most 0.5% by weight, based on the weight of the polyisocyanate A.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung besteht das Polyisocyanat A vollständig oder zu mindestens 80, 85, 90, 95, 98, 99 oder 99,5 Gew.-%, jeweils bezogen auf das Gewicht des Polyisocyanats A, aus oligomeren Polyisocyanaten. Hierbei ist ein Gehalt an oligomeren Polyisocyanaten von wenigstens 99 Gew.-% bevorzugt. Dieser Gehalt an oligomeren Polyisocyanaten bezieht sich auf das Polyisocyanat A, wie es bereitgestellt wird. D.h. die oligomeren Polyisocyanate werden nicht während des erfindungsgemäßen Verfahrens als Zwischenprodukt gebildet, sondern liegen bereits zu Beginn der Reaktion in dem als Edukt eingesetzten Polyisocyanat A vor. According to a particularly preferred embodiment of the invention, the polyisocyanate A consists entirely or at least 80, 85, 90, 95, 98, 99 or 99.5% by weight, based in each case on the weight of the polyisocyanate A, of oligomeric polyisocyanates. A content of oligomeric polyisocyanates of at least 99% by weight is preferred here. This oligomeric polyisocyanate content relates to polyisocyanate A as provided. I.e. the oligomeric polyisocyanates are not formed as an intermediate product during the process according to the invention, but are already present in the polyisocyanate A used as starting material at the beginning of the reaction.
Polyisocyanatzusammensetzungen, die monomerarm oder im Wesentlichen frei von monomeren Isocyanaten sind, lassen sich erhalten, indem nach der eigentlichen Modifizierungsreaktion in jedem Fall mindestens ein weiterer Verfahrensschritt zur Abtrennung der nicht umgesetzten überschüssigen monomeren Diisocyanate durchgeführt wird. Diese Monomerenabtrennung kann besonders praxisgerecht nach an sich bekannten Verfahren, vorzugsweise durch Dünnschichtdestillation im Hochvakuum oder durch Extraktion mit geeigneten gegenüber Isocyanatgruppen inerten Lösungsmitteln, beispielsweise aliphatischen oder cycloaliphatischen Kohlenwasserstoffen wie Pentan, Hexan, Heptan, Cyclopentan oder Cyclohexan, erfolgen. Polyisocyanate compositions which are low in monomer or essentially free from monomeric isocyanates can be obtained by carrying out at least one further process step in each case to separate off the unreacted excess monomeric diisocyanates after the actual modification reaction. This separation of monomers can be carried out in a particularly practical manner by processes known per se, preferably by thin-film distillation in a high vacuum or by extraction with suitable solvents which are inert towards isocyanate groups, for example aliphatic or cycloaliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane or cyclohexane.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird das Polyisocyanat A durch Modifizierung monomerer Diisocyanate mit anschließender Abtrennung nicht umgesetzter Monomere erhalten. According to a preferred embodiment of the invention, polyisocyanate A is obtained by modifying monomeric diisocyanates with subsequent removal of unreacted monomers.
Gemäß einer besonderen Ausführungsform der Erfindung enthält ein monomerarmes Polyisocyanat A jedoch ein monomeres Fremddiisocyanat. Hierbei bedeutet„monomeres Fremddiisocyanat", dass es sich von den monomeren Diisocyanaten, die zur Herstellung der im Polyisocyanat A enthaltenen oligomeren Polyisocyanaten verwendet wurden, unterscheidet. According to a particular embodiment of the invention, however, a low-monomer polyisocyanate A contains a monomeric foreign diisocyanate. Here, “monomeric foreign diisocyanate” means that it differs from the monomeric diisocyanates which were used to prepare the oligomeric polyisocyanates contained in polyisocyanate A.
Eine Zugabe von monomerem Fremddiisocyanat kann zur Erzielung spezieller technischer Effekte, wie z.B. einer besonderen Härte vorteilhaft sein. Besonders praxisgerechte Ergebnisse stellen sich ein, wenn das Isocyanat A einen Anteil an monomeren Fremddiisocyanat von höchstens 20 Gew.-%, insbesondere höchstens 15 Gew.-% oder höchstens 10 Gew.-%, jeweils bezogen auf das Gewicht des Polyisocyanats A, aufweist. Vorzugsweise weist das Isocyanat A einen Gehalt an monomeren Fremddiisocyanat von höchstens 5 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.-%, jeweils bezogen auf das Gewicht des Polyisocyanats A, auf. An addition of monomeric external diisocyanate can be advantageous to achieve special technical effects, such as a special hardness. Particularly practical results are obtained when isocyanate A has a proportion of monomeric foreign diisocyanate of at most 20% by weight, in particular at most 15% by weight or at most 10% by weight, based in each case on the weight of polyisocyanate A. The isocyanate A preferably has a monomeric content External diisocyanate of at most 5% by weight, preferably at most 2.0% by weight, particularly preferably at most 1.0% by weight, based in each case on the weight of the polyisocyanate A.
Gemäß einer weiteren besonderen Ausführungsform des erfindungsgemäßen Verfahrens enthält das Polyisocyanat A monomere Monoisocyanate oder monomere Isocyanate mit einer Isocyanatfunktionalität größer zwei, d.h. mit mehr als zwei Isocyanatgruppen pro Molekül. Die Zugabe von monomeren Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei hat sich als vorteilhaft erwiesen, um die Netzwerkdichte der Beschichtung zu beeinflussen. Besonders praxisgerechte Ergebnisse stellen sich ein, wenn das Isocyanat A einen Anteil an monomeren Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei im Polyisocyanat A von höchstens 20 Gew.-%, insbesondere höchstens 15 Gew.-% oder höchstens 10 Gew.-%, jeweils bezogen auf das Gewicht desAccording to a further particular embodiment of the process according to the invention, polyisocyanate A contains monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two, i.e. with more than two isocyanate groups per molecule. The addition of monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two has proven to be advantageous in order to influence the network density of the coating. Particularly practical results are obtained if isocyanate A has a proportion of monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two in polyisocyanate A of at most 20% by weight, in particular at most 15% by weight or at most 10% by weight, each based on the weight of the
Polyisocyanats A, aufweist. Vorzugsweise weist das Polyisocyanat A einen Gehalt an monomerenPolyisocyanate A has. The polyisocyanate A preferably has a monomeric content
Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei von höchstens 5 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.- %, jeweils bezogen auf das Gewicht des Isocyanats A, auf. Vorzugsweise wird bei der erfindungsgemäßen Trimerisierungsreaktion kein monomeres Monoisocyanat oder monomeres Isocyanat mit einer Isocyanatfunktionalität größer zwei mitverwendet. Monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two of at most 5% by weight, preferably at most 2.0% by weight, particularly preferably at most 1.0% by weight, based in each case on the weight of the isocyanate A. Preferably, no monomeric monoisocyanate or monomeric isocyanate with an isocyanate functionality greater than two is used in the trimerization reaction according to the invention.
Die oligomeren Polyisocyanate können erfindungsgemäß insbesondere Uretdion-, Isocyanurat-, Aliophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur aufweisen. Gemäß einer Ausführungsform der Erfindung weisen die oligomeren Polyisocyanate mindestens eine der folgenden oligomeren Strukturtypen oder deren Gemische auf: According to the invention, the oligomeric polyisocyanates can in particular have uretdione, isocyanurate, aliophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure. According to one embodiment of the invention, the oligomeric polyisocyanates have at least one of the following oligomeric structure types or mixtures thereof:
Uretdion Isocyanurat Aliophanat Biuret Iminooxadiazindion Oxadiazintrion Uretdione isocyanurate aliophanate biuret iminooxadiazinedione oxadiazinetrione
Gemäß einer bevorzugten Ausführungsform der Erfindung wird ein Polyisocyanat A eingesetzt, dessen Isocyanuratstrukturanteil mindestens 50 mol-%, vorzugsweise mindestens 60 mol-%, stärker bevorzugt mindestens 70 mol-%, noch stärker bevorzugt mindestens 80 mol-%, noch stärker bevorzugt mindestens 90 mol-% und besonders bevorzugt mindestens 95 mol-% bezogen auf die Summe der vorliegenden oligomeren Strukturen aus der Gruppe, bestehend aus Uretdion-, Isocyanurat-, Aliophanat-, Biuret-, Iminooxadiazindion- und Oxadiazintrionstruktur im Polyisocyanat A, beträgt. Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung wird im erfindungsgemäßen Verfahren ein Polyisocyanat A, das neben der Isocyanuratstruktur mindestens ein weiteres oligomeres Polyisocyanat mit Uretdion-, Biuret-, Allophanat-, Iminooxadiazindion- und Oxadiazintrionstruktur und Mischungen davon enthält, eingesetzt. According to a preferred embodiment of the invention, a polyisocyanate A is used whose isocyanurate structural fraction is at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol%, even more preferably at least 80 mol%, even more preferably at least 90 mol -% and particularly preferably at least 95 mol% based on the sum of the oligomeric structures present from the group consisting of uretdione, isocyanurate, aliophanate, biuret, iminooxadiazinedione and oxadiazinetrione structure in polyisocyanate A is. According to a further preferred embodiment of the invention, a polyisocyanate A is used in the process according to the invention which, in addition to the isocyanurate structure, contains at least one further oligomeric polyisocyanate with uretdione, biuret, allophanate, iminooxadiazinedione and oxadiazinetrione structure and mixtures thereof.
Die Anteile an Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur im Polyisocyanat A können z.B. durch NMR-Spektroskopie bestimmt werden. Bevorzugt lässt sich hierbei die 13C-NMR-Spektroskopie, vorzugsweise protonenentkoppelt, einsetzen, da die genannten oligomeren Strukturen charakteristische Signale liefern. The proportions of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure in polyisocyanate A can e.g. can be determined by NMR spectroscopy. 13C-NMR spectroscopy, preferably proton-decoupled, can preferably be used here, since the oligomeric structures mentioned provide characteristic signals.
Unabhängig vom der zugrunde liegenden oligomeren Struktur (Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur) weist ein beim erfindungsgemäßen Verfahren einzusetzendes oligomeres Polyisocyanat A vorzugsweise eine (mittlere) NCO- Funktionalität von 2,0 bis 5,0, vorzugsweise von 2,3 bis 4,5 auf. Regardless of the underlying oligomeric structure (uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure), an oligomeric polyisocyanate A to be used in the process according to the invention preferably has an (average) NCO functionality of 2.0 to 5 , 0, preferably from 2.3 to 4.5.
Besonders praxisgerechte Ergebnisse stellen sich ein, wenn das erfindungsgemäß einzusetzende Polyisocyanat A einen Gehalt an Isocyanatgruppen von 8,0 bis 28,0 Gew.-%, vorzugsweise von 14,0 bis 25,0 Gew.-%, jeweils bezogen auf das Gewicht des Polyisocyanats A, aufweist. Particularly practical results are obtained when the polyisocyanate A to be used according to the invention has an isocyanate group content of 8.0 to 28.0% by weight, preferably from 14.0 to 25.0% by weight, based in each case on the weight of the Polyisocyanate A has.
Herstellverfahren für die im Polyisocyanat A erfindungsgemäß einzusetzenden oligomeren Polyisocyanate mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur sind beispielsweise in J. Prakt. Chem. 336 (1994) 185 - 200, in DE-A 1 670 666, DE-A 1 954 093, DE-A 2 414 413, DE-A 2 452 532, DE-A 2 641 380, DE-A 3 700 209, DE-A 3 900 053 und DE-A 3 928 503 oder in EP-A 0 336 205, EP A 0 339 396 und EP-A 0 798 299 beschrieben. Production processes for the oligomeric polyisocyanates to be used in accordance with the invention in polyisocyanate A having a uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure are described, for example, in J. Prakt. Chem. 336 (1994) 185-200, in DE-A 1 670 666, DE-A 1 954 093, DE-A 2 414 413, DE-A 2 452 532, DE-A 2 641 380, DE-A 3 700 209, DE-A 3 900 053 and DE-A 3 928 503 or in EP-A 0 336 205, EP A 0 339 396 and EP-A 0 798 299.
Gemäß einer zusätzlichen oder alternativen Ausführungsform der Erfindung ist das Polyisocyanat A dadurch definiert, dass es oligomere Polyisocyanate enthält, die aus monomeren Diisocyanaten unabhängig von der Art der verwendeten Modifizierungsreaktion unter Einhaltung eines Oligomerisierungsgrades von 5 bis 45 %, vorzugsweise 10 bis 40 %, besonders bevorzugt 15 bis 30 %, erhalten wurden. Unter "Oligomerisierungsgrad" ist dabei der Prozentsatz der in der Ausgangsmischung ursprünglich vorhandenen Isocyanatgruppen zu verstehen, der während des Herstellprozesses unter Bildung von Urethan-, Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstrukturen verbraucht wird. According to an additional or alternative embodiment of the invention, the polyisocyanate A is defined in that it contains oligomeric polyisocyanates which are obtained from monomeric diisocyanates regardless of the type of modification reaction used while maintaining a degree of oligomerization of 5 to 45%, preferably 10 to 40%, particularly preferred 15 to 30%. "Degree of oligomerization" is to be understood as the percentage of isocyanate groups originally present in the starting mixture that is consumed during the production process with the formation of urethane, uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structures.
Geeignete Polyisocyanate zur Herstellung des beim erfindungsgemäßen Verfahren einzusetzenden Polyisocyanats A und der darin enthaltenen monomeren und/oder oligomeren Polyisocyanate sind beliebige, auf verschiedene Weise, beispielsweise durch Phosgenierung in der Flüssig- oder Gasphase oder auf phosgenfreien Weg, wie z.B. durch thermische Urethanspaltung, zugängliche Polyisocyanate. Besonders gute Ergebnisse stellen sich ein, wenn es sich bei den Polyisocyanaten um monomere Diisocyanate handelt. Bevorzugte monomere Diisocyanate sind solche, die ein Molekulargewicht im Bereich von 140 bis 400 g/mol aufweisen, mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen, wie z. B. 1,4-Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan (PDI), 1,6-Diisocyanatohexan (HDI), 2-Methyl-l,5-diisocyanatopentan, l,5-Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4-Trimethyl-l,6-diisocyanatohexan, 1,10- Diisocyanatodecan, 1,3- und 1,4-Diisocyanatocyclohexan, l,4-Diisocyanato-3,3,5- trimethylcyclohexan, l,3-Diisocyanato-2-methylcyclohexan, l,3-Diisocyanato-4-methylcyclohexan, 1- lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophorondiisocyanat; I PDI ), 1- lsocyanato-l-methyl-4(3)-isocyanatomethylcyclohexan, 2,4'- und 4,4'-Suitable polyisocyanates for preparing the polyisocyanate A to be used in the process according to the invention and the monomeric and / or oligomeric polyisocyanates contained therein are any polyisocyanates accessible in various ways, for example by phosgenation in the liquid or gas phase or by phosgene-free route, such as for example by thermal urethane cleavage . Particularly good results are obtained when it comes to the polyisocyanates monomeric diisocyanates. Preferred monomeric diisocyanates are those which have a molecular weight in the range from 140 to 400 g / mol, with aliphatically, cycloaliphatically, araliphatically and / or aromatically attached isocyanate groups, such as. B. 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane , 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3, 5- trimethylcyclohexane, l, 3-diisocyanato-2-methylcyclohexane, l, 3-diisocyanato-4-methylcyclohexane, 1- isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (isophorone diisocyanate; I PDI), 1- Isocyanato-1-methyl-4 (3) -isocyanatomethylcyclohexane, 2,4'- and 4,4'-
Diisocyanatodicyclohexylmethan (H12MDI), 1,3-und l,4-Bis(isocyanatomethyl)cyclohexan, Bis-Diisocyanatodicyclohexylmethane (H12MDI), 1,3- and 1,4-bis (isocyanatomethyl) cyclohexane, bis-
(isocyanatomethyl)-norbornan (NBDI), 4,4'-Diisocyanato-3,3'-dimethyldicyclohexylmethan, 4,4'- Diisocyanato-3,3',5,5'-tetramethyl-dicyclohexylmethan, 4,4'-Diisocyanato-l,l'-bi(cyclohexyl), 4,4'- Diisocyanato-3,3'-dimethyl-l,l'-bi(cyclohexyl), 4,4'-Diisocyanato-2,2',5,5'-tetra-methyl-l,l'- bi(cyclohexyl), 1,8-Diisocyanato-p-menthan, 1,3-Diisocyanato-adamantan, l,3-Dimethyl-5,7- diisocyanatoadamantan, 1,3- und l^-Bis-fiso-cyanatomethylJbenzol (Xylylendiisocyanat; XDI), 1,3- und l,4-Bis(l-isocyanato-l-methyhethyl)-benzol (TMXDI) und Bis(4-(l-isocyanato-l- methylethyl)phenyl)-carbonat, 2,4- und 2,6-Diisocyanatotoluol (TDI), 2,4'- und 4,4'- Diisocyanatodiphenylmethan (MDI), 1,5-Diisocyanatonaphthalin sowie beliebige Gemische solcher Diisocyanate. Weitere ebenfalls geeignete Diisocyanate finden sich darüber hinaus beispielsweise in Justus Liebigs Annalen der Chemie Band 562 (1949) S. 75 - 136. (isocyanatomethyl) norbornane (NBDI), 4,4'-diisocyanato-3,3'-dimethyldicyclohexylmethane, 4,4'-diisocyanato-3,3 ', 5,5'-tetramethyl-dicyclohexylmethane, 4,4'-diisocyanato -l, l'-bi (cyclohexyl), 4,4'-diisocyanato-3,3'-dimethyl-l, l'-bi (cyclohexyl), 4,4'-diisocyanato-2,2 ', 5.5 '-tetra-methyl-l, l'-bi (cyclohexyl), 1,8-diisocyanato-p-menthane, 1,3-diisocyanato-adamantane, 1,3-dimethyl-5,7-diisocyanatoadamantane, 1,3- and l ^ -Bis-fiso-cyanatomethyl-benzene (xylylene diisocyanate; XDI), 1,3- and 1,4-bis (l-isocyanato-l-methylethyl) -benzene (TMXDI) and bis (4- (l-isocyanato-l - methylethyl) phenyl) carbonate, 2,4- and 2,6-diisocyanatotoluene (TDI), 2,4'- and 4,4'-diisocyanatodiphenylmethane (MDI), 1,5-diisocyanatonaphthalene and any mixtures of such diisocyanates. Further, likewise suitable diisocyanates can also be found, for example, in Justus Liebigs Annalen der Chemie Volume 562 (1949) pp. 75-136.
Geeignete monomere Monoisocyanate, die in der Isocyanatkomponente A gegebenenfalls eingesetzt werden können, sind beispielsweise n-Butylisocyanat, n-Amylisocyanat, n-Hexylisocyanat, n- Heptylisocyanat, n-Octylisocyanat, Undecylisocyanat, Dodecylisocyanat, Tetradecylisocyanat, Cetylisocyanat, Stearylisocyanat, Cyclopentylisocyanat, Cyclohexylisocyanat, 3- bzw. 4- Methylcyclohexylisocyanat oder beliebige Gemische solcher Monoisocyanate. Als monomeres Isocyanat mit einer Isocyanatfunktionalität größer zwei, das der Isocyanatkomponente A gegebenenfalls zugesetzt werden kann, sei beispielhaft 4-lsocyanatomethyl-l,8-octandiisocyanat (Triisocyanatononan; TIN) genannt. Suitable monomeric monoisocyanates which can optionally be used in isocyanate component A are, for example, n-butyl isocyanate, n-amyl isocyanate, n-hexyl isocyanate, n-heptyl isocyanate, n-octyl isocyanate, undecyl isocyanate, dodecyl isocyanate, tetradecyl isocyanate, cetyl isocyanate, stearyl isocyanate, cyclohexyl isocyanate, cyclohexyl isocyanate, 3- or 4-methylcyclohexyl isocyanate or any mixtures of such monoisocyanates. An example of a monomeric isocyanate with an isocyanate functionality greater than two, which can optionally be added to isocyanate component A, is 4-isocyanatomethyl-1,8-octane diisocyanate (triisocyanatononane; TIN).
Gemäß einer Ausführungsform der Erfindung enthält das Polyisocyanat A höchstens 30 Gew.-%, insbesondere höchstens 20 Gew.-%, höchstens 15 Gew.-%, höchstens 10 Gew.-%, höchstens 5 Gew.- % oder höchstens 1 Gew.-%, jeweils bezogen auf das Gewicht das Polyisocyanats A, an aromatischen Polyisocyanaten. Wie hier verwendet, bedeutet „aromatisches Polyisocyanat" ein Polyisocyanat, welches mindestens eine aromatisch gebundene Isocyanatgruppe aufweist. According to one embodiment of the invention, the polyisocyanate A contains at most 30% by weight, in particular at most 20% by weight, at most 15% by weight, at most 10% by weight, at most 5% by weight or at most 1% by weight %, based in each case on the weight of the polyisocyanate A, of aromatic polyisocyanates. As used herein, "aromatic polyisocyanate" means a polyisocyanate which has at least one aromatically bound isocyanate group.
Unter aromatisch gebundenen Isocyanatgruppen werden Isocyanatgruppen verstanden, die an einen aromatischen Kohlenwasserstoffrest gebunden sind. Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Polyisocyanat A eingesetzt, das ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen aufweist. Aromatically bound isocyanate groups are understood to mean isocyanate groups which are bound to an aromatic hydrocarbon radical. According to a preferred embodiment of the process according to the invention, a polyisocyanate A is used which has exclusively aliphatically and / or cycloaliphatically bound isocyanate groups.
Unter aliphatisch bzw. cycloaliphatisch gebundenen Isocyanatgruppen werden Isocyanatgruppen verstanden, die an einen aliphatischen bzw. cycloaliphatischen Kohlenwasserstoffrest gebunden sind. Gemäß einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Polyisocyanat A eingesetzt, das aus einem oder mehreren oligomeren Polyisocyanaten besteht oder diese enthält, wobei die ein oder mehreren oligomeren Polyisocyanate ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen aufweisen. Aliphatically or cycloaliphatically bound isocyanate groups are understood to mean isocyanate groups which are bound to an aliphatic or cycloaliphatic hydrocarbon radical. According to another preferred embodiment of the process according to the invention, a polyisocyanate A is used which consists of or contains one or more oligomeric polyisocyanates, the one or more oligomeric polyisocyanates exclusively having aliphatically and / or cycloaliphatically bound isocyanate groups.
Gemäß einer weiteren Ausführungsform der Erfindung besteht das Polyisocyanat A zu mindestens 70, 80, 85, 90, 95, 98 oder 99 Gew.-%, jeweils bezogen auf das Gewicht des Polyisocyanats A, aus Polyisocyanaten, die ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen aufweisen. Praktische Versuche haben gezeigt, dass sich besonders gute Ergebnisse mit Polyisocyanaten A erzielen lassen, bei denen die darin enthaltenen oligomeren Polyisocyanate ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanatgruppen aufweisen. According to a further embodiment of the invention, polyisocyanate A consists of at least 70, 80, 85, 90, 95, 98 or 99% by weight, based in each case on the weight of polyisocyanate A, of polyisocyanates which are exclusively aliphatically and / or cycloaliphatically bound Have isocyanate groups. Practical tests have shown that particularly good results can be achieved with polyisocyanates A in which the oligomeric polyisocyanates contained therein exclusively have aliphatically and / or cycloaliphatically bound isocyanate groups.
Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Polyisocyanat A eingesetzt, die aus einem oder mehreren oligomeren Polyisocyanaten besteht oder diese enthält, wobei die ein oder mehreren oligomeren Polyisocyanate auf Basis von 1,4- Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan ( PDI ), 1,6-Diisocyanatohexan (HDI), Isophorondiisocyanat (I PDI) oder 4,4'-Diisocyanatodicyclohexylmethan ( H 12 M Dl) oder deren Mischungen aufgebaut sind. According to a particularly preferred embodiment of the process according to the invention, a polyisocyanate A is used which consists of or contains one or more oligomeric polyisocyanates, the one or more oligomeric polyisocyanates based on 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), isophorone diisocyanate (I PDI) or 4,4'-diisocyanatodicyclohexylmethane (H 12 M Dl) or mixtures thereof.
Anorganischer Füllstoff B Inorganic filler B
Um gute mechanische Eigenschaften des fertigen Bauteils zu erreichen, hat der anorganische Füllstoff B eine Mohs'sche Härte von wenigstens 4,0, bevorzugt von wenigstens 5,0 und stärker bevorzugt wenigstens 5,5. Erfindungsgemäß sind solche Füllstoffe, die Siliciumoxideinheiten enthalten. Dies sind insbesondere Silikate und Quarz. Besonders bevorzugt ist der Füllstoff B Quarz oder Feldspat. In order to achieve good mechanical properties in the finished component, the inorganic filler B has a Mohs ' hardness of at least 4.0, preferably of at least 5.0 and more preferably at least 5.5. Those fillers which contain silicon oxide units are according to the invention. These are in particular silicates and quartz. The filler B is particularly preferably quartz or feldspar.
Grundsätzlich sind hohe Füllstoffgehalte wünschenswert, um Materialkosten niedrig zu halten und eine gute Brandbeständigkeit zu erreichen. Hohe Füllstoffgehalte haben aber den Nachteil, dass sie die Viskosität der Gießharze steigern. Bei der Verwendung von polymerem MDI (pM Dl) als Aufbaukomponente eines Polyurethans ist dies weniger problematisch, da pMDl eine Viskosität von ungefähr 90-200 mPas aufweist. Wenn pMDl durch aliphatische Isocyanate ersetzt werden soll, erreicht die Viskosität des Gießharzes schneller eine für die Verarbeitung kritische Grenze, da oligomere aliphatische Isocyanate häufig Viskositäten im Bereich von 1.500 mPas und höher aufweisen. Deswegen ist hier die Auswahl spezieller Füllstoffe erforderlich, welche auch bei hohen Füllstoffgehalten in Kombination mit aliphatischen Isocyanaten zu geringen Viskositäten des Gießharzes führen. In principle, high filler contents are desirable in order to keep material costs low and to achieve good fire resistance. However, high filler contents have the disadvantage that they increase the viscosity of the casting resins. This is less of a problem when using polymeric MDI (pMDl) as a structural component of a polyurethane, since pMDl has a viscosity of approximately 90-200 mPas. If pMDI is to be replaced by aliphatic isocyanates, the viscosity of the casting resin reaches a critical limit for processing more quickly because oligomeric aliphatic isocyanates often have viscosities in the range of 1,500 mPas and higher. Therefore, the selection of special fillers is necessary, which lead to low viscosities of the casting resin even with high filler contents in combination with aliphatic isocyanates.
Der kritische Parameter ist hierbei die Ölzahl. Die Ausführungsbeispiele zeigen, dass nach einer Lagerung des Reaktionsgemisches bei 60 °C für eine Stunde eine Viskosität von 110 Pas nicht überschritten wurde, wenn die Ölzahl des anorganischen Füllstoffes B höchstens 25 g / 100 betrug. Die Vergleichsbeispiele V6 und V7 zeigen, dass bereits die Verwendung eines ansonsten erfindungsgemäßen Füllstoffs, dessen Ölzahl leicht über dem erfindungsgemäßen Wert liegt, bereits hohe Viskositäten erreicht wurden bzw. die Herstellung eines flüssigen Reaktionsgemisches schon nicht mehr möglich war. Weiterhin zeigt der direkte Vergleich von V4 mit E10, dass Füllstoffe, die keine Siliciumoxideinheiten enthalten, selbst bei extrem niedriger Ölzahl (15 g / 100g in V4 im Vergleich zu 21 g / 100 g in E10) eine um 40 % höhere Viskosität nach Lagerung über eine Stunde bei 60 °C aufweisen. The critical parameter here is the oil number. The exemplary embodiments show that after storage of the reaction mixture at 60 ° C. for one hour, a viscosity of 110 Pas was not exceeded if the oil number of the inorganic filler B was at most 25 g / 100. Comparative examples C6 and C7 show that even the use of a filler according to the invention, the oil number of which is slightly above the value according to the invention, already achieved high viscosities or the production of a liquid reaction mixture was no longer possible. Furthermore, the direct comparison of V4 with E10 shows that fillers that do not contain any silicon oxide units, even with an extremely low oil number (15 g / 100 g in V4 compared to 21 g / 100 g in E10), have a 40% higher viscosity after storage have one hour at 60 ° C.
Deswegen hat der anorganische Füllstoff B eine Ölzahl von höchstens 25 g / 100 g bestimmt nach DIN EN ISO 787-5 (Oktober 1995), bevorzugt höchstens 22 g / 100 g und stärker bevorzugt höchstens 20 gThe inorganic filler B therefore has an oil number of at most 25 g / 100 g, determined according to DIN EN ISO 787-5 (October 1995), preferably at most 22 g / 100 g and more preferably at most 20 g
/ 100 g. / 100 g.
Der Füllstoff kann mit üblichen Beschichtungen versehen sein wie zum Beispiel mit Fettsäuren, Silanen oder Titanaten. The filler can be provided with conventional coatings such as fatty acids, silanes or titanates.
Das Gießharz besteht vorzugsweise zu 30 bis 90 Gew.-%, bevorzugt zu 40 bis 80 Gew.-%, stärker bevorzugt zu 50 bis 80 Gew.-% und besonders bevorzugt zu 50 bis 65 Gew.-% aus dem anorganischen Füllstoff B. The casting resin preferably consists of 30 to 90% by weight, preferably 40 to 80% by weight, more preferably 50 to 80% by weight and particularly preferably 50 to 65% by weight of the inorganic filler B.
Es hat sich als besonders vorteilhaft herausgestellt, dass ein Gießharz für einen hochgefüllten Werkstoff, insbesondere für einen Werkstoff mit bis zu 65 Gew.-% Füllstoffgehalt, immer noch eine für die Verarbeitung hinreichend niedrige Viskosität aufwies. Das erfindungsgemäße Gießharz ist deswegen vorzugsweise dadurch gekennzeichnet, dass es bei Verwendung von bis zu 65 Gew.-% eines erfindungsgemäßen anorganische Füllstoffs mit einer Ölzahl von bis zu 25 g / 100 g bestimmt nach DIN EN ISO 787-5 (Oktober 1995) bei 60 °C eine Viskosität von höchstens 200 Pas, bevorzugt höchstens 150 Pas aufweist und diese Topfzeit auch nach wenigstens einer Stunde Lagerung bei dieser Temperatur nicht überschritten wird. Dabei wird die Viskosität mit einen MCR301Rheometer der Firma AntonPaar bestimmt. Es wurde das Platte/Platte System PP25 mit der Peltierheizung C- PTD200 eingesetzt, mit der Frequenz f = 1 Hz und der Amplitude gamma = 5 %. Um die im obenstehenden Absatz genannten Parameter einzuhalten, ist es vorteilhaft, wenn das Polyisocyanat A bei 25 °C eine Viskosität von höchstens 20.000 mPas, bevorzugt höchstens 10.000 mPas und stärker bevorzugt höchstens 5.000 mPas aufweist. Hierbei liegt die Viskosität vorzugsweise bei wenigstens 500 mPas. It has been found to be particularly advantageous that a casting resin for a highly filled material, in particular for a material with a filler content of up to 65% by weight, still has a viscosity that is sufficiently low for processing. The casting resin according to the invention is therefore preferably characterized in that when using up to 65% by weight of an inorganic filler according to the invention with an oil number of up to 25 g / 100 g determined according to DIN EN ISO 787-5 (October 1995) at 60 ° C has a viscosity of at most 200 Pas, preferably at most 150 Pas and this pot life is not exceeded even after at least one hour of storage at this temperature. The viscosity is determined with an MCR301 rheometer from AntonPaar. The plate / plate system PP25 with the Peltier heater C-PTD200 was used, with the frequency f = 1 Hz and the amplitude gamma = 5%. In order to maintain the parameters mentioned in the above paragraph, it is advantageous if the polyisocyanate A has a viscosity of at most 20,000 mPas, preferably at most 10,000 mPas and more preferably at most 5,000 mPas at 25 ° C. The viscosity here is preferably at least 500 mPas.
Trimerisierungskatalysator C Trimerization Catalyst C
Der Trimerisierungskatalysator C kann aus einem oder verschiedenen Katalysatortypen gemischt sein, enthält aber mindestens einen Katalysator, der die Trimerisierung von Isocyanatgruppen zu Isocyanuraten oder Iminooxadiazindionen bewirkt. The trimerization catalyst C can be mixed from one or different types of catalyst, but contains at least one catalyst which effects the trimerization of isocyanate groups to form isocyanurates or iminooxadiazinediones.
Geeignete Katalysatoren für das erfindungsgemäße Verfahren sind beispielsweise einfache tertiäre Amine, wie z.B. Triethylamin, Tributylamin, N,N-Dimethylanilin, N-Ethylpiperidin oder N,N'- Dimethylpiperazin. Geeignete Katalysatoren sind auch die in der GB 2 221 465 beschriebenen tertiären Hydroxyalkylamine, wie z.B. Triethanolamin, N-Methyl-diethanolamin, Dimethylethanolamin, N-Isopropyldiethanolamin und l-(2-Hydroxyethyl)pyrrolidin, oder die aus der GB 2 222 161 bekannten, aus Gemischen tertiärer bicyclischer Amine, wie z.B. DBU, mit einfachen niedermolekularen aliphatischen Alkoholen bestehenden Katalysatorsysteme. Suitable catalysts for the process according to the invention are, for example, simple tertiary amines, e.g. Triethylamine, tributylamine, N, N-dimethylaniline, N-ethylpiperidine or N, N'-dimethylpiperazine. Suitable catalysts are also the tertiary hydroxyalkylamines described in GB 2 221 465, e.g. Triethanolamine, N-methyl-diethanolamine, dimethylethanolamine, N-isopropyldiethanolamine and 1- (2-hydroxyethyl) pyrrolidine, or those known from GB 2 222 161, from mixtures of tertiary bicyclic amines, e.g. DBU, with simple low molecular weight aliphatic alcohols existing catalyst systems.
Als Trimerisierungskatalysatoren für das erfindungsgemäße Verfahren ebenfalls geeignet ist eine Vielzahl unterschiedlicher Metallverbindungen. Geeignet sind beispielsweise die in der DE-A 3 240 613 als Katalysatoren beschriebenen Oktoate und Naphthenate von Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer oder Blei oder deren Gemische mit Acetaten von Lithium, Natrium, Kalium, Calcium oder Barium, die aus DE-A 3 219 608 bekannten Natrium- und Kalium-Salze von linearen oder verzweigten Alkancarbonsäuren mit bis zu 10 C-Atomen, wie z.B. von Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Heptansäure, Caprylsäure, Pelargonsäure, Caprinsäure und Undecylsäure, die aus der EP-A 0 100 129 bekannten Alkali- oder Erdalkalimetallsalze von aliphatischen, cycloaliphatischen oder aromatischen Mono- und Polycarbonsäuren mit 2 bis 20 C- Atomen, wie z.B. Natrium- oder Kaliumbenzoat, die aus der GB-PS 1 391 066 und GB-PS 1 386 399 bekannten Alkaliphenolate, wie z.B. Natrium- oder Kaliumphenolat, die aus der GB 809 809 bekannten Alkali- und Erdalkalioxide, -hydroxide, -carbonate, -alkoholate und -phenolate, Alkalimetallsalze von enolisierbaren Verbindungen sowie Metallsalze schwacher aliphatischer bzw. cycloaliphatischer Carbonsäuren, wie z.B. Natriummethoxid, Natriumacetat, Kaliumacetat, Natriumacetoessigester, Blei-2-ethylhexanoat und Bleinaphthenat, die aus der EP-A 0 056 158 und EP-A 0 056 159 bekannten, mit Kronenethern oder Polyetheralkoholen komplexierten basischen Alkalimetallverbindungen, wie z.B. komplexierte Natrium- oder Kaliumcarboxylate, das aus der EP-A 0 033 581 bekannte Pyrrolidinon-Kaliumsalz, die aus der Anmeldung EP 13196508.9 bekannten ein- oder mehrkernigen Komplexverbindung von Titan, Zirkonium und/oder Hafnium, wie z.B. Zirkoniumtetra-n-butylat, Zirkoniumtetra-2-ethylhexanoat und Zirkoniumtetra-2-ethylhexylat, sowie Zinnverbindungen der in European Polymer Journal, Vol. 16, 147 - 148 (1979) beschriebenen Art, wie z.B. Dibutylzinndichlorid, Diphenylzinndichlorid, Triphenylstannanol, Tributylzinnacetat, Tributylzinnoxid, Zinndioktoat, Dibutyl(dimethoxy)stannan und Tributylzinnimidazolat. A large number of different metal compounds are also suitable as trimerization catalysts for the process according to the invention. For example, the octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead, or their mixtures with acetates of lithium, sodium, potassium, or calcium, described as catalysts in DE-A 3 240 613 Barium, the sodium and potassium salts known from DE-A 3 219 608 of linear or branched alkanecarboxylic acids with up to 10 carbon atoms, such as propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, capric acid and undecylic acid , the alkali or alkaline earth metal salts known from EP-A 0 100 129 of aliphatic, cycloaliphatic or aromatic mono- and polycarboxylic acids having 2 to 20 carbon atoms, such as sodium or potassium benzoate, which are known from GB-PS 1,391,066 and GB-PS 1 386 399 known alkali phenolates, such as sodium or potassium phenolate, the alkali and alkaline earth oxides, hydroxides, carbonates, alcoholates and phenolates known from GB 809 809, alkali metal salts of s olisable compounds and metal salts of weak aliphatic or cycloaliphatic carboxylic acids, such as sodium methoxide, sodium acetate, potassium acetate, sodium acetoacetic ester, lead-2-ethylhexanoate and lead naphthenate, those known from EP-A 0 056 158 and EP-A 0 056 159, with crown ethers or Basic alkali metal compounds complexed with polyether alcohols, such as complexed sodium or potassium carboxylates, the pyrrolidinone potassium salt known from EP-A 0 033 581, the mononuclear or polynuclear complex compound of titanium, zirconium and / or hafnium known from EP 13196508.9, such as Zirconium tetra-n-butoxide, zirconium tetra-2-ethylhexanoate and zirconium tetra-2-ethylhexoxide, as well Tin compounds of the type described in European Polymer Journal, Vol. 16, 147-148 (1979), such as, for example, dibutyltin dichloride, diphenyltin dichloride, triphenylstannanol, tributyltin acetate, tributyltin oxide, tin dioctoate, dibutyl (dimethoxy) stannane and tributyltin imidazolate.
Weitere für das erfindungsgemäße Verfahren geeignete Trimerisierungskatalysatoren sind beispielsweise die aus der DE-A 1 667 309, EP-A 0 013 880 und EP-A 0 047 452 bekannten quaternären Ammoniumhydroxyde, wie z.B. Tetraethylammoniumhydroxid, Trimethylbenzylammoniumhydroxid, N,N-Dimethyl-N-dodecyl-N-(2-hydroxyethyl)ammonium- hydroxid, N-(2-Hydroxyethyl)-N,N-dimethylN-(2,2'-dihydroxymethylbutyl)-ammoniumhydroxid und l-(2-Hydroxyethyl)-l,4-diazabicyclo-[2.2.2]-octanhydroxid (Monoaddukt von Ethylenoxid und Wasser an l,4-Diazabicyclo-[2.2.2]-octan), die aus EP-A 37 65 oder EP-A 10 589 bekannten quaternären Hydroxyalkylammoniumhydroxide, wie z.B. N,N,N-Trimethyl-N-(2-hydroxyethyl)-ammonium- hydroxid, die aus DE-A 2631733, EP-A 0 671 426, EP-A 1 599 526 und US 4,789,705 bekannten Trialkylhydroxylalkylammoniumcarboxylate, wie z.B. N,N,N-Trimethyl-N-2-hydroxypropylammonium- p-tert.-butylbenzoat und N,N,N-Trimethyl-N-2-hydroxypropylammonium-2-ethylhexanoat, die aus der EP-A 1 229 016 bekannten quartären Benzylammoniumcarboxylate, wie z.B. N-Benzyl-N,N- dimethyl-N-ethylammoniumpivalat, N-Benzyl-N,N-dimethyl-N-ethylammonium-2-ethylhexanoat, N- Benzyl-N,N,N-tributylammonium-2-ethylhexanoat, N,N-Dimethyl-N-ethyl-N-(4-methoxy- benzyl)ammonium-2-ethylhexanoat oder N,N,N-Tributyl-N-(4-methoxybenzyl)ammonium-pivalat, die aus der WO 2005/087828 bekannten tetrasubstituierten Ammonium-a-hydroxycarboxylate, wie z.B. Tetramethylammonium-Iactat, die aus der EP-A 0 339 396, EP-A 0 379 914 und EP-A 0 443 167 bekannten quartären Ammonium- oder Phosphoniumfluoride, wie z.B. N-Methyl-N,N,N- trialkylammoniumfluoride mit C8-C10-Alkylresten, N,N,N,N-Tetra-n-butylammoniumfluorid, N,N,N- Trimethyl-N-benzylammonium-fluorid, Tetra methylphosphonium-fluorid,Further trimerization catalysts suitable for the process according to the invention are, for example, the quaternary ammonium hydroxides known from DE-A 1 667 309, EP-A 0 013 880 and EP-A 0 047 452, e.g. Tetraethylammonium hydroxide, trimethylbenzylammonium hydroxide, N, N-dimethyl-N-dodecyl-N- (2-hydroxyethyl) ammonium hydroxide, N- (2-hydroxyethyl) -N, N-dimethylN- (2,2'-dihydroxymethylbutyl) ammonium hydroxide and 1- (2-Hydroxyethyl) -1, 4-diazabicyclo- [2.2.2] octane hydroxide (monoadduct of ethylene oxide and water with 1,4-diazabicyclo [2.2.2] octane), which from EP-A 37 65 or EP-A 10 589 known quaternary hydroxyalkylammonium hydroxides, such as N, N, N-trimethyl-N- (2-hydroxyethyl) ammonium hydroxide, the trialkylhydroxylalkylammonium carboxylates known from DE-A 2631733, EP-A 0 671 426, EP-A 1 599 526 and US 4,789,705, such as e.g. N, N, N-trimethyl-N-2-hydroxypropylammonium p-tert-butyl benzoate and N, N, N-trimethyl-N-2-hydroxypropylammonium-2-ethylhexanoate, the quaternary known from EP-A 1 229 016 Benzylammonium carboxylates, such as N-Benzyl-N, N-dimethyl-N-ethylammonium pivalate, N-benzyl-N, N-dimethyl-N-ethylammonium-2-ethylhexanoate, N-benzyl-N, N, N-tributylammonium-2-ethylhexanoate, N, N-Dimethyl-N-ethyl-N- (4-methoxybenzyl) ammonium-2-ethylhexanoate or N, N, N-tributyl-N- (4-methoxybenzyl) ammonium pivalate, those known from WO 2005/087828 tetrasubstituted ammonium a-hydroxycarboxylate, such as Tetramethylammonium lactate, the quaternary ammonium or phosphonium fluorides known from EP-A 0 339 396, EP-A 0 379 914 and EP-A 0 443 167, e.g. N-methyl-N, N, N-trialkylammonium fluoride with C8-C10-alkyl radicals, N, N, N, N-tetra-n-butylammonium fluoride, N, N, N-trimethyl-N-benzylammonium fluoride, tetra methylphosphonium fluoride ,
Tetraethylphosphoniumfluorid oder Tetra-n-butylphosphoniumfluorid, die aus der EP-A 0 798 299, EP-A 0 896 009 und EP-A 0 962 455 bekannten quaternären Ammonium- undTetraethylphosphonium fluoride or tetra-n-butylphosphonium fluoride, the quaternary ammonium and known from EP-A 0 798 299, EP-A 0 896 009 and EP-A 0 962 455
Phosphoniumpolyfluoride, wie z.B. Benzyl-trimethylammoniumhydrogenpolyfluorid, die aus der EP-A 0 668 271 bekannten Tetraalkylammoniumalkylcarbonate, die durch Umsetzung tertiärer Amine mit Dialkylcarbonaten erhältlich sind, oder betainstrukturierte Quartär-Ammonioalkylcarbonate, die aus der WO 1999/023128 bekannten quaternären Ammoniumhydrogencarbonate, wie z.B. Cholin- bicarbonat, die aus der EP 0 102 482 bekannten, aus tertiären Aminen und alkylierend wirkenden Estern von Säuren des Phosphors erhältlichen quartären Ammoniumsalze, wie z.B. Umsetzungsprodukte von Triethylamin, DABCO oder N-Methylmorpholin mit Methanphosphonsäuredimethylester, oder die aus WO 2013/167404 bekannten tetrasubstituierten Ammoniumsalze von Lactamen, wie z.B. Trioctylammoniumcaprolactamat oder Dodecyltrimethylammoniumcaprolactamat. Weitere erfindungsgemäß geeignete Trimerisierungskatalysatoren C finden sich beispielsweise in J. H. Saunders und K. C. Frisch, Polyurethanes Chemistry and Technology, S. 94 ff (1962) und der dort zitierten Literatur. Phosphonium polyfluorides, such as, for example, benzyltrimethylammonium hydrogen polyfluoride, the tetraalkylammonium alkyl carbonates known from EP-A 0 668 271, which are obtainable by reacting tertiary amines with dialkyl carbonates, or betaine-structured quaternary ammonio alkyl carbonates, the quaternary ammonium carbonates known from WO 1999/023128, such as, for example, cholinium hydrogen carbonate bicarbonate, the quaternary ammonium salts known from EP 0 102 482 and obtainable from tertiary amines and alkylating esters of acids of phosphorus, such as reaction products of triethylamine, DABCO or N-methylmorpholine with dimethyl methanephosphonate, or the tetra-substituted ones known from WO 2013/167404 Ammonium salts of lactams, for example trioctylammonium caprolactamate or dodecyltrimethylammonium caprolactamate. Further trimerization catalysts C suitable according to the invention can be found, for example, in JH Saunders and KC Frisch, Polyurethanes Chemistry and Technology, pp. 94 ff (1962) and the literature cited there.
Besonders bevorzugt sind Carboxylate und Phenolate mit Metall- oder Ammoniumionen als Gegenion. Geeignete Carboxylate sind die Anionen aller aliphatischen oder cycloaliphatischen Carbonsäuren, bevorzugt solcher mit Mono- oder Polycarbonsäuren mit 1 bis 20 C-Atomen. Geeignete Metallionen sind abgeleitet von Alkali- oder Erdalkalimetallen, Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer, Zinn, Titan, Hafnium oder Blei. Bevorzugte Alkalimetalle sind Lithium, Natrium und Kalium, besonders bevorzugt Natrium und Kalium. Bevorzugte Erdalkalimetalle sind Magnesium, Calcium, Strontium und Barium. Carboxylates and phenates with metal or ammonium ions as counterions are particularly preferred. Suitable carboxylates are the anions of all aliphatic or cycloaliphatic carboxylic acids, preferably those with mono- or polycarboxylic acids having 1 to 20 carbon atoms. Suitable metal ions are derived from alkali or alkaline earth metals, manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium, tin, titanium, hafnium or lead. Preferred alkali metals are lithium, sodium and potassium, particularly preferably sodium and potassium. Preferred alkaline earth metals are magnesium, calcium, strontium and barium.
Ganz besonders bevorzugt sind die in der DE-A 3 240 613 als Katalysatoren beschriebenen Oktoate und Naphthenate von Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer oder Blei oder deren Gemische mit Acetaten von Lithium, Natrium, Kalium, Calcium oder Barium. The octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead or their mixtures with acetates of lithium, sodium, potassium, calcium, described as catalysts in DE-A 3 240 613 are very particularly preferred or barium.
Ebenfalls ganz besonders bevorzugt sind Natrium- oder Kaliumbenzoat, die aus der GB-PS 1 391 066 und GB-PS 1 386 399 bekannten Alkaliphenolate, wie z. B. Natrium- oder Kaliumphenolat, sowie die aus der GB 809 809 bekannten Alkali- und Erdalkalioxide, -hydroxide, -carbonate, -alkoholate und - phenolate. Likewise very particularly preferred are sodium or potassium benzoate, the alkali metal phenolates known from GB-PS 1,391,066 and GB-PS 1,386,399, such as. B. sodium or potassium phenolate, and also the alkali and alkaline earth oxides, hydroxides, carbonates, alcoholates and phenolates known from GB 809 809.
Der Trimerisierungskatalysator C enthält vorzugsweise einen Polyether. Dies ist insbesondere bevorzugt, wenn der Katalysator Metallionen enthält. Bevorzugte Polyether sind ausgewählt aus der Gruppe bestehend aus Kronenether, Diethylenglykol, Polyethylen- und Polypropylenglykolen. Als besonders praxisgerecht hat es sich im erfindungsgemäßen Verfahren erwiesen einen Trimerisierungskatalysator B einzusetzen, der als Polyether ein Polyethylenglykol oder einen Kronenether, besonders bevorzugt 18-Krone-6 oder 15-Krone-5, enthält. Bevorzugt enthält der Trimerisierungskatalysator B ein Polyethylenglykol mit einem zahlenmittleren Molekulargewicht von 100 bis 1000 g/mol, bevorzugt 300 g/mol bis 500 g/mol und insbesondere 350 g/mol bis 450 g/mol. The trimerization catalyst C preferably contains a polyether. This is particularly preferred when the catalyst contains metal ions. Preferred polyethers are selected from the group consisting of crown ethers, diethylene glycol, polyethylene and polypropylene glycols. In the process according to the invention, it has proven to be particularly practical to use a trimerization catalyst B which contains a polyethylene glycol or a crown ether, particularly preferably 18-crown-6 or 15-crown-5, as polyether. The trimerization catalyst B preferably contains a polyethylene glycol with a number average molecular weight of 100 to 1000 g / mol, preferably 300 g / mol to 500 g / mol and in particular 350 g / mol to 450 g / mol.
Ganz besonders bevorzugt ist die Kombination aus den oben beschriebenen Carboxylaten und Phenolaten von Alkali- oder Erdalkalimetallen mit einem Polyether. The combination of the above-described carboxylates and phenolates of alkali or alkaline earth metals with a polyether is very particularly preferred.
Weiterhin hat sich gezeigt, dass Verbindungen gemäß der unten stehenden Formel (I) besonders gut als Katalysatoren C geeignet sind Furthermore, it has been shown that compounds according to the formula (I) below are particularly suitable as catalysts C
( l) (l)
Wobei R1 und R2 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6-Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl; Where R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6-alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl;
A ausgewählt ist aus der Gruppe bestehend aus 0, S und NR3, wobei R3 ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl und Isobutyl; und A is selected from the group consisting of O, S and NR 3 , where R 3 is selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl and isobutyl; and
B unabhängig von A ausgewählt ist aus der Gruppe bestehend aus OH, SH NHR4 und N H , wobei R4 ausgewählt ist aus der Gruppe bestehend aus Methyl, Ethyl und Propyl B is selected independently of A from the group consisting of OH, SH NHR 4 and NH, where R 4 is selected from the group consisting of methyl, ethyl and propyl
In einer bevorzugten Ausführungsform ist A NR3, wobei R3 ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl und Isobutyl. Bevorzugt ist R3 Methyl oder Ethyl. Besonders bevorzugt ist R3 Methyl. In a preferred embodiment, A is NR 3 , where R 3 is selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl and isobutyl. R 3 is preferably methyl or ethyl. R 3 is particularly preferably methyl.
In einer ersten Variante dieser Ausführungsform ist B OH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a first variant of this embodiment, B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
In einer zweiten Variante dieser Ausführungsform ist B SH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a second variant of this embodiment, B is SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
In einer dritten Variante dieser Ausführungsform ist B NHR4 und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In dieser Variante ist R4 ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl und Propyl. Bevorzugt ist R4 Methyl oder Ethyl. Besonders bevorzugt ist R4 Methyl. In a third variant of this embodiment, B is NHR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6-alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. Prefers R 1 and R 2 are independently methyl or ethyl. R 1 and R 2 are particularly preferably methyl. In this variant, R4 is selected from the group consisting of methyl, ethyl and propyl. R 4 is preferably methyl or ethyl. R 4 is particularly preferably methyl.
In einer vierten Variante dieser Ausführungsform ist B N H und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a fourth variant of this embodiment, BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
In einer weiteren bevorzugten Ausführungsform ist A Sauerstoff. In a further preferred embodiment, A is oxygen.
In einer ersten Variante dieser Ausführungsform ist B OH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a first variant of this embodiment, B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
In einer zweiten Variante dieser Ausführungsform ist B SH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a second variant of this embodiment, B is SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
In einer dritten Variante dieser Ausführungsform ist B NHR4 und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In dieser Variante ist R4 ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl und Propyl. Bevorzugt ist R4 Methyl oder Ethyl. Besonders bevorzugt ist R4 Methyl. In a third variant of this embodiment, B is NHR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6-alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl. In this variant, R 4 is selected from the group consisting of methyl, ethyl and propyl. R 4 is preferably methyl or ethyl. R 4 is particularly preferably methyl.
In einer vierten Variante dieser Ausführungsform ist B N H und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a fourth variant of this embodiment, BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. Prefers R 1 and R 2 are independently methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
In noch einer weiteren bevorzugten Ausführungsform ist A Schwefel. In yet another preferred embodiment, A is sulfur.
In einer ersten Variante dieser Ausführungsform ist B OH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a first variant of this embodiment, B is OH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
In einer zweiten Variante dieser Ausführungsform ist B SH und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a second variant of this embodiment, B is SH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6 - Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
In einer dritten Variante dieser Ausführungsform ist B NHR4 und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In dieser Variante ist R4 ausgewählt aus der Gruppe bestehend aus Methyl, Ethyl und Propyl. Bevorzugt ist R4 Methyl oder Ethyl. Besonders bevorzugt ist R4 Methyl. In a third variant of this embodiment, B is NHR 4 and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6-alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl. In this variant, R 4 is selected from the group consisting of methyl, ethyl and propyl. R 4 is preferably methyl or ethyl. R 4 is particularly preferably methyl.
In einer vierten Variante dieser Ausführungsform ist B N H und R1 und R2 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, verzweigtem C5-Alkyl, unverzweigtem C5-Alkyl, verzweigtem C6- Alkyl, unverzweigtem C6-Alkyl, verzweigtem C7-Alkyl und unverzweigtem C7-Alkyl. Bevorzugt sind R1 und R2 unabhängig voneinander Methyl oder Ethyl. Besonders bevorzugt sind R1 und R2 Methyl. In a fourth variant of this embodiment, BNH and R 1 and R 2 are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, branched C5-alkyl, unbranched C5-alkyl, branched C6- Alkyl, unbranched C6-alkyl, branched C7-alkyl and unbranched C7-alkyl. R 1 and R 2 are preferably, independently of one another, methyl or ethyl. R 1 and R 2 are particularly preferably methyl.
Weiterhin geeignet sind Addukte einer Verbindung gemäß Formel (I) und einer Verbindung mit wenigstens einer Isocyanatgruppe. Adducts of a compound of the formula (I) and a compound having at least one isocyanate group are also suitable.
Unter dem Oberbegriff „Addukt" werden Urethan-, Thiourethan- und Harnstoffaddukte einer Verbindung gemäß Formel (I) mit einer Verbindung mit wenigstens einer Isocyanatgruppe verstanden. Besonders bevorzugt ist ein Urethanaddukt. Die erfindungsgemäßen Addukte entstehen dadurch, dass ein Isocyanat mit der funktionellen Gruppe B der in Formel (I) definierten Verbindung reagiert. Wenn B eine Hydroxylgruppe ist, so entsteht ein Urethanaddukt. Wenn B eine Thiolgruppe ist, entsteht ein Thiourethanaddukt. Und wenn B N H oder N HR4 ist, entsteht ein Harnstoffaddukt. The generic term “adduct” includes urethane, thiourethane and urea adducts of a compound according to formula (I) with a compound having at least one isocyanate group Roger that. A urethane adduct is particularly preferred. The adducts according to the invention arise from the fact that an isocyanate reacts with the functional group B of the compound defined in formula (I). When B is a hydroxyl group, a urethane adduct is formed. When B is a thiol group, a thiourethane adduct is formed. And when BNH or N is HR 4 , a urea adduct is formed.
Weitere erfindungsgemäß geeignete Katalysatoren sind Phosphine der allgemeinen Formel (II) oder Mischungen solcher Phosphine Further catalysts suitable according to the invention are phosphines of the general formula (II) or mixtures of such phosphines
in welcher in which
RI, R2 und R3 für gleiche oder verschiedene Reste stehen und jeweils eine Alkyl- oder RI, R2 and R3 stand for identical or different radicals and each is an alkyl or
Cycloalkylgruppe mit bis zu 10 Kohlenstoffatomen, vorzugsweise eine Alkylgruppe mit 2 bis 8 Kohlenstoffatomen oder eine Cycloalkylgruppe mit 3 bis 8 Kohlenstoffatomen, eine Aralkylgruppe mit 7 bis 10, vorzugsweise mit 7 Kohlenstoffatomen oder eine gegebenenfalls mit Alkylresten mit bis zu 10, vorzugsweise 1 bis 6, Kohlenstoffatomen substituierte Arylgruppe mit 6 bis 10, vorzugsweise 6 Kohlenstoffatomen bedeuten, mit der Maßgabe, dass höchstens einer der Reste für eine Arylgruppe und mindestens einer der Reste für eine Alkyl- oder Cycloalkylgruppe steht, oder in welcher Cycloalkyl group with up to 10 carbon atoms, preferably an alkyl group with 2 to 8 carbon atoms or a cycloalkyl group with 3 to 8 carbon atoms, an aralkyl group with 7 to 10, preferably with 7 carbon atoms or optionally with alkyl radicals with up to 10, preferably 1 to 6, Carbon atoms are substituted aryl groups with 6 to 10, preferably 6 carbon atoms, with the proviso that at most one of the radicals is an aryl group and at least one of the radicals is an alkyl or cycloalkyl group, or in which
RI und R2 aliphatischer Natur sind und, miteinander verknüpft, zusammen mit dem RI and R2 are aliphatic in nature and, linked together, together with the
Phosphoratom einen heterocylischen Ring mit 4 bis 6 Ringgliedern bilden, wobei R3 für eine Alkylgruppe mit bis zu 4 Kohlenstoffatomen steht, Phosphorus atom form a heterocyclic ring with 4 to 6 ring members, where R3 stands for an alkyl group with up to 4 carbon atoms,
Geeignete tertiäre organische Phosphine sind beispielsweise tertiäre Phosphine mit linearaliphatischen Substituenten, wie Trimethylphosphin, Triethylphosphin, Tri-n-propylphosphin, Tripropylphosphin, Dibutylethylphosphin, Tri-n-butylphosphin, Triisobutylphosphin, Tri-tert.- butylphosphin, Pentyl-dimethylphosphin, Pentyl-diethylphosphin, Pentyl-di-propylphosphin, Pentyldibutylphosphin, Pentyldihexylphosphin, Dipentylmethylphosphin, Dipentylethylphosphin, Dipentylpropylphosphin, Dipentylbutylphosphin, Dipentylhexylphosphin, Dipentyloctylphosphin, Tripentylphosphin, Hexyldimethylphosphin, Hexyldiethylphosphin, Hexyldipropylphosphin, Hexyldibutylphosphin, Dihexylmethylphosphin, Dihexylethylphosphin, Dihexylpropylphosphin, Dihexylbutylphosphin, Trihexylphosphin, Trioctylphosphin, Tribenzylphosphin,Suitable tertiary organic phosphines are, for example, tertiary phosphines with linear aliphatic substituents, such as trimethylphosphine, triethylphosphine, tri-n-propylphosphine, tripropylphosphine, dibutylethylphosphine, tri-n-butylphosphine, triisobutylphosphine, tri-tert.-butyl-pentylphosphine, tri-tert.-butylphosphine, penthylphosphine, tri-tert.-butylphosphine, pentyl-di-propylphosphine, Pentyldibutylphosphin, Pentyldihexylphosphin, Dipentylmethylphosphin, Dipentylethylphosphin, Dipentylpropylphosphin, Dipentylbutylphosphin, Dipentylhexylphosphin, Dipentyloctylphosphin, Tripentylphosphin, Hexyldimethylphosphin, Hexyldiethylphosphin, Hexyldipropylphosphin, Hexyldibutylphosphin, Dihexylmethylphosphin, Dihexylethylphosphin, Dihexylpropylphosphin, Dihexylbutylphosphine, trihexylphosphine, trioctylphosphine, tribenzylphosphine,
Benzyldimethylphosphin, Dimethylphenylphosphin oder Butylphosphacyclopentan. Benzyldimethylphosphine, dimethylphenylphosphine or butylphosphacyclopentane.
Weitere für das erfindungsgemäße Verfahren geeignete tertiäre organische Phosphine sind beispielsweise auch die aus der EP 1 422 223 Al bekannten tert. -Phosphine, die mindestens einen, direkt an Phosphor gebundenen cycloaliphatischen Rest aufweisen, wie z. B. Cyclopentyldimethylphosphin, Cyclopentyldiethylphosphin, Cyclopentyl-di-n-propylphosphin,Further tertiary organic phosphines which are suitable for the process according to the invention are, for example, those known from EP 1 422 223 A1. -Phosphines which have at least one cycloaliphatic radical bonded directly to phosphorus, such as. B. Cyclopentyldimethylphosphine, Cyclopentyldiethylphosphine, Cyclopentyl-di-n-propylphosphine,
Cyclopentyldiisopropylphosphin, Cyclopentyldibutyl-phosphine mit beliebigen isomeren Butylresten, Cyclopentyldihexylphosphine mit beliebigen isomeren Hexylresten, Cyclopentyldioctylphosphin mit beliebigen isomeren Octylresten, Dicyclopentylmethylphosphin, Dicyclopentylethylphosphin, Dicyclopentyl-n-propylphosphin, Dicyclopentylisopropylphosphin, Dicyclopentylbutylphosphin mit beliebigem isomeren Butylrest, Dicyclopentylhexylphosphin mit beliebigem isomeren Hexylrest, Dicyclopentyloctylphosphin mit beliebigem isomeren Octylrest, Tricyclopentylphosphin, Cyclohexyldimethylphosphin, Cyclohexyldiethylphosphin, Cyclohexyl-di-n-propylphosphin,Cyclopentyldiisopropylphosphin, Cyclopentyldibutyl-phosphine with any isomeric butyl radicals, Cyclopentyldihexylphosphine with any isomeric hexyl radicals, the isomeric Cyclopentyldioctylphosphin with any isomeric octyl radicals, Dicyclopentylmethylphosphin, Dicyclopentylethylphosphin, cyclopentyl-n-propylphosphine, Dicyclopentylisopropylphosphin, Dicyclopentylbutylphosphin with any isomeric butyl, Dicyclopentylhexylphosphin with any isomeric hexyl, Dicyclopentyloctylphosphin with any Octyl radical, tricyclopentylphosphine, cyclohexyldimethylphosphine, cyclohexyldiethylphosphine, cyclohexyl-di-n-propylphosphine,
Cyclohexyl-di-isopropylphosphin, Cyclohexyldibutylphosphine mit beliebigen isomeren Butylresten, Cyclohexyldihexylphosphin mit beliebigen isomeren Hexylresten, Cyclohexyldioctylphosphin mit beliebigen isomeren Octylresten, Dicyclohexylmethylphosphin, Dicyclohexylethylphosphin, Dicyclohexyl-n-propylphosphin, Dicyclohexylisopropylphosphin, Dicyclohexylbutylphosphin mit beliebigem isomeren Butylrest, Dicyclohexylhexylphosphin mit beliebigem isomeren Hexylrest, Dicyclohexyl-octylphosphin mit beliebigem isomeren Octylrest, und Tricyclohexylphosphin. Cyclohexyl-di-isopropylphosphin, Cyclohexyldibutylphosphine with any isomeric butyl radicals, Cyclohexyldihexylphosphin with any isomeric hexyl radicals, the isomeric octyl radicals Cyclohexyldioctylphosphin with arbitrary, Dicyclohexylmethylphosphin, Dicyclohexylethylphosphin, dicyclohexyl-n-propylphosphine, Dicyclohexylisopropylphosphin, Dicyclohexylbutylphosphin with any isomeric butyl, Dicyclohexylhexylphosphin with any isomeric hexyl, dicyclohexyl octylphosphine with any isomeric octyl radical, and tricyclohexylphosphine.
Weitere geeignete tertiäre organische Phosphine für das erfindungsgemäße Verfahren sind beispielsweise auch die aus der EP 1 982 979 Al bekannten tert. -Phosphine, die einen oder zwei direkt an Phosphor gebundene, tertiäre Alkylreste aufweisen, wie z. B. tert.-Butyldimethylphosphin, tert.-Butyldiethylphosphin, tert.-Butyldi-n-propylphosphin, tert.-Butyldiisopropylphosphin, tert.- Butyldibutylphosphine mit beliebigen isomeren Butylresten für die nicht-tertiären Butylreste, tert.- Butyldihexylphosphine mit beliebigen isomeren Hexylresten, wobei aber höchstens einer der Hexylreste ein direkt an Phosphor gebundenes tert.-C-Atom aufweist, tert.-Butyldioctylphosphine mit beliebigen isomeren Octylresten, wobei aber höchstens einer der Octylreste ein direkt an Phosphor gebundenes tert.-C-Atom aufweist, Di-tert.-Butylmethylphosphin, Di-tert.- Butylethylphosphin, Di-tert.-Butyl-n-propylphosphin, Di-tert.-Butylisopropylphosphin, Di-tert.- Butylbutylphosphine, in denen für den nicht-tertiären Butylrest n-Butyl, iso-Butyl, 2-Butyl oder Cyclobutyl stehen kann, Di-tert.-Butylhexylphosphine mit einem beliebigen isomeren Hexylrest, der kein direkt an Phosphor gebundenes tert.-C-Atom aufweist, Di-tert.-Butyloctylphosphine mit einem beliebigen isomeren Octylrest, der kein direkt an Phosphor gebundenes tert.-C-Atom aufweist, tert.- Amyldimethylphosphin, tert.-Amyldiethylphosphin, tert.-Amyldi-n-propylphosphin, tert.- Amyldiisopropylphosphin, tert.-Amyldibutylphosphine mit beliebigen isomeren Butylresten, wobei aber höchstens einer der Butylreste für tert.-Butyl steht, tert.-Amyldihexylphosphine mit beliebigen isomeren Hexylresten, wobei aber höchstens einer der Hexylreste ein direkt an Phosphor gebundenes tert.-C-Atome aufweist, tert.-Amyldioctylphosphine mit beliebigen isomeren Octylresten, wobei aber höchstens einer der Octylreste ein direkt an Phosphor gebundenes tert.-C- Atom aufweist, Di-tert.-Amylethylphosphin, Di-tert.-Amylethylphosphin, Di-tert.-Amyl-n- propylphosphin, Di-tert.-Amylisopropylphosphin, Di-tert.-Amylbutylphosphine, in denen für den Butylrest n-Butyl, iso-Butyl, 2-Butyl oder Cyclobutyl stehen kann, Di-tert.-Amylhexylphosphine mit einem beliebigen isomeren Hexylrest, der kein direkt an Phosphor gebundenes tert.-C-Atom aufweist, Di-tert.-Amyloctylphosphine mit einem beliebigen isomeren Octylrest, der kein direkt an Phosphor gebundenes tert.-C-Atom aufweist, Adamantyldimethylphosphin,Further suitable tertiary organic phosphines for the process according to the invention are, for example, those known from EP 1 982 979 A1. -Phosphines which have one or two tertiary alkyl radicals bonded directly to phosphorus, such as. B. tert-butyldimethylphosphine, tert-butyldiethylphosphine, tert-butyldi-n-propylphosphine, tert-butyldiisopropylphosphine, tert-butyldibutylphosphine with any isomeric butyl radicals for the non-tertiary butyl radicals, tert-butyldihexylphosphine with any desired isomeric butylphosphine but at most one of the hexyl radicals has a tertiary carbon atom bonded directly to phosphorus, tert-butyldioctylphosphines with any isomeric octyl radicals, but at most one of the octyl radicals has a tertiary carbon atom bonded directly to phosphorus, di-tert .-Butylmethylphosphine, di-tert-butylethylphosphine, di-tert-butyl-n-propylphosphine, di-tert-butylisopropylphosphine, di-tert-butylbutylphosphines, in which the non-tertiary butyl radical is n-butyl, iso- Butyl, 2-butyl or cyclobutyl, di-tert-butylhexylphosphine with any isomeric hexyl radical which has no tertiary carbon atom directly bonded to phosphorus, di-tert-butyl octylphosphine with any isomeric n Octyl radical, which has no tert-carbon atom directly bonded to phosphorus, tert-amyldimethylphosphine, tert-amyldiethylphosphine, tert-amyldi-n-propylphosphine, tert-amyldiisopropylphosphine, tert-amyldibutylphosphine with any isomeric butyl radicals, but where at most one of the butyl radicals is tert-butyl, tert-amyldihexylphosphine with any isomeric hexyl radicals, but where at most one of the hexyl radicals is directly connected to phosphorus Has bonded tertiary carbon atoms, tert-amyldioctylphosphines with any isomeric octyl radicals, but at most one of the octyl radicals has a tertiary carbon atom bonded directly to phosphorus, di-tert-amylethylphosphine, di-tert-amylethylphosphine , Di-tert-amyl-n-propylphosphine, di-tert-amylisopropylphosphine, di-tert-amylbutylphosphines, in which n-butyl, isobutyl, 2-butyl or cyclobutyl can stand for the butyl radical, di-tert .-Amylhexylphosphines with any isomeric hexyl radical which does not have a tertiary carbon atom bonded directly to phosphorus, di-tert-amyloctylphosphine with any isomeric octyl radical which has no tertiary carbon atom bonded directly to phosphorus, adamantyldimethylphosphine ,
Adamantyldiethylphosphin, Adamantyldi-n-propylphosphin, Adamantyldiisopropylphosphin, Adamantyldibutylphosphine mit beliebigen isomeren Butylresten, wobei aber höchstens einer der Butylreste ein direkt an Phosphor gebundenes tert.-C-Atom aufweist, Adamantyldihexylphosphine mit beliebigen isomeren Hexylresten, wobei aber höchstens einer der Hexylreste ein direkt an Phosphor gebundenes tert.-C-Atom aufweist, Adamantyldioctylphosphine mit beliebigen isomeren Octylresten, wobei aber höchstens einer der Octylreste ein direkt an Phosphor gebundenes tert.-C- Atom aufweist, Diadamantylmethylphosphin, Diadamantylethylphosphin, Diadamantyl-n- propylphosphin, Diadamantylisopropylphosphin, Diadamantylbutylphosphine, in denen für den Butylrest n-Butyl, iso-Butyl, 2-Butyl oder Cyclobutyl stehen kann, Diadamantylhexylphosphine mit einem beliebigen isomeren Hexylrest, der kein direkt an Phosphor gebundenes tert.-C-Atom aufweist, sowie Diadamantyloctylphosphine mit einem beliebigen isomeren Hexylrest, der kein direkt an Phosphor gebundenes tert.-C-Atom aufweist. Adamantyldiethylphosphine, adamantyldi-n-propylphosphine, adamantyldiisopropylphosphine, adamantyldibutylphosphine with any isomeric butyl radicals, with at most one of the butyl radicals having a tertiary carbon atom bonded directly to phosphorus, adamantyldihexylphosphines with one of the hexyl radicals with any isomeric hexyl radicals, but at most Has phosphorus-bonded tertiary carbon atom, adamantyldioctylphosphine with any isomeric octyl radicals, but at most one of the octyl radicals has a tertiary carbon atom bonded directly to phosphorus, diadamantylmethylphosphine, diadamantylethylphosphine, diadamantyl-n-propylphosphine, diadamantyl-n-propylphosphine, diadamosphantyl isopropyl which can represent the butyl radical n-butyl, iso-butyl, 2-butyl or cyclobutyl, diadamantylhexylphosphines with any isomeric hexyl radical that does not have a tertiary carbon atom directly bonded to phosphorus, and diadamantyloctylphosphines with any isomeric hexyl radical, which has no tertiary carbon atom directly bonded to phosphorus.
Bevorzugt enthält Katalysator wenigstens eine Verbindung aus der Gruppe der genannten tertiären Phosphine mit linearaliphatischen Substituenten. The catalyst preferably contains at least one compound from the group of the tertiary phosphines mentioned with linear aliphatic substituents.
Ganz besonders bevorzugte Phosphinkatalysatoren sind Tri-n-butylphosphin und/oder Trioctylphosphin oder Mischungen davon. Very particularly preferred phosphine catalysts are tri-n-butylphosphine and / or trioctylphosphine or mixtures thereof.
Aus den erfindungsgemäßen Vergussmassen lassen sich Bauteile mit sehr großer Härte hersteilen. Components with a very high degree of hardness can be produced from the casting compounds according to the invention.
Die erfindungsgemäße Vergussmasse ist ein Einkomponentensystem. Anders als bei Zweikomponentensystemen muss keine Stöchiometrie zwischen zwei Reaktionspartnern exakt eingehalten werden, um gute Ergebnisse zu erhalten. Geringfügige Abweichungen bei der eingesetzten Katalysatorkonzentration in der erfindungsgemäßen Vergussmasse mögen zu geringfügigen Variationen von Topfzeit und Härtungszeit führen, beeinträchtigen aber die Eigenschaften des fertigen Materials nicht. The potting compound according to the invention is a one-component system. In contrast to two-component systems, no stoichiometry has to be adhered to exactly between two reactants in order to obtain good results. Slight deviations in the catalyst concentration used in the potting compound according to the invention may lead to slight variations in pot life and curing time, but do not affect the properties of the finished material.
Die Vergussmassen weisen trotz der Verwendung von aliphatischen Polyisocyanaten, die intrinsisch eine relativ hohe Viskosität haben, auch bei hohen Füllstoffgehalten noch so niedrige Viskositäten auf, dass eine Verarbeitung ohne größere Probleme möglich ist. Zusätzlich haben die erfindungsgemäßen Vergussmassen eine Topfzeit von wenigstens einer Stunde, so dass auch hierdurch ihre Verarbeitung erleichtert wird. Dabei weisen die erfindungsgemäßen Vergussmassen die Topfzeit von wenigstens einer Stunde auch bei erhöhten Temperaturen auf. Somit erleichtert die Kombination von intrinsisch niedriger Viskosität und langer Topfzeit bei erhöhter Temperatur die Verarbeitung, insbesondere die Entlüftung, der erfindungsgemäßen Vergussmassen außerordentlich. Despite the use of aliphatic polyisocyanates, which intrinsically have a relatively high viscosity, even with high filler contents, the potting compounds still have such low viscosities that processing is possible without major problems. In addition, the casting compounds according to the invention have a pot life of at least one hour, so that their processing is also facilitated as a result. The casting compounds according to the invention have a pot life of at least one hour, even at elevated temperatures. Thus, the combination of intrinsically low viscosity and long pot life at elevated temperatures makes processing, in particular venting, of the casting compounds according to the invention extremely easier.
Weiterhin weisen die erfindungsgemäßen Vergussmassen im Vergleich zu den bekannten Polyurethanvergussmassen eine geringere Brandlast auf. Furthermore, the casting compounds according to the invention have a lower fire load compared to the known polyurethane casting compounds.
Verwendung use
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung die Verwendung einer Vergussmasse wie oben in dieser Anmeldung definiert als Elektrovergussmasse, d.h. zur Herstellung eines elektrischen Bauteils. In a further embodiment, the present invention relates to the use of a potting compound as defined above in this application as an electrical potting compound, i. for the production of an electrical component.
Das elektrische Bauteil ist vorzugsweise ausgewählt aus der Gruppe bestehend aus Transformatoren, Isolatoren, Kondensatoren, Halbleitern, Muffen zum Schutz von Kabelverbindungen und Erdkabelverzweigungen. The electrical component is preferably selected from the group consisting of transformers, insulators, capacitors, semiconductors, sleeves for protecting cable connections and underground cable branches.
Auch wenn einzelne der vorgenannten elektrischen Bauteile in bestimmten Anwendungsbereichen ohne Schutz durch eine Elektrovergussmasse eingesetzt werden können, bezieht sich der Begriff „Herstellung eines elektrischen Bauteils" auf einen Verfahren, bei dem wenigstens ein Teil eines elektrischen Bauteils in die erfindungsgemäße Vergussmasse eingebettet wird. Im Sinne dieser Anmeldung enthält ein fertiges elektrisches Bauteil somit die erfindungsgemäße Vergussmasse. Even if some of the aforementioned electrical components can be used in certain areas of application without protection by an electrical potting compound, the term "production of an electrical component" refers to a method in which at least part of an electrical component is embedded in the potting compound according to the invention According to this application, a finished electrical component thus contains the potting compound according to the invention.
Verfahren Procedure
In noch einer weiteren Ausführungsform betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines elektrischen Bauteils enthaltend die Schritte a) Bereitstellung eines Gießharzes mit einem molaren Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen von wenigstens 3 : 1 und einem Lösemittelgehalt von höchstens 10 Gew.-%, enthaltend In yet another embodiment, the present invention relates to a method for producing an electrical component comprising the steps a) providing a casting resin with a molar ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1 and a solvent content of at most 10% by weight containing
(i) Wenigstens ein monomeres oder oligomeres Polyisocyanat A mit einem Isocyanatgehalt von wenigstens 15 Gew.-%; (ii) Wenigstens einen anorganischen Füllstoff B, welcher Siliziumoxid-Einheiten enthält, mit einer Ölzahl von höchstens 25 g / 100 g bestimmt nach DIN EN ISO 787-5 (Oktober 1995) und einer Mohs'schen Härte von wenigstens 4; und (i) At least one monomeric or oligomeric polyisocyanate A with an isocyanate content of at least 15% by weight; (ii) At least one inorganic filler B, which contains silicon oxide units, with an oil number of at most 25 g / 100 g, determined according to DIN EN ISO 787-5 (October 1995) and a Mohs ' hardness of at least 4; and
(iii) Wenigstens einen Trimerisierungskatalysator C; b) Vergießen eines noch nicht eingebetteten elektrischen Bauteils mit dem in Verfahrensschritt a) bereitgestellten Gießharz ; c) Katalytischer Trimerisierung des Gießharzes. (iii) At least one trimerization catalyst C; b) encapsulating an electrical component that is not yet embedded with the casting resin provided in method step a); c) Catalytic trimerization of the casting resin.
Die„Bereitstellung" des Gießharzes bedeutet im Kontext dieser Anmeldung nur, dass das genannte Gießharz am Ende des Verfahrensschrittes a) so zur Verfügung steht, dass es zum Vergießen geeignet ist und katalytisch trimerisiert werden kann. The "provision" of the casting resin in the context of this application only means that the casting resin mentioned is available at the end of process step a) in such a way that it is suitable for casting and can be catalytically trimerized.
Das Vergießen eines noch nicht eingebetteten elektrischen Bauteils kann durch alle im Stand der Technik für den Einsatz von Vergussmassen, insbesondere von Elektrovergussmassen, bekannten Verfahren erfolgen. An electrical component that has not yet been embedded can be potted by all methods known in the prior art for the use of potting compounds, in particular electrical potting compounds.
Die katalytische Trimerisierung erfolgt bei Reaktionsbedingungen, unter denen der gewählte Trimerisierungskatalysator C die Vernetzung von Isocyanatgruppen zu Isocyanuratgruppen bewirkt. Hierbei wird bei temperaturempfindlichen elektrischen Bauteilen vorzugsweise eine Obergrenze der Temperatur des Reaktionsgemisches eingehalten, die für das betreffende Bauteil unschädlich ist. The catalytic trimerization takes place under reaction conditions under which the selected trimerization catalyst C effects the crosslinking of isocyanate groups to form isocyanurate groups. In the case of temperature-sensitive electrical components, an upper limit for the temperature of the reaction mixture that is harmless to the component in question is preferably maintained.
Die „katalytische Trimerisierung" ist ein Prozess, in dem die im Polyisocyanat A enthaltenen Isocyanatgruppen unter Ausbildung wenigstens einer Struktur ausgewählt aus der Gruppe bestehend aus Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und Oxadiazintrionstrukturen miteinander oder mit bereits vorliegenden Urethangruppen reagieren. Hierbei werden die im Polyisocyanat A ursprünglich vorliegenden Isocyanatgruppen verbraucht. Durch die Ausbildung der vorgenannten Gruppen werden die im Polyisocyanat A enthaltenen monomeren und oligomeren Polyisocyanate zu einem Polymernetzwerk verbunden. The "catalytic trimerization" is a process in which the isocyanate groups contained in polyisocyanate A form at least one structure selected from the group consisting of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and oxadiazinetrione structures with one another or with urethane groups that are already present This uses up the isocyanate groups originally present in polyisocyanate A. As a result of the formation of the aforementioned groups, the monomeric and oligomeric polyisocyanates contained in polyisocyanate A are linked to form a polymer network.
Es ist bevorzugt, dass die Vernetzung der im Reaktionsgemisch enthaltenen Isocyanatgruppen vorwiegend durch Trimerisierung von mindestens 50 mol-%, vorzugsweise mindestens 60 mol-%, besonders bevorzugt mindestens 70 mol-%, insbesondere mindestens 80 mol-% und ganz besonders bevorzugt 90 mol-% der im Polyisocyanat A vorliegenden freien Isocyanatgruppen zu Isocyanuratstruktureinheiten erfolgt. Somit sind im fertigen Polyisocyanuratwerkstoff entsprechende Anteile des im Polyisocyanat A ursprünglich enthaltenen Stickstoffs in Isocyanuratstrukturen gebunden. Nebenreaktionen, insbesondere solche zu Uretdion-, Allophanat-, und/oder Iminooxadiazindionstrukturen treten jedoch üblicherweise auf und können sogar gezielt genutzt werden, um z.B. die Glasübergangstemperatur (Tg) des erhaltenen Polyisocyanuratwerkstoffs vorteilhaft zu beeinflussen. It is preferred that the isocyanate groups contained in the reaction mixture are crosslinked predominantly by trimerization of at least 50 mol%, preferably at least 60 mol%, particularly preferably at least 70 mol%, in particular at least 80 mol% and very particularly preferably 90 mol% % of the free isocyanate groups present in polyisocyanate A to form isocyanurate structural units. Corresponding proportions of the nitrogen originally contained in polyisocyanate A are thus bound in isocyanurate structures in the finished polyisocyanurate material. However, side reactions, in particular those to uretdione, allophanate and / or iminooxadiazinedione structures, usually occur and can even be used in a targeted manner in order, for example, to advantageously influence the glass transition temperature (Tg) of the polyisocyanurate material obtained.
Soweit durch temperaturempfindliche Bauteile keine niedrigeren Temperaturen eingehalten werden müssen, erfolgt die katalytische Trimerisierung vorzugsweise bei Temperaturen zwischen 50 °C und 200 °C, stärker bevorzugt zwischen 80 °C und 180 °C und noch stärker bevorzugt zwischen 100 °C und 150 °C. As long as temperature-sensitive components do not have to maintain lower temperatures, the catalytic trimerization is preferably carried out at temperatures between 50 ° C and 200 ° C, more preferably between 80 ° C and 180 ° C and even more preferably between 100 ° C and 150 ° C.
Die oben genannten Temperaturen werden bei der Vernetzung der Isocyanatgruppen gehalten, bis wenigstens 50 mol-%, bevorzugt wenigstens 75 mol-% und noch stärker bevorzugt wenigstens 90 mol-% der zu Beginn der Vernetzung der Isocyanatgruppen im erfindungsgemäßen Halbzeug vorliegenden freien Isocyanatgruppen verbraucht sind. Der Prozentsatz an noch vorhandenen Isocyanatgruppen kann durch einen Vergleich des Gehalts an Isocyanatgruppen in der zu Beginn der Vernetzung der Isocyanatgruppen vorliegenden Isocyanatkomponente A mit dem Gehalt an Isocyanatgruppen im Reaktionsprodukt, beispielsweise durch einen Vergleich der Intensität der Isocyanatbande bei ca. 2270 cm 1 mittels ATR-IR-Spektroskopie, bestimmt werden. The abovementioned temperatures are maintained during the crosslinking of the isocyanate groups until at least 50 mol%, preferably at least 75 mol% and even more preferably at least 90 mol% of the free isocyanate groups present at the beginning of the crosslinking of the isocyanate groups in the semifinished product according to the invention have been consumed. The percentage of isocyanate groups still present can be determined by comparing the content of isocyanate groups in the isocyanate component A present at the beginning of the crosslinking of the isocyanate groups with the content of isocyanate groups in the reaction product, for example by comparing the intensity of the isocyanate band at approx. 2270 cm 1 using ATR IR spectroscopy.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung ein elektrisches Bauteil, das nach dem oben definierten Verfahren hergestellt wurde. In a further embodiment, the present invention relates to an electrical component which has been produced according to the method defined above.
Hierbei ist die durch das Gießharz gebildete Polymermatrix vorzugsweise dadurch gekennzeichnet, dass die Temperatur, bei der 5 Gew.-% Masseverlust auftreten, bei wenigstens 370 °C, bevorzugt wenigstens 400 °C und am stärksten bevorzugt wenigstens 420 °C liegt. Die nachfolgenden Ausführungsbeispiele dienen nur dazu, die Erfindung zu illustrieren. Sie sollen den Schutzbereich der Patentansprüche in keiner Weise beschränken. The polymer matrix formed by the casting resin is preferably characterized in that the temperature at which 5% by weight loss of mass occurs is at least 370 ° C, preferably at least 400 ° C and most preferably at least 420 ° C. The following exemplary embodiments only serve to illustrate the invention. They are not intended to limit the scope of protection of the claims in any way.
Beispiele Examples
Verwendete Rohstoffe Raw materials used
Isocyanat 1: Isocyanuratgruppen enthaltendes HDI-Polyisocyanat, hergestellt in Anlehnung an Beispiel 11 der EP-A 330 966, mit der Änderung, dass als Katalysatorlösungsmittel 2-Ethylhexanol statt 2-Ethyl-l,3-hexandiol eingesetzt wurde. Die Reaktion wurde bei einem NCO-Gehalt der Rohmischung von 42 Gew.-% durch Zugabe von Dibutylphosphat gestoppt. Anschließend wurde nicht umgesetztes HDI durch Dünnschichtdestillation bei einer Temperatur von 130 °C und einem Druck von 0,2 mbar abgetrennt. Isocyanate 1: HDI polyisocyanate containing isocyanurate groups, prepared on the basis of Example 11 of EP-A 330 966, with the change that the catalyst solvent used was 2-ethylhexanol instead of 2-ethyl-1,3-hexanediol. The reaction was stopped by adding dibutyl phosphate when the NCO content of the crude mixture was 42% by weight. Unreacted HDI was then separated off by thin-film distillation at a temperature of 130 ° C. and a pressure of 0.2 mbar.
NCO-Gehalt: 23,0 Gew.-% NCO content: 23.0% by weight
NCO-Funktionalität: 3,2 NCO functionality: 3.2
Monomeres HDI: 0,1 Gew.-% Monomeric HDI: 0.1% by weight
Viskosität (23 °C): 1.200 mPas Viscosity (23 ° C): 1,200 mPas
Dichte (20 °C): 1,17 g/cm3 Density (20 ° C): 1.17 g / cm 3
Verteilung der oligomeren Strukturtypen: Distribution of the oligomeric structure types:
Isocyanurat: 89.7 mol-% Isocyanurate: 89.7 mol%
Iminooxadiazindion 2,5 mol-% Iminooxadiazinedione 2.5 mol%
Uretdion 2.7 mol-% Uretdione 2.7 mol%
Allophanat: 5,1 mol-% Allophanate: 5.1 mol%
Isocyanat 2: Ist ein isocyanatterminiertes Prepolymer hergestellt durch Reaktion eines difunktionellen Polypropylenglykolpolyethers (OH-Zahl = 515 mg KOH/g) mit einem Überschuss von HDI bei einer Temperatur von 80°C. Nach Einstellung eines konstanten NCO-Gehalts wurde die Reaktion durch Zugabe von Dibutylphosphat gestoppt. Anschließend wurde nicht umgesetztes HDI durch Dünnschichtdestillation bei einer Temperatur von 130 °C und einem Druck von 0,2 mbar abgetrennt. Isocyanate 2: Is an isocyanate-terminated prepolymer produced by reacting a difunctional polypropylene glycol polyether (OH number = 515 mg KOH / g) with an excess of HDI at a temperature of 80 ° C. After a constant NCO content had been established, the reaction was stopped by adding dibutyl phosphate. Unreacted HDI was then separated off by thin-film distillation at a temperature of 130 ° C. and a pressure of 0.2 mbar.
NCO-Gehalt: 12,5 Gew.-% NCO content: 12.5% by weight
NCO-Funktionalität: 2,1 NCO functionality: 2.1
Monomeres HDI: < 0,5 Gew.-% Monomeric HDI: <0.5% by weight
Viskosität (23 °C): 4.250 mPas Viscosity (23 ° C): 4,250 mPas
Dichte (20 °C): 1,10 g/cm3 Density (20 ° C): 1.10 g / cm 3
Isocyanat 3: Ist ein niedrigviskoses Gemisch von Diphenylmethan-4,4'-diisocyanat (MDI) mit Isomeren und höherfunktionellen Homologen. NCO-Gehalt: 31,5 Gew.-% Isocyanate 3: Is a low-viscosity mixture of diphenylmethane-4,4'-diisocyanate (MDI) with isomers and higher functional homologues. NCO content: 31.5% by weight
Äquivalentgewicht: 133 g/val Equivalent weight: 133 g / eq
Viskosität (23 °C): 90 mPas Viscosity (23 ° C): 90 mPas
Dichte (20 °C): 1,23 g/cm3 Density (20 ° C): 1.23 g / cm 3
Polyol 1: Ist ein lineares Polypropylenetherpolyol hergestellt durch Propoxylierung von 1,2- Propandiol. Polyol 1: Is a linear polypropylene ether polyol produced by the propoxylation of 1,2-propanediol.
Flydroxylzahl: 520 mg KOH/g Flydroxyl number: 520 mg KOH / g
Viskosität (25 °C): 55 mPas Viscosity (25 ° C): 55 mPas
Dichte (25 °C): 1,00 g/cm3 Density (25 ° C): 1.00 g / cm 3
Polyol 2: Glycerin (1,2,3-Propantriol) wurde mit einer Reinheit von 99,0 % von der Fa. Calbiochem bezogen. Polyol 2: Glycerine (1,2,3-propanetriol) was obtained from Calbiochem with a purity of 99.0%.
Füllstoff 1: Silbond 126 EST ist ein mit Epoxysilan beschichteter Quarz-Füllstoff und wurde von der Fa. Quarzwerke GmbH bezogen. Laut technischem Datenblatt nimmt der Füllstoff 11 g Öl pro 100 g Füllstoff auf (DIN ISO 787-5); die Mohs'sche Härte liegt bei 7. Filler 1: Silbond 126 EST is a quartz filler coated with epoxysilane and was obtained from Quarzwerke GmbH. According to the technical data sheet, the filler absorbs 11 g of oil per 100 g of filler (DIN ISO 787-5); the Mohs' hardness is 7.
Füllstoff 2: Microdol 1-KN ist ein Dolomit-Füllstoff und wurde von der Fa. Omya bezogen. Laut technischem Datenblatt nimmt der Füllstoff 15 g Öl pro 100 g Füllstoff auf (ISO 787/5). Die Mohs'sche Härte von Dolomit liegt laut Wikipedia (abgerufen 02-2019) bei 3,5 - 4. Filler 2: Microdol 1-KN is a dolomite filler and was obtained from Omya. According to the technical data sheet, the filler absorbs 15 g of oil per 100 g of filler (ISO 787/5). According to Wikipedia (accessed 02-2019), the Mohs' hardness of dolomite is 3.5 - 4.
Füllstoff 3: Unispar PG W13 ist ein Feldspat-Füllstoff und wurde von der Fa. Sibelco bezogen. Laut technischem Datenblatt nimmt der Füllstoff 22 g Öl pro 100 g Füllstoff auf (ISO 787/5); die Mohs'sche Härte liegt bei 6.2. Filler 3: Unispar PG W13 is a feldspar filler and was obtained from Sibelco. According to the technical data sheet, the filler absorbs 22 g of oil per 100 g of filler (ISO 787/5); the Mohs' hardness is 6.2.
Füllstoff 4: Unispar PG W20 ist ein Feldspat-Füllstoff und wurde von der Fa. Sibelco bezogen. Laut technischem Datenblatt nimmt der Füllstoff 19 g Öl pro 100 g Füllstoff auf (ISO 787/5); die Mohs'sche Härte liegt bei 6.2. Filler 4: Unispar PG W20 is a feldspar filler and was obtained from Sibelco. According to the technical data sheet, the filler absorbs 19 g of oil per 100 g of filler (ISO 787/5); the Mohs' hardness is 6.2.
Füllstoff 5 Omycarb 2T-AV ist ein Calciumcarbonat-Füllstoff und wurde von der Fa. Omya bezogen. Laut technischem Datenblatt nimmt der Füllstoff 16 g Öl pro 100 g Füllstoff auf (ISO 787/5). Die Mohs'sche Härte von Calciumcarbonat (Kalkstein) liegt laut Wikipedia (abgerufen im Februar 2019) bei 3. Füllstoff 6 Silbond 800 EST ist ein mit Epoxysilan beschichteter Quarz-Füllstoff und wurde von der Fa. Quarzwerke GmbFI bezogen. Laut technischem Datenblatt nimmt der Füllstoff 26 g Öl pro 100 g Füllstoff auf (ISO 787/5). Filler 5 Omycarb 2T-AV is a calcium carbonate filler and was obtained from Omya. According to the technical data sheet, the filler absorbs 16 g of oil per 100 g of filler (ISO 787/5). According to Wikipedia (accessed in February 2019), the Mohs hardness of calcium carbonate (limestone) is 3. Filler 6 Silbond 800 EST is a quartz filler coated with epoxysilane and was obtained from Quarzwerke GmbHFI. According to the technical data sheet, the filler absorbs 26 g of oil per 100 g of filler (ISO 787/5).
Füllstoff 7 Silbond 6000 MST ist ein mit Methacrylsilan beschichteter Cristobalit-Füllstoff und wurde von der Fa. Quarzwerke GmbFI bezogen. Laut technischem Datenblatt nimmt der Füllstoff 27 g Öl pro 100 g Füllstoff auf (ISO 787/5). Filler 7 Silbond 6000 MST is a methacrylsilane-coated cristobalite filler and was obtained from Quarzwerke GmbHFI. According to the technical data sheet, the filler absorbs 27 g of oil per 100 g of filler (ISO 787/5).
Füllstoff 8 Sikron SF 800 ist ein Quarz-Füllstoff und wurde von der Fa. Quarzwerke GmbFI bezogen. Laut technischem Datenblatt nimmt der Füllstoff 28 g Öl pro 100 g Füllstoff auf (ISO 787/5) Filler 8 Sikron SF 800 is a quartz filler and was obtained from Quarzwerke GmbHFI. According to the technical data sheet, the filler absorbs 28 g of oil per 100 g of filler (ISO 787/5)
Füllstoff 9 Chinafill 200 ist ein Kaolin-Füllstoff und wurde von der Fa. Amberger Kaolinwerke Filler 9 Chinafill 200 is a kaolin filler and was made by Amberger Kaolinwerke
Eduard Kick GmbFI & Co. KG bezogen. Laut technischem Datenblatt nimmt der Füllstoff 46 g Öl pro 100 g Füllstoff auf (ISO 787/5). Die Mohs'sche Hä rte von Kaolin liegt laut Wikipedia (abgerufen 02- 2019) bei 2,5. Eduard Kick GmbH & Co. KG. According to the technical data sheet, the filler absorbs 46 g of oil per 100 g of filler (ISO 787/5). According to Wikipedia (accessed 02-2019), the Mohs' hardness of kaolin is 2.5.
Füllstoff 10 Silitin Z 86 ist ein Gemisch aus korpuskularer Kieselsäure und lamellarem Kaolinit und wurde von der Fa. Floffmann Mineral GmbFI bezogen. Laut technischem Datenblatt nimmt der Füllstoff 55 g Öl pro 100 g Füllstoff auf (ISO 787/5) ); die Mohs'sche Hä rte liegt bei 7 für den Kieselsäure-Anteil und 2,5 für den Kaolinit-Anteil. Filler 10 Silitin Z 86 is a mixture of corpuscular silica and lamellar kaolinite and was obtained from Floffmann Mineral GmbHFI. According to the technical data sheet, the filler absorbs 55 g of oil per 100 g of filler (ISO 787/5); the Mohs hardness is 7 for the silica component and 2.5 for the kaolinite component.
Füllstoff 11 Silbond 006 MST ist ein mit Methacrylsilan beschichteter Cristobalit-Füllstoff und wurde von der Fa. Quarzwerke GmbFI bezogen. Laut technischem Datenblatt nimmt der Füllstoff 21 g Öl pro 100 g Füllstoff auf (ISO 787/5); die Mohs'sche Härte liegt bei 6,5. Filler 11 Silbond 006 MST is a methacrylsilane-coated cristobalite filler and was obtained from Quarzwerke GmbHFI. According to the technical data sheet, the filler absorbs 21 g of oil per 100 g of filler (ISO 787/5); the Mohs' hardness is 6.5.
Die Füllstoffe wurden vor Verarbeitung für 12 Stunden bei 80 °C unter regelmäßigem Aufschütteln getrocknet. Before processing, the fillers were dried for 12 hours at 80 ° C. with regular shaking.
Katalysator 1: Desmorapid AP 100 wurde von der Fa. Covestro AG bezogen. Catalyst 1: Desmorapid AP 100 was obtained from Covestro AG.
Katalysator 2: Trioctylphosphin wurde von der Fa. aber GmbFI in einer Reinheit von 97 % bezogen. Catalyst 2: Trioctylphosphine was obtained from but GmbHFI in a purity of 97%.
Katalysator 3: Ist eine Mischung von Kaliumacetat, [18]Krone-6 und Diethylenglykol im Verhältnis von 1,0 : 2,7 : 17,6 (bezogen von Sigma-Aldrich in PA Qualitäten und eingesetzt wie geliefert). Catalyst 3: Is a mixture of potassium acetate, [18] crown-6 and diethylene glycol in a ratio of 1.0: 2.7: 17.6 (obtained from Sigma-Aldrich in PA qualities and used as supplied).
Katalysator 4: Jeffcat Z-110 wurde von der Fa. Huntsman bezogen. Bestimmung der elektrischen Eigenschaften: Catalyst 4: Jeffcat Z-110 was obtained from Huntsman. Determination of the electrical properties:
Die elektrischen Eigenschaften der Materialien wurden mit einem Keithley Model 8009 Gerät bestimmt, das auf Basis von ASTM D 257 (Mai 2007) arbeitet. Die Messungen wurden bei 25 °C durchgeführt. The electrical properties of the materials were determined using a Keithley Model 8009 device, which operates on the basis of ASTM D 257 (May 2007). The measurements were carried out at 25 ° C.
Bestimmung der Glasübergangstemperatur: Determination of the glass transition temperature:
Die Glasübergangstemperatur wurde mittels DSC (Differential Scanning Calorimetry) mit einem Mettler DSC 12E (Mettler Toledo GmbH, Gießen, DE) entsprechend DIN EN 61006 (November 2004) bestimmt. Eine Kalibrierung erfolgte durch die Temperatur des Schmelz-Onsets von Indium und Blei. Es wurden 10 mg Substanz in Normalkapseln eingewogen. Die Messung erfolgte durch zwei Aufheizungen von -50 °C bis +200 °C bei einer Heizrate von 20 K/min mit anschließender Abkühlung mit einer Kühlrate von 20 K/min. Die Kühlung erfolgte durch flüssigen Stickstoff. Als Spülgas wurde Stickstoff verwendet. Die angegebenen Werte basieren jeweils auf der Auswertung der 2. Aufheizkurve. The glass transition temperature was determined by means of DSC (differential scanning calorimetry) with a Mettler DSC 12E (Mettler Toledo GmbH, Giessen, DE) in accordance with DIN EN 61006 (November 2004). A calibration was carried out by the temperature of the melting onset of indium and lead. 10 mg of substance were weighed into normal capsules. The measurement was carried out by two heatings from -50 ° C to +200 ° C at a heating rate of 20 K / min with subsequent cooling at a cooling rate of 20 K / min. Liquid nitrogen was used for cooling. Nitrogen was used as the purge gas. The stated values are based on the evaluation of the 2nd heating curve.
Bestimmung des Masseverlusts: Determination of mass loss:
Der Masseverlust wurde mittels TGA (Thermogravimetrische Analyse) entsprechend DIN EN ISO 11358-1:2014-10 ermittelt. Dazu wurden in einer Mikrothermowaage TGA-8000 (Perkin-Elmer) ca. 5,5 mg des Produkts in einem offenen Platin-Tiegel unter ständigem Stickstoffstrom von 25 °C auf 600 °C erhitzt. Die Heizrate betrug 20 k/Minute. Die Temperatur, bei der der über die Messzeit kumulierte Masseverlust 5 Gew.-% erreichte, wurde ausgewertet. The mass loss was determined using TGA (thermogravimetric analysis) in accordance with DIN EN ISO 11358-1: 2014-10. For this purpose, approx. 5.5 mg of the product were heated from 25 ° C. to 600 ° C. in an open platinum crucible in a TGA-8000 micro-thermal balance (Perkin-Elmer) under a constant stream of nitrogen. The heating rate was 20 k / minute. The temperature at which the mass loss accumulated over the measurement time reached 5% by weight was evaluated.
Bestimmung der Verarbeitungszeit: Determination of the processing time:
Zur Bestimmung der Verarbeitungszeit wurden die beiden Komponenten vermischt und über eine Stunde bei 60 °C im Rheometer vermessen. Als Viskositätswert wurde der Wert angegeben, der exakt nach einer Stunde bestimmt wurde. Verwendet wurde ein MCR301Rheometer der Firma AntonPaar. Es wurde das Platte/Platte PP25 mit der Peltierheizung C-PTD200 eingesetzt. To determine the processing time, the two components were mixed and measured in a rheometer at 60 ° C. for one hour. The viscosity value stated was that which was determined exactly after one hour. An MCR301 rheometer from AntonPaar was used. The plate / plate PP25 with the Peltier heater C-PTD200 was used.
Messprofil: Frequenz f = 1 Hz ; Amplitude gamma = 5 % Measurement profile: frequency f = 1 Hz; Amplitude gamma = 5%
T = 60 °C , 60 min. T = 60 ° C, 60 min.
Bestimmung der Shore Härte: Determination of the Shore hardness:
Shore-Härten wurden nach DIN 53505 (August 2000) mit Hilfe eines Shore-Härteprüfgerätes Zwick 3100 (Fa. Zwick) bei 23 °C und 50 % Luftfeuchtigkeit gemessen. Vergleichsversuche: Shore hardnesses were measured in accordance with DIN 53505 (August 2000) with the aid of a Zwick 3100 Shore hardness tester (from Zwick) at 23 ° C. and 50% humidity. Comparative tests:
** Bei diesen Versuchen konnten die Füllstoffe nicht mit den anderen Einsatzstoffen zu einem flüssigen Gemisch verarbeitet werden. Daher konnte die Viskosität nicht bestimmt werden. ** In these tests, the fillers could not be processed into a liquid mixture with the other ingredients. Therefore the viscosity could not be determined.
Erfindungsgemäße Versuche: Experiments according to the invention:
Alle Versuchsproben wurden im Ofen bei 180 °C innerhalb von 30 Minuten ausgehärtet. All test samples were cured in an oven at 180 ° C within 30 minutes.
Eigenschaften der ausgehärteten Probenkörper: Properties of the cured specimens:

Claims

Patentansprüche Claims
1. Gießharz mit einem molaren Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen von wenigstens 3 : 1 und einem Lösemittelgehalt von höchstens 10 Gew.-%, wobei das Gießharz 1. Casting resin with a molar ratio of isocyanate groups to isocyanate-reactive groups of at least 3: 1 and a solvent content of at most 10% by weight, the casting resin
(i) Wenigstens ein monomeres oder oligomeres Polyisocyanat A mit einem Isocyanatgehalt von wenigstens 15 Gew.-%; (i) At least one monomeric or oligomeric polyisocyanate A with an isocyanate content of at least 15% by weight;
(ii) Wenigstens einen anorganischen Füllstoff B, welcher Siliziumoxid-Einheiten enthält, mit einer Ölzahl von höchstens 25 g / 100 g bestimmt nach DIN EN ISO 787-5 (Oktober 1995) und einer Mohs'schen Härte von wenigstens 4; und (ii) At least one inorganic filler B, which contains silicon oxide units, with an oil number of at most 25 g / 100 g, determined according to DIN EN ISO 787-5 (October 1995) and a Mohs ' hardness of at least 4; and
(iii) Wenigstens einen Trimerisierungskatalysator C enthält. (iii) Contains at least one trimerization catalyst C.
2. Das Gießharz nach Anspruch 1, wobei das Polyisocyanat A bezogen auf sein Gesamtgewicht zu wenigstens 70 Gew.-% aus Polyisocyanaten besteht, welche ausschließlich aliphatisch und / oder cycloaliphatisch gebundene Isocyanatgruppen aufweisen. 2. The casting resin according to claim 1, wherein the polyisocyanate A, based on its total weight, consists of at least 70% by weight of polyisocyanates which have exclusively aliphatically and / or cycloaliphatically bound isocyanate groups.
3. Das Gießharz nach Anspruch 1 oder 2, wobei der anorganische Füllstoff eine Mohs'sche Härte von wenigstens 6 aufweist. 3. The casting resin according to claim 1 or 2, wherein the inorganic filler has a Mohs ' hardness of at least 6.
4. Das Gießharz nach einem der Ansprüche 1 bis 3, wobei das Reaktionsgemisch zu wenigstens 30 Gew.-% aus dem anorganischen Füllstoff B besteht. 4. The casting resin according to one of claims 1 to 3, wherein the reaction mixture consists of at least 30% by weight of the inorganic filler B.
5. Das Gießharz nach Anspruch 4, wobei das Reaktionsgemisch zu wenigstens 65 Gew.-% aus dem anorganischen Füllstoff B besteht. 5. The casting resin according to claim 4, wherein the reaction mixture consists of the inorganic filler B to an extent of at least 65% by weight.
6. Das Gießharz nach einem der Ansprüche 1 bis 5, wobei der Trimerisierungskatalysator C die Vernetzung von Isocyanatgruppen zu Isocyanuratgruppen katalysiert. 6. The casting resin according to one of claims 1 to 5, wherein the trimerization catalyst C catalyzes the crosslinking of isocyanate groups to form isocyanurate groups.
7. Das Gießharz nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es bei einem Gehalt von bis zu 65 Gew.-% des anorganischen Füllstoffs B nach einer Lagerung für eine Stunde bei 60 °C eine Viskosität von höchstens 150 Pas aufweist. 7. The casting resin according to one of claims 1 to 6, characterized in that with a content of up to 65% by weight of the inorganic filler B it has a viscosity of at most 150 Pas after storage for one hour at 60 ° C.
8. Das Gießharz nach Anspruch 7, wobei das Polyisocyanat A bei 25 °C eine Viskosität von wenigstens 500 mPas und höchstens 20.000 mPas aufweist. 8. The casting resin according to claim 7, wherein the polyisocyanate A has a viscosity of at least 500 mPas and at most 20,000 mPas at 25 ° C.
9. Die Verwendung des Gießharzes nach einem der Ansprüche 1 bis 8 zur Herstellung eines elektrischen Bauteils. 9. The use of the casting resin according to one of claims 1 to 8 for the production of an electrical component.
10. Die Verwendung nach Anspruch 9, wobei das elektrische Bauteil ausgewählt ist aus der Gruppe bestehend aus Transformatoren, Isolatoren, Kondensatoren, Halbleitern, Muffen zum Schutz von Kabelverbindungen und Erdkabelverzweigungen. 10. The use according to claim 9, wherein the electrical component is selected from the group consisting of transformers, insulators, capacitors, semiconductors, sleeves for protecting cable connections and underground cable branches.
11. Verfahren zur Herstellung eines elektrischen Bauteils enthaltend die Schritte a) Bereitstellung eines Gießharzes wie in einem der Ansprüche 1 bis 8 definiert; b) Vergießen eines noch nicht eingebetteten elektrischen Bauteils mit dem in Verfahrensschritt a) bereitgestellten Gießharz; c) Katalytische Trimerisierung des Gießharzes. 11. A method for producing an electrical component comprising the steps of a) providing a casting resin as defined in one of claims 1 to 8; b) encapsulating an electrical component that is not yet embedded with the casting resin provided in method step a); c) Catalytic trimerization of the casting resin.
12. Elektrisches Bauteil, hergestellt nach dem Verfahren gemäß Anspruch 11. 12. Electrical component produced by the method according to claim 11.
13. Das elektrische Bauteil nach Anspruch 12, wo die durch das ausgehärtete Gießharz gebildete Polymermatrix dadurch gekennzeichnet ist, dass die Temperatur, bei der 5 Gew.-% Masseverlust auftreten, bei wenigstens 370 °C liegt. 13. The electrical component according to claim 12, where the polymer matrix formed by the cured casting resin is characterized in that the temperature at which 5% by weight loss of mass occurs is at least 370 ° C.
EP20706286.0A 2019-02-27 2020-02-26 Polyisocyanurate materials as electrical potting compounds Pending EP3931185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19159839 2019-02-27
PCT/EP2020/055037 WO2020174009A1 (en) 2019-02-27 2020-02-26 Polyisocyanurate materials as electrical potting compounds

Publications (1)

Publication Number Publication Date
EP3931185A1 true EP3931185A1 (en) 2022-01-05

Family

ID=65635468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20706286.0A Pending EP3931185A1 (en) 2019-02-27 2020-02-26 Polyisocyanurate materials as electrical potting compounds

Country Status (6)

Country Link
US (1) US20220127407A1 (en)
EP (1) EP3931185A1 (en)
JP (1) JP2022521878A (en)
KR (1) KR20210132659A (en)
CN (1) CN113631545A (en)
WO (1) WO2020174009A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067665B1 (en) * 2018-05-10 2020-01-17 넥쌍 Cable comprising crosslinked layer obtained from polymer composition
WO2023001848A1 (en) * 2021-07-23 2023-01-26 Sika Technology Ag Polyisocyanurate plastics with high transparency

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809809A (en) 1956-11-16 1959-03-04 Ici Ltd Polymeric isocyanates and their manufacture
GB1200542A (en) 1967-01-19 1970-07-29 Takeda Chemical Industries Ltd A method for producing isocyanate trimers
DE1954093C3 (en) 1968-11-15 1978-12-21 Mobay Chemical Corp., Pittsburgh, Pa. (V.St.A.) Process for the preparation of polymeric organic isocyanates
GB1391066A (en) 1971-07-16 1975-04-16 Ici Ltd Urethane oils
GB1386399A (en) 1971-07-16 1975-03-05 Ici Ltd Isocyanurate polymers
DE2414413C3 (en) 1974-03-26 1978-08-24 Bayer Ag, 5090 Leverkusen Use of solutions of polyisocyanates with an isocyanurate structure in two-component polyurethane paints
DE2452532C3 (en) 1974-11-06 1978-08-24 Bayer Ag, 5090 Leverkusen Process for the preparation of polyisocyanates with an isocyanurate structure
US4040992A (en) 1975-07-29 1977-08-09 Air Products And Chemicals, Inc. Catalysis of organic isocyanate reactions
DE2641380C2 (en) 1976-09-15 1989-11-23 Bayer Ag, 5090 Leverkusen Process for the preparation of polyisocyanates with an isocyanurate structure
DE2806731A1 (en) 1978-02-17 1979-08-23 Bayer Ag PROCESS FOR THE PREPARATION OF POLYISOCYANATES HAVING ISOCYANURATE GROUPS
CA1112243A (en) 1978-09-08 1981-11-10 Manfred Bock Process for the preparation of polyisocyanates containing isocyanurate groups and the use thereof
DE2901479A1 (en) 1979-01-16 1980-07-24 Bayer Ag NEW ISOCYANATO ISOCYANURATE, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS ISOCYANATE COMPONENT IN POLYURETHANE LACQUER
CA1127644A (en) 1980-01-28 1982-07-13 Anupama Mishra Isocyanurate products and polyurethanes therefrom
DE3033860A1 (en) 1980-09-09 1982-04-15 Bayer Ag, 5090 Leverkusen NEW ISOCYANATO-ISOCYANURATE, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS ISOCYANATE COMPONENT IN POLYURETHANE PAINTS
DE3100263A1 (en) 1981-01-08 1982-08-12 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS AND THE USE THEREOF IN THE PRODUCTION OF POLYURETHANES
DE3100262A1 (en) 1981-01-08 1982-08-05 Bayer Ag, 5090 Leverkusen METHOD FOR THE PRODUCTION OF POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS, SOLUTIONS SUITABLE AS CATALYST COMPONENTS FOR THIS METHOD, AND THE USE OF THE PROCESS PRODUCTS AS THE ISOCYANATE COMPONENT PRODUCT
JPS58162581A (en) 1982-03-19 1983-09-27 Nippon Polyurethan Kogyo Kk Preparation of isocyanurate compound and useful composition of product produced thereby
DE3227489A1 (en) 1982-07-23 1984-01-26 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS AND THE USE THEREOF AS ISOCYANATE COMPONENTS FOR PRODUCING POLYURETHANES
PT77070B (en) 1982-07-29 1986-01-27 Dsm Resins Bv Oligomerisation of polyisocyanates
AT375652B (en) 1982-10-29 1984-08-27 Valentina Alexandro Postnikova METHOD FOR PRODUCING ARYLALIPHATIC POLYISOZYANURATES
JPH0678418B2 (en) 1986-03-10 1994-10-05 大日本インキ化学工業株式会社 Resin composition
DE3700209A1 (en) 1987-01-07 1988-07-21 Bayer Ag METHOD FOR PRODUCING POLYISOCYANATES WITH BIURET STRUCTURE
DE3806276A1 (en) 1988-02-27 1989-09-07 Bayer Ag METHOD FOR PRODUCING POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS AND THE USE THEREOF
DE3811350A1 (en) 1988-04-02 1989-10-19 Bayer Ag METHOD FOR THE PRODUCTION OF ISOCYANURATE POLYISOCYANATES, THE COMPOUNDS OBTAINED BY THIS PROCESS AND THEIR USE
DE3814167A1 (en) 1988-04-27 1989-11-09 Bayer Ag METHOD FOR PRODUCING POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS AND THE USE THEREOF
CA1334848C (en) 1988-08-05 1995-03-21 William E. Slack Process for the production of polyisocyanates which contain isocyanurate groups
CA1334849C (en) 1988-08-24 1995-03-21 Bayer Corporation Process for the production of polyisocyanates which contain isocyanurate groups
DE3900053A1 (en) 1989-01-03 1990-07-12 Bayer Ag PROCESS FOR THE PREPARATION OF POLYISOCYANATES USING URETDION AND ISOCYANATE GROUPS, THE POLYISOCYANATES AVAILABLE FOR THIS PROCESS, AND THEIR USE IN TWO-COMPONENT POLYURETHANE VARNISHES
DE3902078A1 (en) 1989-01-25 1990-07-26 Bayer Ag METHOD FOR PRODUCING MODIFIED POLYISOCYANATES HAVING ISOCYANURATE GROUPS AND THE USE THEREOF
DE3928503A1 (en) 1989-08-29 1991-03-07 Bayer Ag METHOD FOR PRODUCING SOLUTIONS OF POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS IN LACQUER SOLVENTS AND THE USE THEREOF
DE4005762A1 (en) 1990-02-23 1991-08-29 Bayer Ag TRIMERIZATION CATALYSTS, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN THE PRODUCTION OF POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS
DE4405055A1 (en) 1994-02-17 1995-08-24 Basf Ag Process for the preparation of polyisocyanates containing isocyanurate groups and their use
DE4405054A1 (en) 1994-02-17 1995-08-24 Basf Ag Modified (cyclo) aliphatic polyisocyanate mixtures, process for their preparation and their use
DE19611849A1 (en) 1996-03-26 1997-10-02 Bayer Ag New isocyanate trimer and isocyanate trimer mixtures, their production and use
DE19734048A1 (en) 1997-08-06 1999-02-11 Bayer Ag Process for the preparation of polyisocyanates, polyisocyanates produced therewith and their use
ZA9810038B (en) 1997-11-04 2000-05-03 Rhodia Chimie Sa A catalyst and a method for the trimerization of isocyanates.
DE59903289D1 (en) 1998-06-02 2002-12-12 Bayer Ag Process for the preparation of polyisocyanates containing iminooxadiazinedione groups
DE10065176A1 (en) 2000-12-23 2002-06-27 Degussa Trimerization catalyst for preparation of low viscosity and less colored polyisocyanates containing isocyanurate groups, is a quaternized benzylammonium carboxylate
DE10254878A1 (en) 2002-11-25 2004-06-03 Bayer Ag Production of polyisocyanates containing uretdione groups
KR101087928B1 (en) 2003-02-28 2011-11-28 다우 글로벌 테크놀로지스 엘엘씨 Preparation of isocyanurate group containing polyisocyanate mixtures
DE102004012571A1 (en) 2004-03-12 2005-09-29 Basf Ag Process for the preparation of polyisocyanates containing isocyanurate groups and their use
DE102007018015A1 (en) 2007-04-17 2008-10-23 Bayer Materialscience Ag Preparation of uretdione group-containing polyisocyanates
JP6223431B2 (en) 2012-05-08 2017-11-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Production of polyisocyanates having isocyanurate groups and their use
AU2014204882B2 (en) 2013-01-11 2016-05-12 Basf Coatings Gmbh 2-component primer composition and method for producing coatings using the primer composition
DE102013205117A1 (en) 2013-03-22 2014-09-25 Siemens Aktiengesellschaft Potting compound, use of potting compound, thermally cured composite available from the potting compound and electrical machine with the potting compound
TWI572633B (en) 2014-05-02 2017-03-01 Asahi Kasei Chemicals Corp Polyisocyanate hardening, and polyisocyanate hardening
CA2980669C (en) 2015-04-21 2023-09-19 Covestro Deutschland Ag Polyisocyanurate polymers and process for the production of polyisocyanurate polymers
PL3452529T3 (en) 2016-05-04 2024-02-19 Covestro Intellectual Property Gmbh & Co. Kg Method for producing a polyisocyanurate composite material

Also Published As

Publication number Publication date
CN113631545A (en) 2021-11-09
JP2022521878A (en) 2022-04-13
WO2020174009A1 (en) 2020-09-03
US20220127407A1 (en) 2022-04-28
KR20210132659A (en) 2021-11-04

Similar Documents

Publication Publication Date Title
EP3452529B1 (en) Method for producing a polyisocyanurate composite material
EP1521789B1 (en) Isocyanates containing uretdion groups
EP3155035B1 (en) Thioallophanate polyisocyanates containing silane groups
EP0139895B1 (en) Use of ammonium salts as delayed action catalysts for the isocyanate-polyaddition reaction
EP3085718B1 (en) Siloxane groups containing polyisocyanurate plastic and method for producing the same
EP2100886B1 (en) Production of trimeric polyisocyanates
EP2892905B1 (en) Isocyanatosilane with thiourethane structure
WO2017191216A1 (en) Method for producing a polyisocyanurate composite material
WO2020174009A1 (en) Polyisocyanurate materials as electrical potting compounds
EP3743449B1 (en) Semi-finished products based on dual cross-linking mechanism
EP2067773A2 (en) Production of uretdione polyisocyanates
EP3794049B1 (en) Method for producing a polyisocyanate polymer and a polyisocyanurate plastic
EP2890725B1 (en) Isocyanate functional cyclic carbonates
EP3440122B1 (en) Coloured plastics based on crosslinked polyisocyanates
EP0726284A1 (en) Blocked polyisocyanates, process for their preparation and lacquers and coating systems produced therefrom
WO2020152107A1 (en) Composite materials based on dual-cure urethane polymers and dual-cure isocyanurate polymers
WO2019219614A1 (en) Method for preparing composite materials made of polyethylene fibers having an ultra-high molecular weight and cross-linked polyisocyanates
DE19645166A1 (en) Blocked polyisocyanates with built-in HALS stabilizer
EP0839844A1 (en) Lacquers polyisocyanates with built-in HALS-stabilizer
EP4175820A1 (en) Coatings from polyisocyanurate coatings (rim) and their use in injection molding processes
DE10243030A1 (en) Uretdione group containing compounds containing up to 10 mol.% isocyanurate structure, useful for polyurethanes, are prepared by dimerization of (cyclo)aliphatic isocyanates having exclusively secondary and/or tertiary isocyanate groups

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG