EP3899360B1 - Système d'éclairage pour un véhicule automobile - Google Patents

Système d'éclairage pour un véhicule automobile Download PDF

Info

Publication number
EP3899360B1
EP3899360B1 EP19805972.7A EP19805972A EP3899360B1 EP 3899360 B1 EP3899360 B1 EP 3899360B1 EP 19805972 A EP19805972 A EP 19805972A EP 3899360 B1 EP3899360 B1 EP 3899360B1
Authority
EP
European Patent Office
Prior art keywords
light
microscanner
doa
offset
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19805972.7A
Other languages
German (de)
English (en)
Other versions
EP3899360A1 (fr
Inventor
Thomas MITTERLEHNER
Michael RIESENHUBER
Jakob Pühringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Publication of EP3899360A1 publication Critical patent/EP3899360A1/fr
Application granted granted Critical
Publication of EP3899360B1 publication Critical patent/EP3899360B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors

Definitions

  • the oscillation amplitude determines the width of the generated light image or partial light distribution.
  • the oscillation speed i.e. to vary the angular deflection over time in a microscanner (angular speed). Since a "slowly" moving point of light generates more light in the light conversion element than a point of light moving quickly, the light distribution can also be influenced in this way.
  • the laser light sources are equipped with so-called light conversion elements for converting essentially monochromatic light into assigned to white or polychromatic light, "white light” being understood to mean light of such a spectral composition that produces the color impression "white” in humans.
  • This light conversion element is designed, for example, in the form of one or more photoluminescence converters or photoluminescence elements, with incident laser beams from the laser light source impinging on the light conversion element, which usually has photoluminescence dye, and exciting this photoluminescence dye to photoluminescence, and thereby emitting light at a different wavelength or .
  • the light output of the light conversion element essentially has the characteristics of a Lambertian radiator.
  • transmissive and transmissive refer to the blue portion of the converted white light.
  • the main propagation direction of the blue light component after passing through the converter volume or conversion element is essentially in the same direction as the propagation direction of the output laser beam.
  • the laser beam is reflected or deflected at a boundary surface that can be assigned to the conversion element, so that the blue light component has a different propagation direction than the laser beam, which is usually designed as a blue laser beam.
  • the overall light distribution on the road is created by superimposing the partial light distributions, with the first laser scanner being located, for example, in a left-hand motor vehicle headlight and the second laser scanner being, for example, in a right-hand motor vehicle headlight, as a result of which the resulting overall light distribution is generated by a left and a right motor vehicle headlight of a motor vehicle .
  • the first angle ALPHA is 2° and the second angle ALPHA′ is ⁇ 2°.
  • microscanners are in the form of quasi-static microscanners.
  • Microscanners can be one-dimensional (mirror moves in one direction only) or two-dimensional (mirror moves in two directions simultaneously). Most currently available microscanners work according to a resonant drive principle.
  • the MEMS scanners essentially represent mechanical oscillating circuits that are excited at their resonant frequency and oscillate in a sinusoidal manner. This sinusoidal curve poses a major problem in terms of utilizing the installed laser power, since the light distribution is always brightest where the microscanner is lowest angular velocity reached. In the case of a sinusoidal oscillation, the edge area would appear brightest and the middle area or the center of the light distribution would appear darkest, which is why the laser diodes have to be dimmed considerably and can therefore only be used to a small percentage (approx. 40%).
  • the object of the invention is also achieved by a motor vehicle with at least one lighting system.
  • the time-varying desired opening angle of the total light distribution DOA changes as a function of the speed of the motor vehicle, with an increase in the speed of the motor vehicle the desired opening angle DOA being reduced.
  • lighting system 10 for a motor vehicle, which lighting system 10 comprises a first laser scanner 100 with at least one laser light source 110 , wherein the laser light source 110 is assigned a first microscanner 120 , which first microscanner 120 is set up to apply laser beams from the laser light source 110 to a first light conversion element 130 , whereby visible light is emitted at first light conversion element 130 and a first light image is generated, wherein first light conversion element 130 is assigned an optical imaging system 140 in order to image the first light image in front of illumination system 10 as a first partial light distribution 150 .
  • the illumination system 10 comprises a second laser scanner 200 with at least one laser light source 210 , the laser light source 210 being assigned a second microscanner 220 , which second microscanner 220 is set up to direct laser beams from the laser light source 210 onto a second light conversion element 230 , whereby visible light is emitted by the second light conversion element 230 and a second light image is generated, with the second light conversion element 230 being assigned an optical imaging system 240 in order to image the second light image in front of the illumination system 10 as a second partial light distribution 250 .
  • the first and the second microscanner are designed as quasi-static microscanners.
  • 2 shows a diagram showing the different oscillation behavior of a resonant microscanner (dashed line) and a quasi-static microscanner (solid line).
  • the resonant microscanners essentially represent mechanical oscillating circuits that are excited at their resonant frequency and oscillate sinusoidally.
  • This sinusoidal curve poses a major problem in terms of utilizing the installed laser power, since the light distribution is always brightest where the microscanner reaches the lowest angular velocity.
  • the edge area would appear brightest and the middle area or the center of the light distribution would appear darkest, which is why the laser diodes have to be dimmed to a large extent and can therefore only be used to a small percentage.
  • the first and second partial light distributions 150 , 250 can be changed depending on at least three parameters that can be set on the respective microscanners 120 , 220 , namely AMP , LSPV and OFFSET , which are defined in Figures 3A , 3B and 3C are explanatory shown, with the variable first and second partial light distribution 150 , 250 generate a common variable total light distribution 300 in front of the lighting system 10 and at least partially overlap, the total light distribution 300 having an opening angle.
  • the partial light distributions 150 , 250 and the formed overall light distribution 300 in the example shown in the figures are imaged on a measuring screen MS, which is used, for example, in a lighting technology laboratory and is arranged perpendicular to a main emission direction of the laser scanner.
  • a typical distance of such a measuring screen to the device to be measured is 25m according to ECE regulations.
  • the first and second microscanners 120 , 220 are each rotatably mounted about an axis X1 , X2 , which are arranged parallel to one another, with the first and second microscanners 120 , 220 about a zero position with a definable oscillation amplitude AMP about the respective axis X1 , X2 can oscillate, with the oscillation amplitude AMP being limited by a maximum value MEMSmax , with the oscillation amplitude AMP determining a horizontal width of the partial light distribution 150 , 250 generated in each case.
  • the opening angle of the partial light distribution or the oscillation amplitude AMP of the microscanner can be changed dynamically (in fine gradations), whereby the brightness increases significantly due to the smaller illumination area, for example due to the speed-dependent increase in the illumination range.
  • Figure 3A shows, for example, an oscillation amplitude AMP limited to +/-2°, where it can be seen that the angular velocity in the area of the zero position of the microscanner is lower than in the characteristic curve off 2 , resulting in increased light intensity.
  • the first and the second partial light distribution 150 , 250 each have a light focus, which is characterized in that the respective light intensity is maximum at this point, the light focus on the respective microscanners 120 , 220 corresponding to a fixable light focus shift LSPV being shiftable .
  • the center of gravity of the light results from the deflection area of the microscanner with the lowest angular velocity (the edge areas or reversal points are excluded from this).
  • Figure 3B shows a shift in the center of gravity of the characteristic curve 2 , whereby the microscanner moves the slowest in that area in which the center of the light is desired.
  • the partial light distributions 150 , 250 can each be shifted by an offset value OFFSET that can be supplied to the respective microscanners 120 , 220 , the mode of action of this parameter being explained as an explanation in Figure 3C is shown.
  • the micro scanner parameter OFFSET allows to add an offset value to the angular movement of the specific micro scanner.
  • an example is shown with an offset value of 2° at a vibration amplitude of 4°.
  • the light center shift LSPV is set to 0° here.
  • the illumination system 10 also includes a control device 400 , which is set up to control the first and the second microscanner 120 , 220 , the oscillation behavior of the first and second microscanner 120 , 220 at least via the parameters oscillation amplitude AMP , light center shift LSVP , and offset value OFFSET , which can be changed by the control device 400 can be controlled.
  • the control device 400 is also set up to receive an input variable DOA that changes over time, which represents a target aperture angle of the overall light distribution 300 , and sets the parameters of the first and second microscanners 120 , 220 accordingly.
  • first and second micro scanners 120 , 220 are off 1 are arranged along an imaginary line, the zero position of the first microscanner 120 being inclined by a first angle ALPHA and the zero position of the second microscanner 220 being inclined by a second angle ALPHA 'to the imaginary line, the first and the second angle ALPHA , ALPHA ' being inverse to each other, for example the first angle ALPHA is 2° and the second angle ALPHA ' is -2°.
  • the Figure 4A 4B and 4B show diagrams of the partial light distributions and the resulting total light distributions for different DOA values, the first angle ALPHA and the second angle ALPHA being 0°, and symmetrical partial light distributions therefore occurring.
  • a symmetrical light distribution exists when the center position of the partial light distribution also corresponds to the center position of the microscanner deflection.
  • the dotted line represents a DOA value of 6°, which corresponds to a partial light distribution of -6° to +6° on the measuring screen and represents the widest partial light distribution.
  • An asymmetrical partial light distribution occurs when the middle position of the partial light distribution does not correspond to the middle position or the zero position of the microscanner deflection. This is the case if, for example, the respective microscanners are arranged rotated relative to one another by an angle. In the example shown below Figures 5A , 5B and 5C the first angle ALPHA is +2° and the second angle ALPHA ' is -2°. The center position of the partial light distribution is therefore shifted by 2° in each case. By twisting the microscanner, a horizontally broader basic light distribution is generated. In order to continue to obtain an area with the maximum light intensity in the center of the overall light distribution, the light focal points of the partial light distributions must be shifted back to the center. This is done via the LSPV parameter, which leaves the vibration amplitude of the microscanner unchanged, However, the area in which the microscanner oscillates the slowest is brought closer to the center of the overall light distribution or closer to the center on the measuring screen.
  • Figure 5A shows the first partial light distributions of the first laser scanner and Figure 5B second partial light distributions of the second laser scanner, several partial light distributions with different oscillation amplitudes or for different opening angles of the total light distribution (DOA value) being shown again.
  • DOA value the total light distribution
  • Figure 6A it can be seen that with high DOA values only the left cut-off of the partial light distribution is shifted inwards. At a DOA value of 4° (in this example) there is a transition to a symmetrical partial light distribution, whereby both the left and the right cut-off line move inward evenly.
  • Figure 6B basically shows the first partial light distributions Figure 6A only mirrored.
  • Figure 6C shows the overlays of the partial light distributions Figures 6A and 6B for different DOA values.
  • the brightness profile of the partial light distributions or the basic light distributions that can be generated is not generated solely via the angular velocity of the microscanner, since this cannot generate any desired velocity profiles, but the laser light sources are additionally dimmed. This is particularly necessary in the edge area, since the microscanner has a limited maximum speed.
  • the laser light source is switched off or deactivated completely.
  • the control device 400 is set up to control the laser light sources accordingly.
  • the curves shown above can be improved by additional dimming of the laser light sources in the "left" and "right” edge area, such as in Figure 6D be improved in terms of a smooth transition from light to dark.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Claims (8)

  1. Système d'éclairage (10) pour un véhicule automobile, lequel système d'éclairage (10) comprend:
    - un premier scanner laser (100) avec au moins une source de lumière laser (110), un premier microscanner (120) étant associé à la source de lumière laser (110), lequel premier microscanner (120) est conçu pour diriger des rayons laser de la source de lumière laser (110) sur un premier élément de conversion de lumière (130), ce qui fait qu'une lumière visible est émise sur le premier élément de conversion de lumière (130) et qu'une première image lumineuse est produite, un système optique de reproduction (140) étant associé au premier élément de conversion de lumière (130) pour reproduire la première image lumineuse devant le système d'éclairage (10) sous la forme d'une première répartition partielle de la lumière (150),
    - un deuxième scanner laser (200) avec au moins une source de lumière laser (210), un deuxième microscanner (220) étant associé à la source de lumière laser (210), lequel deuxième microscanner (220) est conçu pour diriger des rayons laser de la source de lumière laser (210) sur un deuxième élément de conversion de lumière (230), ce qui fait qu'une lumière visible est émise sur le deuxième élément de conversion de lumière (230) et qu'une deuxième image lumineuse est produite, un système optique de reproduction (240) étant associé au deuxième élément de conversion de lumière (230) pour reproduire la deuxième image lumineuse devant le système d'éclairage (10) sous la forme d'une deuxième répartition partielle de lumière (250),
    la première et la deuxième répartition partielle de la lumière (150, 250) étant modifiables en fonction d'au moins trois paramètres (AMP, LSVP, OFFSET) réglables sur les microscanners respectifs (120, 220),
    la première et la deuxième répartition partielle de lumière (150, 250) modifiables produisant une répartition totale de lumière (300) commune modifiable devant le système d'éclairage (10) et se chevauchant au moins partiellement, la répartition totale de lumière (300) présentant un angle d'ouverture,
    et le premier et le deuxième microscanner (120, 220) étant respectivement montés rotatifs autour d'un axe (X1, X2) qui sont disposés parallèlement l'un à l'autre, le premier et le deuxième microscanner (120, 220) pouvant tourner autour d'une position zéro avec une amplitude d'oscillation AMP pouvant être fixée autour de l'axe respectif (X1, X2), l'amplitude d'oscillation AMP étant limitée par une valeur maximale MEMSmax, l'amplitude d'oscillation AMP déterminant une largeur horizontale de la répartition partielle de lumière (150, 250) respectivement générée,
    et dans lequel le premier et le deuxième microscanner (120, 220) sont disposés le long d'une ligne imaginaire, la position zéro du premier microscanner (120) étant inclinée d'un premier angle ALPHA et la position zéro du deuxième microscanner (220) étant inclinée d'un deuxième angle ALPHA' par rapport à la ligne imaginaire, le premier et le deuxième angle ALPHA, ALPHA' étant inverses l'un de l'autre,
    et la première et la deuxième répartition partielle de la lumière (150, 250) présentant chacune un centre de gravité de la lumière qui est caractérisé par le fait que l'intensité lumineuse respective est maximale en ce point, le centre de gravité de la lumière pouvant être déplacé sur les microscanners respectifs (120, 220) en fonction d'un décalage du centre de gravité de la lumière LSPV pouvant être fixé,
    et les répartitions partielles de lumière (150, 250) pouvant être déplacées chacune d'une valeur de décalage OFFSET pouvant être amenée aux microscanners respectifs (120, 220),
    - un dispositif de commande (400) qui est conçu pour commander le premier et le deuxième microscanners (120, 220), le comportement oscillatoire du premier et du deuxième microscanners (120, 220) pouvant être commandé au moins par l'intermédiaire des paramètres amplitude d'oscillation AMP, déplacement du centre de gravité de la lumière LSVP et valeur de décalage OFFSET, qui peuvent être modifiés par le dispositif de commande (400),
    caractérisé en ce que
    le dispositif de commande (400) est conçu pour recevoir une grandeur d'entrée DOA variable dans le temps, qui représente un angle d'ouverture de consigne de la répartition globale de la lumière (300), et pour modifier les paramètres amplitude d'oscillation AMP, décalage du centre de gravité de la lumière LSVP, et valeur de décalage OFFSET du premier et du deuxième microscanner (120, 220) en fonction du résultat de l'examen d'un critère de la grandeur d'entrée DOA, à savoir DOA ≤ (MEMSmax - ALPHA), l'amplitude d'oscillation maximale MEMSmax représentant l'angle maximal autour de l'axe respectif (X1, X2), et, si le critère est satisfait, les paramètres du premier microscanner (120) étant fixés comme suit :
    AMP = DOA
    OFFSET = ALPHA
    LSPV = 0°.
    et les paramètres du deuxième microscanner (220) sont fixés comme suit :
    AMP = DOA
    OFFSET = -ALPHA
    LSPV = 0°.
    et, si le critère n'est pas satisfait, les paramètres du premier microscanner (120) sont fixés comme suit: AMP = DOA + MEMSmax ALPHA / 2
    Figure imgb0025
    OFFSET = MEMSmax AMP
    Figure imgb0026
    LSPV = DOA AMP
    Figure imgb0027
    et les paramètres du deuxième microscanner (220) sont fixés comme suit : AMP = DOA + MEMSmax ALPHA / 2
    Figure imgb0028
    OFFSET = MEMSmax AMP
    Figure imgb0029
    LSPV = DOA AMP .
    Figure imgb0030
  2. Système d'éclairage selon la revendication 1, caractérisé en ce que les sources de lumière laser (110, 210) sont graduables.
  3. Système d'éclairage selon la revendication 1 ou 2, caractérisé en ce que, mesuré à partir de la ligne imaginaire, le premier angle ALPHA est de 2° et le deuxième angle ALPHA' est de -2°.
  4. Système d'éclairage selon l'une des revendications 1 à 3, caractérisé en ce que les microscanners (120, 220) sont des microscanners quasi-statiques.
  5. Système d'éclairage selon l'une des revendications 1 à 4, caractérisé en ce que la valeur maximale MEMSmax de l'amplitude d'oscillation AMP des microscanners (120, 220) est de 6°.
  6. Système d'éclairage selon l'une des revendications 1 à 5, caractérisé en ce que le dispositif de commande (400) pilote les sources lumineuses laser (110, 210).
  7. Véhicule automobile comportant au moins un système d'éclairage (10) selon l'une des revendications 1 à 6.
  8. Véhicule automobile selon la revendication 7, caractérisé en ce que l'angle d'ouverture de consigne de la répartition lumineuse globale DOA, variable dans le temps, varie en fonction de la vitesse du véhicule automobile, l'angle d'ouverture de consigne DOA étant réduit en cas d'augmentation de la vitesse du véhicule automobile.
EP19805972.7A 2018-12-18 2019-11-21 Système d'éclairage pour un véhicule automobile Active EP3899360B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18213455.1A EP3671017A1 (fr) 2018-12-18 2018-12-18 Système d'éclairage pour un véhicule automobile
PCT/EP2019/082119 WO2020126298A1 (fr) 2018-12-18 2019-11-21 Système d'éclairage pour un véhicule à moteur

Publications (2)

Publication Number Publication Date
EP3899360A1 EP3899360A1 (fr) 2021-10-27
EP3899360B1 true EP3899360B1 (fr) 2022-06-29

Family

ID=64744652

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18213455.1A Withdrawn EP3671017A1 (fr) 2018-12-18 2018-12-18 Système d'éclairage pour un véhicule automobile
EP19805972.7A Active EP3899360B1 (fr) 2018-12-18 2019-11-21 Système d'éclairage pour un véhicule automobile

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18213455.1A Withdrawn EP3671017A1 (fr) 2018-12-18 2018-12-18 Système d'éclairage pour un véhicule automobile

Country Status (4)

Country Link
EP (2) EP3671017A1 (fr)
KR (1) KR102537719B1 (fr)
CN (1) CN113242949B (fr)
WO (1) WO2020126298A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077013A (zh) * 1992-03-03 1993-10-06 彭格智 机动车无耀光无眩目会车车灯
JP5842467B2 (ja) * 2010-11-16 2016-01-13 株式会社リコー アクチュエータ装置、このアクチュエータ装置用の保護カバー、このアクチュエータの製造方法、このアクチュエータ装置を用いた光偏向装置、二次元光走査装置及びこれを用いた画像投影装置
FR2993831B1 (fr) * 2012-07-27 2015-07-03 Valeo Vision Systeme d'eclairage adaptatif pour vehicule automobile
DE102013216318A1 (de) * 2013-08-16 2015-02-19 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Scheinwerferanordnung für ein Fahrzeug und Scheinwerferanordnung
AT516666B1 (de) * 2014-11-24 2016-12-15 Zkw Group Gmbh Messung der Schwingamplitude eines Scannerspiegels
AT516848B1 (de) * 2015-04-27 2016-09-15 Zizala Lichtsysteme Gmbh Verfahren zum Ansteuern eines Lichtscanners in einem Scheinwerfer für Fahrzeuge sowie Scheinwerfer
AT517524B1 (de) * 2015-08-03 2017-10-15 Zkw Group Gmbh Laserbeleuchtungsvorrichtung für Fahrzeugscheinwerfer

Also Published As

Publication number Publication date
KR102537719B1 (ko) 2023-05-30
EP3899360A1 (fr) 2021-10-27
CN113242949A (zh) 2021-08-10
CN113242949B (zh) 2023-10-10
WO2020126298A1 (fr) 2020-06-25
KR20210093297A (ko) 2021-07-27
EP3671017A1 (fr) 2020-06-24

Similar Documents

Publication Publication Date Title
EP3209928B1 (fr) Procédé de réalisation d'une distribution de lumiere sur une chaussée au moyen d'un phare de véhicule automobile
EP3289282B1 (fr) Procédé de commande d'un dispositif de balayage optique dans un projecteur de véhicule
EP3158259B1 (fr) Procédé et projecteur pour produire une répartition de la lumière sur une chaussée
DE102012223610B4 (de) Beleuchtungsvorrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug mit einer Beleuchtungsvorrichtung
EP3394505B1 (fr) Procédé de commande d'un phare de véhicule automobile
AT517524B1 (de) Laserbeleuchtungsvorrichtung für Fahrzeugscheinwerfer
AT517519B1 (de) Verfahren zum Ansteuern einer Laserbeleuchtungsvorrichtung für einen Fahrzeugscheinwerfer
AT518093B1 (de) Verfahren zur Steuerung eines Kraftfahrzeugscheinwerfers
DE102013226624A1 (de) Beleuchtungseinrichtung
DE102015212758B3 (de) Projektionsoptik und Projektionseinheit für ein Kraftfahrzeug
WO2016087076A1 (fr) Dispositif d'éclairage pour un véhicule, système d'éclairage à deux dispositifs d'éclairage et procédé pour faire fonctionner le système d'éclairage
EP3194839B1 (fr) Projecteur laser muni d'un élément de déviation de la lumière mobile
DE102014220115A1 (de) Verfahren zum Ansteuern einer Ablenkeinrichtung für eine Projektionsvorrichtung, Ablenkeinrichtung für eine Projektionsvorrichtung und Projektionsvorrichtung
AT513909A1 (de) Scheinwerfer für ein Kraftfahrzeug und Verfahren zum Erzeugen einer Lichtverteilung
EP3899360B1 (fr) Système d'éclairage pour un véhicule automobile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019004834

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0041675000

Ipc: F21S0041176000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/176 20180101AFI20220405BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20220519

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1501565

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004834

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221031

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004834

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 5

Ref country code: DE

Payment date: 20231121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191121

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231121