EP3882711A1 - Mouvement horloger comprenant un echappement muni d'un systeme magnetique - Google Patents

Mouvement horloger comprenant un echappement muni d'un systeme magnetique Download PDF

Info

Publication number
EP3882711A1
EP3882711A1 EP20164020.8A EP20164020A EP3882711A1 EP 3882711 A1 EP3882711 A1 EP 3882711A1 EP 20164020 A EP20164020 A EP 20164020A EP 3882711 A1 EP3882711 A1 EP 3882711A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
anchor
escape wheel
mechanical
potential energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20164020.8A
Other languages
German (de)
English (en)
Inventor
M. Gianni DI DOMENICO
M. Dominique LECHOT
M. Marc STRANCZL
M. Benoît LÉGERET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP20164020.8A priority Critical patent/EP3882711A1/fr
Priority to US17/189,359 priority patent/US12045011B2/en
Priority to JP2021034141A priority patent/JP7177199B2/ja
Priority to CN202110291335.3A priority patent/CN113495472B/zh
Publication of EP3882711A1 publication Critical patent/EP3882711A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • G04B15/08Lever escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/26Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/002Component shock protection arrangements
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/047Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using other coupling means, e.g. electrostrictive, magnetostrictive
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means

Definitions

  • the invention relates to watch movements comprising an escapement provided with a magnetic system. More particularly, the invention relates to an escapement provided with a magnetic coupling system between an escape wheel and an anchor separate from the mechanical resonator, this anchor having an axis of rotation different from that of the mechanical resonator. As with a Swiss anchor, the anchor exhibits a reciprocating motion which is synchronous with the periodic motion of the mechanical resonator, but different.
  • magnetic escapement one understands an escapement provided with magnets arranged partly on the anchor and partly on the escape wheel so as to generate a magnetic coupling between the anchor and the escape wheel.
  • the first document proposes a combination of a magnetic escapement performing alone the function of the escapement in the normal operating range of the exhaust, when the torque supplied to the escape wheel is less than a nominal torque, and of a mechanical escapement which takes over, ensuring the function of the escapement in addition to the magnetic escapement, when the torque applied to the anchor is greater than the nominal torque, in particular during an impact that the mechanical movement may undergo .
  • the second document EP 3,208,667 more precisely describes a magnetic escapement with an anchor mechanically coupled to the mechanical resonator and magnetically to the escapement wheel, the latter having two annular magnetic tracks formed by a planar and continuous magnetized structure, which defines ramps of magnetic potential energy and magnetic barriers for at minus one magnetic pallet of the anchor which is arranged to alternately follow sections of the two magnetic tracks, this magnetic pallet being formed by a magnet.
  • the two aforementioned documents therefore propose mechanical means complementary to the magnetic coupling system between the escape wheel and the anchor to prevent the escape wheel from making unwanted additional steps in the event of impacts or other significant accelerations undergone by mechanical movement.
  • the inventors have demonstrated a particular problem with magnetic escapements, which arises from the fact that the magnetic force is conservative.
  • a magnetic barrier of the rotating escape wheel comes into abutment against a magnetic pallet of the anchor, it is observed that the escape wheel undergoes a recoil and then an oscillating movement which can last for a relatively long time.
  • the wheel exhaust has stabilized substantially in a stop position corresponding to a magnetic potential energy determined for a given torque of force which is applied to this escapement wheel by a barrel via a cog of the watch movement.
  • the invention proposes to provide a solution to this specific problem.
  • the invention relates to a watch movement, as defined in claim 1, which comprises a mechanical resonator and an escapement which is associated with this mechanical resonator, the escapement comprising an escape wheel and an anchor separate from the mechanical resonator and whose axis of rotation is different from that of the mechanical resonator.
  • the mechanical resonator is coupled to the anchor such that, when this mechanical resonator exhibits an oscillation, the anchor undergoes an alternating movement between two rest positions in which the anchor remains alternately during successive time intervals.
  • the anchor comprises at least one magnetic pallet formed by a magnet and the escape wheel comprises a periodic magnetized structure which defines a plurality of increasing ramps of magnetic potential energy for said magnetic pallet, each of these increasing ramps of energy.
  • magnetic potential being arranged so that said magnetic pallet can climb it when the anchor is in a corresponding rest position among the two rest positions and a force torque supplied to the escape wheel is equal to a torque of nominal force or within a range of values which is intended for a normal operation of the watch movement.
  • said magnetic vane and said plurality of increasing ramps of magnetic potential energy are arranged so that the anchor experiences a pulse of magnetic force in the direction of its movement, after said magnetic vane has climbed any one of said increasing ramps d.
  • the anchor comprises at least one mechanical stop and the escape wheel comprises protrusions.
  • the anchor and the escape wheel are arranged so that when said torque of force is equal to said torque of nominal force or has a value in at least an upper part of said range of values and when the anchor has said reciprocating movement, one of said protruding parts of the escape wheel undergoes at least an impact on a mechanical stopper among said at least one mechanical stopper after said magnetic vane has climbed any one of said increasing ramps of magnetic potential energy following a tilting of the anchor in the rest position allowing this magnetic pallet to climb said any ramp of magnetic potential energy, said at least one shock occurring so as to at least partially dissipate a kinetic energy of the escape wheel acquired following said changeover.
  • the periodic magnetized structure further defines for the magnetic pallet magnetic barriers located respectively following the increasing ramps of magnetic potential energy, each of these magnetic barriers being arranged so as to exert a torque of magnetic force. on the escape wheel, having a direction opposite to that of said torque of force supplied to this escape wheel, when the escape wheel is in an angular position of equilibrium of the forces exerted on it while the magnetic pallet is located at the top of the magnetic potential energy ramp which precedes the considered magnetic barrier, said magnetic force torque being greater than a maximum magnetic force torque generated by the magnetic potential energy ramp preceding the considered magnetic barrier before the escape wheel reaches said angular position of equilibrium of the strengths.
  • the hybrid escapement of the invention can generate, in normal operation of the watch movement, pulses of magnetic force supplied to the anchor. in the direction of its movement during the tilting of this anchor between its two rest positions during its reciprocating movement, by an accumulation of magnetic potential energy between at least one magnetic paddle, carrying a magnet, and a periodic magnetized structure, carried by the escape wheel, allowing the magnetic paddle to successively climb ramps of magnetic potential energy, which are formed respectively by circular arc portions of the periodic magnetized structure successively coupled to the magnetic paddle, while the anchor is in at least one of its two resting positions.
  • Such a magnetic coupling is generally obtained when the magnetic pallet is successively superimposed on said portions in an arc of a circle.
  • the not entirely elastic shocks provided between projecting parts of the escape wheel and at least one mechanical stop of the anchor, following each accumulation of magnetic potential energy between the anchor and the escape wheel, allows the kinetic energy of the escape wheel to be dissipated, so as to damp at least a first rebound of the escape wheel and thus allow a relatively rapid stopping of the escape wheel, in particular before a next tilt of the anchor.
  • the escapement is arranged so that, following said impact and before a subsequent tilting of the anchor, the escape wheel momentarily comes to a standstill in an angular stop position which is said angular position of balance of forces.
  • the projecting part is located at a distance from the mechanical stop in the angular stop position, the projecting part and the mechanical stopper thus not being in contact in this angular stop position.
  • the watch movement is of the mechanical type and comprises a mechanical resonator 2, of which only the axis 4, the small plate 6 having a notch 8 and the pin 10 have been shown.
  • the watch movement comprises an escapement 12 which is associated with the mechanical resonator, the small plate and the pin of which are elements forming this escapement.
  • the escapement 12 further comprises an escape wheel 16 and an anchor 14 which is a member separate from the mechanical resonator and whose axis of rotation is different from that of this mechanical resonator.
  • the anchor is formed, on the one hand, by a rod 20 terminated by a fork 18 which comprises two horns 19a and 19b and, on the other hand, by two arms 24, 26 whose free ends respectively form two mechanical paddles 28 , 29 which define two mechanical stops.
  • the two mechanical paddles respectively support two magnets 30, 32 which form two magnetic paddles of the anchor.
  • the mechanical resonator is coupled to the anchor so that, when the mechanical resonator oscillates normally, this anchor undergoes a reciprocating movement, synchronized with the oscillation of the mechanical resonator, between two rest positions, defined by two limiting pins 21 and 22, in which the anchor remains alternately during successive time intervals which are greater than one third of the nominal period T0 of said oscillation.
  • the escape wheel 16 comprises a periodic magnetized structure 36 arranged on a disc 34 preferably made of non-magnetic material (which does not conduct magnetic fields).
  • the structure 36 has portions 38 in an arc of a circle defining increasing ramps of magnetic potential energy for the two magnetic vanes 30, 32 which each have an axial magnetization with a polarity opposite to that of the axial magnetization of the periodic magnetized structure.
  • the periodic magnetized structure 36 is arranged so that its outer periphery is circular, the arcuate portions 38 of this magnetized structure having the same configuration and being arranged circularly around the axis of rotation of the wheel. exhaust.
  • each increasing ramp of magnetic potential energy is provided so that each of the two magnetic paddles can climb it when the anchor is in a given rest position among its two rest positions and a torque of force M RE supplied to the escape wheel is substantially equal to a torque of nominal force (case of a mechanical movement fitted with a constant force system for driving the escape wheel) or included in a range of values intended to ensure the normal functioning of the watch movement (case of a conventional mechanical movement exhibiting a variable force torque applied to the escape wheel depending on the level of winding of the barrel or barrels if several are provided in series).
  • the increasing ramps of magnetic potential energy are climbed when the anchor undergoes a reciprocating movement between its two rest positions and when the torque of force M RE supplied to the escape wheel is equal to said torque of nominal force or included in the range of values provided for this torque force in normal operation, successively by each of the first and second magnetic paddles when the anchor is respectively in its first and second rest positions, and alternately by these first and second magnetic paddles during movement alternative of the anchor.
  • the two magnetic paddles and the increasing ramps of magnetic potential energy are arranged so that the anchor can undergo a pulse of magnetic force in the direction of its movement, after any of the two magnetic paddles has climbed any of said ramps. increasing magnetic potential energy, when the anchor switches from the rest position corresponding to this any ramp of magnetic potential energy to the other rest position.
  • the escape wheel further comprises protrusions which are respectively associated with increasing ramps of magnetic potential energy.
  • These protruding parts are formed, in the variant shown, by teeth 42 extending radially from a plate 40 integral with the escape wheel and located above the disc 34 carrying the magnetized structure 36. These teeth are located, in superposition, respectively at the end of the magnetized portions 38 which define the increasing ramps of magnetic potential energy, that is to say at the top of these increasing ramps.
  • the teeth 42 are arranged to cooperate with the mechanical vanes 28 and 29, which form mechanical stops for these teeth and therefore for the escape wheel.
  • the teeth and mechanical paddles are formed by a non-magnetic material.
  • the projecting parts are formed by teeth which extend in a general plane in which also extend the two mechanical vanes of the anchor respectively supporting the two magnets 30, 32 which are also located in the plane.
  • the figures only show a lower magnet structure, located below the general plane mentioned above.
  • the escape wheel further comprises an upper magnetized structure, of the same configuration as the lower magnetized structure and supported by an upper disc preferably formed of a non-magnetic material.
  • the lower and upper magnet structures together form the periodic magnet structure. They have the same magnetic polarity, opposite to that of the two magnets of the anchor, and are arranged on either side of the geometric plane in which these two magnets forming the two magnetic vanes are located, preferably at the same distance.
  • the anchor and the escape wheel are arranged so that, in normal operation (that is to say for a torque of force M RE supplied to the escape wheel substantially equal to a torque of nominal force or within a range of values ensuring normal operation of the watch movement and in particular correct step-by-step rotation of the escape wheel), one of the teeth of the escape wheel is subjected to a impact on one of the two mechanical pallets of the anchor after the corresponding magnetic pallet has climbed any of the increasing ramps of magnetic potential energy following a tilting of the anchor.
  • This shock occurs so as to at least partially dissipate a kinetic energy of the escape wheel acquired following said tilting.
  • This shock is therefore not a hard shock (totally elastic shock).
  • at least a first shock is not soft (totally inelastic shock), but it is partially elastic so that the escape wheel undergoes at least one rebound after this first shock.
  • the exhaust of the invention is called a hybrid exhaust '.
  • the hybrid escapement is arranged so that the escape wheel momentarily comes to rest in an angular stop position after any one of the teeth 42 has abutted any of the two. mechanical pallets and before a subsequent tilting of the anchor.
  • a tooth 42 presses against a mechanical stop formed by one or the other of the two. mechanical pallets.
  • the shocks are at least partially inelastic so that the anchor and / or the escape wheel, or even the cog which drives it, absorb and dissipate kinetic energy of this escape wheel with each impact.
  • the magnetic forces are conservative, so that only the friction exerted on the escape wheel, or even the cog that drives it, and the impacts between a tooth and a mechanical pallet can absorb energy. kinetics and therefore damping an oscillation generated following said first shock after the escape wheel has stored magnetic potential energy in the hybrid escapement.
  • FIGS 1A to 1F show various successive stages of an oscillating mechanical resonator 2 and of a hybrid exhaust 12.
  • the anchor 14 is stationary in a first rest position and the resonator balance is rotated towards its neutral position (minimum mechanical potential energy).
  • the magnet 30, forming the first magnetic pallet is located at the top of an increasing ramp of magnetic potential energy (superposition of the magnet with a part of a magnetized portion 38 having a relatively large width).
  • each magnetized portion 38 has a monotonically increasing width and its end part, which has the largest widths, extends beyond the magnet associated with the mechanical pallet in the positive angular direction (the wheel exhaust rotating in steps in the negative angular direction) while this mechanical vane presses against a tooth, so that the escape wheel undergoes a positive magnetic force and therefore a positive magnetic force torque which decreases, for the force torque supplied to the escape wheel, the tangential mechanical force exerted by the tooth on the mechanical pallet and therefore the force normal to the surface contact point of this mechanical pallet.
  • the width of the magnetized portions increases, over the whole of their useful length, linearly as a function of the angle at the center.
  • the accumulation of magnetic potential energy is linear as a function of the angle of rotation of the escape wheel for each of the increasing ramps of magnetic potential energy and the magnetic force exerted on the escape wheel. is constant when a magnetic pallet climbs this increasing ramp to an angular stop position of the escape wheel in which one of its teeth is resting against the corresponding mechanical pallet, the same constant magnetic force then being exerted still on the escape wheel in this angular stop position.
  • the static friction and the dynamic friction between the tooth and the mechanical pallet are reduced, so that the torque required for the next tilting of the anchor is reduced.
  • the magnetic system of the hybrid escapement makes it possible, on the one hand, to accumulate magnetic potential energy in the escapement to generate pulses of magnetic force applied to the anchor and, on the other hand, to reduce the release torque that must be provided by the mechanical resonator each time the anchor is tilted.
  • the reduction in friction makes it possible to reduce the energy losses due to the mechanical contact between the anchor and the escape wheel before each tilting of the anchor between its two rest positions.
  • the Figure 1B shows a stage of the operation of the hybrid escapement where the anchor has just been released by the pin 10 of the mechanical resonator 2 and switches between its first rest position and its second rest position.
  • the magnet 30 moves radially (relative to the escape wheel) and passes from a state superimposed on the magnetized portion 38, corresponding to a state of high magnetic potential energy, to a state not superimposed on this magnetized portion corresponding to a state of low magnetic potential energy; which generates a pulse of magnetic force applied to the magnetic paddle (magnet 30) and thus the anchor undergoes a torque of magnetic force, so that the anchor then becomes driving for the mechanical resonator.
  • the Figure 1C shows the anchor in its second resting position just after a tip-over.
  • the escape wheel 16 then rotates one step in the negative direction and the magnet 32 climbs an increasing ramp of magnetic potential energy thanks to the force torque supplied to the escape wheel.
  • the Figure 1D shows a rebound of the escape wheel after a first impact of a tooth 42 on the mechanical pallet 29 while the mechanical resonator is in an angular position close to its amplitude.
  • the Figure 1E shows a stage corresponding to that of Figure 1A but for the anchor at rest in its second resting position. In the angular stop position of the escape wheel shown in Figure 1E , a tooth 42 presses against an outer surface of the second mechanical vane 29.
  • Figure 1F shows a coupling between the mechanical resonator and the anchor during which a pulse of magnetic force occurs again, as in the Figure 1B but applied to the second vane so that the resulting magnetic force torque is in the opposite direction to that of this Figure 1B .
  • the second embodiment is generally distinguished from the first embodiment in that the periodic magnetized structure 36A further defines for each of the two magnetic paddles magnetic barriers 50 located respectively following the increasing ramps of magnetic potential energy defined by the magnetized portions 38A, these magnetic barriers being formed in particular by magnetized areas 50 of the structure 36A, the radial dimension of which is substantially equal to or greater than the longitudinal dimension of each of the two magnets 30 and 32 forming the magnetic paddles of the anchor.
  • Each magnetized pad / magnetic barrier is arranged so as to exert a torque of magnetic force on the escape wheel 16A, having a direction opposite to that of said force torque supplied to this escape wheel, when this escape wheel is in an angular position of equilibrium of the forces acting on it while one or the other of the two magnetic vanes is located at the top of the magnetic potential energy ramp / at the widest end of the portion magnet 38A which precedes the magnetic barrier / the magnetized pad 50 considered.
  • the arrangement of the magnetic barriers is provided so that the torque of magnetic force exerted on the escape wheel in each angular position of balance of forces is greater than a maximum torque of magnetic force generated by the ramp. magnetic potential energy / the magnetized portion 38A preceding the considered magnetic barrier before the escape wheel reaches the angular position of balance of forces.
  • the magnetized areas must form relatively large magnetic barriers to ensure the desired synchronization between the reciprocating movement of the anchor and the step-by-step rotation of the escape wheel and also to prevent the escapement from stalling too quickly in the event of accelerations that the watch movement could undergo.
  • the peaks of magnetic potential energy formed here by the magnetized areas for each magnetic paddle are greater than those which are necessary in the second embodiment of the invention and which appear at Figures 5 and 6 , which will be described later.
  • a curve 54, 56 of magnetic potential energy EP M defined by the periodic magnetized structure of the escape wheel for each of the two magnetic paddles of the anchor, in function of the angle ⁇ of this escape wheel is given.
  • the two curves 54 and 56 are similar, but phase-shifted by about 180 ° and they each define a magnetic period PM.
  • Each curve has increasing ramps of magnetic potential energy 60, 60A and magnetic barriers 62, 62A each defined by a peak of magnetic potential energy.
  • the general behavior is as follows: In a first rest position of the anchor, a first magnetic paddle climbs a ramp 60 up to a certain height of magnetic potential energy then that the escape wheel turns continuously, then the escape wheel undergoes an oscillation in a zone of 'free' oscillation ZO L around a certain point of equilibrium of forces PE M (shown more precisely in Figure 4 ) due to the magnetic barrier which follows each ramp, and finally the first magnetic paddle undergoes, under the action of the oscillating mechanical resonator, a fall of magnetic potential energy 64 during the next tilting of the anchor in its second position rest. This drop in magnetic potential energy corresponds to a pulse of magnetic force applied to the anchor.
  • the second magnetic paddle in turn climbs a ramp 60A due to the fact that it is superimposed on the magnetic structure.
  • the second magnetic paddle which undergoes an impulse of magnetic force and the first magnetic paddle climbs, if necessary, a small step of magnetic potential energy.
  • each ramp 60, 60A generates a magnetic force G1 which corresponds to a torque of magnetic force on the escape wheel having an intensity less than the torque of force supplied to the escape wheel when this torque of force is equal to the torque. nominal force or within the range of values expected in normal operation. It will be noted that in a variant where the two magnetic paddles are coupled simultaneously and alternately to two magnetic tracks during the accumulation of magnetic potential energy, it is the double of the aforementioned magnetic force torque that should be considered.
  • each magnetic barrier 62, 62A brakes the escape wheel in an angular magnetic braking zone ZF M which depends on the torque supplied to the escape wheel.
  • ZF M angular magnetic braking zone
  • the kinetic energy of the escape wheel can only be dissipated by friction in the bearings of the escape wheel and possibly in the cog that drives it.
  • the escape wheel undergoes a 'free' oscillation in an angular zone of 'free' oscillation ZO L (that is to say without energy absorption by a mechanical stop) around a point of balance of forces PE M where the torque of force supplied to the escape wheel is compensated by the torque of magnetic force (without considering the friction forces) which is generated by the magnetic force G2 (gradient of the curve 54 at the position angular PE M ).
  • the point of equilibrium of the forces PE M therefore corresponds to a determined angular position of the escape wheel in which it can be stationary in a stable manner without contact between this escape wheel and the anchor.
  • each magnetic barrier in the embodiment described in Figures 3 and 4 , corresponds in curves 54 and 56 to a potential energy peak having a wall with a relatively steep slope G3.
  • the magnetic escapement described with reference to Figures 3 and 4 has an operational problem due to the oscillation of the escape wheel after a ramp of magnetic potential energy has been climbed by a magnetic vane. As stated, there is little dissipation of the kinetic energy of the escape wheel (arising from the difference in intensity between G1 and G2) arriving against a magnetic barrier, so this oscillation has an amplitude that can be quite large. important and low damping. On the one hand, if a tilting of the anchor occurs while the escape wheel is still oscillating, the drop in magnetic potential energy 64 is variable and therefore poorly defined. There is thus no constant maintenance of the mechanical resonator, which is a disadvantage.
  • the arrangement of magnetic barriers 50 in combination with the teeth 42 of the escape wheel in the second embodiment of the invention has the consequence that various variants may arise for a given hybrid anchor, with its mechanical paddles and paddles. magnetic, according to the relative angular positioning between each tooth and the corresponding magnetic barrier and also according to the type of drive of the escape wheel.
  • a hybrid pallet which is formed by a mechanical pallet 28A supporting a magnet 31 which defines a magnetic pallet associated with the curve 70, is shown along the axis of the angular position ⁇ of the escape wheel while this the latter is in a stop position, after absorption of its kinetic energy following an accumulation of magnetic potential energy and before a subsequent tilting of the anchor.
  • the mechanical pallet 28A has a half-width DL which corresponds to the distance between the center of mass of the magnet 31 and the stop surface defined by this mechanical pallet for the teeth 42 of the escape wheel 16A.
  • the anchor 14A and the escape wheel 16A are arranged so that one of the teeth 42 of the escape wheel is impacted on a mechanical pallet of the anchor, in particular the mechanical pallet 28A, after the pallet corresponding magnetic, in particular the magnet 31, has climbed any one of the increasing ramps of magnetic potential energy, in particular a ramp 60.
  • this shock occurs so as to at least partially dissipate a kinetic energy of the escape wheel.
  • the teeth of the escape wheel are designed to absorb the kinetic energy of this escape wheel, after an accumulation of magnetic potential energy in the escapement for a next maintenance pulse of the mechanical resonator, and limiting a terminal oscillation during each step of its stepping rotation.
  • the anchor 14A and the escape wheel 16A are arranged so that, after at least a first impact between a mechanical pallet and a tooth, the escape wheel stops, before the anchor tilts again to the during its reciprocating movement between its two rest positions, at an angular stop position, which is by definition an angular position of equilibrium of forces, in which the tooth 42 having undergone said impact presses against the mechanical pallet.
  • the angular stop position PE D is defined by a tooth bearing against a mechanical pallet. Thanks to this characteristic, the angular stop positions are precisely defined by the protrusions and the pulses of magnetic force which are periodically supplied to the anchor have a constant intensity.
  • this first variant generates a small loss of energy because of the friction between the tooth and the mechanical pallet during the tilting of the anchor.
  • the angular stop position PE D is upstream of the angular position PE M.
  • the magnetic force in each position PE D which corresponds to an equilibrium of the forces present, is given by the gradient G4 of curve 70, respectively 72, at this position PE D.
  • the situation corresponding to the first variant is characterized by a distance PB1 between the angular position PE M and the point of contact of the tooth 42 which is less than the half-width DL of the mechanical pallet 28A (PB1 ⁇ DL).
  • the second variant differs from the first variant by the fact that the angular stop position is the angular position PE M , given that, in this second variant, the anchor 14A and the escape wheel 16A are arranged so that, after at least a first impact between a mechanical pallet and a tooth, the escape wheel stops, before the anchor tilts again during its reciprocating movement between its two rest positions, to an angular position stop in which said tooth is located at a distance from said mechanical pallet, this angular stop position then corresponding to the angular position PE M of balance of forces without mechanical stop described above, in which the torque of the magnetic force of the system magnet of the escapement and the constant force torque M RE ct supplied to the escape wheel have the same intensity (apart from the friction forces).
  • the anchor and the escape wheel are arranged so that the distance DB between the contact surface of said mechanical pallet and the point of contact of said tooth is less than one angular distance defined by the magnetic braking zone ZF M (DB ⁇ ZF M ).
  • the magnetic force in each angular position PE M which corresponds to an angular stop position for the escape wheel, is given by the gradient G5 of the curve 70, respectively 72, at this position PE M. It will be noted that the value of the gradient G5 is necessarily greater than that of the gradient G4 occurring in the first variant.
  • the situation corresponding to the second variant is characterized by a distance PB2 between the angular position PE M and the point of contact of the tooth 42 which is greater than the half-width DL of the mechanical pallet 28A (PB2> DL). It will be noted that the angular position PE M is determined by the constant force torque M RE ct .
  • the distance between the contact surface of the considered mechanical pallet and the point of contact of the considered tooth is called 'DB', this distance being a function of the force torque M RE .
  • the magnetic braking zone, in the fictitious absence of stop teeth at the escape wheel, is called “ZF M ”, the extent of this zone being a function of the force torque M RE .
  • a main variant there is provided for the entire range of values PV M of the force torque M RE at least a first impact between any one of the teeth 42 of the escape wheel and any mechanical pallet of the anchor, in particular the mechanical pallet 28A, after the corresponding magnetic pallet has climbed one of the increasing ramps of magnetic potential energy associated with this corresponding magnetic pallet and with the tooth in question.
  • This first main variant is expressed by the relation: ZF M (MRE min )> PB (MRE min ) - DL.
  • a first secondary variant it is provided for the entire range of values PV M of the torque force M RE that the escape wheel stops, after said at least one first impact and before a subsequent tilting of the anchor, at an angular stop position in which the tooth which has undergone said at least one first impact presses against the mechanical pallet.
  • This first secondary variant is expressed by the mathematical relation: PB (M RE min ) ⁇ DL.
  • a second secondary variant provision is made for the entire range of values PV M of the force torque M RE for the escape wheel to stop, after said at least one first impact and before a subsequent tilting of the anchor, at an angular stop position in which the tooth which has undergone said at least one first impact is located at a distance from the mechanical pallet against which it has abutted.
  • This second secondary variant is expressed by the mathematical relation: PB (M RE max )> DL.
  • the tooth having undergone said at least one impact presses, once momentarily at rest in the angular stop position, against the mechanical pallet against which it has abutted when the force torque M RE supplied to the escape wheel has a value in an upper zone ZS PS of said upper part PS2 M of the range of values PV M.
  • the escape wheel stops, after said at least one impact and before a subsequent tilting of the anchor, at an angular stop position in which the tooth which has undergone said at least one impact is located at a distance from the mechanical pallet against which it has come up against.
  • the Figure 2A shows a stage of the operation of the hybrid escapement 12A of the second embodiment where the anchor 14 is in one of its two rest positions and the escape wheel 16A is stationary.
  • the Figures 2A to 2F relate to an operating variant in which the force torque supplied to the escape wheel does not allow a tooth 42 to bear against a mechanical pallet 28 or 29 when it is stopped after having accumulated potential energy magnetic, by climbing a ramp of magnetic potential energy, and before a subsequent tilting of the anchor.
  • the distance between the point of contact of the tooth 42 and the contact surface of the mechanical pallet 28 at the Figure 2A , respectively 29 at the Figure 2F is advantageously low.
  • the anchor has just been released by the pin 10 of the mechanical resonator 2 and it switches between its first rest position and its second rest position.
  • the magnet 30 moves radially and passes from a state superimposed on the magnetized portion 38A, corresponding to a state of high magnetic potential energy, to a state not superimposed on this magnetized portion corresponding to a state of low magnetic potential energy; which generates a pulse of magnetic force applied to the magnetic pallet (magnet 30) and thus the anchor is subjected to a force torque, so that the anchor then becomes a driving force for the mechanical resonator.
  • the Figure 2C shows the anchor in its second resting position just after a tip-over.
  • the escape wheel 16A then rotates one step in the negative direction and the magnet 32 climbs an increasing ramp of magnetic potential energy (magnetized portion 38A) thanks to the torque supplied to the escape wheel.
  • the Figure 2D shows a first impact between a tooth 42 and the mechanical pallet 29 after the escapement 12A, formed of the anchor 14 and the escape wheel 16A, has climbed an increasing ramp of magnetic potential energy.
  • the Figure 2E shows a rebound of the escape wheel after the first impact of a tooth 42 on the mechanical pallet 29 shown in the previous figure.
  • the Figure 2F shows a stage corresponding to that of Figure 2A , but with the anchor 14 stationary in its second rest position.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromechanical Clocks (AREA)
  • Toys (AREA)
  • Micromachines (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Mouvement horloger comprenant un résonateur mécanique (2) et un échappement hybride (12) comprenant une roue d'échappement (16) et une ancre (14), l'ancre comprenant au moins une palette magnétique formée d'un aimant (30) et associée à une butée mécanique (28), la roue d'échappement comprenant une structure aimantée périodique (36), qui définit des rampes croissantes d'énergie potentielle magnétique (38) pour la palette magnétique, et des parties saillantes (42) associées aux rampes croissantes d'énergie potentielle magnétique. L'échappement hybride est agencé de manière que, lorsque le couple de force est égal à un couple de force nominale ou présente une valeur dans au moins une partie supérieure d'une plage de valeurs donnée, une desdites parties saillantes de la roue d'échappement subit au moins un choc sur la butée mécanique de l'ancre après que la palette magnétique a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique, ledit choc intervenant de manière à dissiper au moins partiellement une énergie cinétique de la roue d'échappement.

Description

    Domaine technique
  • L'invention est relative aux mouvements horlogers comprenant un échappement muni d'un système magnétique. Plus particulièrement, l'invention concerne un échappement muni d'un système de couplage magnétique entre une roue d'échappement et une ancre séparée du résonateur mécanique, cette ancre ayant un axe de rotation différent de celui du résonateur mécanique. Comme pour une ancre suisse, l'ancre présente un mouvement alternatif qui est synchrone du mouvement périodique du résonateur mécanique, mais différent. Par échappement magnétique, on comprend un échappement muni d'aimants agencés en partie sur l'ancre et en partie sur la roue d'échappement de manière à engendrer un couplage magnétique entre l'ancre et la roue d'échappement.
  • Arrière-plan technologique
  • Divers mouvements horlogers à échappement magnétique ont déjà été proposés dans des demandes de brevet. Concernant les échappements magnétiques comprenant une ancre séparée du résonateur mécanique, on peut citer le document EP 2 894 522 et le document EP 3 208 667 . Le premier document propose une combinaison d'un échappement magnétique réalisant seul la fonction de l'échappement dans la plage de fonctionnement normal de l'échappement, lorsque le couple fourni à la roue d'échappement est inférieur à un couple nominal, et d'un échappement mécanique qui prend le relais, en assurant la fonction de l'échappement en complément de l'échappement magnétique, lorsque le couple appliqué à l'ancre est supérieur au couple nominal, notamment lors d'un choc que peut subir le mouvement mécanique. Le second document EP 3 208 667 décrit plus précisément un échappement magnétique avec une ancre couplée mécaniquement au résonateur mécanique et magnétiquement à la roue d'échappement, cette dernière présentant deux pistes magnétiques annulaires formées par une structure aimantée plane et continue, laquelle définit des rampes d'énergie potentielle magnétique et des barrières magnétiques pour au moins une palette magnétique de l'ancre qui est agencée pour suivre alternativement des tronçons des deux pistes magnétiques, cette palette magnétique étant formée par un aimant. En référence à la figure 20 de ce document, il est proposé d'agencer des butées mécaniques complémentaires entre l'ancre et la roue d'échappement, afin d'assurer que l'échappement ne décroche pas en cas de choc. Ces butées complémentaires sont disposées de manière à bloquer l'avance de la roue d'échappement lorsque l'aimant d'une palette magnétique de l'ancre traverse partiellement une barrière magnétique suite à un choc.
  • Les deux documents susmentionnés proposent donc des moyens mécaniques complémentaires au système de couplage magnétique entre la roue d'échappement et l'ancre pour éviter que la roue d'échappement effectue des pas supplémentaires intempestifs en cas de chocs ou d'autres accélérations importantes subies par le mouvement mécanique.
  • Résumé de l'invention
  • Les inventeurs ont mis en évidence un problème particulier avec les échappements magnétiques, lequel provient du fait que la force magnétique est conservative. Lorsqu'une barrière magnétique de la roue d'échappement tournante arrive en butée contre une palette magnétique de l'ancre, on observe que la roue d'échappement subit un recul et ensuite un mouvement d'oscillation qui peut durer relativement longtemps. Pour assurer un comportement constant et efficace de l'échappement magnétique, il est avantageux que, avant que l'ancre ne soit entraînée en rotation par le résonateur mécanique au cours de chaque alternance de ce dernier, la roue d'échappement se soit stabilisée sensiblement dans une position d'arrêt correspondant à une énergie potentielle magnétique déterminée pour un couple de force donné qui est appliqué à cette roue d'échappement par un barillet via un rouage du mouvement horloger.
  • On constate donc que le mouvement d'oscillation subi par la roue d'échappement, chaque fois qu'une barrière magnétique vient buter contre une palette magnétique de l'ancre, limite la fréquence de fonctionnement de l'échappement magnétique et donc la fréquence d'oscillation du résonateur mécanique. Ceci est un inconvénient car une grande fréquence d'oscillation, par exemple supérieure à 4 Hz, permet de mieux résister aux chocs et également d'augmenter le facteur de qualité du résonateur mécanique.
  • La présente invention se propose d'apporter une solution à ce problème spécifique. A cet effet, l'invention concerne un mouvement horloger, tel que défini à la revendication 1, qui comprend un résonateur mécanique et un échappement qui est associé à ce résonateur mécanique, l'échappement comprenant une roue d'échappement et une ancre séparée du résonateur mécanique et dont l'axe de rotation est différent de celui du résonateur mécanique. Le résonateur mécanique est couplé à l'ancre de manière que, lorsque ce résonateur mécanique présente une oscillation, l'ancre subit un mouvement alternatif entre deux positions de repos dans lesquelles l'ancre demeure alternativement durant des intervalles de temps successifs. L'ancre comprend au moins une palette magnétique formée d'un aimant et la roue d'échappement comprend une structure aimantée périodique qui définit une pluralité de rampes croissantes d'énergie potentielle magnétique pour ladite palette magnétique, chacune de ces rampes croissantes d'énergie potentielle magnétique étant agencée de sorte que ladite palette magnétique peut la gravir lorsque l'ancre est dans une position de repos correspondante parmi les deux positions de repos et qu'un couple de force fourni à la roue d'échappement est égal à un couple de force nominale ou compris dans une plage de valeurs qui est prévue pour un fonctionnement normal du mouvement horloger. Ensuite, ladite palette magnétique et ladite pluralité de rampes croissantes d'énergie potentielle magnétique sont agencées de manière que l'ancre subit une impulsion de force magnétique dans le sens de son mouvement, après que ladite palette magnétique a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique, lorsque l'ancre bascule d'une des deux positions de repos ayant permis à cette palette magnétique de gravir ladite quelconque rampe croissante d'énergie potentielle magnétique vers l'autre position de repos. De plus, l'ancre comprend au moins une butée mécanique et la roue d'échappement comprend des parties saillantes. Finalement, l'ancre et la roue d'échappement sont agencées de manière que, lorsque ledit couple de force est égal audit couple de force nominale ou présente une valeur dans au moins une partie supérieure de ladite plage de valeurs et lorsque l'ancre présente ledit mouvement alternatif, une desdites parties saillantes de la roue d'échappement subit au moins un choc sur une butée mécanique parmi ladite au moins une butée mécanique après que ladite palette magnétique a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique suite à un basculement de l'ancre dans la position de repos permettant à cette palette magnétique de gravir ladite quelconque rampe d'énergie potentielle magnétique, ledit au moins un choc intervenant de manière à dissiper au moins partiellement une énergie cinétique de la roue d'échappement acquise suite audit basculement.
  • Selon un mode réalisation préféré, la structure aimantée périodique définit en outre pour la palette magnétique des barrières magnétiques situées respectivement à la suite des rampes croissantes d'énergie potentielle magnétique, chacune de ces barrières magnétiques étant agencée de manière à exercer un couple de force magnétique sur la roue d'échappement, ayant un sens contraire à celui dudit couple de force fourni à cette roue d'échappement, lorsque la roue d'échappement est dans une position angulaire d'équilibre des forces qui s'exercent sur elle alors que la palette magnétique est située en haut de la rampe d'énergie potentielle magnétique qui précède la barrière magnétique considérée, ledit couple de force magnétique étant supérieur à un couple de force magnétique maximal engendré par la rampe d'énergie potentielle magnétique précédant la barrière magnétique considérée avant que la roue d'échappement atteigne ladite position angulaire d'équilibre des forces.
  • Grâce aux caractéristiques de l'invention, l'échappement hybride de l'invention, c'est-à-dire du type magnétique et mécanique, peut générer, en fonctionnement normal du mouvement horloger, des impulsions de force magnétique fournies à l'ancre dans le sens de son mouvement lors des basculements de cette ancre entre ses deux positions de repos au cours de son mouvement alternatif, par une accumulation d'énergie potentielle magnétique entre au moins une palette magnétique, portant un aimant, et une structure aimantée périodique, portée par la roue d'échappement, en permettant à la palette magnétique de gravir successivement des rampes d'énergie potentielle magnétique, qui sont formées respectivement par des portions en arc de cercle de la structure aimantée périodique couplées successivement à la palette magnétique, alors que l'ancre est dans au moins une de ses deux positions de repos. Un tel couplage magnétique est généralement obtenu lorsque la palette magnétique est successivement superposée auxdites portions en arc de cercle. De plus, les chocs non entièrement élastiques prévus entre des parties saillantes de la roue d'échappement et au moins une butée mécanique de l'ancre, suite à chaque accumulation d'énergie potentielle magnétique entre l'ancre et la roue d'échappement, permet de dissiper de l'énergie cinétique que présente la roue d'échappement, de sorte à amortir au moins un premier rebond de la roue d'échappement et ainsi permettre un arrêt relativement rapide de la roue d'échappement, notamment avant un prochain basculement de l'ancre.
  • Selon une variante avantageuse, l'échappement est agencé de manière que, suite audit choc et avant un prochain basculement de l'ancre, la roue d'échappement s'immobilise momentanément dans une position angulaire d'arrêt qui est ladite position angulaire d'équilibre des forces.
  • Selon un premier cas de la variante avantageuse susmentionnée, une fois la roue d'échappement momentanément à l'arrêt dans la position angulaire d'arrêt, la partie saillante est en appui contre la butée mécanique dans la position angulaire d'arrêt.
  • Selon un deuxième cas de la variante avantageuse susmentionnée, une fois la roue d'échappement momentanément à l'arrêt dans la position angulaire d'arrêt, la partie saillante est située à distance de la butée mécanique dans la position angulaire d'arrêt, la partie saillante et la butée mécanique n'étant ainsi pas en contact dans cette position angulaire d'arrêt.
  • Brève description des figures
  • L'invention sera décrite ci-après de manière plus détaillée à l'aide des dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :
    • Les Figures 1A à 1F montrent partiellement un mouvement horloger selon un premier mode de réalisation de l'invention avec son échappement hybride dans des positions successives ;
    • Les Figures 2A à 2F montrent partiellement un mouvement horloger selon un deuxième mode de réalisation de l'invention avec l'échappement hybride dans des positions successives ;
    • La Figure 3 représente, pour un mouvement horloger muni d'un échappement ayant un système magnétique du type du deuxième mode de réalisation mais réalisé sans butée mécanique selon l'art antérieur, une courbe d'énergie potentielle magnétique pour chacune des deux positions de repos de l'ancre en fonction de l'angle de cette roue d'échappement, ainsi qu'un tracé simplifié de l'énergie potentielle magnétique d'une palette magnétique de l'ancre en fonction de l'angle de la roue d'échappement lors du fonctionnement normal du mouvement horloger ;
    • La Figure 4 représente, pour le mouvement horloger de la Figure 3, le comportement précis de la roue d'échappement après qu'une palette magnétique de l'ancre a gravi une rampe d'énergie potentielle magnétique définie par la structure aimantée périodique ;
    • La Figure 5 expose schématiquement, pour un mouvement horloger selon le deuxième mode de réalisation de l'invention, une première variante d'agencement et de fonctionnement de son échappement hybride à l'aide d'une courbe de l'énergie potentielle magnétique accumulée par une palette magnétique de l'ancre en fonction de l'angle de la roue d'échappement ;
    • La Figure 6 expose schématiquement, pour un mouvement horloger selon le deuxième mode de réalisation de l'invention, une deuxième variante d'agencement et de fonctionnement de son échappement hybride à l'aide d'une courbe de l'énergie potentielle magnétique accumulée par une palette magnétique de l'ancre en fonction de l'angle de la roue d'échappement.
    Description détaillée de l'invention
  • A l'aide des Figures 1A à 1F on décrira ci-après un premier mode de réalisation d'un mouvement horloger selon l'invention.
  • Le mouvement horloger est du type mécanique et comprend un résonateur mécanique 2, dont seulement l'axe 4, le petit plateau 6 présentant une encoche 8 et la cheville 10 ont été représentés. Le mouvement horloger comprend un échappement 12 qui est associé au résonateur mécanique dont le petit plateau et la cheville sont des éléments formant cet échappement. L'échappement 12 comprend en outre une roue d'échappement 16 et une ancre 14 qui est un organe séparé du résonateur mécanique et dont l'axe de rotation est différent de celui de ce résonateur mécanique.
  • L'ancre est formée, d'une part, par une baguette 20 terminée par une fourchette 18 qui comprend deux cornes 19a et 19b et, d'autre part, par deux bras 24, 26 dont les extrémités libres forment respectivement deux palettes mécaniques 28, 29 qui définissent deux butées mécaniques. Les deux palettes mécaniques supportent respectivement deux aimants 30, 32 qui forment deux palettes magnétiques de l'ancre. On peut donc dire que l'ancre possède des palettes hybrides, mécaniques et magnétiques, chaque palette magnétique étant associée à une palette mécanique. Le résonateur mécanique est couplé à l'ancre de manière que, lorsque le résonateur mécanique oscille normalement, cette ancre subit un mouvement alternatif, synchronisé sur l'oscillation du résonateur mécanique, entre deux positions de repos, définies par deux goupilles de limitation 21 et 22, dans lesquelles l'ancre demeure alternativement durant des intervalles de temps successifs qui sont supérieurs au tiers de la période nominale T0 de ladite oscillation.
  • La roue d'échappement 16 comprend une structure aimantée périodique 36 agencée sur un disque 34 de préférence en matériau amagnétique (ne conduisant pas les champs magnétiques). La structure 36 présente des portions 38 en arc de cercle définissant des rampes croissantes d'énergie potentielle magnétique pour les deux palettes magnétiques 30, 32 qui présentent chacune une aimantation axiale avec une polarité opposée à celle de l'aimantation axiale de la structure aimantée périodique. Selon une variante avantageuse, la structure aimantée périodique 36 est agencée de sorte que son pourtour extérieur est circulaire, les portions 38 en arc de cercle de cette structure aimantée ayant une même configuration et étant agencées circulairement autour de l'axe de rotation de la roue d'échappement.
  • De manière générale, chaque rampe croissante d'énergie potentielle magnétique est prévue de sorte que chacune des deux palettes magnétiques puisse la gravir lorsque l'ancre est dans une position de repos donnée parmi ses deux positions de repos et qu'un couple de force MRE fourni à la roue d'échappement est sensiblement égal à un couple de force nominale (cas d'un mouvement mécanique muni d'un système à force constante pour l'entraînement de la roue d'échappement) ou compris dans une plage de valeurs prévues pour assurer le fonctionnement normal du mouvement horloger (cas d'un mouvement mécanique classique présentant un couple de force variable appliqué à la roue d'échappement en fonction du niveau d'armage du barillet ou des barillets si plusieurs sont prévus en série). Les rampes croissantes d'énergie potentielle magnétique sont gravies, lorsque l'ancre subit un mouvement alternatif entre ses deux positions de repos et lorsque le couple de force MRE fourni à la roue d'échappement est égal audit couple de force nominale ou compris dans la plage de valeurs prévues pour ce couple de force en fonctionnement normal, successivement par chacune des première et deuxième palettes magnétiques lorsque l'ancre est respectivement dans ses première et deuxième positions de repos, et alternativement par ces première et deuxième palettes magnétiques lors du mouvement alternatif de l'ancre. Les deux palettes magnétiques et les rampes croissantes d'énergie potentielle magnétique sont agencées de manière que l'ancre puisse subir une impulsion de force magnétique dans le sens de son mouvement, après qu'une quelconque des deux palettes magnétiques a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique, lorsque l'ancre bascule de la position de repos correspondant à cette quelconque rampe d'énergie potentielle magnétique vers l'autre position de repos.
  • Le fonctionnement normal d'un mouvement mécanique classique (sans système à force constante) est généralement obtenu, notamment pour assurer le fonctionnement de l'oscillateur formé du résonateur mécanique et de l'échappement, avec un couple de force MRE fourni à la roue d'échappement dont la valeur est dans une certaine plage de valeurs permettant l'entretien du résonateur mécanique à une fréquence nominale d'oscillation prévue et le comptage des alternances de cet oscillateur. Toutefois, pour avoir un fonctionnement optimal avec un mouvement horloger ayant un échappement muni d'un système de couplage magnétique entre la roue d'échappement et l'ancre, tel que décrit ci-avant, et pour tirer totalement profit des avantages d'un tel système de couplage magnétique, un système hybride décrit ci-après est prévu dans le cadre de l'invention.
  • La roue d'échappement comprend en outre des parties saillantes qui sont associées respectivement aux rampes croissantes d'énergie potentielle magnétique. Ces parties saillantes sont formées, dans la variante représentée, par des dents 42 s'étendant radialement depuis un plateau 40 solidaire de la roue d'échappement et situé au-dessus du disque 34 portant la structure aimantée 36. Ces dents sont situées, en superposition, respectivement en fin des portions aimantées 38 qui définissent les rampes croissantes d'énergie potentielle magnétique, c'est-à-dire en haut de ces rampes croissantes. Comme exposé par la suite, les dents 42 sont agencées pour coopérer avec les palettes mécaniques 28 et 29, lesquelles forment des butées mécaniques pour ces dents et donc pour la roue d'échappement. Les dents et les palettes mécaniques sont formées par un matériau amagnétique. Dans une variante générale, les parties saillantes sont formées par des dents qui s'étendent dans un plan général dans lequel s'étendent également les deux palettes mécaniques de l'ancre supportant respectivement les deux aimants 30, 32 qui sont aussi situés dans le plan général. Les figures ne montrent qu'une structure aimantée inférieure, située en-dessous du plan général susmentionné. Toutefois, dans une variante avantageuse, la roue d'échappement comprend en outre une structure aimantée supérieure, de même configuration que la structure aimantée inférieure et supportée par un disque supérieur formé de préférence d'un matériau amagnétique. Les structures aimantées inférieure et supérieure forment ensemble la structure aimantée périodique. Elles ont une même polarité magnétique, opposée à celle des deux aimants de l'ancre, et sont agencées de part et d'autre du plan géométrique dans lequel sont situés ces deux aimants formant les deux palettes magnétiques, de préférence à même distance.
  • Dans le cas du premier mode de réalisation, l'ancre et la roue d'échappement sont agencées de manière que, en fonctionnement normal (c'est-à-dire pour un couple de force MRE fourni à la roue d'échappement sensiblement égal à un couple de force nominale ou compris dans une plage de valeurs assurant le fonctionnement normal du mouvement horloger et notamment une rotation pas-à-pas correcte de la roue d'échappement), une des dents de la roue d'échappement subit un choc sur une des deux palettes mécaniques de l'ancre après que la palette magnétique correspondante a gravi une quelconque des rampes croissantes d'énergie potentielle magnétique suite à un basculement de l'ancre. Ce choc intervient de manière à dissiper au moins partiellement une énergie cinétique de la roue d'échappement acquise suite audit basculement. Ce choc n'est donc pas un choc dur (choc totalement élastique). Dans un cas pratique, au moins un premier choc n'est pas mou (choc totalement inélastique), mais il est partiellement élastique de sorte que la roue d'échappement subit au moins un rebond après ce premier choc. Ainsi, l'échappement de l'invention est nommé échappement hybride'.
  • Dans une variante avantageuse du premier mode de réalisation, l'échappement hybride est agencé de manière que la roue d'échappement s'immobilise momentanément dans une position angulaire d'arrêt après qu'une quelconque des dents 42 a buté contre une quelconque des deux palettes mécaniques et avant un basculement suivant de l'ancre. En fonctionnement normal et une fois la roue d'échappement momentanément à l'arrêt dans une quelconque position angulaire d'arrêt de la roue d'échappement, une dent 42 presse contre une butée mécanique formée par l'une ou l'autre des deux palettes mécaniques.
  • Pour minimiser la durée d'immobilisation de la roue d'échappement, les chocs sont au moins partiellement inélastiques de sorte que l'ancre et/ou la roue d'échappement, voire le rouage qui l'entraîne, absorbent et dissipent de l'énergie cinétique de cette roue d'échappement à chaque choc. On remarquera que plus l'absorption de l'énergie cinétique est grande lors d'un choc entre une dent et une palette mécanique, meilleur sera l'amortissement de l'oscillation intervenant après le premier choc. On notera que les forces magnétiques sont conservatives, de sorte que seuls les frottements qui s'exercent sur la roue d'échappement, voire le rouage qui l'entraîne, et les chocs entre une dent et une palette mécanique peuvent absorber de l'énergie cinétique et donc amortir une oscillation engendrée suite audit premier choc après que la roue d'échappement a emmagasiné de l'énergie potentielle magnétique dans l'échappement hybride.
  • Pour illustrer le fonctionnement de l'échappement hybride du premier mode de réalisation, les Figures 1A à 1F montrent divers stades successifs d'un résonateur mécanique oscillant 2 et d'un échappement hybride 12. A la Figure 1A, l'ancre 14 est à l'arrêt dans une première position de repos et le balancier du résonateur subit une rotation en direction de sa position neutre (énergie potentielle mécanique minimale). L'aimant 30, formant la première palette magnétique, est situé en haut d'une rampe croissante d'énergie potentielle magnétique (superposition de l'aimant avec une partie d'une portion aimantée 38 présentant une relativement grande largeur). Lorsque la roue d'échappement 16 est dans une position angulaire d'arrêt, une fois la roue d'échappement momentanément à l'arrêt, et l'ancre dans sa première position de repos, une dent 42 est en appui contre une butée mécanique formée par la première palette mécanique 28, cette dent pressant contre une surface intérieure de cette première palette mécanique. On est donc dans une situation d'équilibre des forces qui s'exercent sur la roue d'échappement.
  • Dans la variante avantageuse représentée, chaque portion aimantée 38 présente une largeur monotone croissante et sa partie terminale, qui présente les plus grandes largeurs, s'étend au-delà de l'aimant associé à la palette mécanique dans le sens angulaire positif (la roue d'échappement tournant par pas dans le sens angulaire négatif) alors que cette palette mécanique presse contre une dent, de sorte que la roue d'échappement subit une force magnétique de sens positif et donc un couple de force magnétique positif qui diminue, pour le couple de force fourni à la roue d'échappement, la force mécanique tangentielle exercée par la dent sur la palette mécanique et donc la force normale à la surface de contact de cette palette mécanique. En particulier, la largeur des portions aimantées augmente, sur l'entier de leur longueur utile, de manière linéaire en fonction de l'angle au centre. Ainsi, l'accumulation d'énergie potentielle magnétique est linéaire en fonction de l'angle de rotation de la roue d'échappement pour chacune des rampes croissantes d'énergie potentielle magnétique et la force magnétique qui s'exerce sur la roue d'échappement est constante lorsqu'une palette magnétique gravit cette rampe croissante jusqu'à une position angulaire d'arrêt de la roue d'échappement dans laquelle une de ses dents est en appui contre la palette mécanique correspondante, la même force magnétique constante s'exerçant alors encore sur la roue d'échappement dans cette position angulaire d'arrêt.
  • Grâce aux caractéristiques de cette variante avantageuse, le frottement statique et le frottement dynamique entre la dent et la palette mécanique sont diminués, de sorte que le couple nécessaire au prochain basculement de l'ancre est moindre. Ainsi, le système magnétique de l'échappement hybride permet, d'une part, d'accumuler de l'énergie potentielle magnétique dans l'échappement pour engendrer des impulsions de force magnétique appliquées à l'ancre et, d'autre part, de réduire le couple de dégagement que doit fournir le résonateur mécanique lors de chaque basculement de l'ancre. En d'autres termes, la réduction des frottements permet de diminuer les pertes d'énergie dues au contact mécanique entre l'ancre et la roue d'échappement avant chaque basculement de l'ancre entre ses deux positions de repos.
  • La Figure 1B montre un stade du fonctionnement de l'échappement hybride où l'ancre vient d'être dégagée par la cheville 10 du résonateur mécanique 2 et bascule entre sa première position de repos et sa deuxième position de repos. Lors de ce mouvement de l'ancre, l'aimant 30 se déplace radialement (par rapport à la roue d'échappement) et passe d'un état superposé à la portion aimantée 38, correspondant à un état de haute énergie potentielle magnétique, à un état non superposé à cette portion aimantée correspondant à un état de faible énergie potentielle magnétique ; ce qui engendre une impulsion de force magnétique appliquée à la palette magnétique (aimant 30) et ainsi l'ancre subit un couple de force magnétique, de sorte que l'ancre devient alors entraîneuse pour le résonateur mécanique. La Figure 1C montre l'ancre dans sa deuxième position de repos juste après un basculement. La roue d'échappement 16 tourne alors d'un pas dans le sens négatif et l'aimant 32 gravit une rampe croissante d'énergie potentielle magnétique grâce au couple de force fourni à la roue d'échappement. La Figure 1D montre un rebond de la roue d'échappement après un premier choc d'une dent 42 sur la palette mécanique 29 alors que le résonateur mécanique est dans une position angulaire proche de son amplitude. La Figure 1E montre un stade correspondant à celui de la Figure 1A mais pour l'ancre à l'arrêt dans sa deuxième position de repos. Dans la position angulaire d'arrêt de la roue d'échappement représentée à la Figure 1E, une dent 42 presse contre une surface extérieure de la deuxième palette mécanique 29. Finalement, la Figure 1F montre un couplage entre le résonateur mécanique et l'ancre au cours duquel intervient à nouveau une impulsion de force magnétique, comme à la Figure 1B mais appliquée à la deuxième palette de sorte que le couple de force magnétique résultant est de sens opposé à celui de cette Figure 1B.
  • A l'aide des Figures 2A à 2F et 3 à 6, on décrira diverses variantes d'un deuxième mode de réalisation d'un mouvement horloger selon l'invention (à noter que les figures 3 et 4 sont données à titre explicatif, mais ne concernent pas des variantes de l'invention). Les références déjà décrites précédemment ne seront pas décrites à nouveau en détails.
  • Le deuxième mode de réalisation se distingue généralement du premier mode de réalisation par le fait que la structure aimantée périodique 36A définit en outre pour chacune des deux palettes magnétiques des barrières magnétiques 50 situées respectivement à la suite des rampes croissantes d'énergie potentielle magnétique définies par les portions aimantées 38A, ces barrières magnétiques étant formées notamment par des plages aimantées 50 de la structure 36A dont la dimension radiale est sensiblement égale ou supérieure à la dimension longitudinale de chacun des deux aimants 30 et 32 formant les palettes magnétiques de l'ancre. Chaque plage aimantée / barrière magnétique est agencée de manière à exercer un couple de force magnétique sur la roue d'échappement 16A, ayant un sens contraire à celui dudit couple de force fourni à cette roue d'échappement, lorsque cette roue d'échappement est dans une position angulaire d'équilibre des forces qui s'exercent sur elle alors qu'une ou l'autre des deux palettes magnétiques est située en haut de la rampe d'énergie potentielle magnétique / à l'extrémité la plus large de la portion aimantée 38A qui précède la barrière magnétique / la plage aimantée 50 considérée. L'agencement des barrières magnétiques est prévu de sorte que le couple de force magnétique qui s'exerce sur la roue d'échappement dans chaque position angulaire d'équilibre des forces est supérieur à un couple de force magnétique maximal engendré par la rampe d'énergie potentielle magnétique / la portion aimantée 38A précédant la barrière magnétique considérée avant que la roue d'échappement atteigne la position angulaire d'équilibre des forces.
  • Avant de décrire plus en détails diverses variantes du deuxième mode de réalisation, on décrira à l'aide des Figures 3 et 4 le fonctionnement d'un mouvement horloger muni d'un échappement magnétique ayant un système magnétique du type du deuxième mode de réalisation mais réalisé sans butée mécanique. Par 'type du deuxième mode de réalisation', on comprend en particulier un échappement muni d'un système magnétique qui comprend, d'une part, une structure aimantée périodique qui est portée par la roue d'échappement et présentant, dans un plan inférieur et/ou un plan supérieur, une seule piste magnétique circulaire formée par une succession de portions aimantées semblables (dans un système de référence « r, θ » avec r = rayon et θ = angle au centre de la roue) séparées par des plages aimantées et, d'autre part, deux palettes magnétiques portées par l'ancre qui sont alternativement couplées avec la structure aimantée périodique. Comme l'échappement concerné par les Figures 3 et 4 est purement magnétique, les plages aimantées doivent former des barrières magnétiques relativement importantes pour assurer la synchronisation voulue entre le mouvement alternatif de l'ancre et la rotation pas-à-pas de la roue d'échappement et également pour éviter que l'échappement décroche trop rapidement en cas d'accélérations que pourrait subir le mouvement horloger. Ainsi, les pics d'énergie potentielle magnétique que forment ici les plages aimantées pour chaque palette magnétique sont supérieurs à ceux qui sont nécessaires dans le deuxième mode de réalisation de l'invention et qui apparaissent aux Figures 5 et 6, lesquelles seront décrites par la suite.
  • Aux Figures 3 et 4, pour chacune des deux positions de repos de l'ancre, une courbe 54, 56 d'énergie potentielle magnétique EPM, définie par la structure aimantée périodique de la roue d'échappement pour chacune des deux palettes magnétiques de l'ancre, en fonction de l'angle θ de cette roue d'échappement est donnée. Les deux courbes 54 et 56 sont semblables, mais déphasées d'environ 180° et elles définissent chacune une période magnétique PM. Chaque courbe présente des rampes croissantes d'énergie potentielle magnétique 60, 60A et des barrières magnétiques 62, 62A définies chacune par un pic d'énergie potentielle magnétique. A la Figure 3, un tracé simplifié 58 de l'énergie potentielle magnétique EPM d'une palette magnétique (30 ou 32) de l'ancre (14) en fonction de l'angle θ de la roue d'échappement, lors d'un fonctionnement normal du mouvement horloger, est représenté. Le comportement général est le suivant : Dans une première position de repos de l'ancre, une première palette magnétique gravit une rampe 60 jusqu'à une certaine hauteur d'énergie potentielle magnétique alors que la roue d'échappement tourne continument, puis la roue d'échappement subit une oscillation dans une zone d'oscillation 'libre' ZOL autour d'un certain point d'équilibre des forces PEM (montré plus précisément à la Figure 4) du fait de la barrière magnétique qui succède à chaque rampe, et finalement la première palette magnétique subit, sous l'action du résonateur mécanique oscillant, une chute d'énergie potentielle magnétique 64 lors du prochain basculement de l'ancre dans sa seconde position de repos. Cette chute d'énergie potentielle magnétique correspond à une impulsion de force magnétique appliquée à l'ancre. Durant le pas suivant, alors que la première palette magnétique est hors de la structure magnétique (en superposition) et présente alors une énergie potentielle magnétique sensiblement nulle, la seconde palette magnétique gravit à son tour une rampe 60A du fait qu'elle est superposée à la structure magnétique. Lors du basculement suivant de l'ancre, c'est la seconde palette magnétique qui subit une impulsion de force magnétique et la première palette magnétique gravit, le cas échéant, une petite marche d'énergie potentielle magnétique. Ainsi, l'énergie transmise à l'ancre à chaque pas de la roue d'échappement correspond à la différence entre la chute et la marche que subit alternativement chacune des deux palettes magnétiques, l'énergie transmise par période magnétique PM correspondant au double de cette différence.
  • A la Figure 4 sont indiquées quelques forces magnétiques engendrées par une palette magnétique sur la structure aimantée périodique de la roue d'échappement en fonction de la position angulaire de cette roue. Les forces magnétiques en présence sont données par les gradients de la courbe 54 d'énergie potentielle magnétique. Ainsi, chaque rampe 60, 60A engendre une force magnétique G1 qui correspond à un couple de force magnétique sur la roue d'échappement ayant une intensité inférieure au couple de force fourni à la roue d'échappement lorsque ce couple de force est égal au couple de force nominale ou compris dans la plage de valeurs prévues en fonctionnement normal. On remarquera que dans une variante où les deux palettes magnétiques sont couplées simultanément et alternativement à deux pistes magnétiques lors de l'accumulation d'énergie potentielle magnétique, c'est le double du couple de force magnétique susmentionné qui doit être considéré. En l'absence de butées mécaniques, comme indiqué à la Figure 4, chaque barrière magnétique 62, 62A freine la roue d'échappement dans une zone angulaire ZFM de freinage magnétique qui dépend du couple de force fourni à la roue d'échappement. Comme la force magnétique est conservative, l'énergie cinétique de la roue d'échappement ne peut être dissipée que par les frottements dans les paliers de la roue d'échappement et éventuellement dans le rouage qui l'entraîne. Ainsi, la roue d'échappement subit une oscillation 'libre' dans une zone angulaire d'oscillation 'libre' ZOL (c'est-à-dire sans absorption d'énergie par une butée mécanique) autour d'un point d'équilibre des forces PEM où le couple de force fourni à la roue d'échappement est compensé par le couple de force magnétique (sans considérer les forces de frottement) qui est engendré par la force magnétique G2 (gradient de la courbe 54 à la position angulaire PEM). Le point d'équilibre des forces PEM correspond donc à une position angulaire déterminée de la roue d'échappement dans laquelle elle peut être à l'arrêt de manière stable sans contact entre cette roue d'échappement et l'ancre. Le point d'équilibre des forces PEM et la zone angulaire d'oscillation 'libre' ZOL varient en fonction du couple de force fourni à la roue d'échappement. L'intensité de la force magnétique G2 est nécessairement supérieure à la force magnétique G1. On notera encore que chaque barrière magnétique, dans la réalisation décrite aux Figures 3 et 4, correspond dans les courbes 54 et 56 à un pic d'énergie potentielle présentant une paroi avec une pente G3 relativement forte.
  • L'échappement magnétique décrit en référence aux Figures 3 et 4 présente un problème de fonctionnement à cause de l'oscillation de la roue d'échappement après qu'une rampe d'énergie potentielle magnétique a été gravie par une palette magnétique. Comme exposé, il y a peu de dissipation de l'énergie cinétique de la roue d'échappement (découlant de la différence d'intensité entre G1 et G2) arrivant contre une barrière magnétique, de sorte que cette oscillation présente une amplitude pouvant être assez importante et un faible amortissement. D'une part, si un basculement de l'ancre intervient alors que la roue d'échappement oscille encore, la chute d'énergie potentielle magnétique 64 est variable et donc mal définie. On n'a ainsi pas un entretien constant du résonateur mécanique, ce qui est un désavantage. D'autre part, si on s'impose d'attendre que l'oscillation de la roue d'échappement soit suffisamment amortie pour être négligeable, alors la fréquence du mouvement alternatif de l'ancre doit être limitée et donc aussi la fréquence d'oscillation du résonateur mécanique. Ceci est également un désavantage. L'échappement hybride de l'invention résout ce problème.
  • L'agencement de barrières magnétiques 50 en combinaison avec les dents 42 de la roue d'échappement dans le deuxième mode de réalisation de l'invention a pour conséquence que diverses variantes peuvent se présenter pour une ancre hybride donnée, avec ses palettes mécaniques et palettes magnétiques, en fonction du positionnement angulaire relatif entre chaque dent et la barrière magnétique correspondante et aussi selon le type d'entraînement de la roue d'échappement.
  • En référence aux Figures 5 et 6, on décrira deux variantes possibles pour un mouvement d'horlogerie, selon le deuxième mode de réalisation de l'invention, muni d'un système d'entraînement de la roue d'échappement à force constante Fc, le couple de force MRE ct fourni à la roue d'échappement étant lui aussi constant. Aux Figures 5 et 6 sont représentées deux courbes 70 et 72 d'énergie potentielle magnétique EPM définies par la structure aimantée périodique 36A de la roue d'échappement 16A respectivement pour deux palettes hybrides d'une ancre hybride 14A, laquelle est similaire à l'ancre 14 représentée à la Figure 2A mais avec deux palettes hybrides présentant une forme simplifiée et symétrique. Les courbes 70, 72 sont des courbes générales, légèrement schématisées pour simplifier le dessin sans nuire aux principes physiques exposés et relations mathématiques données par la suite. Ces courbes définissent chacune, pour chaque période magnétique PM, des rampes croissantes 60, 60A avec un gradient caractéristique G1, semblables à celles décrites en référence aux Figures 3 et 4, et des barrières magnétiques 74, 74A moins élevées que les barrières magnétiques 62, 62A définies par une structure aimantée périodique prévue sans les parties saillantes d'arrêt. Les plages aimantées formant les barrières magnétiques 74, 74A peuvent ainsi être angulairement moins larges ; ce qui permet notamment d'augmenter le nombre de pas par tour pour la roue d'échappement. Le tracé 68 de l'énergie potentielle magnétique EPM de la palette magnétique 31 en fonction de l'angle θ de la roue d'échappement, lors d'un fonctionnement normal de l'échappement hybride, est également représenté aux Figures 5 et 6. On peut voir qu'il est semblable au tracé simplifié 58 de la Figure 3.
  • Une palette hybride, laquelle est formée d'une palette mécanique 28A supportant un aimant 31 qui définit une palette magnétique associée à la courbe 70, est représentée le long de l'axe de la position angulaire θ de la roue d'échappement alors que cette dernière est dans une position d'arrêt, après absorption de son énergie cinétique suite à une accumulation d'énergie potentielle magnétique et avant un prochain basculement de l'ancre. La palette mécanique 28A présente une demi-largeur DL qui correspond à la distance entre le centre de masse de l'aimant 31 et la surface de butée définie par cette palette mécanique pour les dents 42 de la roue d'échappement 16A.
  • Les deux variantes décrites s'inscrivent dans le cadre d'un mode général de l'invention dans lequel l'échappement hybride est agencé de manière que, suite à un choc d'une palette mécanique contre une quelconque des parties saillantes de la roue d'échappement et avant un prochain basculement de l'ancre, la roue d'échappement s'immobilise dans une position angulaire d'arrêt qui est une position angulaire d'équilibre des forces en présence. Aux Figures 5 et 6, la position angulaire d'équilibre des forces PEM, en l'absence (fictive) de dents d'arrêt à la roue d'échappement, et la zone de freinage magnétique ZFM qui interviendrait dans le cas fictif sans les dents 42 sont indiquées, comme exposé en référence aux Figures 3 et 4.
  • Dans la première variante représentée à la Figure 5 et également dans la deuxième variante représentée à la Figure 6, l'ancre 14A et la roue d'échappement 16A sont agencées de manière qu'une des dents 42 de la roue d'échappement subit un choc sur une palette mécanique de l'ancre, notamment la palette mécanique 28A, après que la palette magnétique correspondante, notamment l'aimant 31, a gravi une quelconque des rampes croissantes d'énergie potentielle magnétique, notamment une rampe 60. Comme dans le premier mode de réalisation, ce choc intervient de manière à dissiper au moins partiellement une énergie cinétique de la roue d'échappement. En effet, les dents de la roue d'échappement sont prévues pour absorber de l'énergie cinétique de cette roue d'échappement, après une accumulation d'énergie potentielle magnétique dans l'échappement pour une prochaine impulsion d'entretien du résonateur mécanique, et limiter une oscillation terminale lors de chaque pas de sa rotation pas-à-pas.
  • De plus, dans la première variante de la Figure 5, l'ancre 14A et la roue d'échappement 16A sont agencées de manière que, après au moins un premier choc entre une palette mécanique et une dent, la roue d'échappement s'arrête, avant que l'ancre bascule à nouveau au cours de son mouvement alternatif entre ses deux positions de repos, à une position angulaire d'arrêt, qui est par définition une position angulaire d'équilibre des forces, dans laquelle la dent 42 ayant subi ledit choc presse contre la palette mécanique. Ainsi, dans cette première variante, la position angulaire d'arrêt PED est définie par une dent en appui contre une palette mécanique. Grâce à cette caractéristique, les positions angulaires d'arrêt sont précisément définies par les parties saillantes et les impulsions de force magnétique qui sont fournies périodiquement à l'ancre présentent une intensité constante. Par contre cette première variante engendre une petite perte d'énergie à cause du frottement entre la dent et la palette mécanique lors du basculement de l'ancre. La position angulaire d'arrêt PED est en amont de la position angulaire PEM. La force magnétique dans chaque position PED, qui correspond à un équilibre des forces en présence, est donnée par le gradient G4 de la courbe 70, respectivement 72, à cette position PED. La situation correspondant à la première variante est caractérisée par une distance PB1 entre la position angulaire PEM et le point de contact de la dent 42 qui est inférieure à la demi-largeur DL de la palette mécanique 28A (PB1 < DL).
  • La deuxième variante se distingue de la première variante par le fait que la position angulaire d'arrêt est la position angulaire PEM, étant donné que, dans cette deuxième variante, l'ancre 14A et la roue d'échappement 16A sont agencées de manière que, après au moins un premier choc entre une palette mécanique et une dent, la roue d'échappement s'arrête, avant que l'ancre bascule à nouveau au cours de son mouvement alternatif entre ses deux positions de repos, à une position angulaire d'arrêt dans laquelle ladite dent est située à distance de ladite palette mécanique, cette position angulaire d'arrêt correspondant alors à la position angulaire PEM d'équilibre des forces sans butée mécanique décrite précédemment, dans laquelle le couple de force magnétique du système magnétique de l'échappement et le couple de force constant MRE ct fourni à la roue d'échappement présentent une même intensité (abstraction faite des forces de frottement). Pour que ledit premier choc selon l'invention ait lieu, l'ancre et la roue d'échappement sont agencées de manière que la distance DB entre la surface de contact de ladite palette mécanique et le point de contact de ladite dent soit inférieure à une distance angulaire définie par la zone de freinage magnétique ZFM (DB < ZFM). La force magnétique dans chaque position angulaire PEM, qui correspond à une position angulaire d'arrêt pour la roue d'échappement, est donnée par le gradient G5 de la courbe 70, respectivement 72, à cette position PEM. On notera que la valeur du gradient G5 est nécessairement supérieure à celle du gradient G4 intervenant dans la première variante. La situation correspondant à la deuxième variante est caractérisée par une distance PB2 entre la position angulaire PEM et le point de contact de la dent 42 qui est supérieur à la demi-largeur DL de la palette mécanique 28A (PB2 > DL). On notera que la position angulaire PEM est déterminée par le couple de force constant MRE ct.
  • Dans le cas d'un entraînement classique de la roue d'échappement, c'est-à-dire sans système à force constante, on peut distinguer un plus grand nombre de variantes. Pour les exposer de manière analytique, on considère un cas général où, en fonctionnement normal du mouvement horloger en question, la plage de valeurs PVM pour le couple de force MRE fourni à la roue d'échappement s'étend entre une valeur minimale MRE min et une valeur maximale MRE max supérieure à la valeur minimale : PVM = [MRE min ; MRE max]. La plage de valeurs PVM est composée d'une partie inférieure PI1M et d'une partie supérieure PS1M ou, alternativement, d'une partie inférieure PI2M et d'une partie supérieure PS2M. De plus, la partie supérieure PS2M est composée d'une zone supérieure ZSPS et d'une zone inférieure ZIPS (PS2M = ZIPS + ZSPS), la partie complémentaire PCM à la zone supérieure ZSPS dans la plage de valeurs PVM (PVM = PCM + ZSPS) étant égale à la zone inférieure ZIPS additionnée à la partie inférieure PI2M (PCM = PI2M + ZIPS). La distance entre la surface de contact de la palette mécanique considérée et le point de contact de la dent considérée est nommée 'DB', cette distance étant fonction du couple de force MRE. La zone de freinage magnétique, en l'absence fictive de dents d'arrêt à la roue d'échappement, est nommée 'ZFM', l'étendue de cette zone étant fonction du couple de force MRE.
  • Dans une variante principale, il est prévu pour toute la plage de valeurs PVM du couple de force MRE au moins un premier choc entre une quelconque des dents 42 de la roue d'échappement et une quelconque palette mécanique de l'ancre, notamment la palette mécanique 28A, après que la palette magnétique correspondante a gravi une des rampes croissantes d'énergie potentielle magnétique associée à cette palette magnétique correspondante et à la dent considérée. Cette première variante principale s'exprime par la relation : ZFM(MREmin) > PB (MREmin) - DL.
  • On peut distinguer trois variantes dans le cadre de la variante principale. Dans une première variante secondaire, il est prévu pour toute la plage de valeurs PVM du couple de force MRE que la roue d'échappement s'arrête, après ledit au moins un premier choc et avant un basculement suivant de l'ancre, à une position angulaire d'arrêt dans laquelle la dent ayant subi ledit au moins un premier choc presse contre la palette mécanique. Cette première variante secondaire s'exprime par la relation mathématique : PB (MRE min) < DL. Dans une deuxième variante secondaire, il est prévu pour toute la plage de valeurs PVM du couple de force MRE que la roue d'échappement s'arrête, après ledit au moins un premier choc et avant un basculement suivant de l'ancre, à une position angulaire d'arrêt dans laquelle la dent ayant subi ledit au moins un premier choc est située à distance de la palette mécanique contre laquelle elle a buté. Cette deuxième variante secondaire s'exprime par la relation mathématique : PB (MRE max) > DL. On peut encore distinguer une variante mixte dans le cadre de la variante principale. Dans cette variante mixte, pour une partie inférieure PI1M de la plage de valeurs PVM, la dent ayant subi ledit au moins un premier choc est située à distance de la palette mécanique contre laquelle elle a buté lorsque la roue d'échappement est momentanément immobilisée. Par contre, pour une partie supérieure PS1M de la plage de valeurs PVM, la dent ayant subi ledit au moins un premier choc presse contre la palette mécanique contre laquelle elle a buté lorsque la roue d'échappement est momentanément immobilisée. Cette variante mixte peut être exprimée par les deux relations suivantes : PB (PI1M) > DL ; PB (PS1M) < DL.
  • Dans une variante particulière, seulement pour une partie supérieure PS2M de la plage de valeurs PVM du couple de force MRE intervient au moins un choc entre une quelconque des dents 42 de la roue d'échappement et une quelconque palette mécanique de l'ancre, notamment la palette mécanique 28A, après que la palette magnétique correspondante a gravi une des rampes croissantes d'énergie potentielle magnétique associée à cette palette magnétique correspondante et à la dent considérée. Par contre, pour une partie inférieure PI2M de la plage de valeurs PVM du couple de force MRE, aucun choc n'intervient entre une des dents 42 de la roue d'échappement et une palette mécanique de l'ancre après que la palette magnétique correspondante a gravi une des rampes croissantes d'énergie potentielle magnétique associée à cette palette magnétique correspondante. Cette variante particulière peut être exprimée par les deux relations suivantes : ZFM(PS2M) > PB (PS2M) - DL et ZFM(PI2M) < PB (PI2M) - DL.
  • On peut encore distinguer deux variantes dans le cadre de la variante particulière exposée ci-dessus. Dans une variante spécifique, il est prévu pour toute la plage de valeurs PVM du couple de force MRE que la roue d'échappement s'arrête, après ledit au moins un choc et avant un prochain basculement de l'ancre, à une position angulaire d'arrêt dans laquelle la dent ayant subi ledit au moins un premier choc est située à distance de la palette mécanique contre laquelle elle a buté. Cette variante spécifique s'exprime, comme pour la deuxième variante secondaire dans le cadre de la première variante principale, par la relation: PB (MRE max) > DL. Dans une variante mixte prévue dans le cadre de la variante particulière considérée, la dent ayant subi ledit au moins un choc presse, une fois momentanément à l'arrêt dans la position angulaire d'arrêt, contre la palette mécanique contre laquelle elle a buté lorsque le couple de force MRE fourni à la roue d'échappement présente une valeur dans une zone supérieure ZSPS de ladite partie supérieure PS2M de la plage de valeurs PVM. Par contre, dans la zone inférieure ZIPS de la partie supérieure PS2M, la roue d'échappement s'arrête, après ledit au moins un choc et avant un basculement suivant de l'ancre, à une position angulaire d'arrêt dans laquelle la dent ayant subi ledit au moins un choc est située à distance de la palette mécanique contre laquelle elle a buté. Ainsi, pour la partie complémentaire PCM à la zone supérieure ZSPS dans la plage de valeurs PVM, aucune dent est en butée contre une palette mécanique dans la position angulaire d'arrêt. Cette variante mixte peut être exprimée par les deux relations suivantes : PB (PCM) > DL ; PB (ZSPS) < DL.
  • La Figure 2A montre un stade du fonctionnement de l'échappement hybride 12A du deuxième mode de réalisation où l'ancre 14 est dans une de ses deux positions de repos et la roue d'échappement 16A est à l'arrêt. Les Figures 2A à 2F concernent une variante de fonctionnement dans laquelle le couple de force fourni à la roue d'échappement ne permet pas à une dent 42 d'être en appui contre une palette mécanique 28 ou 29 lorsqu'elle est arrêtée après avoir accumuler de l'énergie potentielle magnétique, en gravissant une rampe d'énergie potentielle magnétique, et avant un prochain basculement de l'ancre. Toutefois, la distance entre le point de contact de la dent 42 et la surface de contact de la palette mécanique 28 à la Figure 2A, respectivement 29 à la Figure 2F est avantageusement faible.
  • A la Figure 2B, l'ancre vient d'être dégagée par la cheville 10 du résonateur mécanique 2 et elle bascule entre sa première position de repos et sa deuxième position de repos. Lors de ce mouvement de l'ancre, l'aimant 30 se déplace radialement et passe d'un état superposé à la portion aimantée 38A, correspondant à un état de haute énergie potentielle magnétique, à un état non superposé à cette portion aimantée correspondant à un état de faible énergie potentielle magnétique ; ce qui engendre une impulsion de force magnétique appliquée à la palette magnétique (aimant 30) et ainsi l'ancre subit un couple de force, de sorte que l'ancre devient alors entraîneuse pour le résonateur mécanique. La Figure 2C montre l'ancre dans sa deuxième position de repos juste après un basculement. La roue d'échappement 16A tourne alors d'un pas dans le sens négatif et l'aimant 32 gravit une rampe croissante d'énergie potentielle magnétique (portion aimantée 38A) grâce au couple de force fourni à la roue d'échappement.
  • La Figure 2D montre un premier choc entre une dent 42 et la palette mécanique 29 après que l'échappement 12A, formé de l'ancre 14 et de la roue d'échappement 16A, a gravi une rampe croissante d'énergie potentielle magnétique. La Figure 2E montre un rebond de la roue d'échappement après le premier choc d'une dent 42 sur la palette mécanique 29 représenté à la figure précédente. Finalement, la Figure 2F montre un stade correspondant à celui de la Figure 2A, mais avec l'ancre 14 à l'arrêt dans sa deuxième position de repos.

Claims (12)

  1. Mouvement horloger comprenant un résonateur mécanique (2) et un échappement (12, 12A) qui est associé à ce résonateur mécanique, l'échappement comprenant une roue d'échappement (16, 16A) et une ancre (14, 14A) séparée du résonateur mécanique et dont l'axe de rotation est différent de celui du résonateur mécanique ; le résonateur mécanique étant couplé à l'ancre de manière que, lorsque ce résonateur mécanique présente une oscillation, l'ancre subit un mouvement alternatif entre deux positions de repos dans lesquelles l'ancre demeure alternativement durant des intervalles de temps successifs ; l'ancre comprenant au moins une palette magnétique formée d'un aimant (30, 31, 32) et la roue d'échappement comprenant une structure aimantée périodique (36, 36A) qui définit une pluralité de rampes croissantes d'énergie potentielle magnétique (38, 38A) pour ladite palette magnétique, chacune de ces rampes croissantes d'énergie potentielle magnétique étant prévue de sorte que ladite palette magnétique peut la gravir lorsque l'ancre est dans une position de repos correspondante parmi les deux positions de repos et qu'un couple de force fourni à la roue d'échappement est égal à un couple de force nominale ou compris dans une plage de valeurs qui est prévue pour un fonctionnement normal du mouvement horloger, ladite palette magnétique et la structure aimantée périodique étant agencées de manière que l'ancre subit une impulsion de force magnétique dans le sens de son mouvement alternatif, après que ladite palette magnétique a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique, lorsque l'ancre bascule d'une des deux positions de repos ayant permis à cette palette magnétique de gravir ladite quelconque rampe croissante d'énergie potentielle magnétique vers l'autre position de repos ;
    caractérisé en ce que l'ancre comprend au moins une butée mécanique (28, 28A, 29) et la roue d'échappement comprend des parties saillantes (42) ; et en ce que l'ancre et la roue d'échappement sont agencées de manière que, lorsque ledit couple de force est égal audit couple de force nominale ou présente une valeur dans au moins une partie supérieure de ladite plage de valeurs et lorsque l'ancre présente ledit mouvement alternatif, une desdites parties saillantes de la roue d'échappement subit au moins un choc sur une butée mécanique parmi ladite au moins une butée mécanique après que ladite palette magnétique a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique suite à un basculement de l'ancre dans la position de repos permettant à cette palette magnétique de gravir cette quelconque rampe d'énergie potentielle magnétique, ledit au moins un choc intervenant de manière à dissiper au moins partiellement une énergie cinétique de la roue d'échappement acquise suite audit basculement.
  2. Mouvement horloger selon la revendication 1, caractérisé en ce que ledit choc est partiellement élastique de sorte que la roue d'échappement (12, 12A) présente un rebond suite à ce choc.
  3. Mouvement horloger selon la revendication 1 ou 2, caractérisé en ce que, en fonctionnement normal, l'ancre (14) et la roue d'échappement (16) sont agencées de manière qu'une desdites parties saillantes (42) de la roue d'échappement subit au moins un choc sur ladite butée mécanique de l'ancre après que ladite palette magnétique a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique suite à un basculement de l'ancre dans la position de repos permettant à la palette magnétique de gravir cette quelconque rampe d'énergie potentielle magnétique ; et en ce que l'échappement est agencé de manière que la roue d'échappement s'immobilise momentanément dans une position angulaire d'arrêt suite audit choc et avant un prochain basculement de l'ancre, ladite partie saillante pressant contre la butée mécanique une fois la roue d'échappement momentanément à l'arrêt dans la position angulaire d'arrêt.
  4. Mouvement horloger selon la revendication 1 ou 2, caractérisé en ce que la structure aimantée périodique (36A) définit en outre pour la palette magnétique des barrières magnétiques (50) situées respectivement à la suite des rampes croissantes d'énergie potentielle magnétique (38A), chacune de ces barrières magnétiques étant agencée de manière à exercer un couple de force magnétique sur la roue d'échappement, ayant un sens contraire à celui dudit couple de force fourni à cette roue d'échappement, lorsque la roue d'échappement est dans une position angulaire d'équilibre des forces qui s'exercent sur elle alors que la palette magnétique est située en haut de la rampe d'énergie potentielle magnétique qui précède la barrière magnétique considérée, ledit couple de force magnétique étant supérieur à un couple de force magnétique maximal engendré par la rampe d'énergie potentielle magnétique précédant la barrière magnétique considérée avant que la roue d'échappement atteigne ladite position angulaire d'équilibre des forces.
  5. Mouvement horloger selon la revendication 4, caractérisé en ce que l'échappement (12A) est agencé de manière que, suite audit choc et avant un prochain basculement de l'ancre, la roue d'échappement s'immobilise momentanément dans une position angulaire d'arrêt qui est ladite position angulaire d'équilibre des forces.
  6. Mouvement horloger selon la revendication 5, caractérisé en ce que, une fois la roue d'échappement momentanément à l'arrêt dans la position angulaire d'arrêt, ladite partie saillante ayant subi ledit choc presse contre ladite butée mécanique lorsque le couple de force fourni à la roue d'échappement est égal au couple de force nominale ou présente une valeur dans au moins une zone supérieure de ladite partie supérieure de ladite plage de valeurs.
  7. Mouvement horloger selon la revendication 5, caractérisé en ce que, en fonctionnement normal et une fois la roue d'échappement momentanément à l'arrêt dans la position angulaire d'arrêt, ladite partie saillante ayant subi ledit choc presse contre ladite butée mécanique.
  8. Mouvement horloger selon la revendication 5, caractérisé en ce que, en fonctionnement normal et une fois la roue d'échappement momentanément à l'arrêt dans la position angulaire d'arrêt, ladite partie saillante ayant subi ledit choc est situé à distance de ladite butée mécanique, cette position angulaire d'arrêt correspondant sensiblement à une position d'équilibre entre ledit couple de force magnétique et ledit couple de force fourni à la roue d'échappement.
  9. Mouvement horloger selon une quelconque des revendications précédentes, dans laquelle ladite palette magnétique (30) est une première palette magnétique et ladite butée mécanique (28) est une première butée mécanique associée à la première palette magnétique ; caractérisé en ce que l'ancre comprend une deuxième palette magnétique (32) et une deuxième butée mécanique (29) associée à cette deuxième palette magnétique, ladite structure aimantée périodique (36A) et l'ancre (14) étant agencées de manière que ladite pluralité de rampes croissantes d'énergie potentielle magnétique (38, 38A) sont également définies pour la deuxième palette magnétique, ces rampes croissantes pouvant être gravies, lorsque le couple de force fourni à la roue d'échappement est égal audit couple de force nominale ou compris dans ladite plage de valeurs prévue pour le fonctionnement normal du mouvement horloger, successivement par chacune des première et deuxième palettes magnétiques, lorsque l'ancre est périodiquement dans une première position de repos, respectivement dans une deuxième position de repos parmi lesdites deux positions de repos, et alternativement par ces première et deuxième palettes magnétiques lors du mouvement alternatif de l'ancre ; en ce ladite deuxième palette magnétique (32) et la pluralité de rampes croissantes d'énergie potentielle magnétique sont agencées de manière que l'ancre subit une impulsion de force magnétique dans le sens de son mouvement, après que la deuxième palette magnétique a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique, lorsque l'ancre bascule de la deuxième position de repos vers la première position de repos ; en ce que chaque rampe croissante de ladite pluralité de rampes croissantes d'énergie potentielle magnétique est associée à une partie saillante différente parmi lesdites parties saillantes ; et en ce que l'ancre et la roue d'échappement sont agencées de manière que, lorsque l'ancre présente ledit mouvement alternatif et ledit couple de force est égal audit couple de force nominale ou compris dans ladite au moins une partie supérieure de ladite plage de valeurs et après que la première ou deuxième palette magnétique a gravi une quelconque desdites rampes croissantes d'énergie potentielle magnétique suite à un basculement de l'ancre dans la première ou deuxième position de repos correspondante, la partie saillante de la roue d'échappement associée à ladite quelconque desdites rampes croissantes d'énergie potentielle magnétique subit au moins un choc sur ladite première ou deuxième butée mécanique de l'ancre, ce choc intervenant de manière à dissiper au moins partiellement l'énergie cinétique de la roue d'échappement acquise suite à ce basculement.
  10. Mouvement horloger selon la revendication 9 dépendant de la revendication 4, caractérisé en ce que lesdites barrières magnétiques (50) sont également prévues pour la deuxième palette magnétique, chacune de ces barrières magnétiques étant agencée de manière à exercer un couple de force magnétique sur la roue d'échappement, ayant un sens contraire à celui dudit couple de force fourni à cette roue d'échappement, lorsque la roue d'échappement est dans une position angulaire d'équilibre des forces qui s'exercent sur elle alors que la deuxième palette magnétique est située en haut de la rampe d'énergie potentielle magnétique précédant cette barrière magnétique ; et en ce que l'échappement est agencé de manière que, suite audit au moins un choc sur ladite deuxième butée mécanique et avant un prochain basculement de l'ancre, la roue d'échappement s'immobilise dans une position angulaire d'arrêt.
  11. Mouvement horloger selon la revendication 9 ou 10, caractérisé en ce que la structure aimantée périodique (36, 36A) est agencée de sorte que son pourtour extérieur est sensiblement circulaire, des parties en arc de cercle de cette structure aimantée, qui définissent respectivement lesdites rampes d'énergie potentielle magnétique, étant agencées circulairement autour d'un axe de rotation de la roue d'échappement.
  12. Mouvement horloger selon une quelconque des revendications 9 à 11, caractérisé en ce que lesdites parties saillantes (42) sont formées par des dents qui s'étendent dans un plan général dans lequel s'étendent également les première et deuxième butées mécaniques (28, 29) qui sont formées respectivement par deux palettes mécaniques de l'ancre supportant respectivement ledit aimant (30) et un autre aimant (32), formant la deuxième palette magnétique, qui sont aussi situés dans le plan général.
EP20164020.8A 2020-03-18 2020-03-18 Mouvement horloger comprenant un echappement muni d'un systeme magnetique Pending EP3882711A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20164020.8A EP3882711A1 (fr) 2020-03-18 2020-03-18 Mouvement horloger comprenant un echappement muni d'un systeme magnetique
US17/189,359 US12045011B2 (en) 2020-03-18 2021-03-02 Horological movement comprising an escapement provided with a magnetic system
JP2021034141A JP7177199B2 (ja) 2020-03-18 2021-03-04 磁気的システムを備えるエスケープを備える計時器用ムーブメント
CN202110291335.3A CN113495472B (zh) 2020-03-18 2021-03-18 包括设置有磁性***的擒纵机构的钟表机芯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20164020.8A EP3882711A1 (fr) 2020-03-18 2020-03-18 Mouvement horloger comprenant un echappement muni d'un systeme magnetique

Publications (1)

Publication Number Publication Date
EP3882711A1 true EP3882711A1 (fr) 2021-09-22

Family

ID=69846002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20164020.8A Pending EP3882711A1 (fr) 2020-03-18 2020-03-18 Mouvement horloger comprenant un echappement muni d'un systeme magnetique

Country Status (3)

Country Link
EP (1) EP3882711A1 (fr)
JP (1) JP7177199B2 (fr)
CN (1) CN113495472B (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894522A2 (fr) 2013-12-23 2015-07-15 Nivarox-FAR S.A. Echappement optimisé avec sécurité
EP3208667A1 (fr) 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Mobile d'echappement magnetique d'horlogerie
CH715049A2 (fr) * 2018-06-07 2019-12-13 Montres Breguet Sa Pièce d'horlogerie comprenant un tourbillon.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755566B2 (en) * 2001-02-15 2004-06-29 Konrad Damasko Clockwork
CH702930A2 (fr) * 2010-04-01 2011-10-14 Patek Philippe Sa Geneve Echappement d'horlogerie à protection contre les chocs.
JP6196738B2 (ja) * 2013-12-23 2017-09-13 ニヴァロックス−ファー ソシエテ アノニム 安全手段を有する最適化された脱進機
US9465366B2 (en) * 2013-12-23 2016-10-11 The Swatch Group Research And Development Ltd Angular speed regulating device for a wheel set in a timepiece movement including a magnetic escapement mechanism
CH710025B1 (fr) * 2013-12-23 2018-06-29 Eta Sa Mft Horlogere Suisse Mouvement horloger mécanique à échappement magnétique.
EP3579058B1 (fr) * 2018-06-07 2021-09-15 Montres Breguet S.A. Piece d'horlogerie comprenant un tourbillon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2894522A2 (fr) 2013-12-23 2015-07-15 Nivarox-FAR S.A. Echappement optimisé avec sécurité
EP2894522B1 (fr) * 2013-12-23 2019-01-30 Nivarox-FAR S.A. Echappement optimisé avec sécurité
EP3208667A1 (fr) 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Mobile d'echappement magnetique d'horlogerie
CH715049A2 (fr) * 2018-06-07 2019-12-13 Montres Breguet Sa Pièce d'horlogerie comprenant un tourbillon.

Also Published As

Publication number Publication date
CN113495472A (zh) 2021-10-12
JP7177199B2 (ja) 2022-11-22
JP2021148785A (ja) 2021-09-27
US20210294268A1 (en) 2021-09-23
CN113495472B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
EP2891930B1 (fr) Dispositif régulateur de la vitesse angulaire d&#39;un mobile dans un mouvement horloger comprenant un échappement magnétique
EP2887157B1 (fr) Echappement optimisé
WO2018095594A1 (fr) Résonateur rotatif à guidage flexible entretenu par un échappement libre à ancre
EP3579058B1 (fr) Piece d&#39;horlogerie comprenant un tourbillon
EP2893403A1 (fr) Ancre flexible à force constante
CH715049A2 (fr) Pièce d&#39;horlogerie comprenant un tourbillon.
WO2012034810A2 (fr) Echappement blancpain à ancre amélioré pour mouvement d&#39;horlogerie
EP1736838A1 (fr) Echappement et oscillateur pour pièce d&#39;horlogerie
EP2553532A1 (fr) Echappement d&#39;horlogerie a protection contre les chocs
EP2801868B1 (fr) Roue d&#39;échappement
EP2911015A2 (fr) Echappement naturel
EP3882711A1 (fr) Mouvement horloger comprenant un echappement muni d&#39;un systeme magnetique
CH717241A2 (fr) Mouvement horloger comprenant un échappement muni d&#39;un système magnétique.
FR2928015A1 (fr) Echappement perfectionne a ancre articulee a impulsion tangentielle, montre mecanique
EP3627242B1 (fr) Mecanisme d&#39;echappement d&#39;horlogerie magneto-mecanique optimise
WO2018046563A1 (fr) Mecanisme d&#39;echappement
WO2001077759A1 (fr) Dispositif d&#39;echappement pour piece d&#39;horlogerie
EP3882713B1 (fr) Mouvement horloger comprenant un echappement muni d&#39;un systeme magnetique
CH717239A2 (fr) Mouvement horloger comprenant un échappement muni d&#39;un système magnétique.
EP3781993B1 (fr) Mécanisme d&#39;échappement direct libre pour piece d&#39;horlogerie
EP3882712A1 (fr) Mouvement mécanique horloger muni d&#39;un échappement comprenant une ancre déformable élastiquement
CH717240A2 (fr) Mouvement mécanique horloger muni d&#39;un d&#39;échappement comprenant une ancre.
CH715356A2 (fr) Mécanisme d&#39;échappement d&#39;horlogerie magnéto-mécanique.
EP3910426A1 (fr) Mouvement horloger comprenant un échappement muni d&#39;une roue dentée et d&#39;un arrêtoir
CH717404A2 (fr) Mouvement horloger comprenant un échappement muni d&#39;une roue dentée et d&#39;un arrêtoir.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220322

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED