EP3870759B1 - Verfahren und vorrichtung zum verdichten eines schotterbettes - Google Patents

Verfahren und vorrichtung zum verdichten eines schotterbettes Download PDF

Info

Publication number
EP3870759B1
EP3870759B1 EP19779803.6A EP19779803A EP3870759B1 EP 3870759 B1 EP3870759 B1 EP 3870759B1 EP 19779803 A EP19779803 A EP 19779803A EP 3870759 B1 EP3870759 B1 EP 3870759B1
Authority
EP
European Patent Office
Prior art keywords
ballast bed
electric drive
working unit
parameter
evaluation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19779803.6A
Other languages
English (en)
French (fr)
Other versions
EP3870759A1 (de
Inventor
Thomas Philipp
Harald Daxberger
Florian Auer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP3870759A1 publication Critical patent/EP3870759A1/de
Application granted granted Critical
Publication of EP3870759B1 publication Critical patent/EP3870759B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • E01B27/17Sleeper-tamping machines combined with means for lifting, levelling or slewing the track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/20Compacting the material of the track-carrying ballastway, e.g. by vibrating the track, by surface vibrators

Definitions

  • the invention relates to a method for compacting a ballast bed on which sleepers and rails of a track fastened are mounted, by means of a working unit which is arranged on a track construction machine that can be moved on the track, with a signal being recorded during a compacting process and a Parameter for evaluating a condition of the ballast bed is derived.
  • the invention relates to a device for carrying out the method.
  • Tracks with sleepers mounted on a ballast bed and rails fastened to them require regular maintenance.
  • the track is lifted and straightened using a track construction machine in order to create an optimal track position.
  • a compaction of the ballast bed leads to a fixation of this new track layer.
  • the ballast bed also needs to be compacted.
  • the track construction machine comprises a working unit or a plurality of working units.
  • compaction by means of a tamping unit takes place immediately after a lifting process.
  • tamping tools tamping picks
  • This tamping process creates a homogeneous sleeper layer with low settlement behavior.
  • a corresponding track construction machine is referred to as a dynamic track stabilizer.
  • the one made of rails and sleepers The track grid formed is shaken into the ballast bed with horizontal vibrations and a vertical load. In this way, settlements of the track that initially occur after a tamping operation are anticipated in order to increase the transverse displacement resistance of the track.
  • An infrastructure operator responsible for track maintenance needs information about what loads and how many load cycles the compacted ballast bed can absorb before the track geometry needs to be corrected again. Methods are therefore used to determine the properties of the ballast bed and its quality during compaction or after completion of a compaction process.
  • EP 2 770 108 A1 discloses a method for compacting a ballast bed on which sleepers and rails of a track fastened are mounted, by means of a working unit which is arranged on a track construction machine that can be moved on the track, with a signal being detected during a compacting process, according to the preamble of claim 1 .
  • EP 2 770 108 A1 also discloses an apparatus for carrying out this method, according to the preamble of claim 10.
  • the object of the invention is to simplify a method of the type mentioned at the outset.
  • a simplified device for carrying out the method is to be specified.
  • a parameter for evaluating a condition of the ballast bed is derived, and that the working unit comprises an electric drive, by means of which the compaction process is carried out at least partially, that at least one operating variable of the electric drive is fed to the evaluation device, and that a ballast bed parameter is derived from the operating variable by means of the evaluating device.
  • the electric drive itself as a Sensor used to draw conclusions about the compaction process or the condition of the ballast bed. This eliminates the need for sensors arranged separately on the working unit.
  • a continuous assessment of the quality and properties of the ballast bed is possible on a processed section of track without additional measurement and testing effort. This assessment can be made during the compaction process, so that corrective action can be taken immediately if necessary.
  • a mechanical vibration is generated by means of the electric drive, which is transmitted to the ballast bed via mechanical components of the working unit.
  • Vibrations introduced into the ballast bed allow immediate conclusions to be drawn about the condition of the ballast bed. For example, in the case of a hardened ballast bed, increased vibration energy must be applied, with correspondingly changed operating parameters of the electric drive. At least one operating variable can therefore be used to derive a ballast bed parameter for the condition of the ballast bed.
  • a further improvement provides that several compaction processes are carried out in a cyclical sequence and that a course of the ballast bed parameter is derived from a course of the operating variable. In this way, local changes in the ballast bed are detected in a cyclic mode of operation. Further work cycles can thus be adapted to changed circumstances if necessary.
  • the evaluation device is also supplied with a measured variable recorded by a sensor and if the ballast bed parameter is derived from the operating variable and the measured variable.
  • sensors that have already been installed for other purposes can be used.
  • a digital model stored in the evaluation device is used to derive one or more components of the working unit from the company size calculates a model size.
  • the digital model is a static or dynamic model. The degree of detail selected during modeling depends on the given requirements. A simple model is often sufficient to be able to calculate a meaningful model variable.
  • a mechanical model variable is advantageously derived from an electrical operating variable, in particular from a current flowing in the electric drive, by means of an electric motor model stored in the evaluation device. In this way, an instantaneous mechanical state of the working unit can be used to evaluate the compaction process.
  • ballast bed parameter is supplied to a control device and that the working unit is controlled by the control device as a function of the ballast bed parameter. This enables an automated workflow that adapts the compaction process to changed ballast bed properties without the intervention of an operator.
  • the ballast bed parameter is stored in a recording device together with position data of the working unit. In this way, the quality and properties of the ballast bed are documented without additional measurement and testing effort. With this evidence of the compaction results, corresponding driving clearances can be issued immediately for a processed section of road.
  • the device according to the invention for carrying out one of the methods described comprises a machine frame which can be moved via rail undercarriages on a track with sleepers mounted on a ballast bed and rails fastened thereon.
  • a working unit for compacting the ballast bed is mounted on the machine frame, with an evaluation device for determining a parameter for evaluating the condition of the ballast bed being provided.
  • the working unit includes an electric drive, by means of which a compaction process can be carried out at least partially, the electric drive being coupled to the evaluation device and the evaluation device being set up to derive a ballast bed parameter from an operating variable of the electric drive.
  • a digital model of the electric drive is stored in the evaluation device. This means that various model sizes can be calculated from one company size or from several company sizes.
  • the electrical drive drives a vibration generator to generate a mechanical vibration. Vibrations are thus introduced into the ballast bed, with the quality or properties of the ballast bed being inferred from a reaction of the ballast bed on the working unit.
  • the working unit is designed as a tamping unit and that the vibration generator driven by means of the electric drive is coupled via auxiliary drives with tamping tools that can be lowered into the ballast bed and advanced towards one another.
  • the properties of the ballast bed have a direct effect on the electric drive via the tamping tools that have penetrated the ballast bed. This allows solid conclusions to be drawn about the conditions in the ballast bed from the operating parameters of the electric drive.
  • the working unit is designed as a stabilization unit, with the vibration generator driven by the electric drive being coupled to rollers that can roll on the rails in order to transmit vibrations to the ballast bed.
  • the rails and sleepers serve as transmission elements, with the vibrating ballast bed reacting to the vibration generator and its drive. In this way information about the condition of the ballast bed can be derived from the operating parameters of the electric drive.
  • the device includes a recording device which is coupled to the evaluation device in order to log a course of the ballast bed parameter. In this way, a continuous verification of the properties of the processed ballast bed is possible in a simple manner.
  • Working unit 1 shown is designed as a tamping unit and includes a unit frame 2, which is mounted via guides on a machine frame 3 of a track construction machine not described in detail.
  • the working unit 1 is used for processing a track 4 with a ballast bed 5 on which sleepers 6 with rails 7 fastened thereon are mounted.
  • the ballast bed 5 under the sleepers 6 is compacted with the working unit 1 designed as a tamping unit. This happens during the construction and maintenance of track 4.
  • a tool carrier 8 is guided in a height-adjustable manner in the unit frame 2 , with a lowering or lifting movement taking place by means of an associated height adjustment drive 9 .
  • a vibration generator 10 is arranged on the tool carrier 8, to which at least two auxiliary drives 11 are connected.
  • Each auxiliary drive 11 is connected to a pivoting lever 12 of an associated tamping tool 13 .
  • Both pivoting levers 12 are mounted on the tool carrier 8 such that they can move relative to each other about their own horizontal pivot axis 14 .
  • the vibration generator 10 comprises, for example, an eccentric shaft that can be rotated about an axis of rotation, with the auxiliary drives 11 being articulated on eccentric sections of this shaft.
  • the articulation points of the auxiliary drives 11 running around the axis of rotation lead to vibration transmission to the pivoting lever 12.
  • the advantageously adjustable eccentricity determines the vibration amplitude and the speed determines the vibration frequency.
  • a tamping pick is arranged at the free end of each tamping tool 13 .
  • the tamping tools 13 are subjected to vibrations and lowered into the ballast bed 5 .
  • the tamping tines with their end tine plates are placed in relation to one another by means of the auxiliary drives 11 and thereby compact the ballast layer of the sleeper 6.
  • the working unit 1 comprises an electric drive 15, which drives the eccentric shaft in the present example.
  • a torque motor that is flanged to an eccentric housing is particularly well suited, with the eccentric shaft being connected to the rotor of the torque motor.
  • the torque motor is controlled by a control device 16.
  • the control device 16 also controls control valves of the hydraulic drives of the working unit 1. In the present example, these are the height adjustment drive 9 and the auxiliary drives 11.
  • An evaluation device 17 is coupled to the control device 16 .
  • This is, for example, an industrial computer that is set up to receive and evaluate signals.
  • At least one operating variable 18 of the electric drive 15 is supplied to the evaluation device 17 .
  • This operating variable 18 is provided either by the control device 16 or directly by the electric drive 15 .
  • the electric drive 15 causes the compression process at least partially, because the compression of the Ballast bed 5 is significantly influenced by the vibrations of the 13 tamping tools.
  • the compaction depends on the present condition of the ballast bed 5, that is to say on its quality or its physical properties. In the process, counteracting forces of the ballast bed 5 act on the tamping tools 13, as a result of which there is a reaction of the ballast bed 5 on the electric drive 15.
  • FIG. 1 Another exemplary working unit 1 is in 2 a stabilization unit is shown. It is arranged on a machine frame 3 of a track construction machine not described in detail. During operation, the track grid formed from rails 7 and sleepers 6 is made to oscillate by means of the stabilization unit. The vibrations are transmitted to the surrounding ballast bed 5, which compacts it. In this way, after a tamping operation, a settlement of the track grid is anticipated in order to be able to release track 4 immediately for normal operation.
  • This working unit 1 also includes an electric drive 15 of a vibration generator 10.
  • a shaft with imbalances arranged on it is driven.
  • the vibrations are transmitted to the track grid by means of rail rollers 20 pressed against the rails 7 and propagate into the ballast bed 5 .
  • counteracting forces acted back on the track grid which in turn has a repercussion of the quality and properties of the ballast bed 5 on the electric drive 15 .
  • the vibration amplitude depends on the compaction of the ballast bed that is already present or on the resistance to transverse displacement of the ballast bed 5 .
  • a corresponding control device 16 is provided for controlling the electric drive 15, this being connected to the evaluation device 17 for calculating at least one Gravel bed parameter 19 is coupled. At least one operating variable 18 of the electric drive 15 is supplied to the evaluation device 17 for a calculation process 21 .
  • At least one digital static or dynamic model 22 of a component of the working unit 1 is stored in a processor or a memory device.
  • a digital model 22 of an electric motor for the electric drive 15 is stored.
  • a model variable 23 is calculated from an operating variable 18 by means of the digital model 22 .
  • Operating variables 18 are, for example, an electric current, an electric voltage, a pulse duty factor, a magnetic voltage, a magnetic flux, a magnetic field strength, a magnetic flux or a magnetic flux density.
  • Model variables derived from this are, for example, a moment, a force, a speed or angular speed or an acceleration or angular acceleration.
  • a pressure or a volume flow can also be calculated as a model variable.
  • a moment of the electric drive 15 can be calculated from a rotation angle of the rotor and the measured currents using the digital motor model 22 .
  • those forces that act directly on the ballast bed 5 can be determined from a speed or angular velocity and a driving force or a driving torque of the electric drive 15 using a mechanical model of the working unit 1 . Taking into account the known dynamic forces, this results in the forces acting back from the ballast bed 5 on the working unit 1, which serve to derive the ballast bed parameter 19.
  • the model variables 23 can be calculated in components provided specifically for this purpose, in the control device 16 or the evaluation device 17 or in components provided for other tasks Components (e.g. calculation of the engine torque in the power electronics of the engine) take place.
  • a ballast bed parameter 19 is derived with the calculation process 21 merely from an operating variable 18 of the electric drive 15 .
  • the calculation process 21 is carried out by means of a processor.
  • calculation software is set up in the processor, which calculates a parameter 19 from the input variables 18, 23 on the basis of parameters of the working unit 1 and the track 4 and specific calculation specifications.
  • the measured variables 24 are provided, for example, by a sensor system or electronics 25 installed on the working unit 1. It makes sense to use sensors and electrical components that are already provided for other purposes.
  • an operating variable 18 can also be present as a measured variable 24 if the electric drive 15 includes a corresponding sensor system. For example, operating variables 18 or model variables 23 of the electric drive 15 and measured variables 24 are used in order to determine mechanical model variables 23 of the working unit 1 therefrom.
  • the result of the calculation process 21 is at least one ballast bed parameter 19 which is used to assess the quality or properties of the ballast bed 5 .
  • a parameter 19 is determined from the curve of a model variable 23 or several model variables 23 (speed curve, force curve, pressure curve%) of the working unit 1 .
  • energy absorption, extreme values of the forces and stiffnesses derived from a force-position curve can be formed as ballast bed parameters 19 .
  • the evaluation device 17 is coupled to a recording device 26 for documentation of the track processing.
  • a current position of the working unit 1 reported.
  • a course of the ascertained ballast bed parameter 19 is thus stored as a function of the location.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Description

    Gebiet der Technik
  • Die Erfindung betrifft ein Verfahren zum Verdichten eines Schotterbettes, auf dem Schwellen und darauf befestigte Schienen eines Gleises gelagert sind, mittels eines Arbeitsaggregats, das an einer auf dem Gleis verfahrbaren Gleisbaumaschine angeordnet ist, wobei während eines Verdichtungsvorgangs ein Signal erfasst und daraus mittels einer Auswerteeinrichtung eine Kenngröße zur Bewertung einer Beschaffenheit des Schotterbettes abgeleitet wird. Zudem betrifft die Erfindung eine Vorrichtung zur Durchführung des Verfahrens.
  • Stand der Technik
  • Gleise mit auf einem Schotterbett gelagerten Schwellen und darauf befestigten Schienen bedürfen einer wiederkehrenden Instandhaltung. Dabei wird das Gleis mittels einer Gleisbaumaschine gehoben und gerichtet, um eine optimale Gleislage herzustellen. Eine Verdichtung des Schotterbettes führt dabei zu einer Fixierung dieser neuen Gleislage. Auch beim Neubau eines Gleises ist abschließend eine Verdichtung des Schotterbettes erforderlich.
  • Zur Durchführung eines Verdichtungsvorgangs umfasst die Gleisbaumaschine ein Arbeitsaggregat bzw. mehrere Arbeitsaggregate. In der Regel erfolgt unmittelbar nach einem Hebevorgang eine Verdichtung mittels eines Stopfaggregats. Dabei tauchen Stopfwerkzeuge (Stopfpickel) in das Schotterbett ein und verdichten mit einer kombinierten Schwingungs- und Beistellbewegung den Schotter unterhalb der Schwellen. Mit diesem Stopfprozess wird eine homogene Schwellenauflage mit geringem Setzungsverhalten erzeugt.
  • Anschließend erfolgt gewöhnlich eine weitere Verdichtung mittels eines Stabilisationsaggregats. Eine entsprechende Gleisbaumaschine wird als dynamischer Gleisstabilisator bezeichnet. Der aus Schienen und Schwellen gebildete Gleisrost wird dabei mit horizontalen Schwingungen und einer vertikalen Auflast in das Schotterbett gerüttelt. Auf diese Weise werden nach einem Stopfvorgang anfänglich auftretende Setzungen des Gleises vorweggenommen, um den Querverschiebewiderstand des Gleises zu erhöhen.
  • Ein für die Gleisinstandhaltung verantwortlicher Infrastrukturbetreiber benötigt Informationen, welche Belastungen und wie viele Lastspiele das verdichtete Schotterbett aufnehmen kann, bis die Gleislage einer erneuten Korrektur bedarf. Es kommen deshalb Methoden zum Einsatz, um die Eigenschaften des Schotterbettes bzw. dessen Güte beim Verdichten oder nach Abschluss eines Verdichtungsvorgangs zu ermitteln.
  • Beispielsweise sind aus der österreichischen Patentanmeldung A 223/2017 (siehe Veröffentlichung AT 520056 A1 vom 15. Dezember 2018 sowie WO 2018/219570 A1 vom 6. Dezember 2018 ; beide Dokumente wurden nach dem 24. Oktober 2018 -Priorität der vorliegenden Anmeldung- veröffentlicht) derselben Anmelderin ein Verfahren und eine Vorrichtung zum Verdichten eines Schotterbettes bekannt. Dabei wird mittels an einem Stopfaggregat angeordneter Sensoren während eines Schwingungszyklus ein Kraft-Weg-Verlauf eines Stopfwerkzeugs erfasst. Anschließend wird der Verlauf einer Auswerteeinrichtung zugeführt, um daraus eine Kenngröße für eine Bewertung des Stopfvorgangs bzw. für die Beschaffenheit des
  • Schotterbettes abzuleiten. EP 2 770 108 A1 offenbart ein Verfahren zum Verdichten eines Schotterbettes, auf dem Schwellen und darauf befestigte Schienen eines Gleises gelagert sind, mittels eines Arbeitsaggregats, das an einer auf dem Gleis verfahrbaren Gleisbaumaschine angeordnet ist, wobei während eines Verdichtungsvorgangs ein Signal erfasst wird, nach dem Oberbegriff des Anspruchs 1. EP 2 770 108 A1 offenbart ebenfalls eine Vorrichtung zur Durchführung dieses Verfahrens, nach dem Oberbegriff des Anspruchs 10.
  • Zusammenfassung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu vereinfachen. Zudem soll eine vereinfachte Vorrichtung zur Durchführung des Verfahrens angegeben werden.
  • Erfindungsgemäß werden diese Aufgaben gelöst durch die Merkmale der Ansprüche 1 und 10. Abhängige Ansprüche geben vorteilhafte Ausgestaltungen der Erfindung an.
  • Dabei ist vorgesehen, dass aus dem Signal mittels einer Auswerteeinrichtung eine Kenngröße zur Bewertung einer Beschaffenheit des Schotterbettes abgeleitet wird, und dass das Arbeitsaggregat einen elektrischen Antrieb umfasst, mittels dem der Verdichtungsvorgang zumindest teilweise ausgeführt wird, dass wenigstens eine Betriebsgröße des elektrischen Antriebs der Auswerteeinrichtung zugeführt wird und dass mittels der Auswerteeinrichtung aus der Betriebsgröße eine Schotterbettkenngröße abgeleitet wird. Auf diese Weise wird der elektrische Antrieb selbst als Sensor genutzt, um Rückschlüsse auf den Verdichtungsvorgang bzw. die Beschaffenheit des Schotterbettes zu ziehen. Die Notwendigkeit separat am Arbeitsaggregat angeordneter Sensoren entfällt damit. Auf einem bearbeiteten Streckenabschnitt ist eine durchgehende Beurteilung der Güte und der Eigenschaften des Schotterbettes ohne zusätzlichen Mess- und Versuchsaufwand möglich. Diese Beurteilung kann während des Verdichtungsvorgangs erfolgen, sodass gegebenenfalls sofort korrigierend eingegriffen werden kann.
  • Vorteilhafterweise wird mittels des elektrischen Antriebs eine mechanische Schwingung erzeugt, die über mechanische Komponenten des Arbeitsaggregats auf das Schotterbett übertragen wird. In das Schotterbett eingeleiteten Schwingungen erlauben unmittelbar Rückschlüsse auf die Beschaffenheit des Schotterbettes. Beispielsweise muss bei einem verhärteten Schotterbett eine erhöhte Schwingungsenergie aufgebracht werden, mit entsprechend geänderten Betriebsgrößen des elektrischen Antriebs. Mindestens eine Betriebsgröße kann deshalb herangezogen werden, um eine Schotterbettkenngröße für die Beschaffenheit des Schotterbettes abzuleiten.
  • Eine weitere Verbesserung sieht vor, dass mehrere Verdichtungsvorgänge in einer zyklischen Abfolge durchgeführt werden und dass aus einem Verlauf der Betriebsgröße ein Verlauf der Schotterbettkenngröße abgeleitet wird. Damit werden bei einer zyklischen Arbeitsweise örtliche Veränderungen des Schotterbettes erkannt. Weitere Arbeitszyklen können somit gegebenenfalls an veränderte Gegebenheiten angepasst werden.
  • Zur Steigerung der Genauigkeit oder zur Verifizierung der Auswertungen kann es sinnvoll sein, wenn der Auswerteeinrichtung zusätzlich eine mittels eines Sensors erfasste Messgröße zugeführt wird und wenn die Schotterbettkenngröße aus der Betriebsgröße und der Messgröße abgeleitet wird. Dabei können insbesondere bereits für andere Zwecke verbaute Sensoren verwendet werden.
  • In einer Weiterentwicklung des erfindungsgemäßen Verfahrens wird mittels eines in der Auswerteeinrichtung hinterlegten digitalen Modells einer Komponente oder mehrerer Komponenten des Arbeitsaggregats aus der Betriebsgröße eine Modellgröße errechnet. Das digitale Modell ist dabei ein statisches oder dynamisches Modell. Dabei hängt ein bei der Modellierung gewählter Detaillierungsgrad von den gegebenen Anforderungen ab. Oft ist bereits ein einfaches Modell ausreichend, um eine aussagekräftige Modellgröße errechnen zu können.
  • Vorteilhafterweise wird mittels eines in der Auswerteeinrichtung hinterlegten Elektromotormodells aus einer elektrischen Betriebsgröße, insbesondere aus einem im elektrischen Antrieb fließenden Strom, eine mechanische Modellgröße abgeleitet. Auf diese Weise lässt sich ein momentaner mechanischer Zustand des Arbeitsaggregats zur Bewertung des Verdichtungsvorgangs heranziehen.
  • Eine sinnvolle Weiterbildung des Verfahrens sieht vor, dass die Schotterbettkenngröße einer Steuerungseinrichtung zugeführt wird und dass das Arbeitsaggregat mittels der Steuerungseinrichtung in Abhängigkeit der Schotterbettkenngröße angesteuert wird. Damit ist ein automatisierter Arbeitsablauf möglich, der den Verdichtungsvorgang ohne Eingriff einer Bedienperson an verändertere Schotterbetteigenschaften anpasst.
  • Dabei ist es vorteilhaft, wenn eine Steuerungsgröße des Arbeitsaggregats verändert wird, wenn die Schotterbettkenngröße einen vorgegebenen Schwellenwert erreicht. Diese einfache Maßnahme bewirkt eine vorgebbare Anpassung des Verdichtungsvorgangs an geänderte Schotterbettverhältnisse.
  • Bei einer weiteren Verbesserung wird die Schotterbettkenngröße mit Positionsdaten des Arbeitsaggregats in einer Aufzeichnungseinrichtung abgespeichert. Auf diese Weise werden Güte und Eigenschaften des Schotterbettes ohne zusätzlichen Mess- und Versuchsaufwand dokumentiert. Mit diesem Nachweis der Verdichtungsergebnisse können für einen bearbeiteten Streckenabschnitt sofort entsprechende Fahrfreigaben erteilt werden.
  • Die erfindungsgemäße Vorrichtung zur Durchführung eines der beschriebenen Verfahren umfasst einen Maschinenrahmen, der über Schienenfahrwerke auf einem Gleis mit auf einem Schotterbett gelagerten Schwellen und darauf befestigten Schienen verfahrbar ist. Am Maschinenrahmen ist ein Arbeitsaggregat zum Verdichten des Schotterbettes gelagert, wobei eine Auswerteeinrichtung zur Ermittlung einer Kenngröße zur Bewertung einer Beschaffenheit des Schotterbettes vorgesehen ist. Dabei umfasst das Arbeitsaggregat einen elektrischen Antrieb, mittels dem zumindest teilweise ein Verdichtungsvorgang ausführbar ist, wobei der elektrische Antrieb mit der Auswerteeinrichtung gekoppelt ist und wobei die Auswerteeinrichtung zum Ableiten einer Schotterbettkenngröße aus einer Betriebsgröße des elektrischen Antriebs eingerichtet ist.
  • Bei einer verbesserten Ausführung der Vorrichtung ist in der Auswerteeinrichtung ein digitales Modell des elektrischen Antriebs hinterlegt. Damit sind aus einer Betriebsgröße oder aus mehreren Betriebsgrößen diverse Modellgrößen errechenbar.
  • Von Vorteil ist es, wenn der elektrische Antrieb einen Schwingungserzeuger zur Erzeugung einer mechanischen Schwingung antreibt. Damit werden in das Schotterbett Schwingungen eingeleitet, wobei aus einer Rückwirkung des Schotterbettes auf das Arbeitsaggregat auf die Güte bzw. Eigenschaften des Schotterbettes geschlossen wird.
  • Eine vorteilhafte Variante sieht vor, dass das Arbeitsaggregat als Stopfaggregat ausgebildet ist und dass der mittels des elektrischen Antriebs angetriebene Schwingungserzeuger über Beistellantriebe mit in das Schotterbett absenkbaren und zueinander zustellbaren Stopfwerkzeugen gekoppelt ist. Über die ins Schotterbett eingedrungenen Stopfwerkzeuge wirken Eigenschaften des Schotterbettes direkt auf den elektrischen Antrieb zurück. Dadurch lassen sich aus den Betriebsgrößen des elektrischen Antriebs solide Rückschlüsse auf die Gegebenheiten im Schotterbett ziehen.
  • In einer anderen Weiterbildung ist das Arbeitsaggregat als Stabilisationsaggregat ausgebildet, wobei der mittels des elektrischen Antriebs angetriebene Schwingungserzeuger zur Übertragung von Schwingungen auf das Schotterbett mit auf den Schienen abrollbaren Rollen gekoppelt ist. Dabei dienen die Schienen und Schwellen als Übertragungselemente, wobei das in Schwingung versetzte Schotterbett auf den Schwingungserzeuger und dessen Antrieb rückwirkt. Auf diese Weise sind aus Betriebsgrößen des elektrischen Antriebs Informationen über die Schotterbettbeschaffenheit ableitbar.
  • Bei einer weiteren Verbesserung umfasst die Vorrichtung eine Aufzeichnungseinrichtung, die mit der Auswerteeinrichtung gekoppelt ist, um einen Verlauf der Schotterbettkenngröße zu protokollieren. Damit ist auf einfache Weise ein durchgehender Nachweis der Eigenschaften des bearbeiteten Schotterbettes möglich.
  • Kurze Beschreibung der Zeichnungen
  • Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:
  • Fig. 1
    Stopfaggregat mit elektrischem Antrieb
    Fig. 2
    Stabilisierungsaggregat mit elektrischem Antrieb
    Fig. 3
    Blockdiagramm der Strukturelemente zur Bestimmung einer Schotterbettkenngröße
    Beschreibung der Ausführungsformen
  • Das in Fig. 1 dargestellte Arbeitsaggregat 1 ist als Stopfaggregat ausgeführt und umfasst einen Aggregatrahmen 2, der über Führungen an einem Maschinenrahmen 3 einer nicht näher beschriebenen Gleisbaumaschine gelagert ist. Das Arbeitsaggregat 1 dient zur Bearbeitung eines Gleises 4 mit einem Schotterbett 5, auf dem Schwellen 6 mit darauf befestigten Schienen 7 gelagert sind. Konkret wird mit dem als Stopfaggregat ausgebildeten Arbeitsaggregat 1 das Schotterbett 5 unter den Schwellen 6 verdichtet. Das geschieht beim Neubau und in der Instandhaltung eines Gleises 4.
  • Im Aggregatrahmen 2 ist ein Werkzeugträger 8 höhenverstellbar geführt, wobei eine Absenk- bzw. Hebebewegung mittels eines zugeordneten Höhenverstellantriebs 9 erfolgt. Am Werkzeugträger 8 ist ein Schwingungserzeuger 10 angeordnet, an den zumindest zwei Beistellantriebe 11 angeschlossen sind. Jeder Beistellantrieb 11 ist mit einem Schwenkhebel 12 eines zugeordneten Stopfwerkzeuges 13 verbunden. Beide Schwenkhebel 12 sind um eine jeweils eigene horizontale Schwenkachse 14 zueinander bewegbar am Werkzeugträger 8 gelagert.
  • Der Schwingungserzeuger 10 umfasst beispielsweise eine um eine Drehachse rotierbare Exzenterwelle, wobei die Beistellantriebe 11 an exzentrischen Abschnitten dieser Welle angelenkt sind. Bei rotierender Exzenterwelle führen die um die Drehachse umlaufenden Anlenkstellen der Beistellantriebe 11 zu einer Schwingungsübertragung auf die Schwenkhebel 12. Die vorteilhafterweise einstellbare Exzentrizität bestimmt dabei die Schwingungsamplitude und die Drehzahl bestimmt die Schwingungsfrequenz.
  • Am freien Ende jedes Stopfwerkzeugs 13 ist ein Stopfpickel angeordnet. Für einen Verdichtungsvorgang werden die Stopfwerkzeuge 13 mit Schwingungen beaufschlagt in das Schotterbett 5 abgesenkt. Unterhalb der Schwellenunterkante werden die Stopfpickel mit ihren endseitigen Pickelplatten mittels der Beistellantriebe 11 zueinander beigestellt und verdichten dabei die Schotterauflage der Schwelle 6.
  • Erfindungsgemäß umfasst das Arbeitsaggregat 1 einen elektrischen Antrieb 15, der im vorliegenden Beispiel die Exzenterwelle antreibt. Besonders gut eignet sich ein Torquemotor, der an ein Exzentergehäuse geflanscht ist, wobei die Exzenterwelle mit dem Rotor des Torquemotors verbunden ist. Angesteuert wird der Torquemotor mittels einer Steuerungseinrichtung 16. Die Steuerungseinrichtung 16 steuert auch Steuerventile der hydraulischen Antriebe des Arbeitsaggregats 1. Im vorliegenden Beispiel sind das der Höhenverstellantrieb 9 und die Beistellantriebe 11.
  • Mit der Steuerungseinrichtung 16 ist eine Auswerteeinrichtung 17 gekoppelt. Dabei handelt es sich beispielsweise um einen Industriecomputer, der für den Empfang und die Auswertung von Signalen eingerichtet ist. Der Auswerteeinrichtung 17 ist zumindest eine Betriebsgröße 18 des elektrischen Antriebs 15 zugeführt. Diese Betriebsgröße 18 wird entweder von der Steuerungseinrichtung 16 oder direkt vom elektrischen Antrieb 15 bereitgestellt.
  • Beim Betrieb des Arbeitsaggregats 1 bewirkt der elektrische Antrieb 15 zumindest teilweise den Verdichtungsvorgang, weil die Verdichtung des Schotterbettes 5 maßgeblich durch die Schwingungen der Stopfwerkzeuge 13 beeinflusst wird. Zudem hängt die Verdichtung vom vorliegenden Zustand des Schotterbettes 5 ab, das heißt von seiner Güte bzw. seinen physikalischen Eigenschaften. Dabei wirken Gegenkräfte des Schotterbettes 5 auf die Stopfwerkzeuge 13, wodurch in weiterer Folge einer Rückwirkung des Schotterbettes 5 auf den elektrischen Antrieb 15 vorliegt.
  • Dabei ist es unerheblich, dass sich im Kraftpfad zwischen dem elektrischen Antrieb 15 und den Stopfwerkzeugen 13 hydraulische Komponenten (Beistellantriebe 11) befinden. Wesentlich ist lediglich, dass zumindest eine Betriebsgröße 18 des elektrischen Antriebs 15 zur Berechnung einer Schotterbettkenngröße 19 herangezogen werden kann.
  • Als weiteres beispielhaftes Arbeitsaggregat 1 ist in Fig. 2 ein Stabilisationsaggregat dargestellt. Es ist an einem Maschinenrahmen 3 einer nicht näher beschriebenen Gleisbaumaschine angeordnet. Im Arbeitsbetrieb wird mittels des Stabilisationsaggregats der aus Schienen 7 und Schwellen 6 gebildeten Gleisrostes in Schwingung versetzt. Die Schwingungen übertragen sich auf das umgebende Schotterbett 5, wodurch dieses verdichtet wird. Auf diese Weise wird nach einem Stopfvorgang eine Setzung des Gleisrostes vorweggenommen, um das Gleis 4 sofort für den Regelbetrieb freigeben zu können.
  • Auch dieses Arbeitsaggregat 1 umfasst einen elektrischen Antrieb 15 eines Schwingungserzeugers 10. Beispielsweise wird eine Welle mit darauf angeordneten Unwuchten angetrieben. Die Schwingungen werden mittels an die Schienen 7 gedrückte Schienenrollen 20 auf den Gleisrost übertragen und pflanzen sich in das Schotterbett 5 fort. Dabei wirkten Gegenkräfte auf den Gleisrost zurück, wodurch wiederum eine Rückwirkung der Güte und Eigenschaften des Schotterbetts 5 auf den elektrischen Antrieb 15 vorliegt. Beispielsweise hängt bei gleicher Schlagkraft die Schwingungsamplitude von der bereits vorliegenden Schotterbettverdichtung bzw. vom Querverschiebewiderstand des Schotterbettes 5 ab.
  • Zur Ansteuerung des elektrischen Antriebs 15 ist eine entsprechende Steuerungseinrichtung 16 vorhanden, wobei diese mit der Auswerteeinrichtung 17 zur Berechnung zumindest einer Schotterbettkenngröße 19 gekoppelt ist. Für einen Berechnungsvorgang 21 ist der Auswerteeinrichtung 17 wenigstens eine Betriebsgröße 18 des elektrischen Antriebs 15 zugeführt.
  • Anhand des Blockschaltbildes in Fig. 3 wird ein vorteilhaftes Berechnungsverfahren näher beschrieben. In einem Prozessor bzw. einer Speichereinrichtung ist zumindest ein digitales statisches oder dynamisches Modell 22 einer Komponente des Arbeitsaggregats 1 hinterlegt. Beispielsweise ist ein digitales Modell 22 eines Elektromotors für den elektrischen Antrieb 15 hinterlegt. Mittels des digitalen Modells 22 wird aus einer Betriebsgröße 18 eine Modellgröße 23 berechnet.
  • Betriebsgrößen 18 sind beispielweise ein elektrischer Strom, eine elektrische Spannung, ein Tastverhältnis, eine magnetische Spannung, eine magnetische Durchflutung, eine magnetische Feldstärke, ein magnetischer Fluss oder eine magnetische Flussdichte. Daraus abgeleitete Modellgrößen sind beispielsweise ein Moment, eine Kraft, eine Geschwindigkeit bzw. Winkelgeschwindigkeit oder eine Beschleunigung bzw. Winkelbeschleunigung. Bei einem elektrischen Antrieb 15 einer Hydraulikpumpe kann auch ein Druck oder ein Volumenstrom als Modellgröße errechnet werden.
  • Konkret kann ein Moment des elektrischen Antriebs 15 aus einem Drehwinkel des Rotors und den gemessenen Strömen mit Hilfe des digitalen Motormodells 22 berechnet werden. Des Weiteren sind aus einer Geschwindigkeit bzw. Winkelgeschwindigkeit sowie einer Antriebskraft bzw. einem Antriebsmoment des elektrischen Antriebs 15 unter Heranziehung eines mechanischen Modells des Arbeitsaggregats 1 jene Kräfte bestimmbar, die direkt auf das Schotterbett 5 wirken. Unter Berücksichtigung der bekannten dynamischen Kräfte ergeben sich daraus die vom Schotterbett 5 auf das Arbeitsaggregat 1 rückwirkenden Kräfte, die zur Ableitung der Schotterbettkenngröße 19 dienen.
  • Die Berechnung der Modellgrößen 23 kann in eigens dafür vorgesehenen Komponenten, in der Steuerungseinrichtung 16 bzw. der Auswerteeinrichtung 17 oder in für andere Aufgaben vorgesehene Komponenten (z.B. Berechnung des Motorenmoments in der Leistungselektronik des Motors) erfolgen.
  • Im einfachsten Fall wird mit dem Berechnungsvorgang 21 lediglich aus einer Betriebsgröße 18 des elektrischen Antriebs 15 eine Schotterbettkenngröße 19 abgeleitet. Zur besseren Bewertung der Güte und der Eigenschaften des Schotterbettes 5 ist es jedoch von Vorteil, wenn mehrere Modellgrößen 23 herangezogen werden. Die Durchführung des Berechnungsvorgangs 21 erfolgt mittels eines Prozessors. Dazu ist im Prozessor eine Berechnungssoftware eingerichtet, die auf Basis von Parametern des Arbeitsaggregats 1 und des Gleises 4 sowie spezifischen Berechnungsvorgaben aus den Eingangsgrößen 18, 23 eine Kenngröße 19 errechnet.
  • Eine Verbesserung des Berechnungsvorgangs 21 wird durch eine Berücksichtigung von Messgrößen 24 erreicht. Bereitgestellt werden die Messgrößen 24 beispielsweise von einer am Arbeitsaggregat 1 verbauten Sensorik bzw. Elektronik 25. Sinnvollerweise werden bereits für andere Zwecke vorgesehene Sensoren und elektrische Komponenten genutzt. Zudem kann eine Betriebsgröße 18 auch als Messgröße 24 vorliegen, wenn der elektrische Antrieb 15 eine entsprechende Sensorik umfasst. Beispielsweise werden Betriebsgrößen 18 bzw. Modellgrößen 23 des elektrischen Antriebs 15 und Messgrößen 24 herangezogen, um daraus mechanische Modellgrößen 23 des Arbeitsaggregats 1 zu bestimmen.
  • Resultat des Berechnungsvorgangs 21 ist zumindest eine Schotterbettkenngröße 19, die zur Beurteilung der Güte bzw. der Eigenschaften des Schotterbettes 5 dient. Beispielsweise wird eine Kenngröße 19 aus dem Verlauf einer Modellgröße 23 oder mehrerer Modellgrößen 23 (Geschwindigkeitsverlauf, Kraftverlauf, Druckverlauf...) des Arbeitsaggregats 1 bestimmt. Konkret können als Schotterbettkenngrößen 19 eine Energieaufnahme, Extremwerte der Kräfte und aus einem Kraft-Positionsverlauf abgeleitete Steifigkeiten gebildet werden.
  • Für eine Dokumentation der Gleisbearbeitung ist die Auswerteeinrichtung 17 mit einer Aufzeichnungseinrichtung 26 gekoppelt. An diese wird günstigerweise laufend eine momentane Position des Arbeitsaggregats 1 gemeldet. Damit wird ein Verlauf der ermittelten Schotterbettkenngröße 19 ortsabhängig abgespeichert.

Claims (15)

  1. Verfahren zum Verdichten eines Schotterbettes (5), auf dem Schwellen (6) und darauf befestigte Schienen (7) eines Gleises (4) gelagert sind, mittels eines Arbeitsaggregats (1), das an einer auf dem Gleis (4) verfahrbaren Gleisbaumaschine angeordnet ist, wobei während eines Verdichtungsvorgangs ein Signal erfasst wird, dadurch gekennzeichnet dass aus dem Signal mittels einer Auswerteeinrichtung (17) eine Kenngröße zur Bewertung einer Beschaffenheit des Schotterbettes abgeleitet wird, und dass das Arbeitsaggregat (1) einen elektrischen Antrieb (15) umfasst, mittels dem der Verdichtungsvorgang zumindest teilweise ausgeführt wird, dass wenigstens eine Betriebsgröße (18) des elektrischen Antriebs (15) der Auswerteeinrichtung (17) zugeführt wird und dass mittels der Auswerteeinrichtung (17) aus der Betriebsgröße (18) eine Schotterbettkenngröße (19) abgeleitet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mittels des elektrischen Antriebs (15) eine mechanische Schwingung erzeugt wird, die über mechanische Komponenten (11, 12, 13, 20) des Arbeitsaggregats (1) auf das Schotterbett (5) übertragen wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass mehrere Verdichtungsvorgänge in einer zyklischen Abfolge durchgeführt werden und dass aus einem Verlauf der Betriebsgröße (18) ein Verlauf der Schotterbettkenngröße (19) abgeleitet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Auswerteeinrichtung (17) zusätzlich eine mittels eines Sensors (25) erfasste Messgröße (24) zugeführt wird und dass die Schotterbettkenngröße (19) aus der Betriebsgröße (18) und der Messgröße (24) abgeleitet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mittels eines in der Auswerteeinrichtung (17) hinterlegten digitalen Modells (22) einer Komponente oder mehrerer Komponenten des Arbeitsaggregats (1) aus der Betriebsgröße (18) eine Modellgröße (23) errechnet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass mittels eines in der Auswerteeinrichtung (17) hinterlegten Elektromotormodells (22) aus einer elektrischen Betriebsgröße (18), insbesondere aus einem im elektrischen Antrieb (15) fließenden Strom, eine mechanische Modellgröße (23) abgeleitet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schotterbettkenngröße (19) einer Steuerungseinrichtung (16) zugeführt wird und dass das Arbeitsaggregat (1) mittels der Steuerungseinrichtung (16) in Abhängigkeit der Schotterbettkenngröße (19) angesteuert wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass eine Steuerungsgröße des Arbeitsaggregats (1) verändert wird, wenn die Schotterbettkenngröße (19) einen vorgegebenen Schwellenwert erreicht.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Schotterbettkenngröße (19) mit Positionsdaten des Arbeitsaggregats (1) in einer Aufzeichnungseinrichtung (26) abgespeichert wird.
  10. Vorrichtung zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 9, mit einem Maschinenrahmen (3), der über Schienenfahrwerke auf einem Gleis (4) mit auf einem Schotterbett (5) gelagerten Schwellen (6) und darauf befestigten Schienen (7) verfahrbar ist, mit einem am Maschinenrahmen (3) gelagerten Arbeitsaggregat (1) zum Verdichten des Schotterbettes (5), dadurch gekennzeichnet, dass die Vorrichtung eine Auswerteeinrichtung (17) zur Ermittlung einer Kenngröße zur Bewertung einer Beschaffenheit des Schotterbettes (5) aufweist, und dass das Arbeitsaggregat (1) einen elektrischen Antrieb (15) umfasst, mittels dem zumindest teilweise ein Verdichtungsvorgang ausführbar ist, dass der elektrische Antrieb (15) mit der Auswerteeinrichtung (17) gekoppelt ist und dass die Auswerteeinrichtung (17) zum Ableiten einer Schotterbettkenngröße (19) aus einer Betriebsgröße (18) des elektrischen Antriebs (15) eingerichtet ist.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass in der Auswerteeinrichtung (17) ein digitales Modell (22) des elektrischen Antriebs (15) hinterlegt ist.
  12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der elektrische Antrieb (15) einen Schwingungserzeuger (10) zur Erzeugung einer mechanischen Schwingung antreibt.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass das Arbeitsaggregat (1) als Stopfaggregat ausgebildet ist und dass der mittels des elektrischen Antriebs (15) angetriebene Schwingungserzeuger (10) über Beistellantriebe (11) mit in das Schotterbett (5) absenkbaren und zueinander zustellbaren Stopfwerkzeugen (13) gekoppelt ist.
  14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass das Arbeitsaggregat (1) als Stabilisationsaggregat ausgebildet ist und dass der mittels des elektrischen Antriebs (15) angetriebene Schwingungserzeuger (10) zur Übertragung von Schwingungen auf das Schotterbett (5) mit auf den Schienen (7) abrollbaren Rollen (20) gekoppelt ist.
  15. Vorrichtung nach einem der Ansprüche 1 bis 14, gekennzeichnet durch eine Aufzeichnungseinrichtung (26), die mit der Auswerteeinrichtung (17) gekoppelt ist, um einen Verlauf der Schotterbettkenngröße (19) zu protokollieren.
EP19779803.6A 2018-10-24 2019-09-25 Verfahren und vorrichtung zum verdichten eines schotterbettes Active EP3870759B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA329/2018A AT521798B1 (de) 2018-10-24 2018-10-24 Verfahren und Vorrichtung zum Verdichten eines Schotterbettes
PCT/EP2019/075779 WO2020083596A1 (de) 2018-10-24 2019-09-25 Verfahren und vorrichtung zum verdichten eines schotterbettes

Publications (2)

Publication Number Publication Date
EP3870759A1 EP3870759A1 (de) 2021-09-01
EP3870759B1 true EP3870759B1 (de) 2022-11-09

Family

ID=68104591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19779803.6A Active EP3870759B1 (de) 2018-10-24 2019-09-25 Verfahren und vorrichtung zum verdichten eines schotterbettes

Country Status (14)

Country Link
US (1) US20210395953A1 (de)
EP (1) EP3870759B1 (de)
JP (1) JP7405847B2 (de)
KR (1) KR20210081330A (de)
CN (1) CN112955606B (de)
AT (1) AT521798B1 (de)
AU (1) AU2019363554A1 (de)
BR (1) BR112021007669A2 (de)
CA (1) CA3112052A1 (de)
EA (1) EA202100084A1 (de)
ES (1) ES2934470T3 (de)
HU (1) HUE060490T2 (de)
PL (1) PL3870759T3 (de)
WO (1) WO2020083596A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519934B1 (de) * 2017-05-03 2019-11-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stopfaggregat zum Unterstopfen von Schwellen eines Gleises
AT524861B1 (de) * 2021-04-12 2022-10-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Maschine zum Stopfen eines Gleises
KR102367598B1 (ko) * 2021-10-20 2022-03-31 한국철도공사 굴삭기 장착형 철도궤도 자갈 다짐기
KR102631569B1 (ko) * 2021-11-19 2024-01-31 한국철도공사 멀티플 타이 탬핑 머신의 상태 진단 시스템
AT18149U1 (de) * 2022-09-06 2024-03-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Vorrichtung zum Bestimmen der Beschaffenheit, insbesondere des Verdichtungsgrads, eines Gleisbetts

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB130121A (en) * 1917-08-07 1919-07-31 Heinrich Christiansen Improvements relating to Tamping Apparatus for use on Railways.
AT343165B (de) * 1975-01-31 1978-05-10 Plasser Bahnbaumasch Franz Fahrbare schotterbett-verdichtmaschine zur korrektur der gleislage
AT369455B (de) * 1981-02-02 1983-01-10 Plasser Bahnbaumasch Franz Nivellier-gleisstopfmaschine mit automatischer stopfdruckregelung
AT374217B (de) * 1982-07-07 1984-03-26 Plasser Bahnbaumasch Franz Gleisstopfaggregat mit wegbegrenzungs-anschlag
AT377296B (de) * 1982-11-23 1985-02-25 Plasser Bahnbaumasch Franz Gleisnivellierstopfmaschine mit stopf- und stabilisationsaggregat
JPH06287904A (ja) * 1993-03-31 1994-10-11 Shibaura Eng Works Co Ltd 多頭式簡易タイタンパ
DE59506872D1 (de) * 1994-06-17 1999-10-28 Plasser Bahnbaumasch Franz Verfahren zur kontinuierlichen Messung des Querverschiebewiderstandes eines Gleises
DE59601320D1 (de) * 1995-02-09 1999-04-01 Plasser Bahnbaumasch Franz Verfahren und Maschine zum Unterstopfen und Stabilisieren eines Gleises
RU6199U1 (ru) * 1997-02-18 1998-03-16 Научно-технический центр "Инженер" Система автоматического управления путерихтовочной машиной
AT500972B1 (de) * 2004-10-29 2006-05-15 Plasser Bahnbaumasch Franz Verfahren zum unterstopfen von schwellen
GB0714379D0 (en) * 2007-07-21 2007-09-05 Monition Ltd Tamping bank monitoring apparatus and method
JP5074318B2 (ja) * 2008-07-29 2012-11-14 本田技研工業株式会社 同期電動機のロータ位置推定装置
CN101358439A (zh) * 2008-08-07 2009-02-04 三一重工股份有限公司 沥青水泥砂浆车
DE102010003094A1 (de) * 2010-03-22 2011-09-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung eines Abgabemoments eines elektrischen Antriebs
CN102031734B (zh) * 2010-12-15 2012-05-23 山东申普交通科技有限公司 小型液压自动捣固机的智能控制方法
AT513973B1 (de) * 2013-02-22 2014-09-15 System7 Railsupport Gmbh Stopfaggregat für eine Gleisstopfmaschine
NO2902546T3 (de) * 2014-01-30 2018-03-24
EP2957674B1 (de) 2014-06-18 2017-10-11 HP3 Real GmbH Verfahren zum Betreiben einer auf einer Gleisanlage verfahrbaren Oberbaumaschine
CN204476941U (zh) * 2015-01-30 2015-07-15 常州中铁科技有限公司 一种捣固装置智能液压试验装置
WO2017011775A1 (en) * 2015-07-16 2017-01-19 Harsco Technologies LLC Coil-oscillator vibration unit for rail workhead
AT517771B1 (de) * 2015-09-23 2018-04-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Gleisbaumaschine und Verfahren für den Betrieb eines Energieversorgungssystems einer Gleisbaumaschine
AT518023B1 (de) * 2015-12-02 2018-04-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stopfmaschine sowie Verfahren zur Durchführung einer Lagekorrektur eines Gleises
AT518195B1 (de) * 2016-01-26 2017-11-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren zur Verdichtung der Schotterbettung eines Gleises sowie Stopfaggregat
CN205557207U (zh) * 2016-01-28 2016-09-07 中国铁建高新装备股份有限公司 一种双枕正线捣固装置及装有该装置的步进式双枕捣固车
AT518072B1 (de) * 2016-04-29 2017-07-15 Hp3 Real Gmbh Stopfaggregat für eine Gleisstopfmaschine
AT518693B1 (de) * 2016-05-24 2020-02-15 Plasser & Theurer Exp Von Bahnbaumaschinen G M B H Prüfvorrichtung und Verfahren zum Prüfen eines Stopfaggregates
AT520056B1 (de) * 2017-05-29 2020-12-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und Vorrichtung zum Verdichten eines Gleisschotterbetts
AT520698B1 (de) * 2017-12-07 2020-09-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Verfahren und System zur Belastungsüberwachung eines Stopfaggregates

Also Published As

Publication number Publication date
BR112021007669A2 (pt) 2021-07-27
EP3870759A1 (de) 2021-09-01
AT521798A1 (de) 2020-05-15
EA202100084A1 (ru) 2021-08-09
ES2934470T3 (es) 2023-02-22
HUE060490T2 (hu) 2023-03-28
JP7405847B2 (ja) 2023-12-26
WO2020083596A1 (de) 2020-04-30
US20210395953A1 (en) 2021-12-23
AT521798B1 (de) 2021-04-15
KR20210081330A (ko) 2021-07-01
CN112955606B (zh) 2023-02-28
CN112955606A (zh) 2021-06-11
PL3870759T3 (pl) 2023-03-13
AU2019363554A1 (en) 2021-04-08
CA3112052A1 (en) 2020-04-30
JP2022505738A (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
EP3870759B1 (de) Verfahren und vorrichtung zum verdichten eines schotterbettes
EP3631087B1 (de) Verfahren und vorrichtung zum verdichten eines gleisschotterbetts
EP3408450B1 (de) Verfahren zur verdichtung der schotterbettung eines gleises
EP2265920B1 (de) Vorrichtung und verfahren zum erkennen von schäden an einer arbeitsmaschine
EP3721013B1 (de) Verfahren und system zur belastungsüberwachung eines stopfaggregates
DE102010060843B4 (de) Verfahren und Vorrichtung zum Messen von Bodenparametern mittels Verdichtungsmaschinen
DE102013106349A1 (de) Verfahren zum Ermitteln des Verdichtungsgrades eines Knotens
WO2017097390A1 (de) Stopfaggregat mit winkelsensor zur bestimmung der stopfwerkzeug-position
DE10046336B4 (de) Bodenverdichtungsvorrichtung mit Schwingungserreger und Verfahren zum Regeln des Schwingungserregers
EP4073318B1 (de) Maschine und verfahren zum stabilisieren eines schottergleises
DE102004021645A1 (de) Vorrichtung zum Prüfen von Maschinenbauteilen
WO2022058187A1 (de) Verfahren und gleisstopfmaschine zum unterstopfen eines gleises
EP3315668B1 (de) Verfahren und system zum verdichten von böden
AT524861B1 (de) Verfahren und Maschine zum Stopfen eines Gleises
DE102010019053A1 (de) Bodenverdichtungsvorrichtung mit Messvorrichtung zum Bestimmen von Bodenkennwerten
EP4242375A1 (de) Verfahren zum betreiben einer stopfmaschine und stopfmaschine
AT524860B1 (de) Vorrichtung und Verfahren zum Verdichten eines Gleisbettes
EP4276251A1 (de) Verfahren zur bestimmung einer auflast eines baggeranbaugeräts sowie bagger
EP4134485A1 (de) Verfahren zum stabilisieren der schotterbettung eines gleises

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1530439

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019006234

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2934470

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230222

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E060490

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230210

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019006234

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230915

Year of fee payment: 5

Ref country code: NL

Payment date: 20230918

Year of fee payment: 5

Ref country code: GB

Payment date: 20230817

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230913

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230918

Year of fee payment: 5

Ref country code: PL

Payment date: 20230912

Year of fee payment: 5

Ref country code: HU

Payment date: 20230924

Year of fee payment: 5

Ref country code: FR

Payment date: 20230919

Year of fee payment: 5

Ref country code: BE

Payment date: 20230918

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231004

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231124

Year of fee payment: 5

Ref country code: CH

Payment date: 20231001

Year of fee payment: 5

Ref country code: IT

Payment date: 20230929

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230925

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109