EP3851217B1 - Verbesserte adaption eines walzenmodells - Google Patents

Verbesserte adaption eines walzenmodells Download PDF

Info

Publication number
EP3851217B1
EP3851217B1 EP20151947.7A EP20151947A EP3851217B1 EP 3851217 B1 EP3851217 B1 EP 3851217B1 EP 20151947 A EP20151947 A EP 20151947A EP 3851217 B1 EP3851217 B1 EP 3851217B1
Authority
EP
European Patent Office
Prior art keywords
roll
rolls
storage device
temperatures
diameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20151947.7A
Other languages
English (en)
French (fr)
Other versions
EP3851217A1 (de
Inventor
Andreas Maierhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Germany GmbH filed Critical Primetals Technologies Germany GmbH
Priority to EP20151947.7A priority Critical patent/EP3851217B1/de
Priority to JP2020199451A priority patent/JP2021109239A/ja
Priority to US17/108,482 priority patent/US20210213500A1/en
Priority to CN202110055263.2A priority patent/CN113118221A/zh
Publication of EP3851217A1 publication Critical patent/EP3851217A1/de
Application granted granted Critical
Publication of EP3851217B1 publication Critical patent/EP3851217B1/de
Priority to US18/144,962 priority patent/US20230271238A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/08Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts
    • B21B31/10Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts by horizontally displacing, i.e. horizontal roll changing
    • B21B31/103Manipulators or carriages therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/08Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/02Roll dimensions
    • B21B2267/06Roll diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/12Roll temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/08Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts
    • B21B31/10Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts by horizontally displacing, i.e. horizontal roll changing

Definitions

  • the present invention is based on a bearing device for two identical rolls of a roll stand, the bearing device being part of the roll stand or being positionable relative to the roll stand in such a way that the rolls can be transferred from the roll stand to the bearing device or vice versa.
  • a generic device is off DE 101 38 588 A1 known.
  • the roll gap is usually calculated as part of the so-called Level 2 automation.
  • Complex models are used to calculate the roll gap, which, for example, roll adjustment, roll deflection, roll flattening, roll crowning, roll wear, roll temperature, temperature of the rolling stock and others.
  • Some of the variables mentioned are specified as a respective progression over the width of the roll barrel. For example, a roll is locally (the term “locally” refers to the location seen in the direction of the roll axis) thicker, the higher the temperature of the roll at the respective location. Conversely, the roller is thinner locally, the higher the wear or abrasion of the roller at the respective location.
  • a roll gap of - for example - 3 cm an accuracy of 20 ⁇ m or 50 ⁇ m may well be acceptable.
  • a roll gap of - for example - 1.2 mm such an accuracy is generally no longer acceptable.
  • the roll gap is influenced, among other things, by the local temperature of the rolls. Furthermore, the roll gap is also influenced by the abrasion to which the rolls are subjected during operation. In addition, the material temperature of the flat rolling stock also depends, within certain limits, on the temperature of the work rolls in particular. In turn, the temperature of the rolling stock is an important criterion, for example for the correct determination of the rolling force. This applies to both hot rolling and cold rolling.
  • the object of the present invention is to create possibilities by means of which a roll model, by means of which the temperatures of rolls and their wear and thus their diameter can be determined in a spatially resolved manner viewed in the direction of the roll axes, can be optimized in a simple and reliable manner.
  • a bearing device of the type mentioned at the outset is designed in that the bearing device has at least one measuring system, by means of which the temperatures and/or the diameters of the rolls, seen in the direction of the roll axes, can be detected individually and independently of one another at least at predefined detection positions.
  • the actual temperatures and/or the actual diameters of the rolls can be measured, so that they can be compared with the corresponding values determined with the aid of a model, and the roll model can be adapted based on the comparison.
  • the storage device is designed as a roll-changing carriage. In this case, it can be ensured in a particularly simple manner that the measuring system is not exposed to the rough operation of the roll stand, as occurs when rolling the flat rolled stock.
  • the measuring system per roll it is possible for the measuring system per roll to have several measuring devices that are stationary with respect to a base body of the bearing device, so that the temperature and/or the diameter of the respective roll, seen in the direction of the roll axes, can be detected at one of the predefined detection positions by means of the measuring devices.
  • a measuring device viewed in the direction of the roll axes, for example, can be provided every 10 cm or every 20 cm, by means of which the temperature and/or the diameter of the respective roll can be recorded at the respective point.
  • the measuring system it is possible for the measuring system to have a plurality of measuring devices per roll, which can be moved in the direction of the roll axes with respect to a base body of the bearing device are, so that the temperature and/or the diameter of the respective roll, seen in the direction of the roll axes, can be detected by means of the measuring devices in a respective section comprising at least one of the predefined detection positions.
  • the measuring devices can be moved to the left and right by 5 cm, 8 cm, 12 cm or 15 cm, starting from a central position of the respective measuring device, viewed in the direction of the roller axes.
  • the temperature and/or the diameter of the respective roll can be recorded in a respective partial area of 10 cm, 16 cm, 24 cm or 30 cm by means of one of the measuring devices.
  • the numerical values mentioned are purely exemplary.
  • the partial areas can overlap or be disjunctive to one another.
  • the measuring system it is again possible for the measuring system to have a single measuring device for each roll, by means of which the temperatures and/or the diameters of the respective roll, seen in the direction of the roll axes, can be detected at least at all of the predefined detection positions.
  • This configuration has the advantage that only a minimum number of measuring devices is required.
  • the measuring device it is possible for the measuring device to be arranged on a base body of the bearing device so that it can be moved in the direction of the roll axes, so that the measuring device can be moved over the entire effective barrel length of the rolls.
  • the rollers are initially arranged in the base body of the bearing device. Then the measuring device is moved along the rollers. The temperatures and/or the diameters of the rolls are recorded during this travel movement, which may be interrupted again and again for a single measurement process.
  • the measuring device is arranged stationary on a base body of the storage device such that the respective roll is moved past the measuring device during transfer from the roll stand to a roll changing carriage or vice versa.
  • This configuration is particularly simple, since no other moving parts are required beyond those parts which must be present anyway for transferring the rolls from the roll stand to the roll-changing carriage or vice versa.
  • this configuration can be implemented not only in a roll changing carriage, but also in a roll stand itself.
  • the measuring device can be arranged in a protected area of the stand on the operator side in this case.
  • the recorded measurement values can be fed manually to an automation unit that controls the roll stand.
  • the measuring system is preferably connected to this automation unit in terms of data technology and automatically transmits the recorded temperatures and/or diameters to the automation unit, so that the recorded temperatures and/or diameters can be assigned to the predefined recording positions by the automation unit. It may be necessary for this purpose for the detection positions to be transmitted to the automation unit in addition to the temperatures and/or diameters.
  • FIG 1 passes through a flat rolling stock 1 made of metal roll stands 2 of a rolling train and is thereby rolled.
  • the rolling takes place between two identical rolls 3 of the respective roll stand 2.
  • the flat rolling stock 1 can be a strip or a heavy plate.
  • the metal from which the flat rolling stock 1 is made can be steel or aluminum, for example.
  • the present invention is advantageously applicable particularly when the rolling is cold rolling.
  • the two rolls 3 of the same type are usually the two work rolls of the respective roll stand 2, ie those rolls which act directly and immediately on the flat rolling stock 1.
  • they can be rolls that act directly or indirectly on the work rolls, for example in a four-high stand or a six-high stand around the back-up rolls or in a six-high stand around the intermediate rolls arranged between the back-up rolls and the work rolls.
  • the rolls 3 are similar in the sense that they are functionally similar and one of the two rolls 3 acts on the rolling stock 1 from above and the other from below.
  • the rolling train is controlled by an automation unit 4 .
  • the automation unit 4 thus also controls the roll stands 2.
  • the control of one of the roll stands 2 by the automation unit 4 is explained in more detail. It is pointed out in advance that this type of control as such is well known to those skilled in the art. Details on the concrete implementation are therefore not required.
  • the automation unit 4 implements a roll model 5.
  • the automation unit 4 feeds the roll model 5 with operating data BD of the roll stand 2.
  • the operating data BD generally include actual properties of the flat rolling stock 1 when it enters the roll stand 2, such as its width, its thickness, its chemical composition and its temperature.
  • the operating data BD also include target properties of the flat rolling stock 1 when it leaves the roll stand 2, such as its thickness together with the associated profile, associated contour and/or associated flatness.
  • the automation unit 4 continues to use control data SD for the roll stand 2, even if only temporarily.
  • the control data SD are also supplied to the roller model 5.
  • the control data SD can include, for example, the adjustment, the rolling force, a bending force and others.
  • the control device determines the temperature T of the respective roll 3 and/or the diameter D of the respective roll 3 for the two rolls 3 of the same type when exiting the roll stand 2. In all cases, the determination is carried out in a spatially resolved manner as viewed in the direction of the roll axes. It therefore takes place at least at predefined determination positions p. the inside FIG 2 However, the distance between adjacent determination positions p of 20 cm that is drawn in is only to be understood as an example.
  • the automation unit 4 compares the expected actual properties of the flat rolling stock 1 determined by means of the rolling model 5 when leaving the rolling stand 2 with the desired target properties of the flat rolling stock 1 when leaving the rolling stand 2. If necessary, the automation unit 4 then varies the tax data SD, in order to approximate the expected actual properties of the flat rolling stock 1 when leaving the rolling stand 2 as closely as possible to the desired target properties of the flat rolling stock 1 when leaving the rolling stand 2. If necessary, an iterative procedure is used. Varying the control data SD is in FIG 2 indicated by the fact that the operating data BD are supplied to the roller model 5 exclusively by the automation unit 4, while the control data SD can be transmitted in both directions.
  • the procedure explained is generally known and familiar to those skilled in the art. It is carried out again and again during the rolling of the flat rolling stock 1, for example for a new section of the flat rolling stock 1 or for a subsequent flat rolling stock 1.
  • the automation unit 4 determines the result (among other things and spatially resolved as seen in the direction of the roll axes) again and again the temperatures T and/or the diameters D of the rolls 3 and, based on this, the respective activation SD of the roll stand 2, ie the control data SD.
  • the diameter D both the temperature-related expansion of the rolls 3 and their wear-related change in the diameter D are included.
  • Corresponding models are known to experts under the term TWC (English: thermal wear crown).
  • the temperature of the flat rolling stock 1 is often also determined as part of the modelling. This is also generally known and familiar to those skilled in the art.
  • a roll-changing carriage 6 is positioned next to the roll stand 2 whose rolls 3 are to be changed.
  • the roll stand 2 has a stand 2' on the operator side and a stand 2'' on the drive side.
  • the roll changing carriage 6 is arranged next to the stand 2' on the operator side.
  • FIG 4 shows the corresponding state of the rolling mill.
  • procedures are also known in which the rolls 3 can be changed while a flat rolling stock 1 is passing through the roll stand 2 . Whether one or the other procedure is taken is of secondary importance within the scope of the present invention.
  • the rolls 3 can be dismantled and the rolls 3 transferred to the roll-changing carriage 6 in a conventional, well-known manner. It is important, however, that the temperatures T and/or the diameters D of the two rolls 3 are recorded during the removal of the rolls 3 from the roll stand 2 and the transfer of the rolls 3 to the roll changing carriage 6 or immediately thereafter. The detection therefore takes place before the roll-changing carriage 6 is removed from the roll stand 2 .
  • the detection takes place automatically by means of a measuring system 7 which is arranged on the rolling stand 2 or on the roll-changing carriage 6 . Furthermore, the detection takes place in a spatially resolved manner as viewed in the direction of the roller axes, namely at least at predefined detection positions p′. Immediately adjacent detection positions p′ can—for example—have a distance of 8 cm, 10 cm, 12 cm, 15 cm or 20 cm from one another.
  • the temperatures T and/or the diameters D are recorded individually and independently of one another by means of the measuring system 7 .
  • the temperature T recorded for a specific recording position p' it is therefore not possible, or at least Statements about the temperature T for a different detection position p' cannot be derived without further ado.
  • a similar situation applies to the detected diameters D. Possible implementations of this procedure will be explained later.
  • the recorded temperatures T and/or diameters D are automatically transmitted to the automation unit 4 by the measuring system 7 .
  • the measuring system 7 is connected to the automation unit 4 in terms of data technology. Wired transmission or wireless transmission is alternatively possible.
  • the measuring system 7 and the automation unit 4 can be used, for example, as shown in 5 implement a radio link via antennas 8 .
  • the recorded temperatures T and/or diameter D are transmitted in such a way that the automation unit 4 is able to assign the recorded temperatures T and/or diameter D to the predefined recording positions p′.
  • the detection positions p' can also be transmitted. It is also possible for the automation unit 4 to know in advance at which detection positions p′ the temperatures T and/or diameter D are detected and in which order the detected temperatures T and/or diameter D are transmitted from the measuring system 7 to the automation unit 4 will.
  • the automation unit 4 takes the transmitted temperatures T and/or diameter D accordingly 6 in a step S1 against.
  • a step S2 for the automation unit 4 coordinates adjustment.
  • the corresponding temperatures T and/or diameter D can be determined for the determination positions p on the basis of the temperatures T and/or diameter D detected for the detection positions p′ by linear or other interpolation will.
  • the temperatures T and/or diameter D determined with the aid of a model for the determination positions p can be converted to the detection positions p′ by linear or other interpolation. If the detection positions p′ and the determination positions p correspond directly to one another, step S2 can be omitted.
  • the automation unit 4 compares the temperatures T and/or the corresponding diameters D of the rolls 3 determined by means of the roll model 5 with the temperatures T and/or diameters D of the rolls 3 detected by means of the measuring system 7.
  • the automation unit 4 can Step S3 determine a first change value ⁇ k1 for a first model parameter k1 of the roll model 5 based on the comparison of the temperatures T and a second change value ⁇ k2 for a second model parameter k2 of the roll model 5 based on the comparison of the diameter D.
  • the automation unit 4 can then update the model parameters k1, k2 in a step S4 and thereby adapt the roller model 5.
  • the model parameters k1, k2 go - of course - in the determination of the temperatures T and / or the diameter D of the rollers 3, which takes place by means of the roller model 5.
  • a bearing device for the two rollers 3 is present in all of the configurations.
  • the storage facility is as shown in FIGS 7 to 10 designed as a roll changing carriage 6.
  • the storage device ie the roll changing carriage 6
  • the storage facility can be positioned relative to the roll stand 2 in such a way that the rolls 3 can be transferred from the roll stand 2 to the storage device or vice versa.
  • the storage facility as shown in 11 but also be part of the roll stand 2 itself.
  • the measuring system 7 it is possible for the measuring system 7 to have a plurality of measuring devices 9 per roll 2 .
  • the measuring devices 9 are in accordance with the embodiment FIG 7 arranged stationary with respect to a base body 10 of the roll changing carriage 6 .
  • the temperature T and/or the diameter D of the respective roll 3 seen in the direction of the roll axes are detected by means of the measuring devices 9 at one of the predefined detection positions p′.
  • the rolls 3 are first removed from the roll stand 2 and transferred to the roll-changing carriage 6 .
  • Each measuring device 6 then records the temperature T and/or the diameter D of the roll 3 in question for its respective recording position p′.
  • the temperature T can alternatively be recorded via contact or without contact.
  • a contact-based detection of the temperature T can be done, for example, using a probe.
  • the probe can implement a PT100 element, for example.
  • a contact-based detection of the diameter D can optionally also take place via the same or a different measuring probe.
  • the corresponding measuring probe can be designed similar to a micrometer screw, for example.
  • the temperature T can be recorded without contact--for example by means of an infrared camera.
  • a non-contact detection of the diameter D can also take place--for example via a laser-based distance measurement or an ultrasound-based distance measurement.
  • FIG 7 shows a similar configuration FIG 7 .
  • the measuring system 7 has several measuring devices 9 per roll 2 .
  • the temperature T and/or the diameter D of the respective roll 3 viewed in the direction of the roll axes can be detected by means of the measuring devices 9 in a respective section comprising at least one of the predefined detection positions p′.
  • FIG 7 still valid.
  • the measuring system 7 has several measuring devices 9 for each roller 3 .
  • the measuring system 7 it is also possible for the measuring system 7 to have only a single measuring device 9 per roll 3 .
  • the temperatures T and/or the diameter D of the respective roll 3 viewed in the direction of the roll axis must be detectable at least at all of the predefined detection positions p′ by means of the individual measuring device 9 .
  • 9 is essentially an embodiment of 8 .
  • the difference is that unlike the design of 8 there is only one measuring device 9 per roll 3, but in return the area over which this measuring device 9 can be moved, viewed in the direction of the roll axes, is correspondingly large, so that the measuring device 9 can be moved at least over the entire effective barrel length of the rolls 3 can.
  • Mobility is in 9 - analogous to 8 - indicated by corresponding double arrows.
  • the relative movement of the measuring device 9 relative to the roller 3 is important for data acquisition at all of the predefined acquisition positions p′ by means of a single measuring device 9 per roller 3 . It is therefore irrelevant whether, during the data acquisition, the roll 3 is stationary in the base body 10 of the roll changing carriage 6 and the measuring device 9 is being moved, or vice versa, if the measuring device 9 is stationary and the roll 3 is being moved. It is therefore appropriate the representation in 10 in kinematic reversal of the procedure of 9 possible to arrange the measuring device 9 on the base body 10 of the roll changing carriage 6 in a stationary manner. In this case, the measuring device 9 only has to be arranged in such a way that the respective roll 3 is moved past the measuring device 9 during transfer from the roll stand 2 to the roll changing carriage 6 or vice versa. This is easily realizable.
  • this configuration i.e. the configuration in which the measuring device 9 is stationary and the respective roll 3 is moved past the measuring device 9 during transfer from the roll stand 2 to the roll changing carriage 6 or vice versa - can also be implemented in such a way that the measuring device 9 is not is stationarily arranged on the roll changing carriage 6, but according to the illustration in 11 on the roll stand 2 itself, in particular on the operator-side stand 2'.
  • the storage device is part of the roll stand 2.
  • the present invention has many advantages.
  • the model parameters k1, k2 of the roller model 5 can be continuously updated in a simple and reliable manner. Due to the improved modeling, the rolling quality of the rolling stock 1 can also be improved. In particular, the quality of thickness, flatness and contour can be increased. A modeling of the temperature of the rolling stock 1 can also be improved. Furthermore, an improved prediction is possible when rolling new materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

    Gebiet der Technik
  • Die vorliegende Erfindung geht aus von einer Lagereinrichtung für zwei gleichartige Walzen eines Walzgerüsts, wobei die Lagereinrichtung Bestandteil des Walzgerüsts ist oder relativ zum Walzgerüst derart positionierbar ist, dass die Walzen von dem Walzgerüst in die Lagereinrichtung oder umgekehrt überführbar sind. Eine gattungsgemässe Vorrichtung ist aus DE 101 38 588 A1 bekannt.
  • Die vorliegende Erfindung geht weiterhin aus von einem Betriebsverfahren für ein Walzgerüst,
    • wobei ein das Walzgerüst durchlaufendes flaches Walzgut zwischen zwei gleichartigen Walzen des Walzgerüsts gewalzt wird,
    • wobei eine das Walzgerüst steuernde Automatisierungseinheit mittels eines Walzenmodells anhand von Betriebsdaten des Walzgerüsts für die beiden gleichartigen Walzen in Richtung der Walzenachsen gesehen zumindest an vordefinierten Ermittlungspositionen immer wieder die Temperaturen und/oder die Durchmesser der Walzen ermittelt und aufbauend auf den ermittelten Temperaturen und/oder Durchmessern eine Ansteuerung des Walzgerüsts ermittelt, so dass ein Walzspalt des Walzgerüsts während des Walzens des flachen Walzguts nach Möglichkeit entsprechend Sollvorgaben eingestellt wird,
    • wobei die gleichartigen Walzen von Zeit zu Zeit aus dem Walzgerüst ausgebaut und in einen Walzenwechselwagen überführt werden.
  • Beim Walzen von flachen Walzgütern aus Metall wird üblicherweise im Rahmen der sogenannten Level-2-Automatisierung der Walzspalt berechnet. Zur Berechnung des Walzspaltes werden komplexe Modellierungen verwendet, welche beispielsweise die Walzenanstellung, die Walzenbiegung, die Walzenabplattung, die Walzenballigkeit, den Walzenverschleiß, die Walzentemperatur, die Temperatur des Walzguts und andere mehr berücksichtigen. Die genannten Größen werden teilweise als jeweiliger Verlauf über die Walzenballenbreite vorgegeben. So ist beispielsweise eine Walze lokal (der Begriff "lokal" bezieht sich auf den Ort in Richtung der Walzenachse gesehen) umso dicker, je höher die Temperatur der Walze an der jeweiligen Stelle ist. Umgekehrt ist die Walze lokal umso dünner, je höher der Verschleiß oder der Abrieb der Walze an der jeweiligen Stelle ist.
  • Die absolute Genauigkeit, mit welcher der Walzspalt berechnet werden muss, ist umso größer, je kleiner der Walzspalt ist. Bei einem Walzspalt von - beispielsweise - 3 cm mag eine Genauigkeit von 20 µm oder 50 µm durchaus akzeptabel sein. Bei einem Walzspalt von - beispielsweise - 1,2 mm hingegen ist eine derartige Genauigkeit in aller Regel nicht mehr akzeptabel.
  • Der Walzspalt wird, wie bereits erwähnt, unter anderem durch die lokale Temperatur der Walzen beeinflusst. Weiterhin wird der Walzspalt auch durch den Abrieb beeinflusst, dem die Walzen im Betrieb unterworfen sind. Zusätzlich hängt auch die Materialtemperatur des flachen Walzguts innerhalb gewisser Grenzen von der Temperatur insbesondere der Arbeitswalzen ab. Die Temperatur des Walzguts wiederum ist ein wichtiges Kriterium beispielsweise für die korrekte Ermittlung der Walzkraft. Dies gilt sowohl für das Warmwalzen als auch für das Kaltwalzen.
  • Sowohl die Temperatur der Arbeitswalzen als auch der Abrieb bzw. Verschleiß können während des Walzens nicht direkt gemessen werden. Aus diesem Grund werden Walzenmodelle eingesetzt, mittels derer die Temperatur der Arbeitswalzen und auch der Verschleiß der Arbeitswalzen anhand messbarer und anderweitig bekannter Betriebsparameter des Walzgerüsts modellgestützt ermittelt werden. Analoge Vorgehensweisen können gegebenenfalls auch für andere Walzenpaare eines Walzgerüsts ergriffen werden, beispielsweise für die Stützwalzen eines Quartogerüsts oder für die zwischen den Stützwalzen und den Arbeitswalzen angeordneten Zwischenwalzen eines Sextogerüsts.
  • Die Modelle, mittels derer die Walzen und der Walzspalt modelliert werden, sind fehlerbehaftet. Es liegt daher im Bestreben des Fachmanns, die Modelle zu optimieren. Dies gilt unter anderem auch für das Walzenmodell.
  • Stand der Technik
  • Aus der WO 2012/025 266 A1 ist ein Verfahren bekannt, mittels dessen bei einer Walze eines Walzgerüsts sowohl die Temperatur der Walze als auch der Verschleiß der Walze ermittelt werden können. Die Ermittlung erfolgt in Richtung der Walzenachse gesehen ortsaufgelöst.
  • Aus der WO 2017/144 227 A1 und der WO 2011/124 585 A1 sind Vorgehensweisen bekannt, mittels derer Arbeitswalzen eines Walzgerüsts gewechselt werden können, während das Walzgerüst von einem flachen Walzgut durchlaufen wird.
  • Zusammenfassung der Erfindung
  • Die Aufgabe der vorliegenden Erfindung besteht darin, Möglichkeiten zu schaffen, mittels derer ein Walzenmodell, mittels dessen die Temperaturen von Walzen und deren Verschleiß und damit deren Durchmesser in Richtung der Walzenachsen gesehen ortsaufgelöst ermittelt werden können, auf einfache und zuverlässige Weise optimiert werden kann.
  • Die Aufgabe wird durch eine Lagereinrichtung mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Lagereinrichtung sind Gegenstand der abhängigen Ansprüche 2 bis 8.
  • Erfindungsgemäß wird eine Lagereinrichtung der eingangs genannten Art dadurch ausgestaltet, dass die Lagereinrichtung mindestens ein Messsystem aufweist, mittels dessen die Temperaturen und/oder die Durchmesser der Walzen in Richtung der Walzenachsen gesehen zumindest an vordefinierten Erfassungspositionen einzeln und unabhängig voneinander erfassbar sind.
  • Dadurch sind die tatsächlichen Temperaturen und/oder die tatsächlichen Durchmesser der Walzen messtechnisch erfassbar, so dass sie mit den modellgestützt ermittelten korrespondierenden Werten verglichen werden können und aufbauend auf dem Vergleich das Walzenmodell adaptiert werden kann.
  • Wie bereits erwähnt ist es - wenn auch nur ausnahmsweise - möglich, dass die Lagereinrichtung Bestandteil des Walzgerüsts ist. Diese Ausgestaltung ist in der Regel jedoch nur in einer speziellen Ausgestaltung sinnvoll. In aller Regel hingegen ist die Lagereinrichtung als Walzenwechselwagen ausgebildet. In diesem Fall kann insbesondere auf einfache Weise gewährleistet sein, dass das Messsystem nicht dem rauen Betrieb des Walzgerüsts ausgesetzt ist, wie er beim Walzen des flachen Walzguts auftritt.
  • Es ist möglich, dass das Messsystem pro Walze mehrere bezüglich eines Grundkörpers der Lagereinrichtung ortsfeste Messeinrichtungen aufweist, so dass mittels der Messeinrichtungen die Temperatur und/oder der Durchmesser der jeweiligen Walze in Richtung der Walzenachsen gesehen an jeweils einer der vordefinierten Erfassungspositionen erfassbar sind. Bei einer derartigen Ausgestaltung kann in Richtung der Walzenachsen gesehen - beispielsweise - alle 10 cm oder alle 20 cm jeweils eine Messeinrichtung vorgesehen sein, mittels derer an der jeweiligen Stelle die Temperatur und/oder der Durchmesser der jeweiligen Walze erfassbar sind.
  • Alternativ ist es möglich, dass das Messsystem pro Walze mehrere Messeinrichtungen aufweist, die bezüglich eines Grundkörpers der Lagereinrichtung in Richtung der Walzenachsen beweglich sind, so dass mittels der Messeinrichtungen die Temperatur und/oder der Durchmesser der jeweiligen Walze in Richtung der Walzenachsen gesehen in einem jeweils mindestens eine der vordefinierten Erfassungspositionen umfassenden jeweiligen Teilabschnitt erfassbar sind. Beispielsweise können die Messeinrichtungen, ausgehend von einer Mittelposition der jeweiligen Messeinrichtung, in Richtung der Walzenachsen gesehen um jeweils 5 cm, 8 cm, 12 cm oder 15 cm nach links und rechts verfahrbar sein. In diesem Fall können mittels jeweils einer der Messeinrichtungen die Temperatur und/oder der Durchmesser der jeweiligen Walze in einem jeweiligen Teilbereich von 10 cm, 16 cm, 24 cm oder 30 cm erfasst werden. Die genannten Zahlenwerte sind wie zuvor rein beispielhaft. Je nach Größe der Teilbereiche und deren Versatz gegeneinander - beispielsweise 10 cm oder 20 cm - können die Teilbereiche sich überlappen oder disjunkt zueinander sein.
  • Wiederum alternativ ist es möglich, dass das Messsystem pro Walze eine einzelne Messeinrichtung aufweist, mittels derer die Temperaturen und/oder die Durchmesser der jeweiligen Walze in Richtung der Walzenachsen gesehen zumindest an allen der vordefinierten Erfassungspositionen erfassbar sind. Diese Ausgestaltung weist den Vorteil auf, dass nur eine minimale Anzahl an Messeinrichtungen benötigt wird.
  • Im letzten Fall sind wiederum zwei zueinander alternative Ausgestaltungen möglich.
  • Zum einen ist es möglich, dass die Messeinrichtung an einem Grundkörper der Lagereinrichtung in Richtung der Walzenachsen gesehen beweglich angeordnet ist, so dass die Messeinrichtung über die gesamte wirksame Ballenlänge der Walzen verfahrbar ist. In diesem Fall werden zunächst die Walzen in dem Grundkörper der Lagereinrichtung angeordnet. Danach wird die Messeinrichtung die Walzen entlanggefahren. Während dieser - gegebenenfalls immer wieder für einen einzelnen Messvorgang unterbrochenen - Verfahrbewegung werden die Temperaturen und/oder die Durchmesser der Walzen erfasst.
  • Zum anderen ist es möglich, dass die Messeinrichtung an einem Grundkörper der Lagereinrichtung ortsfest derart angeordnet ist, dass die jeweilige Walze beim Überführen vom Walzgerüst in einen Walzenwechselwagen oder umgekehrt an der Messeinrichtung vorbei bewegt wird. Diese Ausgestaltung ist besonders einfach, da über diejenigen Teile, die zum Überführen der Walzen vom Walzgerüst in den Walzenwechselwagen oder umgekehrt sowieso vorhanden sein müssen, hinaus keine weiteren beweglichen Teile erforderlich sind. Weiterhin ist konkret diese Ausgestaltung nicht nur bei einem Walzenwechselwagen realisierbar, sondern auch bei einem Walzgerüst selbst. Insbesondere kann die Messeinrichtung in diesem Fall in einem geschützten Bereich des bedienseitigen Gerüstständers angeordnet sein.
  • Es ist möglich, dass die erfassten Messwerte einer das Walzgerüst steuernden Automatisierungseinheit manuell zugeführt werden. Vorzugsweise aber ist das Messsystem mit dieser Automatisierungseinheit datentechnisch verbunden und übermittelt die erfassten Temperaturen und/oder Durchmesser automatisch an die Automatisierungseinheit, so dass die erfassten Temperaturen und/oder Durchmesser von der Automatisierungseinheit den vordefinierten Erfassungspositionen zuordenbar sind. Gegebenenfalls kann es zu diesem Zweck erforderlich sein, dass zusätzlich zu den Temperaturen und/oder Durchmessern auch die Erfassungspositionen an die Automatisierungseinheit übermittelt werden.
  • Die Aufgabe wird weiterhin durch ein Betriebsverfahren für ein Walzgerüst mit den Merkmalen des Anspruchs 9 gelöst. Erfindungsgemäß wird ein Betriebsverfahren der eingangs genannten Art dadurch ausgestaltet,
    • dass während des Ausbaus der Walzen aus dem Walzgerüst und des Überführens der Walzen in den Walzenwechselwagen oder in unmittelbarem zeitlichem Anschluss daran mittels eines am Walzgerüst oder am Walzenwechselwagen angeordneten Messsystems automatisiert in Richtung der Walzenachsen gesehen zumindest an vordefinierten Erfassungspositionen die Temperaturen und/oder die Durchmesser der beiden Walzen erfasst werden,
    • dass die erfassten Temperaturen und/oder Durchmesser automatisch an die Automatisierungseinheit übermittelt werden, so dass die erfassten Temperaturen und/oder Durchmesser von der Automatisierungseinheit den vordefinierten Erfassungspositionen zuordenbar sind, und
    • dass die Automatisierungseinheit die mittels des Walzenmodells ermittelten Temperaturen der Walzen und/oder die mittels des Walzenmodells ermittelten Durchmesser der Walzen mit den mittels des Messsystems erfassten Temperaturen der Walzen und/oder mit den mittels des Messsystems erfassten Durchmessern der Walzen vergleicht und anhand des Vergleichs das Walzenmodell adaptiert.
    Kurze Beschreibung der Zeichnungen
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die in Verbindung mit den Zeichnungen näher erläutert werden. Hierbei zeigen in schematischer Darstellung:
  • FIG 1
    eine mehrgerüstige Walzstraße während des Walzens eines Walzguts,
    FIG 2
    eine Modellierung eines Walzspaltes und eine Ermittlung einer Ansteuerung für ein Walzgerüst,
    FIG 3
    den Ausbau von Walzen des Walzgerüsts aus dem Walzgerüst,
    FIG 4
    die Walzstraße von FIG 1 während einer Walzpause,
    FIG 5
    ein Messsystem und eine Automatisierungseinrichtung,
    FIG 6
    ein Ablaufdiagramm,
    FIG 7
    eine mögliche Ausgestaltung eines Walzenwechselwagens,
    FIG 8
    eine Modifikation des Walzenwechselwagens von FIG 5,
    FIG 9
    eine weitere Modifikation des Walzenwechselwagens von FIG 5,
    FIG 10
    eine weitere mögliche Ausgestaltung eines Walzenwechselwagens und
    FIG 11
    eine mögliche Ausgestaltung eines Walzgerüsts.
    Beschreibung der Ausführungsformen
  • Gemäß FIG 1 durchläuft ein flaches Walzgut 1 aus Metall Walzgerüste 2 einer Walzstraße und wird hierbei gewalzt. Das Walzen erfolgt jeweils zwischen zwei gleichartigen Walzen 3 des jeweiligen Walzgerüsts 2. Das flache Walzgut 1 kann ein Band oder ein Grobblech sein. Das Metall, aus dem das flache Walzgut 1 besteht, kann beispielsweise Stahl oder Aluminium sein. Prinzipiell ist es möglich, dass das flache Walzgut 1 warmgewalzt wird. Die vorliegende Erfindung ist jedoch insbesondere dann mit Vorteil anwendbar, wenn das Walzen ein Kaltwalzen ist. Die beiden gleichartigen Walzen 3 sind in der Regel die beiden Arbeitswalzen des jeweiligen Walzgerüsts 2, also diejenigen Walzen, die direkt und unmittelbar auf das flache Walzgut 1 einwirken. Alternativ kann es sich um Walzen handeln, die direkt oder indirekt auf die Arbeitswalzen einwirken, beispielsweise bei einem Quartogerüst oder einem Sextogerüst um die Stützwalzen oder bei einem Sextogerüst um die zwischen den Stützwalzen und den Arbeitswalzen angeordneten Zwischenwalzen. In jedem Fall sind die Walzen 3 gleichartig in dem Sinne, dass sie funktional gleichartig sind und eine der beiden Walzen 3 von oben und die andere von unten auf das Walzgut 1 wirkt.
  • Die Walzstraße wird von einer Automatisierungseinheit 4 gesteuert. Insbesondere steuert die Automatisierungseinheit 4 damit auch die Walzgerüste 2. Nachfolgend wird - stellvertretend für alle Walzgerüste 2 - in Verbindung mit FIG 2 die Steuerung eines der Walzgerüste 2 durch die Automatisierungseinheit 4 näher erläutert. Vorab wird darauf hingewiesen, dass diese Art der Steuerung als solche Fachleuten allgemein bekannt ist. Details zur konkreten Implementierung sind daher nicht erforderlich.
  • Gemäß FIG 2 implementiert die Automatisierungseinheit 4 ein Walzenmodell 5. Die Automatisierungseinheit 4 führt dem Walzenmodell 5 Betriebsdaten BD des Walzgerüsts 2 zu. Die Betriebsdaten BD umfassen in der Regel Ist-Eigenschaften des flachen Walzguts 1 beim Einlaufen in das Walzgerüst 2 wie beispielsweise dessen Breite, dessen Dicke, dessen chemische Zusammensetzung und dessen Temperatur. Die Betriebsdaten BD umfassen in der Regel weiterhin Soll-Eigenschaften des flachen Walzguts 1 beim Auslaufen aus dem Walzgerüst 2 wie beispielsweise dessen Dicke nebst zugehörigem Profil, zugehöriger Kontur und/oder zugehöriger Planheit. Die Automatisierungseinheit 4 setzt weiterhin - wenn auch nur vorläufig - Steuerdaten SD für das Walzgerüst 2 an. Auch die Steuerdaten SD werden dem Walzenmodell 5 zugeführt. Die Steuerdaten SD können beispielsweise die Anstellung, die Walzkraft, eine Biegekraft und andere mehr umfassen. Mittels des Walzenmodells 5 ermittelt die Steuereinrichtung für die beiden gleichartigen Walzen 3 die Temperatur T der jeweiligen Walze 3 und/oder den Durchmesser D der jeweiligen Walze 3. Weiterhin ermittelt sie auch einen sich ergebenden Walzspaltverlauf und hierauf aufbauend erwartete Ist-Eigenschaften des flachen Walzguts 1 beim Auslaufen aus dem Walzgerüst 2. Die Ermittlung erfolgt in allen Fällen in Richtung der Walzenachsen gesehen ortsaufgelöst. Sie erfolgt also zumindest an vordefinierten Ermittlungspositionen p. Der in FIG 2 eingezeichnete Abstand benachbarter Ermittlungspositionen p von 20 cm ist jedoch nur rein beispielhaft zu verstehen.
  • Die Automatisierungseinheit 4 vergleicht sodann die mittels des Walzmodells 5 ermittelten erwarteten Ist-Eigenschaften des flachen Walzguts 1 beim Auslaufen aus dem Walzgerüst 2 mit den gewünschten Soll-Eigenschaften des flachen Walzguts 1 beim Auslaufen aus dem Walzgerüst 2. Soweit erforderlich, variiert die Automatisierungseinheit 4 daraufhin die Steuerdaten SD, um die erwarteten Ist-Eigenschaften des flachen Walzguts 1 beim Auslaufen aus dem Walzgerüst 2 so weit wie möglich an die gewünschten Soll-Eigenschaften des flachen Walzguts 1 beim Auslaufen aus dem Walzgerüst 2 anzunähern. Soweit erforderlich, erfolgt hierbei eine iterative Vorgehensweise. Das Variieren der Steuerdaten SD ist in FIG 2 dadurch angedeutet, dass die Betriebsdaten BD ausschließlich von der Automatisierungseinheit 4 dem Walzenmodell 5 zugeführt werden, während die Steuerdaten SD in beide Richtungen übermittelt werden können.
  • Die erläuterte Vorgehensweise ist, wie bereits erwähnt, Fachleuten als solche allgemein bekannt und vertraut. Sie wird beim Walzen des flachen Walzguts 1 immer wieder neu ausgeführt, beispielsweise für einen neuen Abschnitt des flachen Walzguts 1 oder für ein nachfolgendes flaches Walzgut 1. Im Ergebnis ermittelt die Automatisierungseinheit 4 also (unter anderem und in Richtung der Walzenachsen gesehen ortsaufgelöst) immer wieder die Temperaturen T und/oder die Durchmesser D der Walzen 3 und hierauf aufbauend die jeweilige Ansteuerung SD des Walzgerüsts 2, also die Steuerdaten SD. In die Ermittlung der Durchmesser D geht sowohl die temperaturbedingte Ausdehnung der Walzen 3 als auch deren verschleißbedingte Änderung des Durchmessers D ein. Entsprechende Modelle sind Fachleuten unter dem Begriff TWC (englisch: thermal wear crown) bekannt. Oftmals erfolgt im Rahmen der Modellierung auch eine Ermittlung der Temperatur des flachen Walzguts 1. Auch dies ist Fachleuten allgemein bekannt und vertraut.
  • Nach dem Walzen einer bestimmten Anzahl von flachen Walzgütern 1 - beispielsweise nach dem Walzen von 20 oder 25 flachen Walzgütern 1 - müssen die Walzen 3 gewechselt werden. Zu diesem Zweck wird entsprechend der Darstellung in FIG 3 neben dem Walzgerüst 2, dessen Walzen 3 gewechselt werden sollen, ein Walzenwechselwagen 6 positioniert. Insbesondere weist das Walzgerüst 2 einen bedienseitigen Gerüstständer 2' und einen antriebsseitigen Gerüstständer 2" auf. Der Walzenwechselwagen 6 wird neben dem bedienseitigen Gerüstständer 2' angeordnet.
  • Dann werden die Walzen 3 aus dem Walzgerüst 2 ausgebaut und, wie in FIG 3 durch entsprechende Pfeile angedeutet ist, in den Walzenwechselwagen 6 überführt. Die ausgebauten Walzen 3 sind in FIG 3 gestrichelt eingezeichnet.
  • In der Regel wird für diesen Vorgang eine Walzpause eingelegt, während derer in der Walzstraße kein flaches Walzgut 1 gewalzt wird. FIG 4 zeigt den entsprechenden Zustand der Walzstraße. Es sind jedoch auch Vorgehensweisen bekannt, bei denen ein Wechsel der Walzen 3 erfolgen kann, während das Walzgerüst 2 von einem flachen Walzgut 1 durchlaufen wird. Ob die eine oder die andere Vorgehensweise ergriffen wird, ist im Rahmen der vorliegenden Erfindung von untergeordneter Bedeutung.
  • Das Ausbauen der Walzen 3 und das Überführen in den Walzenwechselwagen 6 der Walzen 3 können auf konventionelle, allgemein bekannte Art und Weise erfolgen. Von Bedeutung ist aber, dass während des Ausbaus der Walzen 3 aus dem Walzgerüst 2 und des Überführens der Walzen 3 in den Walzenwechselwagen 6 oder in unmittelbarem zeitlichem Anschluss daran die Temperaturen T und/oder die Durchmesser D der beiden Walzen 3 erfasst werden. Die Erfassung erfolgt also, bevor der Walzenwechselwagen 6 vom Walzgerüst 2 entfernt wird.
  • Die Erfassung erfolgt automatisiert mittels eines Messsystems 7, das am Walzgerüst 2 oder am Walzenwechselwagen 6 angeordnet ist. Weiterhin erfolgt die Erfassung in Richtung der Walzenachsen gesehen ortsaufgelöst, nämlich zumindest an vordefinierten Erfassungspositionen p'. Unmittelbar benachbarte Erfassungspositionen p' können - beispielsweise - einen Abstand von 8 cm, 10 cm, 12 cm, 15 cm oder 20 cm voneinander aufweisen.
  • Weiterhin werden die Temperaturen T und/oder die Durchmesser D mittels des Messsystems 7 einzeln und unabhängig voneinander erfasst. Anhand der für eine bestimmte Erfassungsposition p' erfassten Temperatur T können also nicht oder zumindest nicht ohne weiteres Aussagen über die Temperatur T für eine andere Erfassungsposition p' abgeleitet werden. Ein analoger Sachverhalt gilt für die erfassten Durchmesser D. Mögliche Implementierungen dieser Vorgehensweise werden später noch erläutert werden.
  • Die erfassten Temperaturen T und/oder Durchmesser D werden von dem Messsystem 7 automatisch an die Automatisierungseinheit 4 übermittelt. Das Messsystem 7 ist zu diesem Zweck mit der Automatisierungseinheit 4 datentechnisch verbunden. Hierbei ist alternativ eine leitungsgebundene Übermittlung oder eine leitungslose Übermittlung möglich. Zur Implementierung einer leitungslosen Übermittlung können das Messsystem 7 und die Automatisierungseinheit 4 beispielsweise entsprechend der Darstellung in FIG 5 über Antennen 8 eine Funkstrecke implementieren.
  • Die Übermittlung der erfassten Temperaturen T und/oder Durchmesser D erfolgt in einer Art und Weise, aufgrund derer die Automatisierungseinheit 4 in der Lage ist, die erfassten Temperaturen T und/oder Durchmesser D den vordefinierten Erfassungspositionen p' zuzuordnen. Beispielsweise können die Erfassungspositionen p' mit übermittelt werden. Auch ist es möglich, dass der Automatisierungseinheit 4 vorab bekannt ist, an welchen Erfassungspositionen p' die Temperaturen T und/oder Durchmesser D erfasst werden und in welcher Reihenfolge die erfassten Temperaturen T und/oder Durchmesser D von dem Messsystem 7 an die Automatisierungseinheit 4 übermittelt werden.
  • Die Automatisierungseinheit 4 nimmt die übermittelten Temperaturen T und/oder Durchmesser D gemäß FIG 6 in einem Schritt S1 entgegen. In einem Schritt S2 für die Automatisierungseinheit 4 eine Koordinatenanpassung durch. Beispielsweise können anhand der für die Erfassungspositionen p' erfassten Temperaturen T und/oder Durchmesser D durch lineare oder anderweitige Interpolation für die Ermittlungspositionen p die korrespondierenden Temperaturen T und/oder Durchmesser D ermittelt werden. Alternativ können im Schritt S2 die für die Ermittlungspositionen p modellgestützt ermittelten Temperaturen T und/oder Durchmesser D durch lineare oder anderweitige Interpolation auf die Erfassungspositionen p' umgerechnet werden. Falls die Erfassungspositionen p' und die Ermittlungspositionen p direkt miteinander korrespondieren, kann der Schritt S2 entfallen.
  • In einem Schritt S3 vergleicht die Automatisierungseinheit 4 die mittels des Walzenmodells 5 ermittelten Temperaturen T und/oder die entsprechenden Durchmesser D der Walzen 3 mit den mittels des Messsystems 7 erfassten Temperaturen T und/oder Durchmessern D der Walzen 3. Insbesondere kann die Automatisierungseinheit 4 im Schritt S3 anhand des Vergleichs der Temperaturen T einen ersten Änderungswert δk1 für einen ersten Modellparameter k1 des Walzenmodells 5 und anhand des Vergleichs der Durchmesser D einen zweiten Änderungswert δk2 für einen zweiten Modellparameter k2 des Walzenmodells 5 ermitteln. Anhand der ermittelten Änderungswerte δk1, δk2 kann die Automatisierungseinheit 4 sodann in einem Schritt S4 die Modellparameter k1, k2 nachführen und dadurch das Walzenmodell 5 adaptieren. Die Modellparameter k1, k2 gehen - selbstverständlich - in die Ermittlung der Temperaturen T und/oder der Durchmesser D der Walzen 3 ein, die mittels des Walzenmodells 5 erfolgen.
  • Nachfolgend werden nunmehr in Verbindung mit den FIG 7 bis 11 mögliche Ausgestaltungen erläutert, auf welche die Erfassung der Temperaturen T und/oder Durchmesser D erfolgen kann.
  • In allen Ausgestaltungen ist eine Lagereinrichtung für die beiden Walzen 3 vorhanden. In den meisten Ausgestaltungen ist die Lagereinrichtung entsprechend den Darstellungen in den FIG 7 bis 10 als Walzenwechselwagen 6 ausgebildet. In diesem Fall ist die Lagereinrichtung (also der Walzenwechselwagen 6) relativ zum Walzgerüst 2 derart positionierbar, dass die Walzen 3 vom Walzgerüst 2 in die Lagereinrichtung oder umgekehrt überführbar sind. In Einzelfällen kann die Lagereinrichtung entsprechend der Darstellung in FIG 11 jedoch auch Bestandteil des Walzgerüsts 2 selbst sein.
  • So ist es beispielsweise entsprechend der Darstellung in FIG 7 möglich, dass das Messsystem 7 pro Walze 2 mehrere Messeinrichtungen 9 aufweist. Die Messeinrichtungen 9 sind bei der Ausgestaltung gemäß FIG 7 bezüglich eines Grundkörpers 10 des Walzenwechselwagens 6 ortsfest angeordnet. Mittels der Messeinrichtungen 9 werden die Temperatur T und/oder der Durchmesser D der jeweiligen Walze 3 in Richtung der Walzenachsen gesehen an jeweils einer der vordefinierten Erfassungspositionen p' erfasst. Im Rahmen der Ausgestaltung gemäß FIG 7 werden also zunächst die Walzen 3 aus dem Walzgerüst 2 ausgebaut und in den Walzenwechselwagen 6 überführt. Danach erfasst jede Messeinrichtung 6 für ihre jeweilige Erfassungsposition p' die Temperatur T und/oder den Durchmesser D der betreffenden Walze 3. Die Erfassung der Temperatur T kann alternativ über Kontakt oder berührungslos erfolgen. Eine kontaktbehaftete Erfassung der Temperatur T kann beispielsweise über einen Messtaster erfolgen. Der Messtaster kann zu diesem Zweck beispielsweise ein PT100-Element realisieren. Über den gleichen oder einen anderen Messtaster kann gegebenenfalls auch eine kontaktbehaftete Erfassung des Durchmessers D erfolgen. Zur Erfassung des Durchmessers D kann der entsprechende Messtaster beispielsweise ähnlich einer Mikrometerschraube ausgebildet sein. Alternativ kann - beispielsweise mittels einer Infrarotkamera - eine berührungslose Erfassung der Temperatur T erfolgen. Ebenso kann - beispielsweise über eine laserbasierte Abstandsmessung oder eine ultraschallbasierte Abstandsmessung - eine berührungslose Erfassung des Durchmessers D erfolgen.
  • FIG 8 zeigt eine ähnliche Ausgestaltung wie FIG 7. Auch bei der Ausgestaltung gemäß FIG 8 weist das Messsystem 7 pro Walze 2 mehrere Messeinrichtungen 9 auf. Im Gegensatz zur Ausgestaltung von FIG 7 sind die Messeinrichtungen 9 bei der Ausgestaltung gemäß FIG jedoch einzeln oder gemeinsam bezüglich des Grundkörpers 10 in Richtung der Walzenachsen beweglich angeordnet. Die Bewegbarkeit ist in FIG 8 durch entsprechende Doppelpfeile angedeutet. Dadurch können mittels der Messeinrichtungen 9 die Temperatur T und/oder der Durchmesser D der jeweiligen Walze 3 in Richtung der Walzenachsen gesehen in einem jeweils mindestens eine der vordefinierten Erfassungspositionen p' umfassenden jeweiligen Teilabschnitt erfasst werden. Im übrigen sind die Ausführungen zu FIG 7 weiterhin gültig.
  • Bei den Ausgestaltungen gemäß den FIG 7 und 8 weist das Messsystem 7 pro Walze 3 jeweils mehrere Messeinrichtungen 9 auf. Es ist jedoch auch möglich, dass das Messsystem 7 pro Walze 3 nur eine einzelne Messeinrichtung 9 aufweist. In diesem Fall müssen mittels der einzelnen Messeinrichtung 9 die Temperaturen T und/oder die Durchmesser D der jeweiligen Walze 3 in Richtung der Walzenachsen gesehen zumindest an allen der vordefinierten Erfassungspositionen p' erfassbar sein.
  • Um eine derartige Erfassung zu ermöglichen, kann beispielsweise die Ausgestaltung von FIG 9 ergriffen werden. FIG 9 ist im Kern eine Ausgestaltung von FIG 8. Der Unterschied besteht darin, dass im Gegensatz zu der Ausgestaltung von FIG 8 pro Walze 3 nur eine einzige Messeinrichtung 9 vorhanden ist, im Gegenzug aber der Bereich, über den diese Messeinrichtung 9 in Richtung der Walzenachsen gesehen verfahrbar ist, entsprechend groß ist, so dass die Messeinrichtung 9 zumindest über die gesamte wirksame Ballenlänge der Walzen 3 verfahren werden kann. Die Bewegbarkeit ist in FIG 9 - analog zu FIG 8 - durch entsprechende Doppelpfeile angedeutet.
  • Im Ergebnis kommt es zur Datenerfassung an allen der vordefinierten Erfassungspositionen p' mittels einer einzigen Messeinrichtung 9 pro Walze 3 nur auf die Relativbewegung der Messeinrichtung 9 relativ zur Walze 3 an. Es kommt also nicht darauf an, ob während der Datenerfassung die Walze 3 im Grundkörper 10 des Walzenwechselwagens 6 ruht und die Messeinrichtung 9 bewegt wird oder ob umgekehrt die Messeinrichtung 9 ruht und die Walze 3 bewegt wird. Es ist daher entsprechend der Darstellung in FIG 10 in kinematischer Umkehr der Vorgehensweise von FIG 9 möglich, die Messeinrichtung 9 am Grundkörper 10 des Walzenwechselwagens 6 ortsfest anzuordnen. Die Messeinrichtung 9 muss in diesem Fall lediglich derart angeordnet sein, dass die jeweilige Walze 3 beim Überführen vom Walzgerüst 2 in den Walzenwechselwagen 6 oder umgekehrt an der Messeinrichtung 9 vorbei bewegt wird. Dies ist ohne weiteres realisierbar.
  • Genau diese Ausgestaltung - also die Ausgestaltung, bei welcher die Messeinrichtung 9 ortsfest angeordnet ist und die jeweilige Walze 3 beim Überführen vom Walzgerüst 2 in den Walzenwechselwagen 6 oder umgekehrt an der Messeinrichtung 9 vorbei bewegt wird - ist auch derart realisierbar, dass die Messeinrichtung 9 nicht am Walzenwechselwagen 6 ortsfest angeordnet ist, sondern entsprechend der Darstellung in FIG 11 am Walzgerüst 2 selbst, insbesondere am bedienseitigen Gerüstständer 2'. In diesem Fall ist die Lagereinrichtung also Bestandteil des Walzgerüsts 2.
  • Die vorliegende Erfindung weist viele Vorteile auf. Insbesondere ist auf einfache und zuverlässige Weise ein ständiges Nachführen der Modellparameter k1, k2 des Walzenmodells 5 möglich. Aufgrund der verbesserten Modellierung kann auch die Qualität beim Walzen des Walzguts 1 verbessert werden. Insbesondere können die Dicken-, die Planheits- und die Konturqualität erhöht werden. Auch eine Modellierung der Temperatur des Walzguts 1 kann verbessert werden. Weiterhin ist eine verbesserte Vorhersage beim Walzen von neuen Materialien möglich.
  • Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Varianten können vom Fachmann hieraus abgeleitet werden, ohne den durch die Ansprüche definierten Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 1
    Walzgut
    2
    Walzgerüst
    2', 2"
    Gerüstständer
    3
    Walzen
    4
    Automatisierungseinheit
    5
    Walzenmodell
    6
    Walzenwechselwagen
    7
    Messsystem
    8
    Antennen
    9
    Messeinrichtungen
    10
    Grundkörper
    BD
    Betriebsdaten
    D
    Durchmesser
    k1, k2
    Modellparameter
    p
    Ermittlungspositionen
    p'
    Erfassungspositionen
    S1 bis S4
    Schritte
    SD
    Steuerdaten
    T
    Temperaturen
    δk1, δk2
    Änderungswerte

Claims (9)

  1. Lagereinrichtung für zwei gleichartige Walzen (3) eines Walzgerüsts (2), wobei die Lagereinrichtung Bestandteil des Walzgerüsts (2) ist oder relativ zum Walzgerüst (2) derart positionierbar ist, dass die Walzen (3) von dem Walzgerüst (2) in die Lagereinrichtung oder umgekehrt überführbar sind,
    dadurch gekennzeichnet,
    dass die Lagereinrichtung mindestens ein Messsystem (7) aufweist, mittels dessen die Temperaturen (T) und/oder die Durchmesser (D) der Walzen (3) in Richtung der Walzenachsen gesehen zumindest an vordefinierten Erfassungspositionen (p') einzeln und unabhängig voneinander erfassbar sind.
  2. Lagereinrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Lagereinrichtung als Walzenwechselwagen (6) ausgebildet ist.
  3. Lagereinrichtung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass das Messsystem (7) pro Walze (3) mehrere bezüglich eines Grundkörpers (10) der Lagereinrichtung ortsfeste Messeinrichtungen (9) aufweist, so dass mittels der Messeinrichtungen (9) die Temperatur (T) und/oder der Durchmesser (D) der jeweiligen Walze (3) in Richtung der Walzenachsen gesehen an jeweils einer der vordefinierten Erfassungspositionen (p') erfassbar sind.
  4. Lagereinrichtung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass das Messsystem (7) pro Walze (3) mehrere Messeinrichtungen (9) aufweist, die bezüglich eines Grundkörpers (10) der Lagereinrichtung in Richtung der Walzenachsen beweglich sind, so dass mittels der Messeinrichtungen (9) die Temperatur (T) und/oder der Durchmesser (D) der jeweiligen Walze (3) in Richtung der Walzenachsen gesehen in einem jeweils mindestens eine der vordefinierten Erfassungspositionen (p') umfassenden jeweiligen Teilabschnitt erfassbar sind.
  5. Lagereinrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass das Messsystem (7) pro Walze (3) eine einzelne Messeinrichtung (9) aufweist, mittels derer die Temperaturen (T) und/oder die Durchmesser (D) der jeweiligen Walze (3) in Richtung der Walzenachsen gesehen zumindest an allen der vordefinierten Erfassungspositionen (p') erfassbar sind.
  6. Lagereinrichtung nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Messeinrichtung (9) an einem Grundkörper (10) der Lagereinrichtung in Richtung der Walzenachsen gesehen beweglich angeordnet ist, so dass die Messeinrichtung (9) über die gesamte wirksame Ballenlänge der Walzen (3) verfahrbar ist.
  7. Lagereinrichtung nach Anspruch 5,
    d a durch gekennzeichnet,
    dass die Messeinrichtung (9) an einem Grundkörper (10) der Lagereinrichtung ortsfest derart angeordnet ist, dass die jeweilige Walze (3) beim Überführen vom Walzgerüst (2) in einen Walzenwechselwagen (6) oder umgekehrt an der Messeinrichtung (9) vorbei bewegt wird.
  8. Lagereinrichtung nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    dass das Messsystem (7) mit einer das Walzgerüst (2) steuernden Automatisierungseinheit (4) datentechnisch verbunden ist und dass das Messsystem (7) die erfassten Temperaturen (T) und/oder Durchmesser (D) automatisch an die Automatisierungseinheit (4) übermittelt, so dass die erfassten Temperaturen (T) und/oder Durchmesser (D) von der Automatisierungseinheit (4) den vordefinierten Erfassungspositionen (p') zuordenbar sind.
  9. Betriebsverfahren für ein Walzgerüst (2),
    - wobei ein das Walzgerüst (2) durchlaufendes flaches Walzgut
    (1) zwischen zwei gleichartigen Walzen (3) des Walzgerüsts
    (2) gewalzt wird,
    - wobei eine das Walzgerüst (2) steuernde Automatisierungseinheit (4) mittels eines Walzenmodells (5) anhand von Betriebsdaten (BD) des Walzgerüsts (2) für die beiden gleichartigen Walzen (3) in Richtung der Walzenachsen gesehen zumindest an vordefinierten Ermittlungspositionen (p) immer wieder die Temperaturen (T) und/oder die Durchmesser (D) der Walzen (3) ermittelt und aufbauend auf den ermittelten Temperaturen (T) und/oder Durchmessern (D) eine Ansteuerung (SD) des Walzgerüsts (2) ermittelt, so dass ein Walzspalt des Walzgerüsts (2) während des Walzens des flachen Walzguts (1) nach Möglichkeit entsprechend Sollvorgaben eingestellt wird,
    - wobei die gleichartigen Walzen (3) von Zeit zu Zeit aus dem Walzgerüst (2) ausgebaut und in einen Walzenwechselwagen (6) überführt werden,
    dadurch gekennzeichnet,
    - dass während des Ausbaus der Walzen (3) aus dem Walzgerüst (2) und des Überführens der Walzen (3) in den Walzenwechselwagen (6) oder in unmittelbarem zeitlichem Anschluss daran mittels eines am Walzgerüst (2) oder am Walzenwechselwagen (6) angeordneten Messsystems (7) automatisiert in Richtung der Walzenachsen gesehen zumindest an vordefinierten Erfassungspositionen (p') die Temperaturen (T) und/oder die Durchmesser (D) der beiden Walzen (3) erfasst werden,
    - dass die erfassten Temperaturen (T) und/oder Durchmesser (D) automatisch an die Automatisierungseinheit (4) übermittelt werden, so dass die erfassten Temperaturen (T) und/ oder Durchmesser (D) von der Automatisierungseinheit (4) den vordefinierten Erfassungspositionen (p') zuordenbar sind, und
    - dass die Automatisierungseinheit (4) die mittels des Walzenmodells (5) ermittelten Temperaturen (T) der Walzen (3) und/oder die mittels des Walzenmodells (5) ermittelten Durchmesser (D) der Walzen (3) mit den mittels des Messsystems (7) erfassten Temperaturen (T) der Walzen (3) und/oder mit den mittels des Messsystems (7) erfassten Durchmessern (D) der Walzen (3) vergleicht und anhand des Vergleichs das Walzenmodell (5) adaptiert.
EP20151947.7A 2020-01-15 2020-01-15 Verbesserte adaption eines walzenmodells Active EP3851217B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20151947.7A EP3851217B1 (de) 2020-01-15 2020-01-15 Verbesserte adaption eines walzenmodells
JP2020199451A JP2021109239A (ja) 2020-01-15 2020-12-01 ロールモデルの改良された適合
US17/108,482 US20210213500A1 (en) 2020-01-15 2020-12-01 Adaptation of a roll model
CN202110055263.2A CN113118221A (zh) 2020-01-15 2021-01-15 轧辊模型的改进的适配
US18/144,962 US20230271238A1 (en) 2020-01-15 2023-05-09 Adaptation of a roll model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20151947.7A EP3851217B1 (de) 2020-01-15 2020-01-15 Verbesserte adaption eines walzenmodells

Publications (2)

Publication Number Publication Date
EP3851217A1 EP3851217A1 (de) 2021-07-21
EP3851217B1 true EP3851217B1 (de) 2022-07-13

Family

ID=69172677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20151947.7A Active EP3851217B1 (de) 2020-01-15 2020-01-15 Verbesserte adaption eines walzenmodells

Country Status (4)

Country Link
US (2) US20210213500A1 (de)
EP (1) EP3851217B1 (de)
JP (1) JP2021109239A (de)
CN (1) CN113118221A (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854494B1 (de) * 2020-01-24 2022-09-28 Primetals Technologies Germany GmbH Frequenzabhängige verteilung von stellgrössen zur veränderung des walzgutquerschnitts in einer walzstrasse

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT280651B (de) * 1966-12-27 1970-04-27 Thaelmann Schwermaschbau Veb Einrichtung zur beruehrungslosen messung der oberflaechentemperatur an rotierenden arbeitswalzen
DE3416212C2 (de) * 1984-05-02 1986-12-18 Kleinewefers Gmbh, 4150 Krefeld Vorrichtung zum Auswechseln mindestens einer Walze für einen Kalander
DE3829862C1 (de) * 1988-09-02 1989-08-10 Eduard Kuesters, Maschinenfabrik, Gmbh & Co Kg, 4150 Krefeld, De
JPH0377720A (ja) * 1989-08-17 1991-04-03 Mitsubishi Heavy Ind Ltd 圧延機のロールプロフィル計測装置
DE19547436A1 (de) * 1995-12-11 1997-06-12 Mannesmann Ag Walzenkontur-Meßeinrichtung
JP3495909B2 (ja) * 1998-03-30 2004-02-09 株式会社東芝 圧延ロールのプロフィール制御装置
DE10138588A1 (de) * 2001-08-06 2003-02-20 Sms Demag Ag Einrichtung zum Wechseln der Arbeits- und Stützwalzen eines Bandwalzwerkes
DE102009012904A1 (de) * 2009-03-12 2010-09-16 Evertz Hydrotechnik Gmbh & Co. Kg Messvorrichtung zum Messen der Oberflächentemperatur von Arbeitswalzen
DE102010014346A1 (de) 2010-04-09 2011-10-13 Sms Siemag Ag Verfahren zum fliegenden Arbeitswalzenwechsel in Gießwalzanlagen und Warmbandstraßen
EP2422894A1 (de) 2010-08-27 2012-02-29 Siemens Aktiengesellschaft Ermittlungsverfahren für einen Verschleiß einer Walze zum Walzen von Walzgut
EP3208006B1 (de) 2016-02-22 2019-04-03 Primetals Technologies Austria GmbH Inline-walzenwechsel bei einfachem walzgerüstaufbau

Also Published As

Publication number Publication date
US20210213500A1 (en) 2021-07-15
JP2021109239A (ja) 2021-08-02
CN113118221A (zh) 2021-07-16
EP3851217A1 (de) 2021-07-21
US20230271238A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
EP2712332B1 (de) Steuerverfahren für eine warmbandstrasse
EP2548665B1 (de) Ermittlungsverfahren für relativbewegungsabhängigen Verschleiß einer Walze
EP2588257B1 (de) Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose
EP3535069B1 (de) Verfahren zum betreiben einer giesswalzverbundanlage
EP2527053A1 (de) Steuerverfahren für eine Walzstraße
EP3107666A1 (de) Einfache vorsteuerung einer keilanstellung eines vorgerüsts
WO2022229146A1 (de) Verbesserung der produktqualität durch berücksichtigung alternativer produktauswahl
EP3851217B1 (de) Verbesserte adaption eines walzenmodells
EP3122483B1 (de) Verfahren zum anstellen einer richtwalze einer richtwalzanlage
WO2018192798A1 (de) Optimierung der modellierung von prozessmodellen
EP2662158A1 (de) Verfahren zur Bearbeitung von Walzgut und Walzwerk
DE102004005011B4 (de) Regelverfahren und Regler für ein Walzgerüst
EP3714999B1 (de) Ermittlung einer anstellung eines walzgerüsts
DE3401894A1 (de) Verfahren zum herstellen von walzband mit hoher bandprofil- und bandplanheitsguete
EP3494239B1 (de) Verfahren zum betreiben eines glühofens zum glühen eines metallbandes
EP4100178B1 (de) Verfahren zur automatischen kalibrierung von vertikalrollen eines vertikalwalzgerüsts sowie kalibrieranordnung zur durchführung des verfahrens
EP3784423B1 (de) Schrägwalzwerk mit hydraulischer walzenanstellung
EP4217125A1 (de) Vorrichtung und verfahren zum walzen von metallischem band
WO2023088703A1 (de) Vorrichtung und verfahren zur herstellung eines gewalzten metallbandes
WO2023186471A1 (de) GIEßWALZANLAGE UND VERFAHREN ZU DEREN BETRIEB
EP4122615A1 (de) Verfahren und vorrichtung zum herstellen eines metallischen bandes
EP4353375A1 (de) Verfahren zum ermitteln von stellgrössen eines walzgerüsts, enstprechendes steuerprogramm, steueeinrichtung mit einem derartigen steuerprogra sowie walzgerüst mit einer derartigen steuereinrichtung
WO2013156332A1 (de) Herstellungsverfahren für ein band
DE102010015001A1 (de) Verfahren und Vorrichtung zum Erstellen eines Produktionsablaufplans
EP1600221A1 (de) Verfahren zur Berechnung der geometrischen Form von Walzgut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220121

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 38/04 20060101ALI20220214BHEP

Ipc: B21B 38/00 20060101ALI20220214BHEP

Ipc: B21B 31/10 20060101AFI20220214BHEP

INTG Intention to grant announced

Effective date: 20220307

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001349

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1503990

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221013

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001349

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

26N No opposition filed

Effective date: 20230414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240119

Year of fee payment: 5

Ref country code: IT

Payment date: 20240129

Year of fee payment: 5

Ref country code: FR

Payment date: 20240122

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713