EP3844824A1 - Batteriesystem mit mindestens einem lüfter - Google Patents

Batteriesystem mit mindestens einem lüfter

Info

Publication number
EP3844824A1
EP3844824A1 EP19765187.0A EP19765187A EP3844824A1 EP 3844824 A1 EP3844824 A1 EP 3844824A1 EP 19765187 A EP19765187 A EP 19765187A EP 3844824 A1 EP3844824 A1 EP 3844824A1
Authority
EP
European Patent Office
Prior art keywords
battery
cell holder
battery cell
cover element
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19765187.0A
Other languages
English (en)
French (fr)
Inventor
Thorsten Droigk
Tim DETTLING
Enno Lorenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3844824A1 publication Critical patent/EP3844824A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery system with at least one fan.
  • Batteries for mobile applications usually include a large number of battery cells. These battery cells are limited in terms of voltage and permissible currents. In order to achieve the total voltage and total capacity of the battery required for a given application, the individual battery cells are connected in a certain way. A serial connection increases the required total voltage and a parallel connection increases the required total capacity as well as the permissible total currents.
  • each individual battery cell has a certain power loss. This power loss is given off in the form of waste heat in the interior of the battery housing. Since the waste heat can be dissipated to the environment at different locations in the battery, there is an inhomogeneous temperature distribution within a closed one
  • the disadvantage here is that the performance of the battery and its lifetime are impaired.
  • the individual battery cells can only be operated safely up to a certain temperature. Neither for the loading process nor for the
  • the discharge process allows the individual battery cells to exceed this specific temperature in order to ensure the safety of the battery. If the certain temperature is reached by a battery cell during the discharge process, the discharge current of the battery is throttled. If the battery is in charging mode, the charging process is only started if the current temperature of the battery cells is below the specified temperature.
  • the battery management system throttles the performance of the entire battery as soon as a battery cell is in the critical range of the limit temperature.
  • the disadvantage here is that the battery power is reduced early.
  • the operating temperature also plays an important role in the life of a battery cell.
  • the aging of a battery cell occurs at high
  • Temperature distribution within the closed battery housing ages the battery cells that have a lower operating temperature significantly more slowly than battery cells that have a high operating temperature. Since the battery cells in such a battery cell group are not exchanged or are interchangeable, the entire battery is put out of operation as soon as a certain number of battery cells have reached the end of their life. At this point, however, all other or further battery cells could still be operated safely for a while.
  • the document US 2013149583 A1 discloses a battery system with a plurality of electrical cells, a battery housing and a fan.
  • a region of the battery housing, which is arranged below the battery cells, comprises an inlet opening for air.
  • the side walls and an area of the battery housing above the battery cells have outlet openings for the air.
  • Air outlet openings must be inserted into the battery case. Another disadvantage is that the battery case will leak.
  • the object of the invention is to overcome these disadvantages.
  • a battery system comprises a battery housing with a base body, which has a first cover element and a second cover element.
  • the first cover element closes a first open end face of the base body.
  • the second cover element closes a second open end face of the
  • the battery housing is hermetically sealed from the environment.
  • the battery system includes one Battery cell holder, which is arranged within the battery housing and has a plurality of battery cells.
  • the battery system shows
  • the battery cell holder has at least one cuboid recess, which extends from a third end face of the
  • Battery cell holder extends up to a fourth end face of the battery cell holder, the third end face of the battery cell holder being arranged in the direction of the first covering element and the fourth end face of the
  • Battery cell holder is arranged in the direction of the second cover element. At least one fan is between the first cover and the
  • Battery cell holder is arranged, wherein the at least one fan in
  • the advantage here is that the waste heat generated by the operation of the battery cells is homogeneously redistributed within the battery and the homogeneously distributed heat is released through the surface of the housing to the environment, so that the individual battery cells age uniformly and the battery power is only throttled after a longer operating time . That means a medium-fast heating of all battery cells instead of a rapid heating of the battery center and a slow heating in the peripheral areas.
  • an improved temperature distribution or rapid cooling of the battery leads to the battery quickly entering a charge-capable state.
  • it is advantageous that no openings in the battery housing are required for the inlet and outlet of a cooling fluid.
  • neither evaporators nor condensers are required, which means that the overall system is light and inexpensive.
  • the battery system is therefore also suitable for small battery applications such as 48V systems.
  • the cuboid arrangement is arranged in the middle, starting from the third end face of the battery cell holder, so that central regions of the battery cells are exposed.
  • Battery cell holder points in a horizontal median plane of the Battery cell holder a gap, so that the battery cells are held by the battery cell holder only in the upper area and in the lower area of the battery cell. The battery cells are therefore only partially from
  • Battery cell holder enclosed. The middle of the battery cells is exposed.
  • the at least one fan closes the cuboid recess in the battery cell holder.
  • the advantage here is that the warm air can be redistributed efficiently.
  • the second cover element has at least one further fan.
  • the at least one further fan is arranged on the second cover element within the battery housing.
  • the advantage here is that the at least one additional fan is limited only by the size of the second cover element. Large volume flows can therefore be generated.
  • the base body is a continuous cast element.
  • the battery housing is manufactured in a simple and inexpensive manner.
  • the battery housing comprises metal
  • Battery housing quickly through the thermally conductive surface of the body to the outside, d. H. outside the battery housing, can be dissipated.
  • the use of the battery system according to the invention takes place in an electric vehicle, in particular an electrically operated two-wheeler.
  • the vehicle according to the invention in particular an electrically operated two-wheeler, has the battery system according to the invention.
  • Figure 1 is a plan view of a temperature distribution
  • Figure 2 shows a battery system with at least one fan
  • Figure 3 shows the thermal behavior of an inventive
  • FIG. 1 shows a top view of an exemplary temperature distribution of a 48 V battery system 100 with a plurality of battery cells 105.
  • the battery system comprises thirteen rows of fifteen battery cells 105 each connected in parallel, which form a battery cell group.
  • Each Battery cell 105 supplies a voltage of approximately 3.6 V, so that the battery can supply a total voltage of 48 V. Due to the dense arrangement of the battery cells 105, different results result from the waste heat emitted by the individual battery cells during operation of the battery system 100
  • first temperature ranges 120 Exemplary in FIG. 1 are first temperature ranges 120 and a second
  • Temperature range 121 a third temperature range 122 and fourth
  • Temperature ranges 123 shown.
  • the first temperature ranges 120 have a lower temperature than the second temperature range 121 and the third temperature range 122.
  • the fourth temperature ranges 123 are at
  • Battery housings can deliver than the battery cells 105, which are arranged inside the battery cell group.
  • the battery management system 109 additionally functions as a heat source.
  • FIG. 2 shows a battery system 200 with a battery housing, the one
  • the battery housing also has a first cover element that lies opposite the second cover element 203. For reasons of clarity, it is not shown in FIG. 2.
  • the first cover element closes a first open end face of the base body 201 and comprises a battery management system, not shown here, the second
  • Cover element 203 closes a second open end face of base body 201.
  • the battery housing thus forms a closed space which functions as a receiving space for a battery cell holder 204.
  • the battery housing is thus sealed from the environment or sealed airtight.
  • the battery cell holder 204 comprises receiving areas for a multiplicity of battery cells 205 and has a cuboid-shaped recess which extends from a third end face 207 of the battery cell holder 204 to a fourth end face 208 of the battery cell holder 204, the third end face 207 of the battery cell holder 204 covering the first covering element lies opposite and the fourth end face 208 of the battery cell holder 204 lies opposite the second cover element 203.
  • the cuboid recess has, for example, a rectangular one on the third face 207 of the battery cell holder 204 and the fourth face 208 of the battery cell holder 204 Footprint on.
  • the center of the battery cell is exposed through the rectangular recess.
  • At least one fan 206 is arranged between the first cover element and the battery cell holder 204.
  • An arrangement of the fan 206 with respect to the cuboid recess on the third end face 207 of the battery cell holder 204 is particularly advantageous.
  • the fan 206 is arranged on the first cover element.
  • multiple fans 206 are on the first
  • the fan 206 closes the cutout on the third end face 207 of the battery cell holder 204.
  • the fan 206 is inserted in the opening of the third end face 207 of the battery cell holder 204 with a precise fit.
  • multiple fans 206 are inserted into the recess.
  • the recess is rectangular, so that several square fans can be arranged next to and on top of one another in order to
  • the fan 206 is larger than the base area of the rectangular recess in the third end face of the battery cell holder 204.
  • the battery cell holder 204 does not completely fill the receiving space of the battery housing. This means that the battery housing and the battery cell holder 204 are spaced apart from one another parallel to the end faces. In other words, there are empty spaces or cavities above and below the battery cell holder 204 accommodated in the battery housing. A circulation of the warm air is made possible by the fact that between the first cover element and the battery cell holder 204, as well as between the
  • fan 206 can circulate air movement within the
  • the air flow represents a pure circulation of the air inside the battery.
  • the warm air within the battery is exchanged between areas of high and low temperature, so that the different temperature areas within the battery are equalized.
  • the waste heat from the battery cells 205 is redistributed within the battery.
  • the battery cell holder 204 can have air channels which are arranged between the individual battery cells 205 in the battery cell holder 204, so that there is an optimal flow around the individual battery cells 205. These air channels can also only be present at the locations of the battery cell holder 204 which the operating temperature of the battery cells 205 is very high, for example in the third temperature range 122 shown in FIG. 1.
  • a further fan can be arranged on the second cover element 203.
  • Battery case represented by the battery cell holder 204.
  • Temperatures within the battery housing are recorded, for example, by means of NTCs at various points in the battery cell network.
  • the fan 206 is dependent on the battery management system
  • the base body 201 of the battery housing is designed in one piece and tubular and has a metal.
  • the metal can comprise aluminum or manganese, for example.
  • the base body 201 can be made using a
  • the invention can also be used at the module level, the
  • Battery cells are to be replaced by battery modules.
  • the fan is arranged within the individual battery modules, each of which has its own housing.
  • Battery pack level which is the temperature of the individual battery modules
  • the battery cell holder must go through a
  • Receiving element for battery modules to be replaced or designed such that it can accommodate battery modules.
  • FIG. 3 shows the thermal behavior 300 of a battery system with a fan, the volume flows of the fan being different.
  • the waste heat from each battery cell is approximately 1.36 W.
  • the operating state during a discharge process is shown here, in which a temperature threshold value of 60 ° C. is reached or exceeded for the first time at one point in the battery. This is generally done in one of the centrally located battery cells.
  • Figure 3 shows the thermal behavior of those known from Figure 1
  • Temperature ranges namely the first temperature ranges 120, the second temperature range 121, the third temperature range 122 and the fourth temperature ranges 123.
  • the abscissa represents the individual
  • a first curve 301 represents the thermal behavior of the battery without a fan.
  • a second curve 302 shows the thermal behavior of the battery with a fan that has a volume flow of 0.72 m 3 / h. The course of the curve of the second curve 302 in the temperature ranges 120 and 121 can be explained by the fact that the edge areas have already warmed up due to the low volume flow of the fan when the battery center is at 60 ° C.
  • a third curve 303 shows the thermal behavior of the battery with a fan which has a volume flow of 4.6 m 3 / h and a fourth curve 304 shows the thermal behavior of the battery with a fan which has a volume flow of 9.6 m 3 / h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Batteriesystem (200) mit einem Batteriegehäuse, das einen Grundkörper (201), ein erstes Abdeckelement und ein zweites Abdeckelement (203) umfasst, wobei das erste Abdeckelement eine erste offene Stirnseite des Grundkörpers (201) verschließt und das zweite Abdeckelement (203) eine zweite offene Stirnseite des Grundkörpers (201) verschließt, einem Batteriezellenhalter (204), der innerhalb des Batteriegehäuses angeordnet ist und eine Vielzahl von Batteriezellen (205) aufweist, und einem Batteriemanagementsystem (109), das dazu eingerichtet ist die Vielzahl von Batteriezellen (205) zu überwachen und Temperaturen der einzelnen Batteriezellen (205) zu erfassen, dadurch gekennzeichnet, dass der Batteriezellenhalter (204) mindestens eine quaderförmige Aussparung aufweist, die sich von einer dritten Stirnseite (207) des Batteriezellenhalters (204) bis zu einer vierten Stirnseite (208) des Batteriezellenhalters (204) erstreckt, wobei die dritte Stirnseite (207) des Batteriezellenhalters (204) in Richtung des ersten Abdeckelements angeordnet ist und die vierte Stirnseite (208) des Batteriezellenhalters (204) in Richtung des zweiten Abdeckelements (203) angeordnet ist, und mindestens ein Lüfter (206) zwischen dem ersten Abdeckelement (203) und dem Batteriezellenhalter (204) angeordnet ist, wobei der mindestens eine Lüfter (206) in Abhängigkeit einer Schwellenwertüberschreitung der Temperaturen der einzelnen Batteriezellen (205) vom Batteriemanagementsystem (109) angesteuert wird.

Description

Beschreibung
Bateriesystem mit mindestens einem Lüfter
Stand der Technik
Die Erfindung betrifft ein Batteriesystem mit mindestens einem Lüfter.
Batterien für mobile Anwendungen umfassen in der Regel eine Vielzahl von Batteriezellen. Diese Batteriezellen sind bezüglich der Spannung und der zulässigen Ströme limitiert. Um eine für einen vorgegebenen Anwendungsfall erforderliche Gesamtspannung und Gesamtkapazität der Batterie zu erreichen, werden die einzelnen Batteriezellen auf eine bestimmte Weise verschaltet. Eine serielle Verschaltung erhöht die erforderliche Gesamtspannung und eine parallele Verschaltung erhöht die erforderliche Gesamtkapazität, sowie die zulässigen Gesamtströme.
Zur Erzielung einer möglichst hohen Energiedichte werden einzelne
Batteriezellen dicht zueinander in einem Batteriezellenverbund angeordnet. Im Betrieb weist jede einzelne Batteriezelle eine bestimmte Verlustleistung auf. Diese Verlustleistung wird in Form von Abwärme in den Innenraum des Batteriegehäuses abgegeben. Da die Abwärme an verschiedenen Stellen der Batterie unterschiedlich gut an die Umwelt abgeführt werden kann, entsteht eine inhomogene Temperaturverteilung innerhalb eines geschlossenen
Batteriegehäuses.
Nachteilig ist hierbei, dass die Leistung der Batterie, sowie deren Lebenszeit beeinträchtigt werden. Gefahrlos können die einzelnen Bateriezellen nur bis zu einer bestimmten Temperatur betrieben werden. Weder für den Ladevorgang noch für den
Entladevorgang dürfen die einzelnen Bateriezellen somit diese bestimmte Temperatur überschreiten, um die Sicherheit der Baterie zu gewährleisten. Wird die bestimmte Temperatur während des Entladevorgangs von einer Bateriezelle erreicht, so wird der Entladestrom der Baterie gedrosselt. Befindet sich die Baterie im Lademodus, wird der Ladevorgang nur gestartet, wenn die aktuelle Temperatur der Bateriezellen unterhalb der bestimmten Temperatur liegt.
Aufgrund der inhomogenen Temperaturverteilung befinden sich nur einzelne Bateriezellen im Bereich der Grenztemperatur des zulässigen Betriebs während andere Bateriezellen moderate Betriebstemperaturen aufweisen. Das
Bateriemanagementsystem drosselt jedoch die Leistung der gesamten Baterie, sobald sich eine Bateriezelle im kritischen Bereich der Grenztemperatur befindet.
Nachteilig ist hierbei, dass eine frühzeitige Drosselung der Baterieleistung erfolgt.
Auch für die Lebensdauer einer Bateriezelle spielt die Betriebstemperatur eine wichtige Rolle. Die Alterung einer Bateriezelle erfolgt bei hohen
Betriebstemperaturen sehr schnell. Aufgrund der inhomogenen
Temperaturverteilung innerhalb des geschlossenen Bateriegehäuses altern die Bateriezellen, die eine geringere Betriebstemperatur aufweisen deutlich langsamer als Bateriezellen, die eine hohe Betriebstemperatur aufweisen. Da die Bateriezellen in solch einem Bateriezellenverbund nicht ausgetauscht werden bzw. austauschbar sind, wird die gesamte Baterie außer Betrieb gesetzt, sobald eine bestimmte Anzahl an Bateriezellen ihr Lebensende erreicht haben. Zu diesem Zeitpunkt könnten jedoch alle anderen bzw. weiteren Bateriezellen noch eine Zeit lang gefahrlos betrieben werden.
Um diese Nachteile zu überwinden, sind verschiedene Kühlarten bekannt. In den meisten Fällen wird dabei eine Luftkühlung oder eine Flüssigkeitskühlung verwendet. Zu diesem Zweck wird Luft mit Hilfe eines Gebläses aus der Umgebung angesaugt und über die Batteriezellen geführt. Die angesaugte Luft wird dabei durch die Abwärme der einzelnen Batteriezellen erwärmt und tritt nach Passieren des Batteriezellenverbunds durch eine Austrittsöffnung aus dem Batteriegehäuse wieder aus. Die Wärme wird somit an die Umgebung abgegeben.
Das Dokument US 2003198864 Al beschreibt eine elektrochemische Batterie, die ein Batteriegehäuse mit einer Vielzahl von Batteriezellen und einen zentralen Lüfter umfasst. Mit Hilfe des Lüfters wird ein Luftstrom zwischen einer
Lufteinlassöffnung des Batteriegehäuses und einer Luftauslassöffnung des Batteriegehäuses erzeugt, der über die Batteriezellen geführt wird, wodurch die Batteriezellentemperatur reguliert wird.
Das Dokument US 2013149583 Al offenbart ein Batteriesystem mit einer Vielzahl von elektrischen Zellen, einem Batteriegehäuse und einem Lüfter. Ein Bereich des Batteriegehäuses, das unterhalb der Batteriezellen angeordnet ist, umfasst eine Einlassöffnung für Luft. Die Seitenwände, sowie ein Bereich des Batteriegehäuses oberhalb der Batteriezellen weisen Austrittsöffnungen für die Luft auf.
Nachteilig ist in beiden Dokumenten, dass Einlassöffnungen und
Auslassöffnungen für die Luft in das Batteriegehäuse eingefügt werden müssen. Ein weiterer Nachteil ist, dass das Batteriegehäuse dadurch undicht wird.
Die Aufgabe der Erfindung ist es, diese Nachteile zu überwinden.
Offenbarung der Erfindung
Ein Batteriesystem umfasst ein Batteriegehäuse mit einem Grundkörper, der ein erstes Abdeckelement und ein zweites Abdeckelement aufweist. Das erste Abdeckelement verschließt eine erste offene Stirnseite des Grundkörpers. Das zweite Abdeckelement verschließt eine zweite offene Stirnseite des
Grundkörpers. Mit anderen Worten das Batteriegehäuse ist gegenüber der Umgebung luftdicht verschlossen. Das Batteriesystem umfasst einen Batteriezellenhalter, der innerhalb des Bateriegehäuses angeordnet ist und eine Vielzahl von Bateriezellen aufweist. Das Bateriesystem weist ein
Bateriemanagementsystem auf, das dazu eingerichtet ist, die Vielzahl der Bateriezellen zu überwachen und Temperaturen der einzelnen Bateriezellen zu erfassen. Erfindungsgemäß weist der Bateriezellenhalter mindestens eine quaderförmige Aussparung auf, die sich von einer driten Stirnseite des
Bateriezellenhalters bis zu einer vierten Stirnseite des Bateriezellenhalters erstreckt, wobei die drite Stirnseite des Bateriezellenhalters in Richtung des ersten Abdeckelements angeordnet ist und die vierte Stirnseite des
Bateriezellenhalters in Richtung des zweiten Abdeckelements angeordnet ist. Mindestens ein Lüfter ist zwischen dem ersten Abdeckelement und dem
Bateriezellenhalter angeordnet ist, wobei der mindestens eine Lüfter in
Abhängigkeit einer Schwellenwertüberschreitung der Temperatur der einzelnen Bateriezellen vom Bateriemanagementsystem angesteuert wird.
Der Vorteil ist hierbei, dass die durch den Betrieb der Bateriezellen entstehende Abwärme innerhalb der Baterie homogen umverteilt wird und die homogen verteilte Wärme durch die Gehäuseoberfläche an die Umgebung abgegeben wird, sodass die einzelnen Bateriezellen gleichmäßig altern und eine Drosselung der Baterieleistung erst nach längerer Betriebszeit erfolgt. Das bedeutet eine mitelschnelle Erhitzung aller Bateriezellen stat einer schnellen Erhitzung der Bateriemite und eine langsame Erhitzung in den Randbereichen. Außerdem führt eine verbesserte Temperaturverteilung bzw. ein schnelles Abkühlen der Baterie dazu, dass die Baterie schnell in einen ladefähigen Zustand trit. Des Weiteren ist es vorteilhaft, dass keine Öffnungen im Bateriegehäuse für den Einlass und den Auslass eines Kühlfluids benötigt werden. Außerdem werden weder Verdampfer noch Kondensatoren benötigt, wodurch das Gesamtsystem ein geringes Gewicht aufweist und kostengünstig ist. Das Bateriesystem ist somit auch für kleine Baterieanwendungen wie 48V-Systeme geeignet.
In einer Weiterbildung ist die quaderförmige Anordnung ausgehend von der driten Stirnseite des Bateriezellenhalters mitig angeordnet, sodass mitlere Bereiche der Bateriezellen freiliegen. Mit anderen Worten der
Bateriezellenhalter weist in einer horizontalen Mitelebene des Bateriezellenhalters einen Spalt auf, sodass die Bateriezellen jeweils nur im oberen Bereich und im unteren Bereich der Bateriezelle vom Bateriezellenhalter gehalten werden. Die Bateriezellen sind somit nur teilweise vom
Bateriezellenhalter umschlossen. Die Mite der Bateriezellen liegt frei.
Vorteilhaft ist hierbei, dass die Temperaturumverteilung innerhalb des
geschlossenen Bateriegehäuses durch eine zirkulierende Luftbewegung der in der Baterie bzw. dem Bateriesystem entstehenden Wärme erfolgt, wobei der Luftstrom durch die zwischen den Bateriezellen entstandenen Luftspalte geführt wird.
In einer weiteren Ausgestaltung verschließt der mindestens eine Lüfter die quaderförmige Aussparung des Bateriezellenhalters.
Der Vorteil ist hierbei, dass die Warmluft effizient umverteilt werden kann.
In einer weiteren Ausgestaltung weist das zweite Abdeckelement mindestens einen weiteren Lüfter auf. Mit anderen Worten, der mindestens eine weitere Lüfter ist auf dem zweiten Abdeckelement innerhalb des Bateriegehäuses angeordnet.
Der Vorteil ist hierbei, dass der mindestens eine weitere Lüfter bauraumtechnisch nur durch die Größe des zweiten Abdeckelement limitiert sind. Es können daher große Volumenströme erzeugt werden.
In einer Weiterbildung ist der Grundkörper ein Strangusselement.
Vorteilhaft ist hierbei, dass das Bateriegehäuse auf einfache und kostengünstige Weise hergestellt wird.
In einer weiteren Ausgestaltung umfasst das Bateriegehäuse Metall,
insbesondere Aluminium. Der Vorteil ist hierbei, dass die homogen verteilte Wärme innerhalb des
Batteriegehäuses durch die wärmeleitfähige Oberfläche des Grundkörpers schnell nach außen, d. h. außerhalb des Batteriegehäuses, abgeführt werden kann.
Die erfindungsgemäße Verwendung des erfindungsgemäßen Batteriesystems erfolgt in einem Elektrofahrzeug, insbesondere einem elektrisch betriebenen Zweirad.
Das erfindungsgemäße Fahrzeug, insbesondere ein elektrisch betriebenes Zweirad, weist das erfindungsgemäße Batteriesystem auf.
Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von
Ausführungsbeispielen bzw. den abhängigen Patentansprüchen.
Kurze Beschreibung der Zeichnungen
Die vorliegende Erfindung wird nachfolgend anhand bevorzugter
Ausführungsformen und beigefügter Zeichnungen erläutert. Es zeigen:
Figur 1 eine Draufsicht auf eine Temperaturverteilung eines
Batteriesystems mit einer Vielzahl von Batteriezellen, die seriell und parallel zueinander verschaltet sind,
Figur 2 ein Batteriesystem mit mindestens einem Lüfter, und
Figur 3 das thermische Verhalten eines erfindungsgemäßen
Batteriesystems mit Lüfter, wobei die Volumenströme des Lüfters unterschiedlich sind.
Figur 1 zeigt eine Draufsicht auf eine beispielhafte Temperaturverteilung eines 48 V liefernden Batteriesystems 100 mit einer Vielzahl von Batteriezellen 105. Das Batteriesystem umfasst dreizehn Reihen von jeweils fünfzehn parallel zueinander geschalteten Batteriezellen 105, die einen Batteriezellenverbund bilden. Jede Bateriezelle 105 liefert hierbei eine Spannung von ca. 3,6 V, sodass die Baterie eine Geamtspannung von 48 V liefern kann. Aufgrund der dichten Anordnung der Bateriezellen 105 ergeben sich im Betrieb des Bateriesystems 100 durch die von den einzelnen Bateriezellen abgegebene Abwärme verschiedene
Temperaturbereiche innerhalb des in Figur 1 nicht gezeigten Bateriegehäuses.
Beispielhaft sind in Figur 1 erste Temperaturbereiche 120, ein zweiter
Temperaturbereich 121, ein driter Temperaturbereich 122 und vierte
Temperaturbereiche 123 gezeigt. Die ersten Temperaturbereiche 120 weisen eine niedrigere Temperatur auf als der zweite Temperaturbereich 121 und der drite Temperaturbereich 122. Die vierten Temperaturbereiche 123 sind am
kältesten. Der Grund hierfür ist, dass die Bateriezellen 105, die am Rand des
Bateriezellenverbunds angeordnet sind, die Abwärme schneller an das
Bateriegehäuse abgeben können als die Bateriezellen 105, die im Inneren des Bateriezellenverbunds angeordnet sind. Das Bateriemanagementsystem 109 fungiert zusätzlich als Wärmequelle.
Figur 2 zeigt ein Bateriesystem 200 mit einem Bateriegehäuse, das einen
Grundkörper 201 und ein zweites Abdeckelement 203 umfasst. Das Bateriegehäuse weist auch ein erstes Abdeckelement auf, dass dem zweiten Abdeckelement 203 gegenüberliegt. Es ist aus Übersichtlichkeitsgründen in Figur 2 nicht gezeigt. Das erste Abdeckelement verschließt eine erste offene Stirnseite des Grundkörpers 201 und umfasst ein hier nicht gezeigtes Bateriemanagementsystem, das zweite
Abdeckelement 203 verschließt eine zweite offene Stirnseite des Grundkörpers 201. Somit bildet das Bateriegehäuse einen geschlossenen Raum, der als Aufnahmeraum für einen Bateriezellenhalter 204 fungiert. Das Bateriegehäuse ist somit gegenüber der Umgebung abgedichtet bzw. luftdicht verschlossen. Der Bateriezellenhalter 204 umfasst Aufnahmebereiche für eine Vielzahl von Bateriezellen 205 und weist eine quaderförmige Aussparung auf, die sich von einer driten Stirnseite 207 des bateriezellenhalters 204 bis zu einer vierten Stirnseite 208 des bateriezellenhalters 204 erstreckt, wobei die drite Stirnseite 207 des Bateriezellenhalters 204 dem ersten Abdeckelement gegenüberliegt und die vierte Stirnseite 208 des Bateriezellenhalters 204 dem zweiten Abdeckelement 203 gegenüberliegt. Die quaderförmige Aussparung weist auf der driten Stirnseite 207 des Bateriezellenhalters 204 und der vierten Stirnseite 208 des Bateriezellenhalters 204 beispielsweise eine rechteckige Grundfläche auf. Durch die quaderförmige Aussparung liegen die Bateriezellenmitten frei. Mindestens ein Lüfter 206 ist zwischen dem ersten Abdeckelement und dem Bateriezellenhalter 204 angeordnet. Besonders vorteilhaft ist eine Anordnung des Lüfter 206 gegenüber der quaderförmigen Aussparung an der driten Stirnseite 207 des Bateriezellenhalters 204. In einer Ausführungsform ist der Lüfter 206 auf dem ersten Abdeckelement angeordnet. Alternativ sind mehrere Lüfter 206 auf dem ersten
Abdeckelement angeordnet. In einer weiteren Ausführungsform verschließt der Lüfter 206 die Aussparung auf der driten Stirnseite 207 des Bateriezellenhalters 204. Mit anderen Worten der Lüfter 206 ist passgenau in die Öffnung der driten Stirnseite 207 des Bateriezellenhalters 204 eingefügt. Alternativ sind mehrere Lüfter 206 in die Aussparung eingefügt. Die Aussparung ist in diesem Fall rechteckig, sodass mehrere quadratische Lüfter neben- und übereinander angeordnet sein können, um die
Aussparung zu verschließen. Dadurch ist der von den Lüftern erzeugte Luftstrom in der Aussparung gleichmäßiger. In einer alternativen Ausführungsform ist der Lüfter 206 größer als die Grundfläche der quaderförmigen Aussparung der driten Stirnseite des Bateriezellenhalters 204. Der Bateriezellenhalter 204 füllt den Aufnahmeraum des Bateriegehäuses nicht vollständig aus. Das bedeutet das Bateriegehäuse und der Bateriezellenhalter 204 sind parallel zu den Stirnseiten beabstandet zueinander angeordnet. Mit anderen Worten es befinden sich oberhalb und unterhalb des im Bateriegehäuse aufgenommenen Bateriezellenhalters 204 leere Zwischenräume bzw. Hohlräume. Eine Zirkulation der Warmluft wird dadurch ermöglicht, dass zwischen dem ersten Abdeckelement und dem Bateriezellenhalter 204, sowie zwischen dem
Bateriezellenhalter 204 und dem zweiten Abdeckelement 203 Freiräume für die Luftumwälzung durch an dieser Stelle angeordnete Dämpfungsmaterialien bestehen. Somit kann der Lüfter 206 eine zirkulierende Luftbewegung innerhalb des
Bateriegehäuses erzeugen. Der Luftstrom stellt dabei eine reine Umwälzung der innerhalb der Baterie befindlichen Luft dar. Dadurch wird die Warmluft innerhalb der Baterie zwischen Bereichen hoher und tiefer Temperatur ausgetauscht, sodass sich die verschiedenen Temperaturbereiche innerhalb der Baterie angleichen. Mit anderen Worten die Abwärme der Bateriezellen 205 wird innerhalb der Baterie umverteilt. Zusätzlich kann der Bateriezellenhalter 204 Luftkanäle aufweisen, die zwischen den einzelnen Bateriezellen 205 im Bateriezellenhalter 204 angeordnet sind, sodass eine optimale Umströmung der einzelnen Bateriezellen 205 erfolgt. Diese Luftkanäle können auch nur an den Stellen des Bateriezellenhalters 204 vorhanden sein, an denen die Betriebstemperatur der Batteriezellen 205 sehr hoch ist, beispielsweise in dem in Figur 1 gezeigten dritten Temperaturbereich 122. Alternativ oder zusätzlich kann ein weiterer Lüfter auf dem zweiten Abdeckelement 203 angeordnet sein.
Anhand von Pfeilen ist die Zirkulation der Warmluft in Figur 2 innerhalb des
Batteriegehäuses durch den Batteriezellenhalter 204 dargestellt. Die
Temperaturen innerhalb des Batteriegehäuses werden beispielsweise mittels NTCs an verschiedenen Stellen des Batteriezellenverbunds erfasst. Der Lüfter 206 wird dabei vom Batteriemanagementsystem in Abhängigkeit einer
Schwellenwertüberschreitung der Temperaturen der Batteriezellen 205
gesteuert. Durch die Umwälzung wird die Luft am Grundkörper des
Batteriegehäuses entlanggeführt, sodass die umverteilte Wärme passiv über die Oberfläche des Batteriegehäuses abgegeben wird.
Der Grundkörper 201 des Batteriegehäuses ist einstückig und rohrförmig ausgestaltet und weist ein Metall auf. Das Metall kann beispielsweise Aluminium oder Mangan umfassen. Der Grundkörper 201 kann mit Hilfe eines
Stanggussverfahrens hergestellt werden.
Die Erfindung kann auch auf Modulebene verwendet werden, wobei die
Batteriezellen durch Batteriemodule zu ersetzen sind. Dabei wird der Lüfter innerhalb der einzelnen Batteriemodule, die jeweils ein eigenes Gehäuse aufweisen, angeordnet.
Ein weiteres Ausführungsbeispiel umfasst den Einbau eines Lüfters auf
Batteriepackebene, der die Temperatur der einzelnen Batteriemodule
homogenisiert. In diesem Fall muss der Batteriezellenhalter durch ein
Aufnahmeelement für Batteriemodule ersetzt werden bzw. derart ausgestaltet sein, dass er Batteriemodule aufnehmen kann.
Das Batteriesystem findet beispielsweise Anwendung in einem elektrisch betriebenen Zweirad. Des Weiteren kann das Batteriesystem auch in stationären Vorrichtungen Anwendung finden, z. B. in Hauspufferspeichern. Figur 3 zeigt das thermische Verhalten 300 eines Batteriesystems mit Lüfter, wobei die Volumenströme des Lüfters verschieden sind. Die Abwärme einer jeden Batteriezelle beträgt ca. 1, 36 W. Gezeigt ist hier der Betriebszustand während eines Entladevorgangs, bei dem an einer Stelle der Batterie erstmalig ein Temperaturschwellenwert von 60°C erreicht bzw. überschritten wird. Dies geschieht im Allgemeinen in einer der zentral angeordneten Batteriezellen. Figur 3 zeigt das thermische Verhalten der aus Figur 1 bekannten
Temperaturbereiche, nämlich den ersten Temperaturbereichen 120, dem zweiten Temperaturbereich 121, dem dritten Temperaturbereich 122 und den vierten Temperaturbereichen 123. Die Abszisse repräsentiert die einzelnen
Temperaturbereiche und die Ordinate die zugehörigen Temperaturwerte. Eine erste Kurve 301 repräsentiert das thermische Verhalten der Batterie ohne Lüfter. Eine zweite Kurve 302 zeigt das thermische Verhalten der Batterie mit einem Lüfter, der einen Volumenstrom von 0,72 m3/h aufweist. Der Kurvenverlauf der zweiten Kurve 302 in den Temperaturbereichen 120 und 121 lässt sich dadurch erklären, dass sich die Randbereiche aufgrund des geringen Volumenstroms des Lüfters bereits erwärmt haben, wenn die Batteriemitte 60°C aufweist. Eine dritte Kurve 303 zeigt das thermische Verhalten der Batterie mit einem Lüfter, der einen Volumenstrom von 4,6 m3/h aufweist und eine vierte Kurve 304 zeigt das thermische Verhalten der Batterie mit einem Lüfter, der einen Volumenstrom von 9,6 m3/h aufweist. Es ist in der dritten Kurve 303 und der vierten Kurve 304 erkennbar, dass sich der Temperaturpeak bei größeren Volumenströmen in einen anderen Bereich der Batterie verschiebt. Die Temperaturunterschiede innerhalb der Batterie werden von 21,6 K auf 10 K gesenkt, d. h. es liegt eine deutliche Homogenisierung der Temperaturverteilung innerhalb des
Batteriegehäuses vor.

Claims

Ansprüche
1. Bateriesystem (200) mit
• einem Bateriegehäuse, das einen Grundkörper (201), ein erstes
Abdeckelement und ein zweites Abdeckelement (203) umfasst, wobei das erste Abdeckelement eine erste offene Stirnseite des Grundkörpers (201) verschließt und das zweite Abdeckelement (203) eine zweite offene Stirnseite des Grundkörpers (201) verschließt,
• einem Bateriezellenhalter (204), der innerhalb des Bateriegehäuses
angeordnet ist und eine Vielzahl von Bateriezellen (205) aufweist, und
• einem Bateriemanagementsystem (109), das dazu eingerichtet ist die Vielzahl von Bateriezellen (205) zu überwachen und Temperaturen der einzelnen Bateriezellen (205) zu erfassen,
dadurch gekennzeichnet, dass
• der Bateriezellenhalter (204) mindestens eine quaderförmige Aussparung aufweist, die sich von einer driten Stirnseite (207) des Bateriezellenhalters (204) bis zu einer vierten Stirnseite (208) des Bateriezellenhalters (204) erstreckt, wobei die drite Stirnseite (207) des Bateriezellenhalters (204) in Richtung des ersten Abdeckelements angeordnet ist und die vierte Stirnseite (208) des Bateriezellenhalters (204) in Richtung des zweiten Abdeckelements (203) angeordnet ist, und
• mindestens ein Lüfter (206) zwischen dem ersten Abdeckelement (203) und dem Bateriezellenhalter (204) angeordnet ist, wobei der mindestens eine Lüfter (206) in Abhängigkeit einer Schwellenwertüberschreitung der
Temperaturen der einzelnen Bateriezellen (205) vom
Bateriemanagementsystem (109) angesteuert wird.
2. Bateriesystem (200) nach Anspruch 1, dadurch gekennzeichnet, dass die
quaderförmige Aussparung ausgehend von der driten Stirnseite (207) des Bateriezellenhalters (204) mitig angeordnet ist, sodass mitlere Bereiche der Bateriezellen freiliegen.
3. Bateriesystem (200) nach einem der Ansprüche 1 oder 2, dadurch
gekennzeichnet, dass der mindestens eine Lüfter (206) die drite Stirnseite der quaderförmigen Aussparung des Bateriezellenhalters (204) verschließt.
4. Bateriesystem (200) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass das zweite Abdeckelement (203) mindestens einen weiteren Lüfter aufweist.
5. Bateriesystem (200) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass der Grundkörper (201) ein Strangusselement ist.
6. Bateriesystem (200) nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass das Bateriegehäuse Metall, insbesondere Aluminium, umfasst.
7. Verwendung eines Bateriesystems (400) nach einem der Ansprüche 1 bis 6 in einem Elektrofahrzeug, insbesondere einem elektrisch betriebenen Zweirad.
8. Fahrzeug, insbesondere ein elektrisch betriebenes Zweirad, mit einem
Bateriesystem (400) nach einem der Ansprüche 1 bis 6.
EP19765187.0A 2018-08-30 2019-08-28 Batteriesystem mit mindestens einem lüfter Pending EP3844824A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018214749.3A DE102018214749A1 (de) 2018-08-30 2018-08-30 Batteriesystem mit mindestens einem Lüfter
PCT/EP2019/072940 WO2020043768A1 (de) 2018-08-30 2019-08-28 Batteriesystem mit mindestens einem lüfter

Publications (1)

Publication Number Publication Date
EP3844824A1 true EP3844824A1 (de) 2021-07-07

Family

ID=67874418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19765187.0A Pending EP3844824A1 (de) 2018-08-30 2019-08-28 Batteriesystem mit mindestens einem lüfter

Country Status (4)

Country Link
EP (1) EP3844824A1 (de)
CN (1) CN112640192A (de)
DE (1) DE102018214749A1 (de)
WO (1) WO2020043768A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123535A1 (de) 2020-09-09 2022-03-10 Audi Ag Verfahren und Batteriewarnsystem zur Erkennung einer Thermalpropagation einer Batteriezelle einer Traktionsbatterie eines Kraftfahrzeugs sowie Kraftfahrzeug mit einem Batteriewarnsystem

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015545A (en) * 1990-01-03 1991-05-14 General Motors Corporation Method and apparatus for cooling an array of rechargeable batteries
JP4498659B2 (ja) * 2002-04-12 2010-07-07 本田技研工業株式会社 バッテリーボックス
FR2838869B1 (fr) 2002-04-23 2004-11-19 Cit Alcatel Generateur electrochimique a surface de revolution
WO2009119037A1 (ja) * 2008-03-24 2009-10-01 三洋電機株式会社 バッテリ装置及びバッテリユニット
JP4918611B1 (ja) * 2010-11-09 2012-04-18 三菱重工業株式会社 電池システム
EP3147964B1 (de) * 2014-05-22 2020-05-20 Kabushiki Kaisha Toshiba Batteriepack und batterievorrichtung
CN104577255B (zh) * 2014-12-30 2016-08-24 安徽江淮汽车股份有限公司 一种集中式动力电池包的热管理***
DE102015009945A1 (de) * 2015-07-30 2017-02-02 Man Truck & Bus Ag Vorrichtung für ein Fahrzeug, insbesondere für ein Nutzfahrzeug
DE102015216029A1 (de) * 2015-08-21 2017-02-23 Robert Bosch Gmbh Batteriepack
CN205911338U (zh) * 2016-07-25 2017-01-25 中聚(杭州)新能源科技有限公司 电池箱
CN106785212B (zh) * 2017-01-10 2023-11-17 买易网络科技(北京)有限公司 一种电池***

Also Published As

Publication number Publication date
DE102018214749A1 (de) 2020-03-05
WO2020043768A1 (de) 2020-03-05
CN112640192A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
EP3167507B1 (de) Gehäuse zur aufnahme einer vielzahl von batteriezellen mit einer im gehäuse integrierten kühlungsvorrichtung
WO2011051389A1 (de) Batteriezellenanordnung
EP2329548A1 (de) Batteriemodul
DE102014106954A1 (de) Vorrichtung zum Heizen und Kühlen eines Batteriepakets
DE112007002809T5 (de) Elektrisches Leistungszuführsystem
DE102015009945A1 (de) Vorrichtung für ein Fahrzeug, insbesondere für ein Nutzfahrzeug
DE102017218248A1 (de) Batteriezellen-Modul, Sekundär-Batterie und Kraftfahrzeug
WO2018036764A1 (de) Kühlvorrichtung für eine batteriebaugruppe sowie einheit aus einer batteriebaugruppe und einer kühlvorrichtung
WO2017021018A1 (de) Traktionsbatterie für ein kraftfahrzeug mit einer kühlvorrichtung
EP3235023B1 (de) Hochtemperatur-batterie
WO2020043768A1 (de) Batteriesystem mit mindestens einem lüfter
DE102015108426A1 (de) Vorrichtung zur Kühlung einer Batterie
DE102018003173A1 (de) Speichereinrichtung zum Speichern von elektrischer Energie für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
WO2014131738A1 (de) Zuschaltbares batteriemodul
DE102018100394A1 (de) Batteriemodul
EP4005011A1 (de) Kontrolleinrichtung
DE102017107203A1 (de) Traktionsbatterie
DE102009045012A1 (de) Batteriesystem mit externer Prallkühlung
EP3297089B1 (de) Flurförderzeug mit einer traktionsbatterie
EP3844823A1 (de) Batteriesystem und verfahren zur homogenen temperaturverteilung innerhalb des batteriesystems
DE102012209744A1 (de) Batteriespeichersystem sowie Gehäuse und Batteriemodul hierfür
EP3844822A1 (de) Batteriesystem mit lüftern im batteriezellenhalter und verfahren zur homogenen temperaturverteilung innerhalb des batteriesystems
DE102018214751A1 (de) Batteriesystem mit Kanälen und Verfahren zur homogenen Temperaturverteilung innerhalb des Batteriesystems
DE202021004040U1 (de) Batteriemodul und Batteriesystem mit Wärmetauschergehäuse
DE102021120074A1 (de) Kühlanordnung, Batterie und Verfahren zum Temperieren von Batteriezellen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20210330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)