EP3823779A1 - Verwendung von pulvern hochreflektiver metalle für die additive fertigung - Google Patents

Verwendung von pulvern hochreflektiver metalle für die additive fertigung

Info

Publication number
EP3823779A1
EP3823779A1 EP19761729.3A EP19761729A EP3823779A1 EP 3823779 A1 EP3823779 A1 EP 3823779A1 EP 19761729 A EP19761729 A EP 19761729A EP 3823779 A1 EP3823779 A1 EP 3823779A1
Authority
EP
European Patent Office
Prior art keywords
metal
ppm
weight
layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19761729.3A
Other languages
English (en)
French (fr)
Inventor
Moritz Stolpe
Jakob Fischer
Tim PROTZMANN
Michael Klosch-Trageser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Additive Manufacturing GmbH
Original Assignee
Heraeus Additive Manufacturing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Additive Manufacturing GmbH filed Critical Heraeus Additive Manufacturing GmbH
Publication of EP3823779A1 publication Critical patent/EP3823779A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/40Intermetallics other than rare earth-Co or -Ni or -Fe intermetallic alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the use of powders of highly reflective metals (such as copper, gold, silver or aluminum) for additive manufacturing by laser beam melting.
  • highly reflective metals such as copper, gold, silver or aluminum
  • Additive manufacturing processes work without tools and without a mold.
  • the volume of an object is built up layer by layer according to a digital computer model.
  • Metallic moldings can also be produced using additive manufacturing.
  • additive manufacturing is carried out by beam melting a metal powder (powder bed-based process).
  • Laser or electron beams are used as beam sources (selective laser beam melting, selective
  • the material to be processed is applied in powder form in a thin layer on the building board or in a previously deposited material layer.
  • the powdery material is partially or completely melted locally by means of laser radiation and forms a solid material layer after solidification.
  • the base plate is then lowered by the amount of a layer thickness and powder is applied again. This cycle is repeated until the finished shaped body is obtained.
  • selective Electron beam melting is the local melting of the powder by an electron beam.
  • Metals with high electrical conductivity especially copper, gold, silver and aluminum, are interesting materials. Because of their strong reflection in the infrared wavelength range, the processing of these materials by a laser beam represents a great challenge, since most currently available continuously radiating high-power lasers (cw Laser) exactly in this
  • lasers with a lower wavelength can be used (e.g. "green” lasers).
  • green lasers e.g. "green” lasers
  • the thermal properties of the material also influence the formation of the weld pool. For example, the thermal conductivity decides how quickly the local optical properties
  • EP 3 093 086 A1 describes the use of a copper powder, which as
  • the oxygen content of the copper powder is less than 1000 ppm by weight.
  • DE 10 2017 102 355 A1 describes the production of a shaped object from a metal powder using an additive method, the powder being modified by suitable measures so that the absorption of the laser beam is increased.
  • the metal powder is introduced into the construction space in the form of a powder layer, for example, and this powder layer is oxidized on the surface. To ensure adequate oxidation of the powder layer, the contains
  • the oxygen content of the surface oxidized metal powder is not specified.
  • US 2018/0051376 A1 describes the production of a shaped object from a metal powder by means of an additive method, the powder particles introduced into the installation space being provided with a coating of a “sacrificial material”.
  • the sacrificial material is, for example, an oxide.
  • the metal particles and the sacrificial material are provided separately and then the sacrificial material is applied to the powder particles using suitable coating methods, such as CVD or PVD.
  • An object of the present invention is to provide an additive manufacturing process by means of fiber beam melting, which is suitable for metals with low fiber beam absorption and also enables the production of high density metallic moldings when using fibers which work in the infrared wavelength range.
  • the metallic molded body obtained via additive manufacturing should preferably have other properties such as electrical or thermal conductivity, the molded body, which can be obtained using conventional processes such as Casting are made as close as possible.
  • the object is achieved by a process for the additive manufacturing of a metallic molded body by fiber beam melting, comprising
  • the metals of group 11 of the periodic table of elements such as copper, silver or gold as well as the metal aluminum have in common that they are in the NIR range, in particular in the wavelength range of 800-1250 nm (and thus in the wavelength range of most currently available continuously radiating) High power laser) have an absorption of less than 20%.
  • the oxygen content of which is at least 2500 ppm by weight a stable weld pool can be achieved during laser treatment. This in turn leads to the formation of a high density metal after solidification.
  • the metal of group 11 of the periodic table of the elements is preferably copper, silver or gold or an alloy or intermetallic phase of one of these metals.
  • alloy of a metal is understood to mean an alloy which contains this metal as the main component (for example in a proportion of more than 50 at%, more preferably more than 65 at% or even more than 75 at%) and also one or more alloying elements , Furthermore, the alloy can, for example, two or more of the above-mentioned metals (for example at least two metals of group 11 of the periodic table or at least one metal of group 11 of the periodic table and aluminum) in a total amount of at least 65 at%, more preferably at least 75 at% or even contain at least 85 at%.
  • the oxygen content of the metal is determined in a reduction-extraction process in accordance with DIN EN ISO 4491-4: 2013-08.
  • the powdered metal preferably has an oxygen content of at least 3500 ppm by weight, more preferably at least 5000 ppm by weight
  • the powdered metal has an oxygen content in the range of 2500-15000 ppm by weight, more preferably 3500-10000 ppm by weight, more preferably 5000-10000 ppm by weight, most preferably 5500-10000 ppm by weight.
  • the metal solidified after one of the laser melting steps or the metallic molded body undergoes a thermal treatment in a vacuum or in a reducing treatment
  • This thermal treatment can at least partially remove the oxygen from the metal again, which can have an advantageous effect on certain properties such as thermal or electrical conductivity.
  • an oxygen content of at most 15,000 ppm by weight, more preferably at most 10,000 ppm by weight, the time required for the thermal treatment can be shortened.
  • the metal consists of copper, oxygen in one of the amounts specified above and optionally one or more further constituents which, if present, in a total amount of at most 1% by weight, more preferably at most 0.5% by weight, even more preferably at most 0.04% by weight are present.
  • a powdered metal containing oxygen in the amounts indicated above can be made by methods known to those skilled in the art.
  • the powdered metal is preferably produced by spraying in an oxygen-containing atmosphere. Suitable process conditions through which the Oxygen content of the powder can be adjusted are known to the person skilled in the art or can optionally be determined by routine tests.
  • molten metal is broken up into small droplets and these rapidly solidify before they come into contact with one another or with a solid surface.
  • the principle of the process is based on the division of a thin, liquid metal jet by a gas stream hitting at high speed. As is known to those skilled in the art, by varying
  • Process parameters such as shape and arrangement of the nozzles, pressure and flow rate of the atomizing medium or thickness of the liquid metal jet, the particle size can be set in a wide range.
  • the powdered metal has a volume distribution sum curve with particle sizes in the range of 1-100 mhi.
  • the powdered metal has a volume distribution sum curve with a di 0 value of at least 2 mhi and a dyo value of at most 90 mhi.
  • the particle size distribution based on a volume distribution sum curve is determined by laser diffraction.
  • the powder is used as a dry dispersion
  • Substrate in an installation space of a device for laser beam melting takes place under conditions which are known to the person skilled in the art in the context of an additive manufacturing process.
  • the substrate can be the as yet uncoated building board in the installation space of the device or, alternatively, material layers of the shaped body to be produced that have already been deposited on the building board. Alternatively, you could also use a prefabricated insert on this or another material.
  • the powdered metal is applied in layers, for example, by means of a doctor blade, a roller, a press or by screen printing or a combination of at least two of these methods. After the powder has been applied, step (ii) can be carried out, for example, without further intermediate steps.
  • An inert or reductive gas atmosphere is preferably present in the installation space.
  • step (ii) the powdery metal is selectively melted by at least one laser beam.
  • selective expresses the fact that, in the additive manufacturing of a shaped body, the melting of the metal powder on the basis of digital 3D data of the shaped body takes place only in defined, predetermined areas of the layer.
  • step (iii) can take place, for example, without further intermediate steps.
  • step (iii) the solidified metal can be subjected to a thermal treatment.
  • This thermal treatment is preferably carried out in a vacuum (for example at 10 3 to 10 6 mbar, more preferably 10 4 to 10 5 mbar) or in a reducing gas atmosphere (for example a gas atmosphere which contains hydrogen or a forming gas).
  • the thermal treatment is carried out, for example, at a temperature in the range from 0.1 ⁇ T m to 0.99 ⁇ T m , where T m is the melting temperature of the metal.
  • the thermal treatment can be carried out at a relatively moderate temperature in the range from 0.1 x T m to 0.6 x T m .
  • the thermal treatment of the solidified metal is carried out, for example, at a temperature in the range from 10 ° C to 980 ° C.
  • the thermal treatment of the solidified copper can be carried out at a temperature in the range from 10 ° C to 650 ° C, more preferably 150 ° C to 400 ° C.
  • the thermal treatment of the solidified metal in a vacuum or in a reducing atmosphere can have an advantageous effect on certain properties, such as thermal or electrical conductivity.
  • step (ii) and step (iii) the building board is preferably lowered by an amount which essentially corresponds to the layer thickness of the powder layer applied. This procedure as part of additive manufacturing
  • Shaped body is generally known to the person skilled in the art.
  • step (iii) A further layer of the powdered metal in step (iii) can be applied in the same way as in step (i).
  • Step (iv) can also be carried out on the can be carried out in the same way as step (ii).
  • thermal treatment can optionally be carried out again under those already described above
  • the metallic molded body is preferably subjected to a thermal treatment.
  • this thermal treatment is preferably carried out in a vacuum (for example at 10 3 to 10 6 mbar, more preferably 10 4 to 10 5 mbar) or in a reducing gas atmosphere (for example a gas atmosphere which contains hydrogen or a forming gas).
  • the thermal treatment is carried out, for example, at a temperature in the range from 0.1 ⁇ T m to 0.99 ⁇ T m , where T m is the melting temperature of the metal.
  • Temperature in the range of 0.1 x T m to 0.6 x T m are carried out. However, it is also possible to carry out the temperature treatment at a higher temperature in the range from 0.6 x T m to 0.99 x T m .
  • the thermal treatment of the shaped body is carried out, for example, at a temperature in the range from 10 ° C to 980 ° C.
  • the thermal treatment of the shaped body can be carried out at a temperature in the range from 10 ° C. to 650 ° C., more preferably 150 ° C. to 400 ° C.
  • the duration of the thermal treatment is, for example, 1-180 hours, more preferably 5-40 hours.
  • the thermal treatment of the shaped body in a vacuum or in a reducing atmosphere can affect certain
  • powdered metal can be referred to the above statements.
  • the following lasers were used for the selective laser melting: Yb fiber laser, 1060-1100 nm.
  • Example 1 In example 1, a copper powder with an oxygen content of 7300 ppm by weight was used. The powder had a volume-based particle size distribution with a di 0 value of 20 mhi and ad 90 value of 52 mhi.
  • the copper powder was applied in the installation space of the device in the form of a thin layer (layer thickness of approximately 20 mhi) to the building board.
  • the metal powder was melted in defined areas of the applied layer at room temperature.
  • Argon was used as the gas atmosphere in the installation space.
  • the laser melting step was then started.
  • the laser beam moved at a speed of 500 mm / s with a beam power of 370 W and a distance of adjacent lines of 70 pm over a predefined area of 10 x 10 mm 2 of the applied layer.
  • the electrical conductivity (% IACS) of the shaped body was determined before and after annealing (10 h at 800 ° C. in a vacuum):
  • Example 2 a copper powder with an oxygen content of 5740 ppm by weight was used.
  • the powder had a volume-based particle size distribution with a dio value of 16 mhi and a dyo value of 53 mhi.
  • test parameters were identical to those in Example 1.
  • Micrographs were made of the area captured by the laser beam. The micrographs show a structure of high density. The porosity was only 0.2%.
  • the electrical conductivity (% IACS) of the shaped body was determined before and after annealing (15 h at 600 ° C. in a vacuum):
  • comparative example 1 a copper powder with an oxygen content of 318 ppm by weight was used.
  • the powder had a volume-based
  • the copper powder was applied to a building board under the same conditions as in Example 1 and subjected to a laser beam treatment.
  • a stable molten bath could not be formed with the copper powder used in Comparative Example 1, and accordingly a mechanically stable high-density component could not be obtained.
  • Micrographs were made of the area captured by the laser beam. The micrographs show a defect-rich structure. The porosity was> 5%.
  • the copper powder was applied to a building board under the same conditions as in Example 1 and subjected to a laser beam treatment.
  • a stable molten bath could not be formed with the copper powder used in Comparative Example 2, and accordingly a mechanically stable high-density component could not be obtained.
  • Micrographs were made of the area captured by the laser beam. The micrographs show a defect-rich structure. The porosity was 4.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung eines pulverförmigen Metalls für die additive Fertigung eines metallischen Formkörpers durch ein Laserstrahlschmelzen, wobei das Metall ein Metall der Gruppe 11 des Periodensystems der Elemente oder Aluminium oder eine Legierung oder intermetallische Phase eines dieser Metalle ist und einen Sauerstoffgehalt von mindestens 2500 Gew.-ppm aufweist.

Description

Verwendung von Pulvern hochreflektiver Metalle für die additive Fertigung
Die vorliegende Erfindung betrifft die Verwendung von Pulvern hochreflektiver Metalle (wie z.B. Kupfer, Gold, Silber oder Aluminium) für die additive Fertigung durch Laserstrahlschmelzen.
Additive Fertigungs verfahren arbeiten werkzeuglos und ohne Form. Das Volumen eines Objekts wird dabei schichtweise gemäß einem digitalen Computermodell aufgebaut.
Auch metallische Formkörper lassen sich über eine additive Fertigung herstellen. Beispielsweise erfolgt die additive Fertigung über ein Strahlschmelzen eines Metallpulvers (Pulverbett-basierte Verfahren). Als Strahlquellen werden Laser- oder Elektronenstrahlen verwendet (selektives Laserstrahlschmelzen, selektives
Elektronenstrahlschmelzen).
Beim selektiven Laserstrahlschmelzen wird der zu verarbeitende Werkstoff in Pulverform in einer dünnen Schicht auf der Bauplatte oder einer bereits zuvor abgeschiedenen Werkstoffschicht aufgebracht. Der pulverförmige Werkstoff wird mittels Laserstrahlung lokal teilweise oder vollständig geschmolzen und bildet nach der Erstarrung eine feste Materialschicht. Anschließend wird die Grundplatte um den Betrag einer Schichtdicke abgesenkt und erneut Pulver aufgetragen. Dieser Zyklus wird solange wiederholt, bis der fertige Formkörper erhalten wird. Beim selektiven Elektronenstrahlschmelzen erfolgt das lokale Aufschmelzen des Pulvers durch einen Elektronenstrahl .
Den aktuellen Stand der additiven Fertigung von metallischen Formkörpem, z.B. durch Laserstrahl- und Elektronenstrahlschmelzen von schichtweise aufgetragenem Metallpulver, beschreiben beispielsweise D. Herzog et al., Acta Materialia, 117 (2016), S. 371-392.
Metalle mit hoher elektrischer Leitfähigkeit, insbesondere Kupfer, Gold, Silber und Aluminium, stellen interessante Werkstoffe dar. Wegen ihrer starken Reflektion im infraroten Wellenlängenbereich stellt die Bearbeitung dieser Werkstoffe durch einen Laserstrahl eine große Herausforderung dar, da die meisten derzeit verfügbaren kontinuierlich strahlenden Hochleistungslaser (cw-Laser) genau in diesem
Wellenlängenbereich arbeiten. Diese Problematik wird beispielsweise von M.
Naeem, Laser Technik Journal, Volume 10, Januar 2013, S. 18-20, und in US
2015/0102016 Al beschrieben. Um die Absorption der Laserstrahlung durch stark reflektierende Metalle zu verbessern, können Laser verwendet werden, die eine niedrigere Wellenlänge aufweisen (z.B.„grüne“ Laser). Diese Laser weisen aber derzeit noch keine ausreichende Leistung und Stabilität auf.
Zeigt ein Material im Wellenlängenbereich der anregenden Strahlung ein geringes Absorptionsverhalten (z.B. aufgrund hoher Reflektivität), kann nur wenig Energie in das Material eingekoppelt werden, wodurch ein Aufschmelzen des Materials erschwert oder sogar verhindert wird. Dies kann dazu führen, dass sich kein stabiles Schmelzbad ausbildet. Für die Realisierung relevanter Bauteileigenschaften (wie
Dichte, elektrische und thermische Leitfähigkeit, Festigkeit, Oberflächengüte) ist die Ausbildung eines stabilen Schmelzbades jedoch von besonderer Bedeutung.
Neben den optischen Eigenschaften (Absorption, Reflektion) beeinflussen auch die thermischen Eigenschaften des Materials die Ausbildung des Schmelzbades. Beispielsweise entscheidet die Wärmeleitfähigkeit, wie schnell die lokal
eingekoppelte Wärme sich auf die Umgebung verteilt. Materialien mit hohen thermischen Leitfähigkeiten erschweren daher die additive Fertigung. EP 3 093 086 Al beschreibt die Verwendung eines Kupferpulvers, das als
Legierungselemente Silizium und/oder Chrom enthält, für die additive Fertigung durch Laserstrahlschmelzen. Der Sauerstoffgehalt des Kupferpulvers beträgt weniger als 1000 Gew-ppm. DE 10 2017 102 355 Al beschreibt die Herstellung eines geformten Gegenstandes aus einem Metallpulver über ein additives Verfahren, wobei das Pulver durch geeignete Maßnahmen modifiziert wird, so dass die Absorption des Laserstrahls erhöht wird. Das Metallpulver wird beispielsweise in Form einer Pulverschicht in den Bauraum eingebracht und diese Pulverschicht wird oberflächlich oxidiert. Um eine ausreichende Oxidation der Pulverschicht zu gewährleisten, enthält die
Gasatmosphäre im Bauraum noch ausreichend Luftsauerstoff. Der Sauerstoffgehalt des oberflächlich oxidierten Metallpulvers wird nicht angegeben.
US 2018/0051376 Al beschreibt die Herstellung eines geformten Gegenstandes aus einem Metallpulver über ein additives Verfahren, wobei die in den Bauraum eingebrachten Pulverpartikel mit einer Beschichtung aus einem„ Opfermaterial“ versehen sind. Bei dem Opfermaterial handelt es sich beispielsweise um ein Oxid. Die Metallpartikel und das Opfermaterial werden separat bereit gestellt und anschließend erfolgt das Aufbringen des Opfermaterials auf die Pulverpartikel über geeignete Beschichtungsverfahren wie z.B. CVD oder PVD.
P. Frigola et al.,“ Fabricating Copper Components with Electron Beam Melting”, Advanced Materials & Processes, Juli 2014, S. 20-24 beschreiben die Herstellung von Cu-Formkörpem durch Elektronenstrahlschmelzen. Dabei stellt sich jedoch die Problematik der hohen Reflektivität nicht. Auch R. Guschlbauer et ab,“ Herausforderung bei der Additiven Fertigung von Reinkupfer mit dem selektiven Elektronenstrahlschmelzen'’, Metall, 11/2017, S. 459- 462 beschreiben die Herstellung von Cu-Formkörpem durch
Elektronenstrahlschmelzen.
Eine Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines additiven Fertigungsverfahrens durch ein Faserstrahlschmelzen, das für Metalle mit geringer Faserstrahlabsorption geeignet ist und auch bei Verwendung von Fasern, die im infraroten Wellenlängenbereich arbeiten, die Herstellung metallischer Formkörper hoher Dichte ermöglicht.
Bevorzugt sollte der über die additive Fertigung erhaltene metallische Formkörper in seinen sonstigen Eigenschaften wie z.B. elektrischer oder thermischer Feitfähigkeit den Formkörpem, die über herkömmliche Verfahren wie z.B. Gießen hergestellt werden, möglichst nahe kommen.
Gelöst wird die Aufgabe durch ein Verfahren zur additiven Fertigung eines metallischen Formkörpers durch Faserstrahlschmelzen, umfassend
(i) Aufbringen eines pulverförmigen Metalls in Form einer Schicht auf einem
Substrat in einem Bauraum, wobei das Metall
ein Metall der Gruppe 11 des Periodensystems der Elemente oder Aluminium oder eine Fegierung oder intermetallische Phase eines dieser Metalle ist und
- einen Sauerstoffgehalt von mindestens 2500 Gew.-ppm aufweist;
(ii) selektives Aufschmelzen des pulverförmigen Metalls in der Schicht durch einen Faserstrahl und Erstarren lassen des aufgeschmolzenen Metalls,
(iii) Aufbringen einer weiteren Schicht des pulverförmigen Metalls auf der zuvor aufgebrachten Schicht, (iv) selektives Aufschmelzen des pulverförmigen Metalls in der weiteren Schicht durch den Laserstrahl und Erstarren lassen des aufgeschmolzenen Metalls;
(v) Wiederholung der Schritte (iii) - (iv), bis der metallische Formkörper
fertiggestellt ist.
Die Metalle der Gruppe 11 des Periodensystems der Elemente wie Kupfer, Silber oder Gold sowie das Metall Aluminium haben als gemeinsames Merkmal, dass sie im NIR-Bereich, insbesondere im Wellenlängenbereich von 800-1250 nm (und damit im Wellenlängenbereich der meisten derzeit verfügbaren kontinuierlich strahlenden Hochleistungslaser) eine Absorption von weniger als 20% aufweisen.
Durch die Verwendung eines Pulvers dieser Metalle, dessen Sauerstoffgehalt mindestens 2500 Gew.-ppm beträgt, lässt sich bei der Laserbehandlung ein stabiles Schmelzbad realisieren. Dies wiederum führt nach dem Erstarren zur Bildung eines Metalls hoher Dichte.
Bevorzugt ist das Metall der Gruppe 11 des Periodensystems der Elemente Kupfer, Silber oder Gold oder eine Legierung oder intermetallische Phase eines dieser Metalle.
Unter dem Begriff„Legierung eines Metalls“ wird eine Legierung verstanden, die dieses Metall als Hauptkomponente (z.B. in einem Anteil von mehr 50 at%, bevorzugter mehr als 65 at% oder sogar mehr als 75 at%) und daneben ein oder mehrere Legierungselemente enthält. Weiterhin kann die Legierung beispielsweise zwei oder mehrere der oben genannten Metalle (z.B. mindestens zwei Metalle der Gruppe 11 des Periodensystems oder mindestens ein Metall der Gruppe 11 des Periodensystems und Aluminium) in einer Gesamtmenge von mindestens 65 at%, bevorzugter mindestens 75 at% oder sogar mindestens 85 at% enthalten. Der Sauerstoffgehalt des Metalls wird in einem Reduktions-Extraktionsverfahren gemäß DIN EN ISO 4491-4:2013-08 bestimmt.
Bevorzugt weist das pulverförmige Metall einen Sauerstoffgehalt von mindestens 3500 Gew.-ppm, bevorzugter mindestens 5000 Gew.-ppm auf
In einer bevorzugten Ausführungsform weist das pulverförmige Metall einen Sauerstoffgehalt im Bereich von 2500-15000 Gew.-ppm, bevorzugter 3500-10000 Gew.-ppm, noch bevorzugter 5000-10000 Gew-ppm, am meisten bevorzugt 5500- 10000 Gew-ppm auf.
Wie nachfolgend noch eingehender beschrieben, kann es bevorzugt sein, das nach einem der Laserschmelzschritte erstarrte Metall oder den metallischen Formkörper einer thermischen Behandlung im Vakuum oder in einer reduzierenden
Gasatmosphäre zu unterziehen. Durch diese thermische Behandlung kann dem Metall der Sauerstoff zumindest teilweise wieder entzogen werden, was sich auf bestimmte Eigenschaften wie thermische oder elektrische Leitfähigkeit vorteilhaft auswirken kann. Mit einem Sauerstoffgehalt von maximal 15000 Gew.-ppm, bevorzugter maximal 10000 Gew.-ppm kann die für die thermische Behandlung erfoderliche Zeitdauer verkürzt werden.
In einer beispielhaften Ausführungsform besteht das Metall aus Kupfer, Sauerstoff in einer der oben angegebenen Mengen und optional einem oder mehreren weiteren Bestandteilen, die, sofern anwesend, in einer Gesamtmenge von maximal 1 Gew%, bevorzugter maximal 0,5 Gew%, noch bevorzugter maximal 0,04 Gew% vorliegen.
Ein pulverförmiges Metall, das Sauerstoff in den oben angegebenen Mengen enthält, kann über Verfahren hergestellt werden, die dem Fachmann bekannt sind. Bevorzugt wird das pulverförmige Metall über eine Verdüsung in einer Sauerstoff-haltigen Atmosphäre hergestellt. Geeignete Prozessbedingungen, durch die der Sauerstoffgehalt des Pulvers eingestellt werden kann, sind dem Fachmann bekannt oder können gegebenenfalls durch Routineversuche ermittelt werden. Bei einer Verdüsung wird geschmolzenes Metall in kleine Tröpfchen zerteilt und diese erstarren rasch, bevor sie in Kontakt miteinander oder mit einer festen Oberfläche kommen. Das Prinzip des Verfahrens beruht auf der Zerteilung eines dünnen, flüssigen Metallstrahls durch einen mit hoher Geschwindigkeit auftreffenden Gasstrom. Wie dem Fachmann bekannt ist, kann durch Variieren von
Prozessparametem wie Form und Anordnung der Düsen, Druck und Mengenstrom des Verdüsungsmediums oder Dicke des flüssigen Metallstrahls die Teilchengröße in einem weiten Bereich eingestellt werden.
Geeignete Partikelgrößen eines Metallpulvers im Rahmen eines additiven
Fertigungsverfahrens sind dem Fachmann bekannt oder können gegebenenfalls durch Routineversuche bestimmt werden. Beispielsweise weist das pulverförmige Metall eine Volumenverteilungssummenkurve mit Partikelgrößen im Bereich von 1-100 mhi auf. In einer beispielhaften Ausführungsform weist das pulverförmige Metall eine Volumenverteilungssummenkurve mit einem di0-Wert von mindestens 2 mhi und einem dyo-Wcrt von höchstens 90 mhi auf.
Die Partikelgrößenverteilung anhand einer Volumenverteilungssummenkurve wird durch Laserbeugung bestimmt. Das Pulver wird als Trockendispersion mittels
Laserbeugungs-Partikelgrößenanalyse gemäß der ISO 13320:2009 vermessen und aus den Messdaten wird die Volumenverteilungssummenkurve bestimmt. Aus der Volumenverteilungssummenkurve lassen sich gemäß ISO 9276-2:2014 die Werte dl0 und d90 errechnen. Hierbei bedeutet zum Beispiel„dl0“, dass 10 Vol.-% der Partikel einen Durchmesser unterhalb dieses Wertes aufweisen.
Das Aufbringen des pulverförmigen Metalls in Form einer Schicht auf einem
Substrat in einem Bauraum einer Vorrichtung für Laserstrahlschmelzen erfolgt unter Bedingungen, die dem Fachmann im Rahmen eines additiven Fertigungsverfahrens bekannt sind. Bei dem Substrat kann es sich um die noch unbeschichtete Bauplatte im Bauraum der Vorrichtung oder alternativ um zuvor bereits auf der Bauplatte abgeschiedene Materialschichten des herzustellenden Formkörpers handeln. Alternativ könnte man auch einen schon vorgefertigten Einleger auf diesem oder einem anderen Werkstoff verwenden. Das schichtförmige Aufbringen des pulverförmigen Metalls erfolgt beispielsweise durch ein Rakel, eine Walze, eine Presse oder durch Siebdruck oder eine Kombination aus mindestens zwei dieser Methoden. Nach dem Aufbringen des Pulvers kann beispielsweise ohne weitere Zwischenschritte der Schritt (ii) erfolgen.
Bevorzugt liegt in dem Bauraum eine inerte oder reduktive Gasatmosphäre vor.
In Schritt (ii) erfolgt das selektive Aufschmelzen des pulverförmigen Metalls durch mindestens einen Laserstrahl. Mit dem Begriff„selektiv“ wird bekanntermaßen zum Ausdruck gebracht, dass im Rahmen der additiven Fertigung eines Formkörpers das Aufschmelzen des Metallpulvers auf Basis digitaler 3D-Daten des Formkörpers nur in definierten, vorgegebenen Bereichen der Schicht stattfindet.
Laser, die für die additive Fertigung durch Laserstrahlschmelzen verwendet werden können, sind dem Fachmann bekannt. Durch die Verwendung des oben
beschriebenen Metallpulvers kann auch mit einem Laserstrahl mit einer Wellenlänge im IR-Bereich ein vorteilhaftes Aufschmelzverhalten realisiert werden. In einer bevorzugten Ausführungsform wird daher ein IR-Laser, also ein Laserstrahl mit einer Wellenlänge im Infrarotbereich (z.B. 750 nm bis 30 pm), für die additive Fertigung des metallischen Formkörpers verwendet. Alternativ können aber im Rahmen der vorliegenden Erfindung auch Laserstrahlen mit einer niedrigeren Wellenlänge, beispielsweise im Bereich des sichtbaren Lichts (z.B. 400-700 nm), verwendet werden. Nach dem Erstarren des aufgeschmolzenen Metalls kann beispielsweise ohne weitere Zwischenschritte der Schritt (iii) erfolgen. Alternativ kann beispielsweise nach Schritt (ii) und vor Schritt (iii) das erstarrte Metall einer thermischen Behandlung unterzogen werden. Diese thermische Behandlung wird bevorzugt im Vakuum (z.B. bei 10 3 bis 10 6 mbar, bevorzugter 10 4 bis 10 5 mbar) oder in einer reduzierenden Gasatmosphäre (z.B. einer Gasatmosphäre, die Wasserstoff oder ein Formiergas enthält) durchgeführt. Die thermische Behandlung wird beispielsweise bei einer Temperatur im Bereich von 0,1 x Tm bis 0,99 x Tm durchgeführt, wobei Tm die Schmelztemperatur des Metalls ist. Beispielsweise kann die thermische Behandlung bei einer relativ moderaten Temperatur im Bereich von 0,1 x Tm bis 0,6 x Tm durchgeführt werden. Es ist aber auch möglich, die Temperaturbehandlung bei einer höheren Temperatur im Bereich von 0,6 x Tm bis 0,99 x Tm durchzuführen. Handelt es sich bei dem Metall um Kupfer, wird die thermische Behandlung des erstarrten Metalls beispielsweise bei einer Temperatur im Bereich von 1 l0°C bis 980°C durchgeführt. Beispielsweise kann die thermische Behandlung des erstarrten Kupfers bei einer Temperatur im Bereich von 1 l0°C bis 650°C, bevorzugter l50°C bis 400°C durchgeführt werden. Es ist aber auch möglich, die Temperaturbehandlung des erstarrten Kupfers bei einer höheren Temperatur im Bereich von 650°C bis bis 980°C, bevorzugter 700°C bis 900°C durchzuführen. Die thermische Behandlung des erstarrten Metals im Vakuum oder in einer reduzierenden Atmosphäre kann sich auf bestimmte Eigenschaften wie thermische oder elektrische Leitfähigkeit vorteilhaft auswirken.
Zwischen Schritt (ii) und Schritt (iii) wird die Bauplatte bevorzugt um einen Betrag abgesenkt, der im Wesentlichen der Schichtdicke der aufgebrachten Pulverschicht entspricht. Diese Vorgehens weise im Rahmen der additiven Fertigung eines
Formkörpers ist dem Fachmann allgemein bekannt.
Das Aufbringen einer weiteren Schicht des pulverförmigen Metalls in Schritt (iii) kann auf die gleiche Weise erfolgen wie in Schritt (i). Auch Schritt (iv) kann auf die gleiche Weise durchgeführt werden wie Schritt (ii). Optional kann nach Schritt (iv) erneut eine thermische Behandlung unter den bereits oben beschriebenen
Bedingungen durchgeführt werden. Die oben beschriebenen Verfahrensschritte werden wiederholt, bis der metallische Formkörper fertiggestellt ist.
Nach seiner Fertigstellung wird der metallische Formkörper bevorzugt einer thermischen Behandlung unterzogen. Wie oben bereits beschrieben, wird diese thermische Behandlung bevorzugt im Vakuum (z.B. bei 10 3 bis 10 6 mbar, bevorzugter 10 4 bis 10 5 mbar) oder in einer reduzierenden Gasatmosphäre (z.B. einer Gasatmosphäre, die Wasserstoff oder ein Formiergas enthält) durchgeführt. Die thermische Behandlung wird beispielsweise bei einer Temperatur im Bereich von 0,1 x Tm bis 0,99 x Tm durchgeführt, wobei Tm die Schmelztemperatur des Metalls ist. Beispielsweise kann die thermische Behandlung bei einer relativ moderaten
Temperatur im Bereich von 0,1 x Tm bis 0,6 x Tm durchgeführt werden. Es ist aber auch möglich, die Temperaturbehandlung bei einer höheren Temperatur im Bereich von 0,6 x Tm bis 0,99 x Tm durchzuführen. Handelt es sich bei dem Metall um Kupfer, wird die thermische Behandlung des Formkörpers beispielsweise bei einer Temperatur im Bereich von 1 l0°C bis 980°C durchgeführt. Beispielsweise kann die thermische Behandlung des Formkörpers bei einer Temperatur im Bereich von 1 l0°C bis 650°C, bevorzugter l50°C bis 400°C durchgeführt werden. Es ist aber auch möglich, die Temperaturbehandlung des Formkörpers bei einer höheren Temperatur im Bereich von 650°C bis bis 980°C, bevorzugter 700°C bis 900°C durchzuführen. Die Dauer der thermischen Behandlung beträgt beispielsweise 1-180 Stunden, bevorzugter 5-40 Stunden. Die thermische Behandlung des Formkörpers im Vakuum oder in einer reduzierenden Atmosphäre kann sich auf bestimmte
Eigenschaften wie thermische oder elektrische Leitfähigkeit vorteilhaft auswirken. Weiterhin betrifft die vorliegende Erfindung die Verwendung des oben
beschriebenen pulverförmigen Metalls für die additive Fertigung durch
Laserstrahlschmelzen. Hinsichtlich der bevorzugten Eigenschaften des
pulverförmigen Metalls kann auf die obigen Ausführungen verwiesen werden.
Durch die nachfolgenden Beispiele wird die Erfindung eingehender erläutert.
Beispiele In den folgenden Beispielen und Vergleichsbeispielen wurde für das selektive Laserschmelzen folgender Laser verwendet: Yb Faserlaser, 1060-1100 nm.
Beispiel 1 In Beispiel 1 wurde ein Kupferpulver mit einem Sauerstoffgehalt von 7300 Gew.- ppm verwendet. Das Pulver wies eine Volumen-basierte Partikelgrößenverteilung mit einem di0-Wert von 20 mhi und einem d90-Wert von 52 mhi auf.
Das Kupferpulver wurde in dem Bauraum des Geräts in Form einer dünnen Schicht (Schichtdicke von etwa 20 mhi) auf die Bauplatte aufgebracht. Das Aufschmelzen des Metallpulvers in definierten Bereichen der aufgebrachten Schicht erfolgte bei Raumtemperatur. Als Gasatmosphäre im Bauraum wurde Argon verwendet.
Anschließend wurde der Laserschmelzschritt gestartet. Der Laserstrahl bewegte sich mit einer Geschwindigkeit von 500 mm/s bei einer Strahlleistung von 370 W und einem Abstand benachbarter Linien von 70 pm über eine vordefinierte Fläche von 10 x 10 mm2 der aufgebrachten Schicht.
Mit dem in Beispiel 1 verwendeten Kupferpulver bildete sich ein stabiles
Schmelzbad aus. Von der vom Laserstrahl erfassten Fläche wurden Schliffbilder angefertigt. Die Schliffbilder zeigen eine Struktur hoher Dichte. Die Porosität betrug lediglich 0,3%.
Bestimmt wurde die elektrische Leitfähigkeit (%IACS) des Formkörpers vor und nach Glühen (10 h bei 800°C im Vakuum):
Vorher: 64%
Nachher: 84 %
Die elektrische Leitfähigkeit wurde nach der Vier-Punkt-Methode bestimmt. Beispiel 2
In Beispiel 2 wurde ein Kupferpulver mit einem Sauerstoffgehalt von 5740 Gew.- ppm verwendet. Das Pulver wies eine Volumen-basierte Partikelgrößenverteilung mit einem dio-Wert von 16 mhi und einem dyo-Wcrt von 53 mhi auf.
Die Versuchsparameter waren identisch zu denen in Beispiel 1.
Mit dem in Beispiel 2 verwendeten Kupferpulver bildete sich ein stabiles
Schmelzbad aus.
Von der vom Laserstrahl erfassten Fläche wurden Schliffbilder angefertigt. Die Schliffbilder zeigen eine Struktur hoher Dichte. Die Porosität betrug lediglich 0,2%.
Bestimmt wurde die elektrische Leitfähigkeit (%IACS) des Formkörpers vor und nach Glühen (15 h bei 600°C im Vakuum):
Vorher: 66%
Nachher: 82 %
Die elektrische Leitfähigkeit wurde nach der Vier-Punkt-Methode bestimmt. Vergleichsbeispiel 1
In Vergleichsbeispiel 1 wurde ein Kupferpulver, mit einem Sauerstoffgehalt von 318 Gew-ppm verwendet. Das Pulver wies eine Volumen-basierte
Partikelgrößenverteilung mit einem dio-Wert von 20 mhi und einem dco-Wert von 56 mhi auf.
Das Kupferpulver wurde unter den gleichen Bedingungen wie in Beispiel 1 auf eine Bauplatte aufgebracht und einer Laserstrahlbehandlung unterzogen.
Mit dem in Vergleichsbeispiel 1 verwendeten Kupferpulver konnte kein stabiles Schmelzbad ausgebildet werden und dementsprechend konnte kein mechanisch stabiles Bauteil hoher Dichte erhalten werden.
Von der vom Laserstrahl erfassten Fläche wurden Schliffbilder angefertigt. Die Schliffbilder zeigen eine defektreiche Struktur. Die Porosität betrug >5%.
Vergleichsbeispiel 2
In Vergleichsbeispiel 2 wurde ein Kupferpulver mit einem Sauerstoffgehalt von 2219 Gew-ppm verwendet. Das Pulver wies eine Volumen-basierte
Partikelgrößenverteilung mit einem dio-Wert von 15 mhi und einem dco-Wert von 41 mhi auf.
Das Kupferpulver wurde unter den gleichen Bedingungen wie in Beispiel 1 auf eine Bauplatte aufgebracht und einer Laserstrahlbehandlung unterzogen. Mit dem in Vergleichsbeispiel 2 verwendeten Kupferpulver konnte kein stabiles Schmelzbad ausgebildet werden und dementsprechend konnte kein mechanisch stabiles Bauteil hoher Dichte erhalten werden. Von der vom Laserstrahl erfassten Fläche wurden Schliffbilder angefertigt. Die Schliffbilder zeigen eine defektreiche Struktur. Die Porosität betrug 4,4%.
Die Ergebnisse der oben beschriebenen Beispiele sind in der nachfolgenden Tabelle 1 zusammengefasst.
Tabelle 1 : Stabilität des Schmelzbades und Porosität des erstarrten Metalls

Claims

Ansprüche
1. Ein Verfahren zur additiven Fertigung eines metallischen Formkörpers durch
Faserstrahlschmelzen, umfassend
(i) Aufbringen eines pulverförmigen Metalls in Form einer Schicht auf einem Substrat in einem Bauraum, wobei das Metall ein Metall der Gruppe 11 des Periodensystems der Elemente oder Aluminium oder eine Fegierung oder intermetallische Phase dieses Metalls ist und
einen Sauerstoffgehalt von mindestens 2500 Gew.-ppm aufweist;
(ii) selektives Aufschmelzen des pulverförmigen Metalls in der Schicht durch mindestens einen Faserstrahl und Erstarren lassen des aufgeschmolzenen Metalls,
(iii) Aufbringen einer weiteren Schicht des pulverförmigen Metalls auf der zuvor aufgebrachten Schicht,
(iv) selektives Aufschmelzen des pulverförmigen Metalls in der weiteren Schicht durch den Faserstrahl und Erstarren lassen des
aufgeschmolzenen Metalls;
(v) Wiederholung der Schritte (iii) - (iv), bis der metallische Formkörper fertiggestellt ist.
2. Verfahren nach Anspruch 1, wobei das Metall Kupfer, Silber oder Gold oder eine Fegierung oder intermetallische Phase eines dieser Metalle ist.
3. Das Verfahren nach Anspruch 1 oder 2, wobei der Sauerstoffgehalt des pulverförmigen Metalls 2500-15000 Gew.-ppm, bevorzugter 3500-10000 Gew.-ppm, noch bevorzugter 5000-10000 Gew-ppm, am meisten bevorzugt 5500-10000 Gew-ppm beträgt.
4. Das Verfahren nach einem der vorstehenden Ansprüche, wobei das pulverförmige Metall über eine Verdüsung in einer Sauerstoff-haltigen Atmosphäre hergestellt wird.
5. Das Verfahren nach einem der vorstehenden Ansprüche, wobei das
pulverförmige Metall Partikelgrößen im Bereich von 1 bis 100 pm aufweist.
6. Das Verfahren nach einem der vorstehenden Ansprüche, wobei der Bauraum eine inerte oder reduzierende Gasatmosphäre enthält.
7. Das Verfahren nach einem der vorstehenden Ansprüche, wobei nach dem Erstarren des aufgeschmolzenen Metalls und vor dem Aufbringen einer weiteren Schicht das erstarrte Metall einer thermischen Behandlung im Vakuum oder in einer reduzierenden Gasatmosphäre unterzogen wird;
und/oder der metallische Formkörper nach seiner Fertigstellung einer thermischen Behandlung im Vakuum oder in einer reduzierenden
Gasatmosphäre unterzogen wird.
8. Verwendung des pulverförmigen Metalls gemäß einem der Ansprüche 1-5 für die additive Fertigung durch Faserstrahlschmelzen.
EP19761729.3A 2018-07-19 2019-07-17 Verwendung von pulvern hochreflektiver metalle für die additive fertigung Withdrawn EP3823779A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18184340 2018-07-19
PCT/EP2019/069250 WO2020016301A1 (de) 2018-07-19 2019-07-17 Verwendung von pulvern hochreflektiver metalle für die additive fertigung

Publications (1)

Publication Number Publication Date
EP3823779A1 true EP3823779A1 (de) 2021-05-26

Family

ID=63012844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19761729.3A Withdrawn EP3823779A1 (de) 2018-07-19 2019-07-17 Verwendung von pulvern hochreflektiver metalle für die additive fertigung

Country Status (6)

Country Link
US (1) US20210291275A1 (de)
EP (1) EP3823779A1 (de)
JP (1) JP2021529885A (de)
CN (1) CN112423919A (de)
TW (1) TW202012645A (de)
WO (1) WO2020016301A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115026304A (zh) * 2022-05-18 2022-09-09 武汉数字化设计与制造创新中心有限公司 铜-银异种金属蓝光激光增材制造功能梯度材料的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201209415D0 (en) * 2012-05-28 2012-07-11 Renishaw Plc Manufacture of metal articles
JP5602913B2 (ja) * 2013-07-04 2014-10-08 パナソニック株式会社 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
US20150102016A1 (en) 2013-07-29 2015-04-16 Siemens Energy, Inc. Laser metalworking of reflective metals using flux
GB201418595D0 (en) * 2014-10-20 2014-12-03 Renishaw Plc Additive manufacturing apparatus and methods
JP6030186B1 (ja) 2015-05-13 2016-11-24 株式会社ダイヘン 銅合金粉末、積層造形物の製造方法および積層造形物
JP6797642B2 (ja) * 2015-12-10 2020-12-09 キヤノン株式会社 原料粉体の処理方法、および三次元造形物の製造方法
DE102017102355A1 (de) 2016-02-09 2017-08-10 Jtekt Corporation Herstellungsvorrichtung und herstellungsverfahren für geformten gegenstand
CA3023676A1 (en) * 2016-05-16 2017-11-23 David W. Heard Multi-component alloy products, and methods of making and using the same
DE112017002704T5 (de) * 2016-05-31 2019-02-14 Hitachi, Ltd. Additive Fertigungsvorrichtung
CN105880612B (zh) * 2016-06-28 2018-07-06 浙江亚通焊材有限公司 一种增材制造用活性金属粉末制备方法
US10626503B2 (en) 2016-08-18 2020-04-21 Hamilton Sundstrand Corporation Particulates and methods of making particulates
JP2019532176A (ja) * 2016-09-09 2019-11-07 アーコニック インコーポレイテッドArconic Inc. アルミニウム合金製品およびその製造方法
JP6346992B1 (ja) * 2016-12-26 2018-06-20 技術研究組合次世代3D積層造形技術総合開発機構 金属積層造形物、金属積層造形用のアルミニウム系粉末およびその製造方法
US20180193916A1 (en) * 2017-01-06 2018-07-12 General Electric Company Additive manufacturing method and materials
JP6532497B2 (ja) * 2017-04-21 2019-06-19 Jx金属株式会社 銅粉末及びその製造方法並びに立体造形物の製造方法
WO2019017467A1 (ja) * 2017-07-21 2019-01-24 三井金属鉱業株式会社 銅粉、それを用いた光造形物の製造方法、および銅による光造形物
CN107983956A (zh) * 2017-10-20 2018-05-04 杭州先临三维云打印技术有限公司 一种3d打印用粉料、制备方法及其用途

Also Published As

Publication number Publication date
WO2020016301A1 (de) 2020-01-23
JP2021529885A (ja) 2021-11-04
CN112423919A (zh) 2021-02-26
US20210291275A1 (en) 2021-09-23
TW202012645A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
EP3216545B1 (de) Edelmetallpulver und dessen verwendung zur herstellung von bauteilen
EP2794152B1 (de) Verfahren zur fertigung eines kompakten bauteils sowie mit dem verfahren herstellbares bauteil
EP2829624B1 (de) Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung
DE102008034145B4 (de) Sputtertarget aus einer Legierung auf Al-Basis des Al-Ni-La-Si- Systems und Verfahren zu dessen Herstellung
EP2766136B1 (de) Oberflächenpassivierung von aluminiumhaltigem pulver
DE102010055201A1 (de) Verfahren zur Herstellung eines Bauteils
EP3691815A1 (de) Additiv gefertigtes bauteil und herstellungsverfahren davon
DE112013003654T5 (de) Lötlegierung
DE102018133579A1 (de) Aluminiumlegierungspulver für additive Herstellung und Verfahren zur Herstellung eines Teils durch Herstellung aus diesem Pulver
DE1801829B2 (de) Verfahren zum herstellen von hochleitfaehigen und gutfliess faehigen metallteilchen in kugelform
DE102020108781A1 (de) Mittels additiver Fertigung verarbeitbare hochfeste Aluminiumlegierungen für Strukturanwendungen
EP0394875A1 (de) Verfahren zur Herstellung von Leiterbahnmustern
DE1902604B2 (de) Werkstueck aus niob oder einer nioblegierung mit schutz ueberzug und verfahren zu seiner herstellung
EP3391981A1 (de) Kontinuierliche beschichtung von metallbändern durch additive fertigung
EP3172354B1 (de) Sputtertarget auf der basis einer silberlegierung
WO2020016301A1 (de) Verwendung von pulvern hochreflektiver metalle für die additive fertigung
WO2021094560A1 (de) Sphärisches pulver zur fertigung von dreidimensionalen objekten
EP0988124B1 (de) Verfahren und pulver zur herstellung metallischer funktionsmuster mittels lasersintern
WO2019091827A1 (de) Verwendung einer wässrigen zusammensetzung für die additive fertigung eines metallischen formkörpers
DE3913117C2 (de)
WO2019091825A1 (de) Verwendung einer wässrigen zusammensetzung für die additive fertigung eines metallischen formkörpers
WO2019091826A1 (de) Verwendung einer wässrigen zusammensetzung für die additive fertigung von metallischen formkörpern
WO2023104778A1 (de) Verfahren zur herstellung einer porösen schicht oder eines porösen körpers
WO2019091828A1 (de) Verwendung einer wässrigen zusammensetzung für die additive fertigung eines metallischen formkörpers
EP3892403A1 (de) Additive fertigung von refraktärmetallen mit reduziertem verunreinigungsgrad

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210909