EP3775329A1 - Method for manufacturing a monocrystalline layer of diamond or iridium material, and substrate for epitaxically growing a monocrystalline layer of diamond or iridium material - Google Patents

Method for manufacturing a monocrystalline layer of diamond or iridium material, and substrate for epitaxically growing a monocrystalline layer of diamond or iridium material

Info

Publication number
EP3775329A1
EP3775329A1 EP19721378.8A EP19721378A EP3775329A1 EP 3775329 A1 EP3775329 A1 EP 3775329A1 EP 19721378 A EP19721378 A EP 19721378A EP 3775329 A1 EP3775329 A1 EP 3775329A1
Authority
EP
European Patent Office
Prior art keywords
monocrystalline
layer
substrate
diamond
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19721378.8A
Other languages
German (de)
French (fr)
Inventor
Bruno Ghyselen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soitec SA
Original Assignee
Soitec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec SA filed Critical Soitec SA
Publication of EP3775329A1 publication Critical patent/EP3775329A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • the present invention relates to a method for manufacturing a monocrystalline layer of diamond or iridium material and a substrate for the epitaxial growth of such a monocrystalline layer of diamond or iridium material.
  • Some materials are not currently available as a monocrystalline wafer substrate in large diameter. And some materials are possibly available in large diameter but not according to certain characteristics or specifications in terms of quality, particularly vis-à-vis the density of defects or the electrical or optical properties required.
  • the present invention aims to overcome these limitations of the state of the art by proposing a method of manufacturing a monocrystalline layer of diamond material and a substrate for the epitaxial growth of such a monocrystalline layer of diamond material. By this it is possible to overcome the size problem of currently available monocrystalline diamond material substrates.
  • the invention relates to a method for manufacturing a monocrystalline layer of diamond material comprising the transfer of a monocrystalline seed layer of SrTiO 3 material to a substrate material support silicon followed by epitaxial growth of the monocrystalline layer of diamond material.
  • the monocrystalline seed layer has a thickness of less than 10 ⁇ m, preferably less than 2 ⁇ m, and more preferably less than 0.2 ⁇ m.
  • the transfer of the single-crystal seed layer of SrTi0 3 material on the silicon substrate material holder comprises a step of assembling a single crystal substrate of SrTi0 3 material on the carrier substrate followed by a step of thinning said monocrystalline substrate of SrTiO 3 material.
  • the thinning step comprises the formation of an embrittlement zone delimiting a portion of the monocrystalline substrate of SrTiO 3 material intended to be transferred onto the support substrate of silicon material.
  • the formation of the embrittlement zone is obtained by implantation of atomic and / or ionic species.
  • the thinning step comprises a detachment at the zone of weakness so as to transfer said portion of SrTi0 material single crystal substrate 3 of silicon material supporting substrate, in particular the detachment comprises the application of a thermal and / or mechanical stress.
  • the assembly step is a molecular adhesion step.
  • the monocrystalline seed layer of SrTiO 3 material is in the form of a plurality of blocks each transferred to the silicon material support substrate.
  • the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
  • the invention also relates to a substrate for epitaxial growth of a monocrystalline layer of diamond material characterized in that it comprises a monocrystalline seed layer material SrTi0 3 on a silicon substrate material holder.
  • the monocrystalline seed layer of SrTiO 3 material is in the form of a plurality of blocks.
  • the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
  • the invention also relates to a method for manufacturing a monocrystalline layer of iridium material comprising transferring a monocrystalline seed layer of SrTiO 3 material to a support substrate of silicon material followed by epitaxial growth of the monocrystalline material layer. iridium.
  • the invention also relates to a substrate for growth by epitaxy of a monocrystalline layer of iridium material, characterized in that it comprises a monocrystalline seed layer of SrTiO 3 material on a support substrate of silicon material.
  • the invention also relates to a method for manufacturing a monocrystalline layer of diamond and / or iridium material comprising the transfer of a monocrystalline seed layer of material YSZ, CeO 2 , MgO or Al 2 O 3 on a support substrate of silicon material , sapphire, Ni or Cu, followed by epitaxial growth of the monocrystalline layer of diamond material and / or iridium.
  • the invention also relates to a method for manufacturing a monocrystalline layer of diamond and / or iridium material comprising the transfer of a monocrystalline seed layer of SrTiO 3 material to a support substrate of silicon, sapphire, Ni or Cu material, followed by an epitaxial growth of the monocrystalline layer of diamond material and / or iridium.
  • FIG. 1 illustrates a method of manufacturing a monocrystalline layer of diamond material according to one embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this embodiment. of the invention
  • FIG. 2 illustrates a method of manufacturing a monocrystalline layer of diamond material according to another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other mode. embodiment of the invention;
  • FIG. 3 illustrates a method of manufacturing a monocrystalline layer of diamond material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention;
  • FIG. 4 illustrates a method of manufacturing a monocrystalline layer of diamond material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention
  • ⁇ Figure 5 illustrates a method for producing a monocrystalline layer of diamond material according to still another embodiment of the invention and a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention
  • FIG. 1 illustrates a support substrate 100 of silicon material onto which a monocrystalline seed layer 200 of SrTiO 3 material is transferred.
  • Other materials of the monocrystalline seed layer 200 may be envisaged, such as YSZ, CeO 2 , MgO or Al 2 O 3, the latter having a mesh parameter close to that of the PZT material.
  • the support substrate 100 of silicon material may also be replaced by a support substrate 100 of sapphire, Ni or Cu material.
  • the use of silicon has the advantage of opening the field of application of diamond material films not only to large 300 mm type equipment but also to make compatible the microelectronics industry for which the requirements in terms of acceptance on the production line of exotic material other than silicon, especially diamond, are high.
  • the assembly step 1 'of the monocrystalline seed layer 200 of SrTiO 3 material on the support substrate 100 of silicon material is preferentially done by a molecular adhesion step.
  • This molecular adhesion step comprises a bonding step, preferably at ambient temperature, and is followed by a consolidation annealing of the bonding interface which is usually carried out at elevated temperatures up to 900 ° C. or even 1100 ° C. C for a period of minutes to hours.
  • the assembly step 1 'of the monocrystalline seed layer on the support substrate is also preferentially by a molecular adhesion step using typical conditions of the same order of magnitude as mentioned. above.
  • FIG. 1 schematically represents the assembly step 1 'of a monocrystalline substrate 20 of SrTiO 3 material on the support substrate 100 of silicon material. It follows a thinning step 2 'of the monocrystalline substrate 20 of SrTiO 3 material after being assembled on the support substrate 100 of silicon material.
  • FIG. 1 schematically represents the assembly step 1 'of a monocrystalline substrate 20 of SrTiO 3 material on the support substrate 100 of silicon material. It follows a thinning step 2 'of the monocrystalline substrate 20 of SrTiO 3 material after being assembled on the support substrate 100 of silicon material.
  • the thinning step 2 ' which can be implemented for example by chemical and / or mechanical etching (polishing, grinding, milling, etc.).
  • the seed layer 200 can be obtained monocrystalline material SrTi0 3 which will serve as monocrystalline seed of a growth step 3 'by epitaxy of the monocrystalline layer 300 made of diamond material on the substrate for epitaxial growth of a monocrystalline layer of diamond material 10 shown schematically in FIG.
  • Those skilled in the art would be able to adjust the parameters used for epitaxial growth of a monocrystalline layer of diamond material usually used during homoepitaxy or heteroepitaxy on a solid monocrystalline substrate in order to optimize the 3 'growth step by epitaxy.
  • the epitaxy of the diamond material is therefore carried out by epitaxial growth of a thin layer of approximately 150 nm of iridium via the electron beam physical vapor deposition technique followed by growth by MWCVD under a CH 4 / H 2 atmosphere at temperatures usually about 700 ° C.
  • the thermal expansion coefficient of the support substrate 100 predominates the thermal behavior of the substrate for epitaxial growth of a monocrystalline diamond material layer 10 during the 3 'epitaxial growth step of the monocrystalline layer 300. of diamond material. This is due to the thin thickness, preferably less than 1 miti, of the monocrystalline seed layer 200 of SrTiO 3 material with respect to the total thickness of the substrate for epitaxial growth of a monocrystalline layer of diamond material 10 which is of the order of several tens to hundreds of microns.
  • the SrTi0 material 3 is moreover selected to provide a seed layer single crystal having a nearest lattice parameter as possible to the lattice parameter chosen for the monocrystalline layer 300 diamond material, preferably in a state lattice parameter to allow epitaxial growth inducing the least possible defects in the monocrystalline layer 300 of diamond material.
  • the material of the support substrate 100 advantageously also has a thermal expansion coefficient that is particularly close to the thermal coefficient of expansion of the diamond material for the same reasons of reducing defects in the monocrystalline layer 300 obtained by epitaxy.
  • a support substrate 100 of silicon material for the present invention would be used.
  • FIG. 2 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of diamond material which differs from the embodiment described with reference to FIG. 1 in that the single-crystal substrate 20 'of material SrTiO 3 undergoes a step 0 "implantation of atomic and / or ionic species in order to form an embrittlement zone delimiting a portion 200 'of the single crystal substrate 20' of material SrTi0 3 intended to be transferred onto the support substrate 100 ' of silicon material, and the thinning step 2 "comprises a detachment at this weakening zone so as to transfer said portion 200 'of the monocrystalline substrate 20' of SrTiO 3 material to the support substrate 100 'of silicon material, in particular this detachment includes the application of thermal and / or mechanical stress.
  • the advantage of this embodiment is thus to be able to recover the remaining portion 201 of the monocrystalline substrate 20 'of SrTiO 3 starting material that can be used again to undergo the same process again and thus reduce costs.
  • the substrate for epitaxial growth of a monocrystalline layer of diamond material 10 'thus illustrated in FIG. 2 serves for the growth step 3 "of the monocrystalline layer 300' of diamond material as already described during the process described with reference to FIG.
  • An interesting alternative well known to those skilled in the art is to replace all or part of the hydrogen ions with helium ions.
  • a hydrogen implantation dose will typically be between 6x10 16 cm 2 and 1 x 10 17 cm 2 .
  • the implantation energy will typically be between 50 to 170 keV.
  • the detachment is typically at temperatures between 300 and 600 ° C. Thicknesses of the monocrystalline seed layer of the order of 200 nm to 1.5 ⁇ m are thus obtained.
  • additional technological steps are advantageously added in order either to reinforce the bonding interface, or to recover a good roughness, or to heal the defects possibly generated during the implantation step or else to prepare the seed layer surface for resumption of epitaxy. These steps are, for example, polishing, chemical etching (wet or dry), annealing, chemical cleaning. They can be used alone or in combination that those skilled in the art can adjust.
  • FIG. 3 differs from the embodiments described with reference to FIG. 1 and FIG. 2 in that the substrate for epitaxial growth of a monocrystalline layer of diamond material (10, 10 ') comprises a demountable interface 40' configured to to be dismantled.
  • a support substrate 100 of silicon material it may be a rough surface, for example silicon material assembled with the monocrystalline seed layer during the assembly step. Or a rough interface may be present within the support substrate 100 of silicon material, the latter for example obtained by assembling two silicon wafers.
  • a porous silicon layer capable of fracturing during the application of a mechanical and / or thermal stress, for example by insertion of a blade at the plate edge known by the craftsman or by the application of annealing.
  • this interface is chosen so as to withstand the other mechanical and / or thermal stresses undergone during the process of the present invention (eg detachment, growth by epitaxy, etc.).
  • a sapphire material support substrate it may be a stack of silicon oxide, silicon nitride and silicon oxide (so-called ONO type structure) made on the face of the sapphire to assemble with the monocrystalline seed layer.
  • Such a stack is susceptible to detachment at the level of the silicon nitride layer during a laser application passing through the sapphire support substrate (detachment or detachment type "laser lift off").
  • detachment or detachment type "laser lift off” The skilled person will identify other methods of making this removable interface.
  • FIG. 4 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of diamond material which differs from the embodiments described with reference to FIG. 1, FIG. 2 and FIG. 3 in that the seed layer monocrystalline 2000 'SrTi0 3 material is in the form of a plurality of blocks (2001', 2002 ', 2003) each transferred to the support substrate 100 "of silicon material.
  • the different pavers can be in any form (square, hexagonal, strips, ...) and with different sizes ranging from a few mm 2 to several cm 2 .
  • the spacing between the chips can also vary significantly depending on whether a maximum coverage density is sought (in this case a preferential choice will be chosen spacing less than 0.2 mm) or on the contrary a maximum dissemination of the blocks within the substrate (in this case the spacing may be several millimeters and even centimeters).
  • a maximum coverage density in this case a preferential choice will be chosen spacing less than 0.2 mm
  • a maximum dissemination of the blocks within the substrate in this case the spacing may be several millimeters and even centimeters.
  • the skilled person could apply the transfer he wants and is not limited to a particular method. Thus one could consider applying the technical information described in connection with the method illustrated schematically in Figure 1 or the technical information described in connection with the method illustrated schematically in Figure 2, see even a combination of both.
  • the different embodiments described with reference to FIGS. 1 to 4 thus open the possibility of co-integration of components made in the monocrystalline layer of diamond material with components made in the support substrate of silicon material. It may simply be a silicon substrate but it may also be a SOI substrate comprising a silicon oxide layer between a silicon substrate with a thin layer of silicon. In the case of the embodiments described with reference to FIGS. 1 to 4, access to the support substrate can be done simply by lithography and etching known to those skilled in the art. In the case of the embodiment described with reference to FIG. 4 one can also simply choose the locations of the blocks as well as their spacing.
  • FIG. 5 diagrammatically represents an embodiment that differs from the embodiment described with reference to FIG. 4 in that the substrate substrate 100 "as well as thereafter the substrate for epitaxial growth of a monocrystalline layer of diamond material 10" comprises a removable interface 40 configured to be disassembled, for example by a laser lift off technique ) and / or chemical etching and / or mechanical stressing.
  • a support substrate 100 of the SOI type comprising a silicon oxide layer separating a silicon substrate. a thin layer of silicon.
  • This oxide layer may be used as removable interface 40 by a selective etching of said oxide layer, for example by immersion in a bath of hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • This option of dismantling by chemical etching of a buried layer is particularly advantageous when it comes in combination with the treatment of a plurality of small substrates. Indeed, the radius of action of the under-engraving is generally limited to a few centimeters or even a few millimeters if it is desired to maintain conditions and processing times that are industrially reasonable.
  • the treatment of a plurality of small substrates allows the start of several chemical etching fronts thanks to possible access of the buried layer between each block, and no longer only on the extreme edges of the substrates which can be up to 300mm in diameter . In the case of an SOI support substrate it is thus possible to partially remove the thin layer of silicon between the blocks to allow the start of several etching fronts.
  • the thin silicon layer having a predetermined thickness (which can vary between 5 nm and 600 nm, or even thicker depending on the intended application) could thus be used to form microelectronic components and thus enable the co-integration of components with base of diamond materials in the same substrate.
  • a predetermined thickness which can vary between 5 nm and 600 nm, or even thicker depending on the intended application
  • the thin silicon layer having a predetermined thickness (which can vary between 5 nm and 600 nm, or even thicker depending on the intended application) could thus be used to form microelectronic components and thus enable the co-integration of components with base of diamond materials in the same substrate.
  • the final substrate can thus provide additional functionalities that are, for example, incompatible with growth parameters previously performed (for example, flexible plastic type end substrate or final substrate comprising metal lines).
  • the removable interface is not necessarily located inside the support substrate but can also be at the interface with the seed material layer SrTiO3 assembled on this support substrate (for example a stack of a layer of silicon nitride between two layers of silicon oxide allows detachment by laser, particularly suitable for a sapphire substrate media type) as already described in connection with Figure 3.
  • the seed material layer SrTiO3 assembled on this support substrate (for example a stack of a layer of silicon nitride between two layers of silicon oxide allows detachment by laser, particularly suitable for a sapphire substrate media type) as already described in connection with Figure 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Method for manufacturing a monocrystalline layer of diamond or iridium material, including transferring a monocrystalline seed layer of SrTiO3 material onto a support substrate of silicon material, followed by epitaxially growing the monocrystalline layer of diamond or iridium material.

Description

Procédé de fabrication d’une couche monocristalline de matériau diamant ou iridium et substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant ou iridium  Process for manufacturing a monocrystalline layer of diamond or iridium material and substrate for epitaxial growth of a monocrystalline layer of diamond or iridium material
DOMAINE DE L’INVENTION FIELD OF THE INVENTION
La présente invention concerne un procédé de fabrication d’une couche monocristalline de matériau diamant ou iridium ainsi qu’un substrat pour la croissance par épitaxie d’une telle couche monocristalline de matériau diamant ou iridium.  The present invention relates to a method for manufacturing a monocrystalline layer of diamond or iridium material and a substrate for the epitaxial growth of such a monocrystalline layer of diamond or iridium material.
ETAT DE LA TECHNIQUE STATE OF THE ART
Certains matériaux ne sont pas actuellement disponibles sous forme de substrat monocristallin en forme de tranche en grand diamètre. Et certains matériaux sont éventuellement disponibles en grand diamètre mais pas selon certaines caractéristiques ou spécifications en terme de qualité, en particulier vis-à-vis la densité de défauts ou encore les propriétés électriques ou optiques requises.  Some materials are not currently available as a monocrystalline wafer substrate in large diameter. And some materials are possibly available in large diameter but not according to certain characteristics or specifications in terms of quality, particularly vis-à-vis the density of defects or the electrical or optical properties required.
EXPOSE DE L’INVENTION SUMMARY OF THE INVENTION
La présente invention vise à pallier ces limitations de l’état de la technique en proposant un procédé de fabrication d’une couche monocristalline de matériau diamant ainsi qu’un substrat pour la croissance par épitaxie d’une telle couche monocristalline de matériau diamant. Par ceci il est possible de remédier au problème de taille des substrats monocristallins de matériau diamant actuellement disponibles. The present invention aims to overcome these limitations of the state of the art by proposing a method of manufacturing a monocrystalline layer of diamond material and a substrate for the epitaxial growth of such a monocrystalline layer of diamond material. By this it is possible to overcome the size problem of currently available monocrystalline diamond material substrates.
L’invention concerne un procédé de fabrication d’une couche monocristalline de matériau diamant comprenant le transfert d’une couche germe monocristalline de matériau SrTi03 sur un substrat support de matériau silicium suivi d’une croissance par épitaxie de la couche monocristalline de matériau diamant. The invention relates to a method for manufacturing a monocrystalline layer of diamond material comprising the transfer of a monocrystalline seed layer of SrTiO 3 material to a substrate material support silicon followed by epitaxial growth of the monocrystalline layer of diamond material.
Dans des modes de réalisation avantageux la couche germe monocristalline a une épaisseur inférieure à 10 pm, de préférence inférieure à 2 pm, et plus préférentiellement inférieure à 0,2pm. In advantageous embodiments, the monocrystalline seed layer has a thickness of less than 10 μm, preferably less than 2 μm, and more preferably less than 0.2 μm.
Dans des modes de réalisation avantageux le transfert de la couche germe monocristalline de matériau SrTi03 sur le substrat support de matériau silicium comprend une étape d’assemblage dun substrat monocristallin de matériau SrTi03 sur le substrat support suivi d’une étape d’amincissement dudit substrat monocristallin de matériau SrTi03. In advantageous embodiments the transfer of the single-crystal seed layer of SrTi0 3 material on the silicon substrate material holder comprises a step of assembling a single crystal substrate of SrTi0 3 material on the carrier substrate followed by a step of thinning said monocrystalline substrate of SrTiO 3 material.
Dans des modes de réalisation avantageux l’étape d’amincissement comprend la formation d’une zone de fragilisation délimitant une portion du substrat monocristallin de matériau SrTi03 destinée à être transférée sur le substrat support de matériau silicium. In advantageous embodiments, the thinning step comprises the formation of an embrittlement zone delimiting a portion of the monocrystalline substrate of SrTiO 3 material intended to be transferred onto the support substrate of silicon material.
Dans des modes de réalisation avantageux la formation de la zone de fragilisation est obtenue par implantation d’espèces atomiques et/ou ioniques. In advantageous embodiments, the formation of the embrittlement zone is obtained by implantation of atomic and / or ionic species.
Dans des modes de réalisation avantageux létape d’amincissement comprend un détachement au niveau de la zone de fragilisation de manière à transférer ladite portion du substrat monocristallin de matériau SrTi03 sur le substrat support de matériau silicium, en particulier le détachement comprend l’application d’une contrainte thermique et/ou mécanique. In advantageous embodiments the thinning step comprises a detachment at the zone of weakness so as to transfer said portion of SrTi0 material single crystal substrate 3 of silicon material supporting substrate, in particular the detachment comprises the application of a thermal and / or mechanical stress.
Dans des modes de réalisation avantageux l’étape d’assemblage est une étape d’adhésion moléculaire. Dans des modes de réalisation avantageux la couche de germe monocristalline de matériau SrTi03 se présente sous la forme d’une pluralité de pavés transférés chacun sur le substrat support de matériau silicium. In advantageous embodiments, the assembly step is a molecular adhesion step. In advantageous embodiments the monocrystalline seed layer of SrTiO 3 material is in the form of a plurality of blocks each transferred to the silicon material support substrate.
Dans des modes de réalisation avantageux le substrat support de matériau silicium comprend une interface démontable configurée pour être démontée par une technique de décollement par laser et/ou une attaque chimique et/ou par une sollicitation mécanique. In preferred embodiments the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
L’invention concerne aussi un substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant caractérisé en ce qu’il comprend une couche germe monocristalline de matériau SrTi03 sur un substrat support de matériau silicium. The invention also relates to a substrate for epitaxial growth of a monocrystalline layer of diamond material characterized in that it comprises a monocrystalline seed layer material SrTi0 3 on a silicon substrate material holder.
Dans des modes de réalisation avantageux la couche germe monocristalline de matériau SrTi03 se présente sous la forme d’une pluralité de pavés. In advantageous embodiments, the monocrystalline seed layer of SrTiO 3 material is in the form of a plurality of blocks.
Dans des modes de réalisation avantageux le substrat support de matériau silicium comprend une interface démontable configurée pour être démontée par une technique de décollement par laser et/ou une attaque chimique et/ou par une sollicitation mécanique. In preferred embodiments the silicon material support substrate comprises a removable interface configured to be disassembled by laser peeling and / or chemical etching and / or mechanical biasing.
L’invention concerne aussi un procédé de fabrication d’une couche monocristalline de matériau iridium comprenant le transfert d’une couche germe monocristalline de matériau SrTi03 sur un substrat support de matériau silicium suivi d’une croissance par épitaxie de la couche monocristalline de matériau iridium. The invention also relates to a method for manufacturing a monocrystalline layer of iridium material comprising transferring a monocrystalline seed layer of SrTiO 3 material to a support substrate of silicon material followed by epitaxial growth of the monocrystalline material layer. iridium.
L’invention concerne aussi un substrat pour croissance par épitaxie d’une couche monocristalline de matériau iridium caractérisé en ce qu’il comprend une couche germe monocristalline de matériau SrTi03 sur un substrat support de matériau silicium. The invention also relates to a substrate for growth by epitaxy of a monocrystalline layer of iridium material, characterized in that it comprises a monocrystalline seed layer of SrTiO 3 material on a support substrate of silicon material.
L’invention concerne aussi un procédé de fabrication d’une couche monocristalline de matériau diamant et/ou iridium comprenant le transfert d’une couche germe monocristalline de matériau YSZ, Ce02, MgO ou Al203 sur un substrat support de matériau silicium, saphir, Ni ou Cu, suivi dune croissance par épitaxie de la couche monocristalline de matériau diamant et/ou iridium. The invention also relates to a method for manufacturing a monocrystalline layer of diamond and / or iridium material comprising the transfer of a monocrystalline seed layer of material YSZ, CeO 2 , MgO or Al 2 O 3 on a support substrate of silicon material , sapphire, Ni or Cu, followed by epitaxial growth of the monocrystalline layer of diamond material and / or iridium.
L’invention concerne aussi un procédé de fabrication d’une couche monocristalline de matériau diamant et/ou iridium comprenant le transfert d’une couche germe monocristalline de matériau SrTi03 sur un substrat support de matériau silicium, saphir, Ni ou Cu, suivi dune croissance par épitaxie de la couche monocristalline de matériau diamant et/ou iridium. The invention also relates to a method for manufacturing a monocrystalline layer of diamond and / or iridium material comprising the transfer of a monocrystalline seed layer of SrTiO 3 material to a support substrate of silicon, sapphire, Ni or Cu material, followed by an epitaxial growth of the monocrystalline layer of diamond material and / or iridium.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
D’autres caractéristiques et avantages de l’invention seront mieux compris à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels : Other characteristics and advantages of the invention will be better understood on reading the detailed description which follows, with reference to the appended drawings in which:
• La figure 1 illustre un procédé de fabrication d’une couche monocristalline de matériau diamant selon un mode de réalisation de l’invention ainsi qu’un substrat pour la croissance par épitaxie d’une telle couche monocristalline de matériau diamant selon ce mode de réalisation de l’invention ; • La figure 2 illustre un procédé de fabrication d’une couche monocristalline de matériau diamant selon un autre mode de réalisation de l’invention ainsi qu’un substrat pour la croissance par épitaxie d’une telle couche monocristalline de matériau diamant selon cet autre mode de réalisation de l’invention ; FIG. 1 illustrates a method of manufacturing a monocrystalline layer of diamond material according to one embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this embodiment. of the invention; FIG. 2 illustrates a method of manufacturing a monocrystalline layer of diamond material according to another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other mode. embodiment of the invention;
• La figure 3 illustre un procédé de fabrication d’une couche monocristalline de matériau diamant selon encore un autre mode de réalisation de l’invention ainsi qu’un substrat pour la croissance par épitaxie d’une telle couche monocristalline de matériau diamant selon cet autre mode de réalisation de l’invention ; FIG. 3 illustrates a method of manufacturing a monocrystalline layer of diamond material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention;
• La figure 4 illustre un procédé de fabrication d’une couche monocristalline de matériau diamant selon encore un autre mode de réalisation de l’invention ainsi qu’un substrat pour la croissance par épitaxie d’une telle couche monocristalline de matériau diamant selon cet autre mode de réalisation de l’invention ; · La figure 5 illustre un procédé de fabrication dune couche monocristalline de matériau diamant selon encore un autre mode de réalisation de l’invention ainsi qu’un substrat pour la croissance par épitaxie d’une telle couche monocristalline de matériau diamant selon cet autre mode de réalisation de l’invention ; FIG. 4 illustrates a method of manufacturing a monocrystalline layer of diamond material according to yet another embodiment of the invention as well as a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention; · Figure 5 illustrates a method for producing a monocrystalline layer of diamond material according to still another embodiment of the invention and a substrate for the epitaxial growth of such a monocrystalline layer of diamond material according to this other embodiment of the invention;
Pour favoriser la lisibilité des figures, les différentes couches ne sont pas nécessairement représentées à l’échelle. To promote the readability of the figures, the different layers are not necessarily represented on the scale.
DESCRIPTION DETAILLEE DE MODES DE REALISATION DE DETAILED DESCRIPTION OF EMBODIMENTS OF
L’INVENTION La figure 1 illustre un substrat support.100 de matériau silicium sur lequel on transfère une couche germe monocristalline 200 de matériau SrTi03. D’autres matériaux de la couche germe monocristalline 200 peuvent être envisagés tels que YSZ, Ce02, MgO ou Al203, ces derniers ayant un paramètre de maille proche de celui du matériau PZT. Le substrat support 100 de matériau silicium peut aussi être remplacé par un substrat support 100 de matériau saphir, Ni ou Cu. L’utilisation du silicium a l’avantage d’ouvrir le champ d’application des films de matériau diamant non seulement a des équipements de grande taille type 300 mm mais aussi rendre compatible l’industrie microélectronique pour laquelle les exigences en terme d’acceptance sur la ligne de production de matériau exotique autre que silicium, en particulier diamant, sont élevées. L’étape d’assemblage 1’ de la couche germe monocristalline 200 de matériau SrTi03 sur le substrat support 100 de matériau silicium se fait préférentiellement par une étape d’adhésion moléculaire. Cette étape d’adhésion moléculaire comprend une étape de collage, préférentiellement à température ambiante, et est suivie d’un recuit de consolidation de l’interface de collage qui se fait usuellement à des températures élevées jusqu’à 900°C voire 1 100°C pendant une durée de quelques minutes à quelques heures. En ce qui concerne un substrat support de matériau saphir, l'étape d’assemblage 1’ de la couche germe monocristalline sur le substrat support se fait aussi préférentiellement par une étape d’adhésion moléculaire utilisant des conditions typiques du même ordre de grandeur que mentionné ci-dessus. En ce qui concerne un substrat support de matériau Ni ou Cu, l’étape d’assemblage 1’ de la couche germe monocristalline sur le substrat support est remplacée par une étape de dépôt du matériau Ni ou Cu sur la couche germe monocristalline par exemple via un dépôt par électrodéposition ou électroformage (electroplating (ECD) selon la terminologie anglo-saxonne). Cette technique comprend usuellement l’utilisation de couche d’accroche et du décapage et est connue en elle-même et ne sera pas décrite plus en détail ici. La figure 1 représente schématiquement l’étape d’assemblage 1’ d’un substrat monocristallin 20 de matériau SrTi03 sur le substrat support 100 de matériau silicium. Il suit une étape d’amincissement 2’ du substrat monocristallin 20 de matériau SrTi03 après avoir été assemblé sur le substrat support 100 de matériau silicium. La figure 1 représente schématiquement l’étape d’amincissement 2’ qui peut être mise en œuvre par exemple par gravure chimique et/ou mécanique (polissage, meulage, fraisage, ..). Ainsi on peut obtenir la couche germe monocristalline 200 de matériau SrTi03 qui va servir comme germe monocristalline dune étape de croissance 3’ par épitaxie de la couche monocristalline 300 de matériau diamant faite sur le substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant 10 représenté schématiquement dans la figure 1 . L’homme de métier saurait ajuster les paramètres utilisés pour une croissance par épitaxie d’une couche monocristalline de matériau diamant usuellement utilisé lors d’une homoépitaxie ou hétéroépitaxie sur un substrat massif monocristallin afin d’optimiser l’étape de croissance 3’ par épitaxie de la couche monocristalline 300 de matériau diamant faite sur le substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant 10 de la présente invention. L’épitaxie du matériau diamant se fait donc par une épitaxie d’une couche mince d’environ 150 nm d’iridium via la technique électron beam physical vapor déposition suivi d’une croissance par MWCVD sous atmosphère CH4/H2 à des températures usuelles d’environ 700°C. THE INVENTION FIG. 1 illustrates a support substrate 100 of silicon material onto which a monocrystalline seed layer 200 of SrTiO 3 material is transferred. Other materials of the monocrystalline seed layer 200 may be envisaged, such as YSZ, CeO 2 , MgO or Al 2 O 3, the latter having a mesh parameter close to that of the PZT material. The support substrate 100 of silicon material may also be replaced by a support substrate 100 of sapphire, Ni or Cu material. The use of silicon has the advantage of opening the field of application of diamond material films not only to large 300 mm type equipment but also to make compatible the microelectronics industry for which the requirements in terms of acceptance on the production line of exotic material other than silicon, especially diamond, are high. The assembly step 1 'of the monocrystalline seed layer 200 of SrTiO 3 material on the support substrate 100 of silicon material is preferentially done by a molecular adhesion step. This molecular adhesion step comprises a bonding step, preferably at ambient temperature, and is followed by a consolidation annealing of the bonding interface which is usually carried out at elevated temperatures up to 900 ° C. or even 1100 ° C. C for a period of minutes to hours. With regard to a sapphire material support substrate, the assembly step 1 'of the monocrystalline seed layer on the support substrate is also preferentially by a molecular adhesion step using typical conditions of the same order of magnitude as mentioned. above. With regard to a support substrate of Ni or Cu material, the assembly step 1 'of the monocrystalline seed layer on the support substrate is replaced by a step of depositing the Ni or Cu material on the monocrystalline seed layer, for example via a deposition by electroplating or electroforming (electroplating (ECD) according to the English terminology). This technique usually includes the use of tie layer and stripping and is known per se and will not be described in more detail here. FIG. 1 schematically represents the assembly step 1 'of a monocrystalline substrate 20 of SrTiO 3 material on the support substrate 100 of silicon material. It follows a thinning step 2 'of the monocrystalline substrate 20 of SrTiO 3 material after being assembled on the support substrate 100 of silicon material. FIG. 1 schematically represents the thinning step 2 'which can be implemented for example by chemical and / or mechanical etching (polishing, grinding, milling, etc.). And the seed layer 200 can be obtained monocrystalline material SrTi0 3 which will serve as monocrystalline seed of a growth step 3 'by epitaxy of the monocrystalline layer 300 made of diamond material on the substrate for epitaxial growth of a monocrystalline layer of diamond material 10 shown schematically in FIG. Those skilled in the art would be able to adjust the parameters used for epitaxial growth of a monocrystalline layer of diamond material usually used during homoepitaxy or heteroepitaxy on a solid monocrystalline substrate in order to optimize the 3 'growth step by epitaxy. of the monocrystalline layer 300 of diamond material made on the substrate for epitaxial growth of a monocrystalline diamond material layer 10 of the present invention. The epitaxy of the diamond material is therefore carried out by epitaxial growth of a thin layer of approximately 150 nm of iridium via the electron beam physical vapor deposition technique followed by growth by MWCVD under a CH 4 / H 2 atmosphere at temperatures usually about 700 ° C.
Il est à noter que le coéfficient thermique d’expansion du substrat support 100 prédomine le comportement thermique du substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant 10 lors de l’étape de croissance 3’ par épitaxie de la couche monocristalline 300 de matériau diamant. Ceci est due à l’épaisseur mince, de préférence inférieure à 1 miti, de la couche germe monocristalline 200 de matériau SrTi03 par rapport à lépaisseur totale du substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant 10 qui est de l’ordre de plusieurs dizaines à centaines de pm. Le matériau SrTi03 est dailleurs choisi pour fournir une couche germe monocristalline ayant un paramètre de maille le plus proche possible du paramètre de maille choisi pour la couche monocristalline 300 de matériau diamant, de préférence du paramètre de maille en état relaxé afin de permettre une croissance par épitaxie induisant le moins de défauts possible dans la couche monocristalline 300 de matériau diamant. Le matériau du substrat support 100 a avantageusement d’ailleurs un coéfficient thermique d’expansion particulièrement proche du coéfficient thermique d’expansion du matériau diamant pour les mêmes raisons de diminution de défauts dans la couche monocristalline 300 obtenu par épitaxie. Préférentiellement on utiliserait donc un substrat support 100 de matériau silicium pour la présente invention. It should be noted that the thermal expansion coefficient of the support substrate 100 predominates the thermal behavior of the substrate for epitaxial growth of a monocrystalline diamond material layer 10 during the 3 'epitaxial growth step of the monocrystalline layer 300. of diamond material. This is due to the thin thickness, preferably less than 1 miti, of the monocrystalline seed layer 200 of SrTiO 3 material with respect to the total thickness of the substrate for epitaxial growth of a monocrystalline layer of diamond material 10 which is of the order of several tens to hundreds of microns. The SrTi0 material 3 is moreover selected to provide a seed layer single crystal having a nearest lattice parameter as possible to the lattice parameter chosen for the monocrystalline layer 300 diamond material, preferably in a state lattice parameter to allow epitaxial growth inducing the least possible defects in the monocrystalline layer 300 of diamond material. The material of the support substrate 100 advantageously also has a thermal expansion coefficient that is particularly close to the thermal coefficient of expansion of the diamond material for the same reasons of reducing defects in the monocrystalline layer 300 obtained by epitaxy. Preferably, therefore, a support substrate 100 of silicon material for the present invention would be used.
La figure 2 représente schématiquement un mode de réalisation du procédé de fabrication d’une couche monocristalline de matériau diamant qui se différencie du mode de réalisation décrit en lien avec la figure 1 en ce que le substrat monocristallin 20’ de matériau SrTi03 subit une étape d’implantation 0” d’espèces atomiques et/ou ioniques afin de former une zone de fragilisation délimitant une portion 200’ du substrat monocristallin 20’ de matériau SrTi03 destinée à être transférée sur le substrat support 100 de matériau silicium, et en ce que l’étape d’amincissement 2” comprend un détachement au niveau de cette zone de fragilisation de manière à transférer ladite portion 200’ du substrat monocristallin 20’ de matériau SrTi03 sur le substrat support 100’ de matériau silicium, en particulier ce détachement comprend l’application d’une contrainte thermique et/ou mécanique. L’avantage de ce mode de réalisation est ainsi de pouvoir récupérer la partie restante 201 du substrat monocristallin 20’ de matériau SrTi03 de départ qu’on peut ainsi utiliser de nouveau pour faire subir le même procédé de nouveau et ainsi réduire les coûts. Le substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant 10’ ainsi illustré dans la figure 2 sert pour l’étape de croissance 3” de la couche monocristalline 300’ de matériau diamant comme déjà décrit lors du procédé décrit en lien avec la figure 1. De manière générale l’étape d’implantation 0” se fait avec des ions hydrogène. Une alternative intéressante bien connue de l’homme de l’art consiste à remplacer tout ou partie des -ions hydrogène par des ions hélium. Une dose d’implantation d’hydrogène sera typiquement comprise entre 6x1016 cm 2 et 1 x1017 cm 2. L’énergie d’implantation sera typiquement comprise entre entre 50 à 170 keV. Ainsi le détachement se fait typiquement à des températures entre 300 et 600°C. On obtient ainsi des épaisseurs de la couche germe monocristalline de l’ordre de 200 nm à 1 ,5 pm. Juste après l’opération de détachement, des étapes technologiques additionnelles sont avantageusement ajoutées dans le but soit de renforcer l’interface de collage, soit de récupérer une bonne rugosité, soit de guérir les défauts éventuellement générés pendant l’étape d’implantation ou encore pour préparer la surface de la couche germe à la reprise d’épitaxie. Ces étapes sont par exemple un polissage, une gravure chimique (humide ou sèche), un recuit, un nettoyage chimique. Ils peuvent être utilisés seuls ou en combinaison que l’homme de l’art saura ajuster. FIG. 2 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of diamond material which differs from the embodiment described with reference to FIG. 1 in that the single-crystal substrate 20 'of material SrTiO 3 undergoes a step 0 "implantation of atomic and / or ionic species in order to form an embrittlement zone delimiting a portion 200 'of the single crystal substrate 20' of material SrTi0 3 intended to be transferred onto the support substrate 100 ' of silicon material, and the thinning step 2 "comprises a detachment at this weakening zone so as to transfer said portion 200 'of the monocrystalline substrate 20' of SrTiO 3 material to the support substrate 100 'of silicon material, in particular this detachment includes the application of thermal and / or mechanical stress. The advantage of this embodiment is thus to be able to recover the remaining portion 201 of the monocrystalline substrate 20 'of SrTiO 3 starting material that can be used again to undergo the same process again and thus reduce costs. The substrate for epitaxial growth of a monocrystalline layer of diamond material 10 'thus illustrated in FIG. 2 serves for the growth step 3 "of the monocrystalline layer 300' of diamond material as already described during the process described with reference to FIG. In general, the implantation step 0 "is done with hydrogen ions. An interesting alternative well known to those skilled in the art is to replace all or part of the hydrogen ions with helium ions. A hydrogen implantation dose will typically be between 6x10 16 cm 2 and 1 x 10 17 cm 2 . The implantation energy will typically be between 50 to 170 keV. Thus the detachment is typically at temperatures between 300 and 600 ° C. Thicknesses of the monocrystalline seed layer of the order of 200 nm to 1.5 μm are thus obtained. Just after the detachment operation, additional technological steps are advantageously added in order either to reinforce the bonding interface, or to recover a good roughness, or to heal the defects possibly generated during the implantation step or else to prepare the seed layer surface for resumption of epitaxy. These steps are, for example, polishing, chemical etching (wet or dry), annealing, chemical cleaning. They can be used alone or in combination that those skilled in the art can adjust.
La figure 3 se différencie des modes de réalisation décrits en lien avec la figure 1 et figure 2 en ce que le substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant (10, 10’) comprend une intèrface démontable 40’ configurée pour être démontée. Dans le cas d’un substrat support 100 de matériau silicium il peut s’agir d’une surface rugueuse par exemple du matériau silicium assemblée avec la couche germe monocristalline lors de l’étape d’assemblage. Ou encore une interface rugueuse peut être présente au sein du substrat support 100 de matériau silicium, ce dernier par exemple obtenu par assemblage de deux plaques de silicium. Un autre mode de réalisation serait d’introduire au niveau de la face à assembler avec la couche germe monocristalline une couche de silicium poreux susceptible de fracturer lors de l’application d’une contrainte mécanique et/ou thermique, par exemple par insertion d’une lame au bord de plaque connu par l’homme de métier ou encore par l’application d’un recuit. Bien évidemment cette interface est choisie de sorte à résister aux autres contraintes mécaniques et/ou thermiques subies lors du procédé de la présente invention (p.ex. détachement, croissance par épitaxie, ... ). Dans le cas d’un substrat support de matériau saphir il peut s’agir d’un empilement d’oxyde de silicium, de nitrure de silicium et d’oxyde de silicium (structure dite de type ONO) réalisé sur la face du saphir à assembler avec la couche germe monocristalline. Un tel empilement est susceptible de subir un détachement au niveau de la couche de nitrure de silicium lors d’une application laser traversant le substrat support de saphir (détachement ou décollement de type « laser lift off »). L’homme de métier saura identifier d’autres méthodes de réalisations de cette interface démontable. Ces différentes configurations de démontage permettent ainsi soit un report de la couche épitaxiée sur un support final qui n’est pas compatible avec les paramètres de croissance soit la préparation d’un film épais de matériau diamant de type autoporté. FIG. 3 differs from the embodiments described with reference to FIG. 1 and FIG. 2 in that the substrate for epitaxial growth of a monocrystalline layer of diamond material (10, 10 ') comprises a demountable interface 40' configured to to be dismantled. In the case of a support substrate 100 of silicon material it may be a rough surface, for example silicon material assembled with the monocrystalline seed layer during the assembly step. Or a rough interface may be present within the support substrate 100 of silicon material, the latter for example obtained by assembling two silicon wafers. Another embodiment would be to introduce level of the face to be assembled with the monocrystalline seed layer a porous silicon layer capable of fracturing during the application of a mechanical and / or thermal stress, for example by insertion of a blade at the plate edge known by the craftsman or by the application of annealing. Obviously this interface is chosen so as to withstand the other mechanical and / or thermal stresses undergone during the process of the present invention (eg detachment, growth by epitaxy, etc.). In the case of a sapphire material support substrate it may be a stack of silicon oxide, silicon nitride and silicon oxide (so-called ONO type structure) made on the face of the sapphire to assemble with the monocrystalline seed layer. Such a stack is susceptible to detachment at the level of the silicon nitride layer during a laser application passing through the sapphire support substrate (detachment or detachment type "laser lift off"). The skilled person will identify other methods of making this removable interface. These different disassembly configurations thus allow either a transfer of the epitaxial layer on a final support which is not compatible with the growth parameters or the preparation of a thick film of self-supporting type diamond material.
La figure 4 représente schématiquement un mode de réalisation du procédé de fabrication d’une couche monocristalline de matériau diamant qui se différencie des modes de réalisation décrits en lien avec la figure 1 , la figure 2 et la figure 3 en ce que la couche de germe monocristalline 2000’ de matériau SrTi03 se présente sous la forme d’une pluralité de pavés (2001’, 2002’, 2003 ) transférés chacun sur le substrat support 100” de matériau silicium. Les différents pavés peuvent se présenter sous une forme quelconque (carré, hexagonale, bandes, ... ) et avec des tailles différentes variant de quelques mm2 à plusieurs cm2. L’espacement entre les puces peut également varier significativement selon que l’on cherche une densité maximum de couverture (dans ce cas on choisira préférentiellement un espacement inférieur à 0,2 mm) ou au contraire une dissémination maximum des pavés au sein du substrat (dans ce cas l’espacement peut être de plusieurs millimètres et même centimètres). Pour chaque pavé l’homme de métier saurait appliquer le transfert qu’il souhaite et n’est pas limité à une méthode particulière. Ainsi on pourrait envisager d’appliquer les renseignements techniques décrits en lien avec le procédé illustré schématiquement dans la figure 1 ou les renseignements techniques décrits en lien avec le procédé illustré schématiquement dans la figure 2 , voir même une combinaison des deux. Ainsi il est possible d’assembler 1”’ des substrats monocristallins (2001 , 2002, 2003) de matériau SrTi03 qui ont une taille inférieure à la taille du substrat support 100’’ afin de créer par amincissement 2” sur ce dernier les couches germe monocristallines (2001’, 2002’, 2003’) pour la croissance par épitaxie 3”’ d’une couche monocristalline (3001 , 3002, 3003) de matériau diamant sur chaque pavé du substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant 10”. FIG. 4 diagrammatically represents an embodiment of the method for manufacturing a monocrystalline layer of diamond material which differs from the embodiments described with reference to FIG. 1, FIG. 2 and FIG. 3 in that the seed layer monocrystalline 2000 'SrTi0 3 material is in the form of a plurality of blocks (2001', 2002 ', 2003) each transferred to the support substrate 100 "of silicon material. The different pavers can be in any form (square, hexagonal, strips, ...) and with different sizes ranging from a few mm 2 to several cm 2 . The spacing between the chips can also vary significantly depending on whether a maximum coverage density is sought (in this case a preferential choice will be chosen spacing less than 0.2 mm) or on the contrary a maximum dissemination of the blocks within the substrate (in this case the spacing may be several millimeters and even centimeters). For each tile the skilled person could apply the transfer he wants and is not limited to a particular method. Thus one could consider applying the technical information described in connection with the method illustrated schematically in Figure 1 or the technical information described in connection with the method illustrated schematically in Figure 2, see even a combination of both. Thus it is possible to assemble 1 "monocrystalline substrates (2001, 2002, 2003) of SrTi0 3 material which have a size less than the size of the support substrate 100 '' in order to create by thinning 2" on the latter the layers monocrystalline seed (2001 ', 2002', 2003 ') for the epitaxial growth 3 "' of a monocrystalline layer (3001, 3002, 3003) of diamond material on each block of the substrate for epitaxial growth of a monocrystalline layer of 10 "diamond material.
Les différents modes de réalisation décrites en lien avec les figures 1 à 4 ouvrent ainsi la possibilité de co-intégration de composants faits dans la couche monocristalline de matériau diamant avec des composants fait dans le substrat support de matériau silicium. Ce dernier peut être simplement un substrat silicium mais il peut aussi s’agir dun substrat de type SOI comprenant une couche d’oxyde de silicium séparant un substrat silicium d’une couche fine de silicium. Dans le cas des modes de réalisation décrits en lien avec les figures 1 à 4 l’accès au substrat support peut se faire simplement par lithographie et gravure connu par l’homme de métier. Dans le cas du mode de réalisation décrit en lien avec la figure 4 on peut aussi simplement choisir les emplacements des pavés ainsi que leur espacement. The different embodiments described with reference to FIGS. 1 to 4 thus open the possibility of co-integration of components made in the monocrystalline layer of diamond material with components made in the support substrate of silicon material. It may simply be a silicon substrate but it may also be a SOI substrate comprising a silicon oxide layer between a silicon substrate with a thin layer of silicon. In the case of the embodiments described with reference to FIGS. 1 to 4, access to the support substrate can be done simply by lithography and etching known to those skilled in the art. In the case of the embodiment described with reference to FIG. 4 one can also simply choose the locations of the blocks as well as their spacing.
La figure 5 représente schématiquement un mode de réalisation qui se différencie du mode de réalisation décrit en lien avec la figure 4 en ce que le substrat support 100” ainsi que par la suite le substrat pour croissance par épitaxie d’une couche monocristalline de matériau diamant 10” comprend une interface démontable 40 configurée pour être démontée, par exemple par une technique de décollement par laser (« laser lift off ») et/ou une attaque chimique et/ou par une sollicitation mécanique. Ceci permettrait d’enlever une partie du substrat support 100” comme déjà évoqué en lien avec la figure 3. Un exemple serait l’utilisation d’un substrat support 100 de type SOI comprenant une couche d’oxyde de silicium séparant un substrat silicium d’une couche fine de silicium. Cette couche d’oxyde pourrait être utilisée comme interface démontable 40 par une gravure sélective de cette couche d’oxyde, par exemple par immersion dans un bain dacide fluorhydrique (HF). Cette option de démontage par gravure chimique d’une couche enterrée est particulièrement intéressante lorsqu’elle vient en combinaison du traitement d’une pluralité de petits substrats. En effet, le rayon d’action des sous-gravures est généralement limité à quelques centimètres voire quelques millimètres si l’on souhaite conserver des conditions et des temps de traitement industriellement raisonnables. Le traitement d’une pluralité de petits substrats autorise le démarrage de plusieurs fronts de gravure chimique grâce à un accès possible de la couche enterrée entre chaque pavé, et non plus seulement sur les bords extrêmes des substrats qui peuvent aller jusqu’à 300mm de diamètre. Dans le cas d’un substrat support de type SOI il est ainsi possible d’enlever en partie la couche fine de silicium entre les pavés afin de permettre le démarrage de plusieurs fronts de gravure. FIG. 5 diagrammatically represents an embodiment that differs from the embodiment described with reference to FIG. 4 in that the substrate substrate 100 "as well as thereafter the substrate for epitaxial growth of a monocrystalline layer of diamond material 10" comprises a removable interface 40 configured to be disassembled, for example by a laser lift off technique ) and / or chemical etching and / or mechanical stressing. This would make it possible to remove a portion of the support substrate 100 "as already mentioned in connection with FIG. 3. An example would be the use of a support substrate 100 of the SOI type comprising a silicon oxide layer separating a silicon substrate. a thin layer of silicon. This oxide layer may be used as removable interface 40 by a selective etching of said oxide layer, for example by immersion in a bath of hydrofluoric acid (HF). This option of dismantling by chemical etching of a buried layer is particularly advantageous when it comes in combination with the treatment of a plurality of small substrates. Indeed, the radius of action of the under-engraving is generally limited to a few centimeters or even a few millimeters if it is desired to maintain conditions and processing times that are industrially reasonable. The treatment of a plurality of small substrates allows the start of several chemical etching fronts thanks to possible access of the buried layer between each block, and no longer only on the extreme edges of the substrates which can be up to 300mm in diameter . In the case of an SOI support substrate it is thus possible to partially remove the thin layer of silicon between the blocks to allow the start of several etching fronts.
La fine couche de silicium ayant une épaisseur prédéterminée (pouvant varier entre 5 nm à 600 nm, voir plus épais en fonction de l’application visée) pourrait ainsi servir pour former des composants micro-électronique et ainsi permettre la co-intégration de composants à base de matériaux diamant dans un même substrat. Ainsi après avoir élaboré par épitaxie la couche monocristalline (3001 , 3002, 3003) on pourrait aussi imaginer un assemblage de cette structure sur un substrat final et démonter au niveau de l’interface démontable 40 une partie du substrat support 100”. Le substrat final peut ainsi fournir des fonctionnalités supplémentaires qui sont par exemple incompatibles avec des paramètres de la croissance effectuée auparavant (par exemple substrat final de type plastique flexible ou encore substrat final comportant des lignes métalliques). Par ailleurs et de manière générale l’interface démontable ne se situe pas forcément à l’intérieur du substrat support mais peut également se trouver à l’interface avec la couche germe de matériau SrTi03 assemblée sur ce substrat support (par exemple un empilement d’une couche de nitrure de silicium entre deux couches doxyde de silicium permet un décollement par laser, particulièrement adapté à un substrat support de type saphir) comme déjà décrit en lien avec la figure 3. The thin silicon layer having a predetermined thickness (which can vary between 5 nm and 600 nm, or even thicker depending on the intended application) could thus be used to form microelectronic components and thus enable the co-integration of components with base of diamond materials in the same substrate. Thus, after having developed by epitaxy the monocrystalline layer (3001, 3002, 3003) one could also imagine an assembly of this structure on a final substrate and dismount at the demountable interface 40 a portion of the support substrate 100 ". The final substrate can thus provide additional functionalities that are, for example, incompatible with growth parameters previously performed (for example, flexible plastic type end substrate or final substrate comprising metal lines). Moreover and in general, the removable interface is not necessarily located inside the support substrate but can also be at the interface with the seed material layer SrTiO3 assembled on this support substrate (for example a stack of a layer of silicon nitride between two layers of silicon oxide allows detachment by laser, particularly suitable for a sapphire substrate media type) as already described in connection with Figure 3.

Claims

REVENDICATIONS
1 . Procédé de fabrication d’une couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant comprenant le transfert d’une couche germe monocristalline (200, 200’, 2000 ) de matériau SrTi03 sur un substrat support (100, 100’, 100”) de matériau silicium suivi d’une croissance par épitaxie de la couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant. 1. A method of manufacturing a single crystal layer (300, 300 ', 3001, 3002, 3003) of diamond material comprising transferring a monocrystalline seed layer (200, 200', 2000) of SrTiO 3 material to a support substrate (100 , 100 ', 100 ") of silicon material followed by epitaxial growth of the monocrystalline layer (300, 300', 3001, 3002, 3003) of diamond material.
2. Procédé selon la revendication précédente dans lequel la couche germe monocristalline (200, 200’, 2000’) a une épaisseur inférieure à 10 pm, de préférence inférieure à 2 pm, et plus préférentiellement inférieure à 0,2pm. 2. Method according to the preceding claim wherein the monocrystalline seed layer (200, 200 ', 2000') has a thickness less than 10 pm, preferably less than 2 pm, and more preferably less than 0.2 pm.
3. Procédé selon une des revendications précédentes dans lequel le transfert de la couche germe monocristalline (200, 200’, 2000’) de matériau SrTi03 sur le substrat support (100, 100’, 100”) de matériau silicium comprend une étape d’assemblage (1’, 1”, 1”’) d’un substrat monocristallin (20, 20’, 2001 , 2002, 2003) de matériau SrTi03 sur le substrat support (100, 100’, 100”) suivi d’une étape d’amincissement (2’, 2”, 2”’) dudit substrat monocristallin (20, 20’, 2001 , 2002, 2003) de matériau SrTi03. 3. Method according to one of the preceding claims wherein the transfer of the monocrystalline seed layer (200, 200 ', 2000') of SrTiO 3 material on the support substrate (100, 100 ', 100 ") of silicon material comprises a step d assembling (1 ', 1 ", 1"') a monocrystalline substrate (20, 20 ', 2001, 2002, 2003) of SrTiO 3 material on the support substrate (100, 100', 100 ") followed by a step of thinning (2 ', 2 ", 2"') of said monocrystalline substrate (20, 20 ', 2001, 2002, 2003) of SrTiO 3 material.
4. Procédé selon la revendication précédente dans lequel l’étape d’amincissement (2”) comprend la formation d’une zone de fragilisation délimitant une portion (200’) du substrat monocristallin (20 ) de matériau SrTi03 destinée à être transférée sur le substrat support (100, 100’, 100”) de matériau silicium. 4. Method according to the preceding claim wherein the thinning step (2 ") comprises the formation of an embrittlement zone delimiting a portion (200 ') of the single crystal substrate (20) of material SrTi0 3 to be transferred to the support substrate (100, 100 ', 100 ") of silicon material.
5. Procédé selon la revendication précédente dans lequel la formation de la zone de fragilisation est obtenue par implantation (0”) d’espèces atomiques et/ou ioniques. 5. Method according to the preceding claim wherein the formation of the embrittlement zone is obtained by implantation (0 ") of atomic and / or ionic species.
6. Procédé selon les revendications précédentes 4 à 5 dans lequel létape d’amincissement (2”) comprend un détachement au niveau de la zone de fragilisation de manière à transférer ladite portion (200’) du substrat monocristallin (20’) de matériau SrTi03 sur le substrat support (100, 100’, 100”) de matériau silicium, en particulier le détachement comprend l’application d’une contrainte thermique et/ou mécanique. 6. Process according to previous claims 4-5 wherein the thinning step (2 ") comprises a detachment at the zone of weakness so as to transfer said portion (200 ') of the monocrystalline substrate (20') SrTiO 3 material on the support substrate (100, 100 ', 100 ") of silicon material, in particular the detachment comprises the application of a thermal and / or mechanical stress.
7. Procédé selon les revendications précédentes 3 à 6 dans lequel l’étape d’assemblage (1’, 1”, 1”’) est une étape d’adhésion moléculaire. 7. Process according to the preceding claims 3 to 6 wherein the assembly step (1 ', 1 ", 1"') is a molecular adhesion step.
8. Procédé selon l’une des revendications précédentes dans lequel la couche de germe monocristalline (200, 200’, 2000’) de matériau SrTi03 se présente sous la forme d’une pluralité de pavés (2001’, 2002’, 2003’) transférés chacun sur le substrat support (100, 100’, 100”) de matériau silicium. 8. Method according to one of the preceding claims wherein the monocrystalline seed layer (200, 200 ', 2000') of SrTi0 3 material is in the form of a plurality of cobblestones (2001 ', 2002', 2003 ' ) each transferred to the support substrate (100, 100 ', 100 ") of silicon material.
9. Procédé selon l’une des revendications précédentes dans lequel le substrat support (100, 100’, 100”) de matériau silicium comprend une interface démontable (40, 40’) configurée pour être démontée par une technique de décollement par laser et/ou une attaque chimique et/ou par une sollicitation mécanique. 9. Method according to one of the preceding claims wherein the support substrate (100, 100 ', 100 ") of silicon material comprises a removable interface (40, 40') configured to be disassembled by a laser separation technique and / or chemical attack and / or mechanical stress.
10. Substrat pour croissance par épitaxie d’une couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant caractérisé en ce qu’il comprend une couche germe monocristalline (200, 200’, 2000’) de matériau SrTi03 sur un substrat support (100, 100’, 100”) de matériau silicium. 10. Substrate for epitaxial growth of a monocrystalline layer (300, 300 ', 3001, 3002, 3003) of diamond material characterized in that it comprises a monocrystalline seed layer (200, 200', 2000 ') of SrTiO material 3 on a support substrate (100, 100 ', 100 ") of silicon material.
1 1 . Substrat pour croissance par épitaxie d’une couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant selon la revendication précédente dans lequel la couche germe monocristalline (200, 200’, 2000 ) de matériau SrTi03 se présente sous la forme d’une pluralité de pavés (2001 2002’, 2003’). 1 1. Substrate for epitaxial growth of a monocrystalline layer (300, 300 ', 3001, 3002, 3003) of diamond material according to the preceding claim wherein the monocrystalline seed layer (200, 200', 2000) SrTiO 3 material is in the form of a plurality of pavers (2001 2002 ', 2003').
12. Substrat pour croissance par épitaxie d’une couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant selon l’une des revendications 10 ou 1 1 dans lequel le substrat support (100, 100’, 100”) de matériau silicium comprend une interface démontable (40, 40’) configurée pour être démontée par une technique de décollement par laser et/ou une attaque chimique et/ou par une sollicitation mécanique. 12. Substrate for epitaxial growth of a monocrystalline layer (300, 300 ', 3001, 3002, 3003) of diamond material according to one of claims 10 or 11 wherein the support substrate (100, 100', 100 " ) of silicon material comprises a removable interface (40, 40 ') configured to be disassembled by laser peeling and / or etching and / or mechanical stressing.
13. Procédé de fabrication d’une couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau iridium comprenant le transfert d’une couche germe monocristalline (200, 200’, 2000 ) de matériau SrTiC>3 sur un substrat support (100, 100’, 100”) de matériau silicium suivi d’une croissance par épitaxie de la couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau iridium. 13. A method of manufacturing a monocrystalline layer (300, 300 ', 3001, 3002, 3003) of iridium material comprising transferring a monocrystalline seed layer (200, 200', 2000) of SrTiC> 3 material onto a substrate support (100, 100 ', 100 ") of silicon material followed by epitaxial growth of the monocrystalline layer (300, 300', 3001, 3002, 3003) of iridium material.
14. Substrat pour croissance par épitaxie dune couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau iridium caractérisé en ce qu’il comprend une couche germe monocristalline (200, 200, 2000’) de matériau SrTi03 sur un substrat support (100, 100’, 100”) de matériau silicium. 14. A substrate for epitaxial growth of a monocrystalline layer (300, 300 ', 3001, 3002, 3003) to iridium material characterized in that it comprises a monocrystalline seed layer (200, 200', 2000 ') of material SrTi0 3 on a support substrate (100, 100 ', 100 ") of silicon material.
15. Procédé de fabrication d’une couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant et/ou iridium comprenant le transfert d’une couche germe monocristalline (200, 200’, 2000’) de matériau YSZ, Ce02, MgO ou Al203 sur un substrat support (100, 100’, 100”) de matériau silicium, saphir, Ni ou Cu, suivi d’une croissance par épitaxie de la couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant et/ou iridium. 15. A method for manufacturing a monocrystalline layer (300, 300 ', 3001, 3002, 3003) of diamond and / or iridium material comprising the transfer of a monocrystalline seed layer (200, 200', 2000 ') of YSZ material , Ce0 2 , MgO or Al 2 0 3 on a support substrate (100, 100 ', 100 ") of silicon, sapphire, Ni or Cu material, followed by epitaxial growth of the monocrystalline layer (300, 300', 3001, 3002, 3003) of diamond and / or iridium material.
16. Procédé de fabrication d’une couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant et/ou iridium comprenant le transfert d’une couche germe monocristalline (200, 200’, 2000’) de matériau SrTi03 sur un substrat support (100, 100’, 100”) de matériau silicium, saphir, Ni ou Cu, suivi d’une croissance par épitaxie de la couche monocristalline (300, 300’, 3001 , 3002, 3003) de matériau diamant et/ou iridium. 16. A process for manufacturing a monocrystalline layer (300, 300 ', 3001, 3002, 3003) of diamond and / or iridium material comprising the transfer of a monocrystalline seed layer (200, 200', 2000 ') of SrTiO material 3 on a support substrate (100, 100 ', 100 ") of silicon, sapphire, Ni or Cu material, followed by epitaxial growth of the monocrystalline layer (300, 300', 3001, 3002, 3003) of diamond material and / or iridium.
EP19721378.8A 2018-03-28 2019-03-26 Method for manufacturing a monocrystalline layer of diamond or iridium material, and substrate for epitaxically growing a monocrystalline layer of diamond or iridium material Pending EP3775329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1800255A FR3079535B1 (en) 2018-03-28 2018-03-28 METHOD FOR MANUFACTURING A MONOCRYSTALLINE LAYER OF DIAMOND OR IRIDIUM MATERIAL AND SUBSTRATE FOR GROWTH BY EPITAXIS OF A MONOCRYSTALLINE LAYER OF DIAMOND OR IRIDIUM MATERIAL
PCT/IB2019/000196 WO2019186262A1 (en) 2018-03-28 2019-03-26 Method for manufacturing a monocrystalline layer of diamond or iridium material, and substrate for epitaxically growing a monocrystalline layer of diamond or iridium material

Publications (1)

Publication Number Publication Date
EP3775329A1 true EP3775329A1 (en) 2021-02-17

Family

ID=63079954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19721378.8A Pending EP3775329A1 (en) 2018-03-28 2019-03-26 Method for manufacturing a monocrystalline layer of diamond or iridium material, and substrate for epitaxically growing a monocrystalline layer of diamond or iridium material

Country Status (8)

Country Link
US (1) US11935743B2 (en)
EP (1) EP3775329A1 (en)
JP (1) JP7408893B2 (en)
KR (1) KR102654904B1 (en)
CN (1) CN111936676A (en)
FR (1) FR3079535B1 (en)
SG (1) SG11202009528QA (en)
WO (1) WO2019186262A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3079531B1 (en) * 2018-03-28 2022-03-18 Soitec Silicon On Insulator METHOD FOR MANUFACTURING A MONOCRYSTALLINE LAYER OF PZT MATERIAL AND SUBSTRATE FOR GROWTH BY EPITAXIS OF A MONOCRYSTALLINE LAYER OF PZT MATERIAL
CN113373512B (en) * 2021-05-24 2022-02-11 北京科技大学 Single crystal diamond epitaxial growth method based on iridium-graphene structured buffer layer
CN113832541B (en) * 2021-09-29 2024-02-09 太原理工大学 Preparation method of composite substrate for epitaxial growth of large-size single crystal diamond
JP2023116122A (en) * 2022-02-09 2023-08-22 信越化学工業株式会社 Base substrate, single crystal diamond multilayer substrate and method for manufacturing them

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124125A (en) 2000-10-17 2002-04-26 Masaru Hiyamizu Folding screen and single leaf screen with lighting device
US8507361B2 (en) * 2000-11-27 2013-08-13 Soitec Fabrication of substrates with a useful layer of monocrystalline semiconductor material
US6562127B1 (en) * 2002-01-16 2003-05-13 The United States Of America As Represented By The Secretary Of The Navy Method of making mosaic array of thin semiconductor material of large substrates
JP4016102B2 (en) * 2003-01-17 2007-12-05 独立行政法人産業技術総合研究所 Method for producing diamond crystal thin film by pulsed laser deposition and thin film produced by the same method
DE10320133B4 (en) 2003-05-06 2011-02-10 Universität Augsburg Process for the production of monocrystalline or quasi-monocrystalline diamond layers and monocrystalline or quasi-monocrystalline diamond layer arranged on a body
JP5468528B2 (en) 2010-06-28 2014-04-09 信越化学工業株式会社 SUBSTRATE FOR GROWING SINGLE CRYSTAL DIAMOND, METHOD FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING SINGLE CRYSTAL DIAMOND SUBSTRATE
US9064789B2 (en) * 2013-08-12 2015-06-23 International Business Machines Corporation Bonded epitaxial oxide structures for compound semiconductor on silicon substrates
US10304739B2 (en) 2015-01-16 2019-05-28 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor substrate, semiconductor substrate, method for manufacturing combined semiconductor substrate, combined semiconductor substrate, and semiconductor-joined substrate
JP7017299B2 (en) 2015-07-30 2022-02-08 信越化学工業株式会社 Manufacturing method of diamond electronic element and diamond electronic element
CN107268076A (en) 2017-07-28 2017-10-20 西安交通大学 A kind of method based on heteroepitaxial growth single-crystal diamond

Also Published As

Publication number Publication date
JP2021518322A (en) 2021-08-02
US20210020434A1 (en) 2021-01-21
CN111936676A (en) 2020-11-13
JP7408893B2 (en) 2024-01-09
KR20200136437A (en) 2020-12-07
FR3079535A1 (en) 2019-10-04
KR102654904B1 (en) 2024-04-04
FR3079535B1 (en) 2022-03-18
US11935743B2 (en) 2024-03-19
WO2019186262A1 (en) 2019-10-03
SG11202009528QA (en) 2020-10-29

Similar Documents

Publication Publication Date Title
EP3775329A1 (en) Method for manufacturing a monocrystalline layer of diamond or iridium material, and substrate for epitaxically growing a monocrystalline layer of diamond or iridium material
EP1324385B1 (en) Process for transfering semiconductor thin layers from a donor wafer.
FR2857983A1 (en) Fabrication of an epitaxial layer using atomic species implantation to produce a thin support layer for epitaxial growth, for optics, opto-electronics and electronics applications
FR2857982A1 (en) Fabrication of an epitaxial layer on a thin support layer produced in a substrate by implantation of atomic species, for optic, opto-electronic and electronic applications
FR2817394A1 (en) METHOD FOR MANUFACTURING A SUBSTRATE, PARTICULARLY FOR OPTICS, ELECTRONICS OR OPTOELECTRONICS AND SUBSTRATE OBTAINED BY THIS PROCESS
EP1344249A1 (en) Method for making a stacked structure comprising a thin film adhering to a target substrate
FR2840731A1 (en) Monocrystalline semiconductor substrate manufacturing method for laser diode, involves forming nucleation layer that acts as barrier for diffusion of thermally dissociated elements from gallium arsenide intermediate support
WO2010049657A1 (en) Process for forming a single-crystal film in the microelectronics field
FR2907966A1 (en) Substrate e.g. silicon on insulator substrate, manufacturing method, involves forming superficial amorphous layer in part of thin layer by implantation of atomic species in thin layer, and recrystallizing amorphous layer
EP1631982B1 (en) Method for production of a very thin layer with thinning by means of induced self-support
WO2019186266A2 (en) Method for producing a single-crystal film of aln material and substrate for the epitaxial growth of a single-crystal film of aln material
WO2019186268A1 (en) Method for manufacturing a monocrystalline layer of gaas material and substrate for epitaxial growth of a monocrystalline layer of gaas material
WO2020128245A1 (en) Method for manufacturing a device comprising a membrane extending over a cavity
EP3775331A1 (en) Method for producing a monocrystalline layer of an lno material and substrate for epitaxial growth of a monocrystalline layer of an lno material
EP3775332A1 (en) Method for manufacturing a crystalline layer of pzt material, and substrate for epitaxially growing a crystalline layer of pzt material
FR2866982A1 (en) Fabrication of electronic components using a noble support for front end fabrication and a less costly support, with specific desired physical properties, for back end fabrication
WO2006100301A1 (en) Method of producing a hetero-structure comprising at least one thick layer of semiconductor material
FR2849714A1 (en) Recycling donor wafer after having taken off useful layer of semiconductor materials, involves removing substance using mechanical mechanism so that part of taking-off structure will remain
FR3073083A1 (en) METHOD FOR MANUFACTURING A FILM ON A FLEXIBLE SHEET
WO2024074797A1 (en) Method for producing a composite structure comprising tiles
EP4315396A1 (en) Method for manufacturing a composite structure comprising a thin single-crystal semiconductor layer on a carrier substrate
EP4226409A1 (en) Method for producing a substrate for epitaxial growth of a gallium-based iii-n alloy layer
WO2023194679A1 (en) Method for producing a structure comprising at least two chips on a substrate
WO2022074317A1 (en) Method for producing a substrate for the epitaxial growth of a layer of a gallium-based iii-n alloy
WO2022074319A1 (en) Method for producing a substrate for the epitaxial growth of a layer of a gallium-based iii-n alloy

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240319