EP3749906B1 - Calciner of a cement production system, and method for operating a calciner - Google Patents

Calciner of a cement production system, and method for operating a calciner Download PDF

Info

Publication number
EP3749906B1
EP3749906B1 EP19703661.9A EP19703661A EP3749906B1 EP 3749906 B1 EP3749906 B1 EP 3749906B1 EP 19703661 A EP19703661 A EP 19703661A EP 3749906 B1 EP3749906 B1 EP 3749906B1
Authority
EP
European Patent Office
Prior art keywords
temperature
calciner
fuel
combustion chamber
raw meal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19703661.9A
Other languages
German (de)
French (fr)
Other versions
EP3749906A1 (en
Inventor
Klaus Adler
Ines Veckenstedt
Jost Lemke
Michael Streffing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Industrial Solutions AG
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Industrial Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Industrial Solutions AG filed Critical ThyssenKrupp AG
Publication of EP3749906A1 publication Critical patent/EP3749906A1/en
Application granted granted Critical
Publication of EP3749906B1 publication Critical patent/EP3749906B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/42Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/2016Arrangements of preheating devices for the charge
    • F27B7/2025Arrangements of preheating devices for the charge consisting of a single string of cyclones
    • F27B7/2033Arrangements of preheating devices for the charge consisting of a single string of cyclones with means for precalcining the raw material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0018Monitoring the temperature of the atmosphere of the kiln

Definitions

  • the invention relates to a method for operating a calciner of a cement production plant and a calciner of a cement production plant.
  • raw meal from ground calcareous and silicate rock is subjected to a heat treatment, whereby the limestone is freed of CO2 and converted into burnt lime CaO.
  • the raw meal deacidified by the C02 liberation is usually sintered under the influence of heat to form various calcium silicate phases.
  • pre-calcination deacidification
  • the hot raw meal emerging from the second lowest cyclone stage is entrained by the hot gas flowing out of the rotary kiln and fed into a calciner located between the cyclone preheater and the rotary kiln. This is usually a riser pipe in which the furnace gas and the material to be fired are conducted in cocurrent and react with one another.
  • the combustion air required for firing the calciner can, for example, be passed through the rotary kiln and / or in a separate gas line, the so-called tertiary air line, from the clinker cooler to the calciner.
  • a cement production plant for the production of cement clinker comprises in particular a multi-stage preheater for preheating raw cement meal, an oven, preferably a rotary kiln, for burning the raw cement meal into cement clinker and a cooler for cooling the cement clinker.
  • the preheater has a plurality of cyclone stages, the first cyclone stage being arranged following the inlet of the cement raw meal into the preheater and the last cyclone stage in the flow direction of the raw meal being arranged upstream of the inlet into the furnace.
  • the calciner is preferably arranged in the gas direction between the inlet into the furnace and the last cyclone stage of the preheater, and is preferably used to precalcine the raw meal.
  • the hot gases from the furnace flow through the calciner and preheater in countercurrent to the raw cement meal.
  • the calciner comprises, for example, at least one combustion chamber in which fuel is burned together with oxygen-containing combustion air and the raw meal flowing through the calciner is heated.
  • the calciner has at least one combustion chamber designed as a riser, through which the material flow of preheated raw meal, fuel and combustion air flows from bottom to top.
  • a temperature distribution is to be understood as the, in particular, two-dimensional distribution of the temperature in a plane.
  • the temperature distribution is calculated from individual temperature measured values determined in the measuring plane.
  • the temperature is measured in particular at a plurality of points or lines in the plane and a distribution of the temperature over the entire measuring plane or at least part of the measuring plane is calculated from this.
  • a temperature distribution comprises a plurality of Temperature values, for example measured or calculated, which are to be assigned to a location or an area in the respective measuring plane.
  • the measuring points are preferably evenly spaced from one another and distributed over the entire respective measuring plane.
  • a measuring plane has at least 2, preferably 30, in particular 90 measuring points.
  • a temperature measuring device is arranged at each measuring point.
  • a temperature measuring device preferably has a transmitter and a receiver, the determined temperature preferably being an average temperature between the transmitter and the receiver. It is also conceivable that each temperature value corresponds to a measured value or represents a calculated mean value from several measurements.
  • a plurality of temperature measuring devices are preferably arranged in each measuring plane, each temperature measuring device having a transmitter and a receiver.
  • the temperature measuring devices in particular the transmitters and receivers, communicate with each other in each measuring plane, so that a temperature, in particular an average temperature, is determined between each transmitter and receiver of a respective measuring plane.
  • n temperature measuring devices for example, n * (n-1) measured values are determined in the measuring plane. This results in a two-dimensional distribution of the temperature, for example.
  • temperature measuring devices from different measuring planes communicate with one another, so that temperature values between two temperature measuring devices from different measuring planes are determined. This results in a three-dimensional distribution of the temperature.
  • the temperature distribution is preferably determined in at least two or more separate measuring planes within the calciner, preferably the combustion chamber of the calciner.
  • the temperature is preferably determined in two to eight, in particular four to six, measuring planes.
  • the measuring planes extend within the calciner, preferably the combustion chamber of the calciner.
  • the temperature distribution in each measuring plane is determined over at least part of the extent of the measuring plane or over the entire measuring plane and is determined by means of at least one temperature measuring device in each measuring plane.
  • the temperature measuring devices are preferably each arranged in a measuring plane.
  • Fuel, combustion air and raw meal preheated in the preheater are fed into the calciner, in particular into the at least one combustion chamber of the calciner.
  • the combustion chamber has a plurality of fuel inlets, Combustion air inlets and / or inlets for admitting preheated raw meal.
  • the amount of fuel, combustion air and / or preheated raw meal is preferably adjustable via means for metering the amount, such as flaps or mechanical conveying devices.
  • the amount of fuel, combustion air and / or the amount of raw meal preheated in the preheater is preferably increased or decreased.
  • the regulation / control of an amount of fuel, preheated raw meal and / or combustion air in the calciner as a function of the determined temperature distribution enables optimal metering of the components of the material flow of the calciner, so that optimal combustion is achieved within the combustion chamber of the calciner.
  • the monitoring of the temperature distribution and a corresponding control / regulation of the amount of fuel, combustion air and / or raw meal prevents local overheating and thus damage to the inner wall of the combustion chamber.
  • the control / regulation of the amount of fuel, combustion air and / or raw meal takes place in such a way that the formation of carbon monoxide is prevented and the reduction of nitrogen oxides is promoted by, for example, the addition of ammonia.
  • the temperature distribution is determined in at least two measuring planes simultaneously. At least one or two measuring planes extend, for example, over a cross section of the combustion chamber of the calciner, preferably orthogonally to the direction of flow of the material flow. Determining the temperature distribution in at least two measuring planes at the same time enables the temperature to be monitored in a plurality of areas within the combustion chamber. For example, the measuring planes are arranged in areas in which the temperature often deviates from an optimal value or preferably in the vicinity of an inlet for admitting fuel, combustion air and / or preheated raw meal into the combustion chamber.
  • the at least two measuring planes extend transversely to the direction of flow of the raw meal and / or the fuel in the calciner.
  • the measuring planes each preferably form a cross section of the combustion chamber.
  • the measuring planes can also be arranged parallel to one another.
  • a temperature measuring device for determining the temperature comprises a sound horn, preferably as a transmitter and / or receiver.
  • the temperature distribution is determined, for example, by means of sound pyrometry.
  • a transmitter sends out a sound signal generated by compressed air, which preferably has a frequency range between 200 and 3000 Hz.
  • the transit time of the signal to a receiver is determined and from this the temperature of the path between the transmitter and receiver is determined, since the speed of sound is dependent on the temperature in a known manner. If several receivers and transmitters are provided, with the signal paths crossing over, a graphical representation of a temperature distribution of a measurement plane can be determined, for example.
  • the determined temperature distributions are compared with a previously determined or determined temperature mean value and a deviation from this value is determined.
  • the temperature mean value is, for example, a temperature value averaged over the entire measuring plane, which was calculated from the determined temperature distribution.
  • the mean value can also be a mean value determined in advance of, for example, 850-930 ° C.
  • Each temperature value of the temperature distribution is preferably compared with the average temperature value and a deviation is determined in each case.
  • the amount of fuel, preheated raw meal and / or combustion air is increased or decreased, for example, if at least one temperature value of the temperature distribution deviates from the previously determined or determined average temperature value.
  • At least one area is determined in the measuring plane in which the deviations have a value of approximately +/- 25-150 ° C, preferably +/- 50 ° -100 ° C, in particular +/- 60-80 ° C exceeds.
  • This is the area of the measuring plane in which all temperature values of the temperature distribution have a deviation of approximately +/- 25-150 ° C, preferably +/- 50 ° -100 ° C, in particular +/- 60-80 ° C exceeds the average temperature value.
  • a range can also include only one point that is assigned to a temperature value that has the deviation described above.
  • an area comprises a plurality of points on the respective measurement plane, each of which is assigned a temperature value with an above-mentioned deviation. This makes it possible to change the amount of fuel, preheated raw meal and / or combustion air supplied at or in the vicinity of the area of the respective measuring plane at which the temperature difference is too high.
  • the amount of fuel, preheated raw meal and / or combustion air is increased or decreased when a temperature value in one of the measurement planes exceeds a previously determined or determined average temperature value by approximately +/- 25-150 ° C, preferably +/- 50 ° -100 ° C, in particular +/- 60-80 ° C.
  • the amount of preheated raw meal is increased if a temperature value in one of the measuring levels exceeds the previously determined or determined mean value by about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C.
  • the amount of preheated raw meal is supplied in or in the vicinity of the area of the measuring plane in which the temperature values exceed the average temperature value by the above-mentioned value.
  • Raw meal serves as a temperature sink and enables the temperature to be reduced locally, preferably in the area in which the temperature deviation exceeds the aforementioned value.
  • the amount of fuel is increased if at least one temperature value in the measuring plane falls below a previously determined or determined average temperature value by about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C.
  • the amount of fuel is preferably supplied in or in the vicinity of the area of the measuring plane in which preferably all temperature values are below the average temperature value by the above-mentioned value.
  • An increased amount of fuel ensures a local temperature increase in the combustion chamber of the calciner.
  • the amount of combustion air is preferably increased at the same time.
  • the amount of fuel supplied to the calciner is constant, so that only the input amount at one of the plurality of fuel inlets is varied as a function of the determined temperature distribution. As a result, a relatively precise regulation of the feed quantities is achieved, depending on the location in the calciner at which the temperature deviations occur, so that local temperature regulation takes place within the calciner.
  • the invention also comprises a calciner of a cement production plant with a combustion chamber, at least one inlet for admitting preheated raw meal into the combustion chamber, at least one fuel inlet for admitting fuel into the combustion chamber and at least one air inlet for admitting combustion air into the combustion chamber being arranged on the combustion chamber are.
  • At least two measuring planes, each with at least one temperature measuring device for determining the temperature distribution in the respective measuring plane, are arranged in the combustion chamber.
  • a control / A control device is provided which is designed in such a way that it controls / regulates the amount of preheated raw meal, fuel and / or combustion air in the combustion chamber as a function of the determined temperature distribution.
  • the combustion chamber is preferably designed as a riser, with the material flow of fuel, raw meal and combustion air flowing from bottom to top through the riser.
  • the control / regulating device is connected to each of the temperature measuring devices, so that they transmit the determined temperature distribution to the control / regulating device.
  • a plurality of temperature measuring devices are arranged in a measuring plane, in particular 2 to 10, preferably 4 to 8 or 6.
  • At least one of the inlets for admitting preheated raw meal, fuel and / or combustion air has a means for regulating the amount of preheated raw meal, fuel and / or combustion air flowing through the inlet into the combustion chamber.
  • the control / regulating device is connected to at least one of the means, so that the control / regulating device transfers the amount of preheated raw meal, fuel and / or combustion air into the combustion chamber, preferably the riser, as a function of the means of the temperature measuring device determined temperature, in particular temperature distribution controls / regulates.
  • the measuring planes are arranged at a distance from one another in the direction of flow.
  • the measuring planes are preferably arranged parallel to one another.
  • each of the measuring planes has a plurality of temperature measuring devices, the temperature measuring devices being in particular evenly spaced from one another.
  • the temperature measuring devices are preferably arranged on the inner wall of the combustion chamber of the calciner.
  • the temperature measuring device is an acoustic sensor.
  • the calciner has a plurality of combustion chambers, at least one combustion chamber as Riser is formed and each of the combustion chambers is at least connected to the combustion chamber formed as a riser.
  • Fig. 1 shows a plant for the production of cement clinker, for example, with a multi-stage preheater 12 for preheating cement raw meal 28, a calciner 16 for precalcining the preheated cement raw meal 14, an oven 22 for burning the precalcined cement raw meal 18 to cement clinker and a cooler 26 for cooling the cement clinker.
  • the preheater 12 has, for example, four cyclone stages, the first cyclone substance being arranged following the inlet of the cement raw meal 28 and the last, fourth cyclone stage in the flow direction of the raw meal before the inlet into the furnace 22.
  • Each cyclone stage has a cyclone, which is used to separate the raw meal from the material flow of kiln exhaust gas and raw meal.
  • the calciner 16 in which the raw meal is preferably precalcined, is arranged between the last and the penultimate cyclone stage.
  • the hot gases 20 produced in the furnace 22 first flow through the calciner 16 and then through the preheater 12 in countercurrent to the raw cement meal. Furthermore, an exhaust air 24 produced in the cooler 22 is used as combustion air in the calciner 16.
  • Fig. 2 shows a calciner 16, which has a combustion chamber 46 designed as a riser with an exemplary rectangular cross section, in which the combustion of fuel 30 takes place together with combustion air 32 for heating the preheated raw meal 14.
  • the oxygen-containing combustion air 32 is, for example, cooler exhaust air according to FIG Fig. 1 or ambient air enriched with oxygen.
  • the riser 46 has two inlets 48, 50 for
  • Admitting preheated raw meal 14 into the riser line 46 Admitting preheated raw meal 14 into the riser line 46. It is also conceivable to provide more than two inlets for admitting preheated raw meal 14 on the riser line 46.
  • the inlets 48, 50 are arranged at a distance from one another in the direction of flow of the material flow indicated by the arrow. For example, two to four raw meal inlets are arranged on the calciner 16, which are for example spaced apart from one another in the circumferential direction and / or in the material flow direction.
  • two fuel inlets 52, 54 are attached to the riser line 46, through which fuel 30 is introduced into the riser line 46. It is also conceivable to arrange a plurality of fuel inlets at a distance from one another in the circumferential direction and / or in the material flow direction on the riser line 46. At least one of the fuel inlets 52, 54 can be arranged downstream of one of the inlets 48, 50.
  • the riser 46 also has a plurality of air inlets 56, 58 through which combustion air 32 is introduced into the riser. Examples are in Fig. 2 two air inlets 56, 58 are shown, wherein the riser can also have more than two air inlets, which are attached to the riser 46 in the circumferential direction of the riser 46 and / or spaced apart from one another in the material flow direction. At least one or each of the inlets 48, 50, 52, 54, 56, 58 for admitting preheated raw meal 14, fuel 30 or combustion air 32 has in particular means for metering the inlet quantity, by means of which the quantity of preheated raw meal, fuel or combustion air can be adjusted is. Such means are, for example, flaps, scales, volumetric metering devices or conveying devices such as screw conveyors, conveyor belts or pneumatic transport systems.
  • Two measuring planes 34, 36 are arranged in the riser, which extend essentially orthogonally to the direction of flow and preferably form a cross-sectional plane of the riser 46.
  • the measuring planes 34, 36 are arranged in the riser 46 at a distance from one another in the flow direction of the material and are, for example, parallel to one another.
  • the first measuring plane 34 is arranged behind the second measuring plane 36 in the direction of flow and preferably between the inlets 48, 50 for admitting raw meal 14.
  • the second measuring plane 36 is arranged, for example, between the fuel inlets 52, 54.
  • the riser 46 has a plurality of temperature measuring devices 40 for determining the temperature within the riser 46.
  • temperature measuring devices 40 are attached in each measuring plane 34, 36.
  • Each measuring plane preferably has 2-10, preferably 4-6, temperature measuring devices 40.
  • the temperature measuring devices 40 are preferably attached to the inner wall of the riser pipe 46 in the measuring plane 34, 36 and, in particular, are arranged at a uniform distance from one another. It is also conceivable to arrange only one temperature measuring device 40 in each measuring plane 34, 36.
  • the temperature measuring devices 40 are designed in particular to determine a temperature distribution within the measuring plane 34, 36.
  • the use of an acoustic sensor as a temperature measuring device is particularly suitable for this purpose.
  • the calciner preferably has an in Fig. 2 Control / regulating device, not shown, for controlling / regulating the material flows.
  • the control / regulating device is connected to at least one of the temperature measuring devices 40, so that it transmits the ascertained temperature, in particular the ascertained temperature distribution in the respective measuring plane, to the control / regulating device.
  • the control / regulating device is preferably connected to each temperature measuring device 40 of the calciner.
  • control / regulating device is connected to the inlets 48, 50, 52, 54, 56, 58, in particular to the means for metering the inlet quantity of the respective inlet 48, 50, 52, 54, 56, 58, so that the Control / regulating device controls / regulates the amount of preheated raw meal, fuel and / or combustion air in the calciner 16, in particular in the riser line 46 of the calciner 16.
  • the amount of preheated raw meal, fuel and / or combustion air in the calciner 16 is controlled / regulated in particular as a function of the temperature distribution determined in advance by means of the temperature measuring devices 40.
  • the control / regulation takes place in such a way that the most uniform possible temperature distribution over the respective measuring plane 34, 36 is achieved.
  • the mean temperature in a measuring plane 34, 36 is preferably approximately 700-1100 °, preferably 850-950 ° C, in particular 900 ° C.
  • the determined temperature distribution is preferably compared with a previously determined mean temperature or a previously determined mean temperature.
  • the amount of preheated Raw meal, fuel and / or combustion air in the riser 46 is controlled / regulated in such a way that the deviation in temperature is reduced to a value below the value described.
  • the amount is preheated Raw meal that is fed into the riser line 46 through one of the inlets 48, 50 is increased.
  • Raw meal serves as a heat sink and reduces the temperature within the riser line 46.
  • the amount of raw meal 14 is increased at the inlet 48, 50 which is closest to the area of the measuring plane 34, 36 in which the temperature is increased.
  • the amount of fuel 30, the abandoned in the riser 46 is increased.
  • the amount of fuel 30 is increased at the inlet 52, 54 which is closest to the area of the measuring plane 34, 36 in which the temperature is increased.
  • the amount of combustion air is increased if the temperature in a certain area within the measuring plane 34, 36 falls below the determined or specified mean temperature by about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C , wherein the amount of combustion air is preferably increased at the inlet which is closest to the area of the measuring plane 34, 36 in which the temperature is increased.
  • Fig. 3 shows a further embodiment of a calciner 16 with a first combustion chamber 46, which is designed as a riser pipe and a second combustion chamber 44, which is connected to the first combustion chamber in such a way that a material flow of heated raw meal 14 from the second combustion chamber 44 into the first combustion chamber 46 flows.
  • the first combustion chamber 46 preferably corresponds to that with reference to FIG Fig. 2 described combustion chamber 46, in which two measuring planes 34, 36 are arranged.
  • the first combustion chamber 46 has Fig. 3 only one fuel inlet 52 and one combustion air inlet 52, which are each arranged below the second, lower measuring plane.
  • the first combustion chamber has in particular two inlets 48, 50 for admitting preheated raw meal 14, the first inlet 50 being arranged in the flow direction of the material flow upstream of the second inlet 48 and the measuring planes 34, 36 and the second inlet 48 downstream of the first inlet 50 and the two measuring planes 34, 36 is arranged.
  • the second combustion chamber 44 is not designed as a riser, for example. It is also conceivable to provide more than two combustion chambers 44, 46 in the calciner 16, the combustion chambers 44, 46 being connected to one another and at least one combustion chamber 44, 46 being designed as a riser.
  • the lower of the two measuring planes 34, 36 extends from the first combustion chamber 46 into the second combustion chamber 44.
  • the second combustion chamber 44 has, for example, a fuel inlet 60 for admitting fuel into the second combustion chamber 44.
  • the second combustion chamber 44 has, for example, an essentially horizontal support area for receiving fuel 30, the fuel inlet 60 being arranged such that fuel 30 falls from the fuel inlet 60 onto the support area.
  • the second combustion chamber 44 has a combustion air inlet 62 and an inlet 64 for admitting preheated raw meal 14.
  • the horizontal support area of the second combustion chamber 44 is followed by a vertically sloping area, in particular a chute, which opens into the second combustion chamber 46.
  • the fuel 30 is pushed into the sloping area, for example after a sufficient dwell time on the support area. This can preferably be done by mechanical conveying devices such as screw conveyors or slides or pneumatic air blast devices.
  • the fuel 30 of the second combustion chamber is then captured by the material flow of the first combustion chamber, which is designed as a
  • Only one measuring plane 36 is arranged in the second combustion chamber 44. Which extends from the second combustion chamber 44 at an angle to the horizontal of approximately 10-60 °, preferably 20-50 °, in particular 45 °, into the first combustion chamber 46.
  • the area of the lower, second measuring plane 36 is therefore preferably larger than the area of the first measuring plane 34 arranged above it, which only extends within the first combustion chamber 46.
  • the second measuring plane 36 has, for example, eight temperature measuring devices 40, which are preferably attached to the inside of the first and second combustion chambers 44, 46 at a uniform distance from one another. A different number of temperature measuring devices 40, such as 10 to 20 temperature measuring devices 40, is also conceivable.
  • the temperature measuring devices 40 of the second measuring plane 36 determine a temperature distribution of the measuring plane 36 extending from the first combustion chamber 46 into the second combustion chamber 44.
  • the arrangement of the first measuring plane corresponds to that with reference to FIG Fig. 2 described arrangement of the measuring plane 34.
  • At least one or all of the temperature measuring devices 40 of the first and second measuring planes 34, 36 are also provided with a control / regulating device (not shown) for controlling / regulating the material flows, with the determined temperature, in particular the determined temperature distribution in the respective measuring plane being transmitted to the control / regulating device.
  • Control device is transmitted.
  • the control / regulating device is connected to the inlets 48, 50, 52, 54, 56, 58, 60, 62, 64 in particular with the means for metering the inlet quantity of the respective inlet 48-64, so that the control / Control device controls / regulates the amount of preheated raw meal, fuel and / or combustion air in the calciner 16, in particular in the first and / or second combustion chamber 44, 46 of the calciner 16.
  • the amount of preheated raw meal, fuel and / or combustion air in the calciner 16 is as already described with reference to FIG Fig. 2 described, controlled / regulated as a function of the temperature distribution determined in advance by means of the temperature measuring
  • the temperature in an area within the second measurement plane 36, which lies within the first combustion chamber 46 exceeds the determined or specified mean temperature by the above-specified value of about 25-150 ° C., preferably 50 ° -100 ° C., in particular 60 -80 ° C
  • the amount of preheated raw meal that is fed through one of the inlets 48, 50 into the first combustion chamber 46 is increased.
  • the amount of preheated raw meal that is fed through the inlet 60 into the second combustion chamber 46 is increased when the temperature in an area within the second measurement plane 36, which is within the second combustion chamber 44, exceeds the determined or specified mean temperature the above value of about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C exceeds.
  • the amount of fuel 30 that is fed into the first combustor 46 increases.
  • the amount of fuel 30 is increased at the inlet 52, 54 which is closest to the area of the measuring plane 34, 36 in which the temperature is increased.
  • the amount of combustion air that is fed into the first combustion chamber 46 is increased when the temperature is in a certain range in an area within the second measurement plane 36, which lies within the first combustion chamber 46, the determined or specified mean temperature falls below about 25-150 ° C., preferably 50 ° -100 ° C., in particular 60-80 ° C.
  • the amount of combustion air in the second combustion chamber is regulated in the same way.
  • Controlling the amount of fuel, combustion air and / or preheated raw meal as a function of the determined temperature, in particular the temperature distribution, enables optimal combustion, while at the same time preventing damage to the calciner from overheating.
  • Optimal heating of the raw meal to achieve calcination is also achieved by the calciner described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Calcinators einer Zementherstellungsanlage und einen Calcinator einer Zementherstellungsanlage.The invention relates to a method for operating a calciner of a cement production plant and a calciner of a cement production plant.

Zur Behandlung von Zementklinker oder Erzen oder Tonen oder anderen mineralischen Produkten werden große Mengen an thermischer Energie benötigt, um das gemahlene Rohmehl zu Trocknen und/oder zu Calcinieren und/oder zu Reduzieren. Hierzu wird das Rohmehl im Flugstrom auf eine benötigte Temperatur erhitzt, bevor es weiterbehandelt wird.For the treatment of cement clinker or ores or clays or other mineral products, large amounts of thermal energy are required in order to dry and / or calcine and / or reduce the ground raw meal. For this purpose, the raw meal is heated to the required temperature in the entrained flow before it is further treated.

Beispielsweise wird zur Herstellung von Zementklinker Rohmehl aus gemahlenem kalkhaltigem und silikathaltigem Gestein einer Wärmebehandlung unterzogen, wobei der Kalkstein von CO2 befreit und in gebrannten Kalk CaO überführt wird. In einem weiteren Schritt wird üblicherweise das durch die C02-Befreiung entsäuerte Rohmehl unter Wärmeeinfluss zu verschiedenen Calciumsilikatphasen gesintert. Bei der Vorcalcinierung (Entsäuerung) wird das aus der zweituntersten Zyklonstufe austretende heiße Rohmehl von aus dem Drehrohrofen ausströmenden Heißgas mitgerissen und in einen Calcinator geführt, der zwischen Zyklonvorwärmer und Drehrohrofen angeordnet ist. Dabei handelt es sich üblicherweise um ein Steigrohr, in dem Ofengas und Brenngut im Gleichstrom geführt werden und miteinander reagieren. Um die endotherm ablaufende Entsäuerungsreaktion aufrecht zu erhalten, werden im Calcinator Brennstoffe zugegeben. Die für die Calcinatorfeuerung erforderliche Verbrennungsluft kann beispielswiese durch den Drehrohrofen und/oder in einer gesonderten Gasleitung, der sogenannten Tertiärluftleitung, vom Klinkerkühler zum Calcinator geführt werden.For example, for the production of cement clinker, raw meal from ground calcareous and silicate rock is subjected to a heat treatment, whereby the limestone is freed of CO2 and converted into burnt lime CaO. In a further step, the raw meal deacidified by the C02 liberation is usually sintered under the influence of heat to form various calcium silicate phases. During pre-calcination (deacidification), the hot raw meal emerging from the second lowest cyclone stage is entrained by the hot gas flowing out of the rotary kiln and fed into a calciner located between the cyclone preheater and the rotary kiln. This is usually a riser pipe in which the furnace gas and the material to be fired are conducted in cocurrent and react with one another. In order to maintain the endothermic deacidification reaction, fuels are added to the calciner. The combustion air required for firing the calciner can, for example, be passed through the rotary kiln and / or in a separate gas line, the so-called tertiary air line, from the clinker cooler to the calciner.

Aus der DE 34 33 786 A1 ist eine Vorrichtung gemäß des Oberbegriffs von Anspruch 1 bekannt. Bei bekannten Calcinatoren treten häufig Probleme bei der Verbrennung der Brennstoffe auf. Beispielsweise sorgt ein schlechter Ausbrand der Brennstoffe für einen erhöhten Wert an Kohlenmonoxid (CO) in dem Abgas des Calcinators. Des Weiteren wird häufig eine zu geringe Stickoxidreduzierung in dem Calcinatorabgas erreicht, wobei beispielsweise die erforderliche Menge an Ammoniak sehr hoch ist. Des Weiteren kommt es dem Calcinator häufig zu einer Beschädigung der Innenwand durch Überhitzung.From the DE 34 33 786 A1 an apparatus according to the preamble of claim 1 is known. In known calciners, problems often arise in the combustion of the fuels. For example, poor combustion of the fuels results in an increased level of carbon monoxide (CO) in the exhaust gas from the calciner. Furthermore, too little nitrogen oxide reduction is often achieved in the calciner exhaust gas, the required amount of ammonia, for example, being very high. In addition, the calciner's inner wall is often damaged by overheating.

Davon ausgehend ist es Aufgabe der vorliegenden Erfindung, einen Calcinator bereitzustellen, der eine erhöhte Betriebssicherheit aufweist und einen geringeren Wartungsaufwand erfordert. Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des unabhängigen Verfahrensanspruchs 1 und durch eine Vorrichtung mit den Merkmalen des unabhängigen Vorrichtungsanspruchs 10 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.On this basis, it is the object of the present invention to provide a calciner which has increased operational reliability and requires less maintenance. According to the invention, this object is achieved by a method with the features of independent method claim 1 and by a device with the features of independent device claim 10. Advantageous developments result from the dependent claims.

Ein Verfahren zum Betreiben eines Calcinators einer Zementherstellungsanlage umfasst nach einem ersten Aspekt die Schritte

  • Ermitteln jeweils einer Temperaturverteilung in zumindest zwei Messebenen innerhalb des Calcinators, und
  • Regeln/ Steuern einer Menge an Brennstoff, vorgewärmten Rohmehl und/oder Verbrennungsluft in den Calcinator in Abhängigkeit der ermittelten Temperaturverteilungen.
According to a first aspect, a method for operating a calciner of a cement production plant comprises the steps
  • Determining a temperature distribution in at least two measuring planes within the calciner, and
  • Regulating / controlling an amount of fuel, preheated raw meal and / or combustion air in the calciner as a function of the determined temperature distributions.

Eine Zementherstellungsanlage zur Herstellung von beispielsweise Zementklinker umfasst insbesondere einen mehrstufigen Vorwärmer zum Vorwärmen von Zementrohmehl, einen Ofen, vorzugweise einen Drehrohrofen, zum Brennen des Zementrohmehls zu Zementklinker und einen Kühler zum Kühlen des Zementklinkers. Beispielsweise weist der Vorwärmer eine Mehrzahl von Zyklonstufen auf, wobei die erste Zyklonstufe im Anschluss an den Einlass des Zementrohmehls in den Vorwärmer und die letzte Zyklonstufe in Strömungsrichtung des Rohmehls vor dem Einlass in den Ofen angeordnet ist. Der Calcinator ist in Gasrichtung vorzugweise zwischen dem Einlass in den Ofen und der letzten Zyklonstufe des Vorwärmers angeordnet, und dient vorzugsweise der Vorcalcinierung des Rohmehls. Die Heißgase des Ofens durchströmen den Calcinator und den Vorwärmer im Gegenstrom zu dem Zementrohmehl. Der Calcinator umfasst beispielsweise zumindest eine Brennkammer, in der Brennstoff zusammen mit sauerstoffhaltiger Verbrennungsluft verbrannt wird und das durch den Calcinator strömende Rohmehl erhitzt. Insbesondere weist der Calcinator zumindest eine als Steigleitung ausgebildete Brennkammer aus, die der Materialstrom aus vorgewärmtem Rohmehl, Brennstoff und Verbrennungsluft von unten nach oben durchströmt.A cement production plant for the production of cement clinker, for example, comprises in particular a multi-stage preheater for preheating raw cement meal, an oven, preferably a rotary kiln, for burning the raw cement meal into cement clinker and a cooler for cooling the cement clinker. For example, the preheater has a plurality of cyclone stages, the first cyclone stage being arranged following the inlet of the cement raw meal into the preheater and the last cyclone stage in the flow direction of the raw meal being arranged upstream of the inlet into the furnace. The calciner is preferably arranged in the gas direction between the inlet into the furnace and the last cyclone stage of the preheater, and is preferably used to precalcine the raw meal. The hot gases from the furnace flow through the calciner and preheater in countercurrent to the raw cement meal. The calciner comprises, for example, at least one combustion chamber in which fuel is burned together with oxygen-containing combustion air and the raw meal flowing through the calciner is heated. In particular, the calciner has at least one combustion chamber designed as a riser, through which the material flow of preheated raw meal, fuel and combustion air flows from bottom to top.

Unter einer Temperaturverteilung ist die insbesondere zweidimensionale Verteilung der Temperatur in einer Ebene zu verstehen. Beispielsweise wird die Temperaturverteilung aus einzelnen in der Messebene ermittelten Temperaturmesswerten berechnet. Die Temperatur wird dazu insbesondere an einer Mehrzahl von Punkten oder Linien in der Ebene gemessen und daraus eine Verteilung der Temperatur über die gesamte Messebene oder zumindest einen Teil der Messebene berechnet. Vorzugsweise umfasst eine Temperaturverteilung eine Mehrzahl von Temperaturwerten, beispielsweise gemessen oder berechnet, die einem Ort oder einem Bereich in der jeweiligen Messebene zuzuordnen sind. Die Messpunkte sind vorzugsweise gleichmäßig zueinander beabstandet und über die gesamte jeweilige Messebene verteilt. Beispielsweise weist eine Messebene zumindest 2, vorzugsweise 30, insbesondere 90 Messpunkte auf. An jedem Messpunkt ist beispielsweise jeweils eine Temperaturmesseinrichtung angeordnet. Vorzugsweise weist eine Temperaturmesseinrichtung einen Sender und einen Empfänger auf, wobei die ermittelte Temperatur vorzugsweise eine mittlere Temperatur zwischen dem Sender und dem Empfänger ist. Es ist ebenfalls denkbar, dass jeder Temperaturwert einem Messwert entspricht oder einen berechneten Mittelwert aus mehreren Messungen darstellt.A temperature distribution is to be understood as the, in particular, two-dimensional distribution of the temperature in a plane. For example, the temperature distribution is calculated from individual temperature measured values determined in the measuring plane. For this purpose, the temperature is measured in particular at a plurality of points or lines in the plane and a distribution of the temperature over the entire measuring plane or at least part of the measuring plane is calculated from this. Preferably, a temperature distribution comprises a plurality of Temperature values, for example measured or calculated, which are to be assigned to a location or an area in the respective measuring plane. The measuring points are preferably evenly spaced from one another and distributed over the entire respective measuring plane. For example, a measuring plane has at least 2, preferably 30, in particular 90 measuring points. For example, a temperature measuring device is arranged at each measuring point. A temperature measuring device preferably has a transmitter and a receiver, the determined temperature preferably being an average temperature between the transmitter and the receiver. It is also conceivable that each temperature value corresponds to a measured value or represents a calculated mean value from several measurements.

Vorzugsweise sind eine Mehrzahl von Temperaturmesseinrichtungen in jeder Messebene angeordnet, wobei jede Temperaturmesseinrichtung einen Sender und einen Empfänger aufweist. Beispielsweise kommunizieren die Temperaturmesseinrichtungen, insbesondere die Sender und Empfänger, jeder Messebene jeweils miteinander, sodass zwischen jedem Sender und Empfänger einer jeweiligen Messebene eine, insbesondere mittlere Temperatur ermittelt wird. Bei einer Anzahl von n Temperaturmesseinrichtungen werden beispielsweise n*(n-1) Messwerte in der Messebene ermittelt. Daraus ergibt sich beispielsweise eine zwei-dimensionale Verteilung der Temperatur. Es ist ebenfalls denkbar, dass Temperaturmesseinrichtungen unterschiedlicher Messebenen miteinander kommunizieren, sodass Temperaturwerte zwischen zwei Temperaturmesseinrichtungen unterschiedlicher Messebenen ermittelt werden. Daraus ergibt sich eine drei-dimensionale Verteilung der Temperatur.A plurality of temperature measuring devices are preferably arranged in each measuring plane, each temperature measuring device having a transmitter and a receiver. For example, the temperature measuring devices, in particular the transmitters and receivers, communicate with each other in each measuring plane, so that a temperature, in particular an average temperature, is determined between each transmitter and receiver of a respective measuring plane. With a number of n temperature measuring devices, for example, n * (n-1) measured values are determined in the measuring plane. This results in a two-dimensional distribution of the temperature, for example. It is also conceivable that temperature measuring devices from different measuring planes communicate with one another, so that temperature values between two temperature measuring devices from different measuring planes are determined. This results in a three-dimensional distribution of the temperature.

Vorzugsweise wird die Temperaturverteilung in zumindest zwei oder mehr voneinander getrennten Messebenen innerhalb des Calcinators, vorzugsweise der Brennkammer des Calcinators ermittelt. Vorzugsweise wird die Temperatur in zwei bis acht, insbesondere vier bis sechs Messebenen ermittelt. Die Messebenen erstrecken sich innerhalb des Calcinators, vorzugsweise der Brennkammer des Calcinators. Das Ermitteln der Temperaturverteilung in jeder Messebene erfolgt über zumindest einen Teil der Erstreckung der Messebene oder über die gesamte Messebene und wird mittels zumindest einer Temperaturmesseinrichtung in jeder Messebene ermittelt. Die Temperaturmesseinrichtungen sind vorzugsweise jeweils in einer Messebene angeordnet.The temperature distribution is preferably determined in at least two or more separate measuring planes within the calciner, preferably the combustion chamber of the calciner. The temperature is preferably determined in two to eight, in particular four to six, measuring planes. The measuring planes extend within the calciner, preferably the combustion chamber of the calciner. The temperature distribution in each measuring plane is determined over at least part of the extent of the measuring plane or over the entire measuring plane and is determined by means of at least one temperature measuring device in each measuring plane. The temperature measuring devices are preferably each arranged in a measuring plane.

In den Calcinator, insbesondere in die zumindest eine Brennkammer des Calcinators, wird Brennstoff, Verbrennungsluft und in dem Vorwärmer vorgewärmtes Rohmehl zugeführt. Beispielsweise weist die Brennkammer eine Mehrzahl von Brennstoffeinlässen, Verbrennungslufteinlässen und/ oder Einlässen zum Einlassen von vorgewärmten Rohmehl auf. Die Menge an Brennstoff, Verbrennungsluft und/ oder vorgewärmten Rohmehl ist vorzugweise über Mittel zum Dosieren der Menge, wie Klappen oder mechanische Fördereinrichtungen einstellbar. In Abhängigkeit der ermittelten Temperaturverteilungen wird die Menge an Brennstoff, Verbrennungsluft und/ oder die Menge an in dem Vorwärmer vorgewärmten Rohmehl vorzugsweise erhöht oder verringert.Fuel, combustion air and raw meal preheated in the preheater are fed into the calciner, in particular into the at least one combustion chamber of the calciner. For example, the combustion chamber has a plurality of fuel inlets, Combustion air inlets and / or inlets for admitting preheated raw meal. The amount of fuel, combustion air and / or preheated raw meal is preferably adjustable via means for metering the amount, such as flaps or mechanical conveying devices. Depending on the determined temperature distributions, the amount of fuel, combustion air and / or the amount of raw meal preheated in the preheater is preferably increased or decreased.

Das Regeln/ Steuern einer Menge an Brennstoff, vorgewärmten Rohmehl und/oder Verbrennungsluft in den Calcinator in Abhängigkeit der ermittelten Temperaturverteilung ermöglicht eine optimale Dosierung der Komponenten des Materialstroms des Calcinators, sodass eine optimale Verbrennung innerhalb der Brennkammer des Calcinators erreicht wird. Die Überwachung der Temperaturverteilung und eine entsprechende Steuerung/Regelung der Menge an Brennstoff, Verbrennungsluft und/ oder Rohmehl verhindert lokale Überhitzungen und somit Beschädigungen an der Innenwand der Brennkammer. Des Weiteren erfolgt die Steuerung/ Regelung der Menge an Brennstoff, Verbrennungsluft und/ oder Rohmehl derart, dass eine Bildung von Kohlenmonoxid verhindert und die Reduzierung von Stickoxiden durch beispielsweise die Zugabe von Ammoniak begünstigt wird.The regulation / control of an amount of fuel, preheated raw meal and / or combustion air in the calciner as a function of the determined temperature distribution enables optimal metering of the components of the material flow of the calciner, so that optimal combustion is achieved within the combustion chamber of the calciner. The monitoring of the temperature distribution and a corresponding control / regulation of the amount of fuel, combustion air and / or raw meal prevents local overheating and thus damage to the inner wall of the combustion chamber. Furthermore, the control / regulation of the amount of fuel, combustion air and / or raw meal takes place in such a way that the formation of carbon monoxide is prevented and the reduction of nitrogen oxides is promoted by, for example, the addition of ammonia.

Gemäß einer ersten Ausführungsform erfolgt die Ermittlung der Temperaturverteilung in zumindest zwei Messebenen gleichzeitig. Zumindest eine oder zwei Messebenen erstrecken sich beispielsweise über einen Querschnitt der Brennkammer des Calcinator, vorzugsweise orthogonal zu der Strömungsrichtung des Materialstroms. Eine Ermittlung der Temperaturverteilung in zumindest zwei Messebenen gleichzeitig ermöglicht eine Überwachung der Temperatur in einer Mehrzahl von Bereichen innerhalb der Brennkammer. Beispielweise werden die Messebenen in Bereichen angeordnet, in denen eine Abweichung der Temperatur von einem optimalen Wert häufig vorkommt oder vorzugweise in der Nähe eines Einlass zum Einlassen von Brennstoff, Verbrennungsluft und/ oder vorgewärmten Rohmehl in die Brennkammer.According to a first embodiment, the temperature distribution is determined in at least two measuring planes simultaneously. At least one or two measuring planes extend, for example, over a cross section of the combustion chamber of the calciner, preferably orthogonally to the direction of flow of the material flow. Determining the temperature distribution in at least two measuring planes at the same time enables the temperature to be monitored in a plurality of areas within the combustion chamber. For example, the measuring planes are arranged in areas in which the temperature often deviates from an optimal value or preferably in the vicinity of an inlet for admitting fuel, combustion air and / or preheated raw meal into the combustion chamber.

Die zumindest zwei Messebenen erstrecken sich gemäß einer weiteren Ausführungsform quer zur Strömungsrichtung des Rohmehls und/oder des Brennstoffs in dem Calcinator. Vorzugsweise bilden die Messebenen jeweils einen Querschnitt der Brennkammer. Die Messebenen können auch parallel zueinander angeordnet sein.According to a further embodiment, the at least two measuring planes extend transversely to the direction of flow of the raw meal and / or the fuel in the calciner. The measuring planes each preferably form a cross section of the combustion chamber. The measuring planes can also be arranged parallel to one another.

Gemäß einer weiteren Ausführungsform erfolgt die Ermittlung zumindest einer der Temperaturverteilungen, vorzugsweiser aller Temperaturverteilungen, akustisch. Beispielweise umfasst eine Temperaturmesseinrichtung zum Ermitteln der Temperatur ein Schallhorn, vorzugsweise als Sender und/ oder Empfänger. Die Ermittlung der Temperaturverteilung erfolgt beispielsweise mittels Schallpyrometrie. Insbesondere wird von einem Sender ein druckluftgeneriertes Schallsignal ausgesendet, welches vorzugsweise einen Frequenzbereich zwischen 200 und 3000 Hz aufweist. Die Laufzeit des Signales zu einem Empfänger wird ermittelt und daraus die Temperatur des Pfades zwischen Sender und Empfänger ermitteln, da die Schallgeschwindigkeit in bekannter Weise von der Temperatur abhängig ist. Werden mehrere Empfänger und Sender bereitgestellt, wobei sich die Signalpfade überkreuzen, lässt sich eine beispielsweise graphische Darstellung einer Temperaturverteilung einer Messebene ermitteln.According to a further embodiment, at least one of the temperature distributions, preferably all temperature distributions, is determined acoustically. For example, a temperature measuring device for determining the temperature comprises a sound horn, preferably as a transmitter and / or receiver. The temperature distribution is determined, for example, by means of sound pyrometry. In particular, a transmitter sends out a sound signal generated by compressed air, which preferably has a frequency range between 200 and 3000 Hz. The transit time of the signal to a receiver is determined and from this the temperature of the path between the transmitter and receiver is determined, since the speed of sound is dependent on the temperature in a known manner. If several receivers and transmitters are provided, with the signal paths crossing over, a graphical representation of a temperature distribution of a measurement plane can be determined, for example.

Die ermittelten Temperaturverteilungen werden gemäß einer weiteren Ausführungsform mit einem vorab ermittelten oder bestimmten Temperaturmittelwert verglichen und eine Abweichung zu diesem Wert ermittelt. Bei dem Temperaturmittelwert handelt es sich beispielweise um einen über die gesamte Messebene gemittelten Temperaturwert, der aus der ermittelten Temperaturverteilung berechnet wurde. Der Mittelwert kann auch ein vorab bestimmter Mittelwert von beispielsweise 850-930°C sein. Vorzugsweise wird jeder Temperaturwert der Temperaturverteilung mit dem Temperaturmittelwert verglichen und jeweils eine Abweichung bestimmt. Die Menge an Brennstoff, vorgewärmten Rohmehl und/ oder Verbrennungsluft wird beispielsweise erhöht oder verringert, wenn zumindest ein Temperaturwert der Temperaturverteilung von dem vorab ermittelten oder bestimmten Temperaturmittelwert abweicht.According to a further embodiment, the determined temperature distributions are compared with a previously determined or determined temperature mean value and a deviation from this value is determined. The temperature mean value is, for example, a temperature value averaged over the entire measuring plane, which was calculated from the determined temperature distribution. The mean value can also be a mean value determined in advance of, for example, 850-930 ° C. Each temperature value of the temperature distribution is preferably compared with the average temperature value and a deviation is determined in each case. The amount of fuel, preheated raw meal and / or combustion air is increased or decreased, for example, if at least one temperature value of the temperature distribution deviates from the previously determined or determined average temperature value.

Gemäß einer weiteren Ausführungsform wird zumindest ein Bereich in der Messebene ermittelt, in dem die Abweichungen einen Wert von etwa +/-25-150°C, vorzugsweise +/-50°-100°C, insbesondere +/-60-80°C übersteigt. Dabei handelt es sich um den Bereich der Messebene, in dem alle Temperaturwerte der Temperaturverteilung eine Abweichung von etwa +/-25-150°C, vorzugsweise +/-50°-100°C, insbesondere +/-60-80°C zu dem Temperaturmittelwert übersteigt. Ein Bereich kann auch lediglich einen Punkt umfassen, der einem Temperaturwert zugeordnet ist, der die oben beschriebene Abweichung aufweist. Beispielsweise umfasst ein Bereich eine Mehrzahl von Punkten auf der jeweiligen Messebene, denen jeweils ein Temperaturwert mit einer oben genannten Abweichung zugeordnet ist. Dies ermöglicht eine Änderung der Zufuhrmenge an Brennstoff, vorgewärmten Rohmehl und/ oder Verbrennungsluft an oder in der Nähe des Bereichs der jeweiligen Messebene, an dem die Temperaturdifferenz zu hoch ist.According to a further embodiment, at least one area is determined in the measuring plane in which the deviations have a value of approximately +/- 25-150 ° C, preferably +/- 50 ° -100 ° C, in particular +/- 60-80 ° C exceeds. This is the area of the measuring plane in which all temperature values of the temperature distribution have a deviation of approximately +/- 25-150 ° C, preferably +/- 50 ° -100 ° C, in particular +/- 60-80 ° C exceeds the average temperature value. A range can also include only one point that is assigned to a temperature value that has the deviation described above. For example, an area comprises a plurality of points on the respective measurement plane, each of which is assigned a temperature value with an above-mentioned deviation. This makes it possible to change the amount of fuel, preheated raw meal and / or combustion air supplied at or in the vicinity of the area of the respective measuring plane at which the temperature difference is too high.

Die Menge an Brennstoff, vorgewärmten Rohmehl und/ oder Verbrennungsluft wird gemäß einer weiteren Ausführungsform erhöht oder verringert, wenn ein Temperaturwert in einer der Messebenenen einen vorab ermittelten oder bestimmten Temperaturmittelwert um etwa +/- 25-150°C, vorzugsweise +/- 50°-100°C, insbesondere +/-60-80°C überschreitet.According to a further embodiment, the amount of fuel, preheated raw meal and / or combustion air is increased or decreased when a temperature value in one of the measurement planes exceeds a previously determined or determined average temperature value by approximately +/- 25-150 ° C, preferably +/- 50 ° -100 ° C, in particular +/- 60-80 ° C.

Gemäß einer weiteren Ausführungsform wird die Menge an vorgewärmten Rohmehl erhöht, wenn ein Temperaturwert in einer der Messebenen den vorab ermittelten oder bestimmten Mittelwert um etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C überschreitet. Beispielsweise wird die Menge an vorgewärmtem Rohmehl in dem oder in der Nähe des Bereichs der Messebene zugeführt, in dem die Temperaturwerte den Temperaturmittelwert um den oben genannten Wert überschreitet. Rohmehl dient als Temperatursenke und ermöglicht eine lokale Reduzierung der Temperatur, vorzugsweise in dem Bereich, in dem die Temperaturabweichung den voran genannten Wert überschreitet. Die Menge an Brennstoff wird gemäß einer weiteren Ausführungsform erhöht, wenn zumindest ein Temperaturwert in der Messebene einen vorab ermittelten oder bestimmten Temperaturmittelwert um etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C unterschreitet. Vorzugsweise wird die Menge an Brennstoff in dem oder in der Nähe des Bereichs der Messebene zugeführt, in dem vorzugsweise alle Temperaturwerte den Temperaturmittelwert um den oben genannten Wert unterscheitet. Eine erhöhte Menge an Brennstoff sorgt für eine lokale Temperaturerhöhung in dem Brennraum des Calcinators. Vorzugsweise wird gleichzeitig die Menge an Verbrennungsluft erhöht. Insbesondere ist die dem Calcinator zugeführte Menge an Brennstoff konstant, sodass lediglich die Aufgabemenge an einem der Mehrzahl von Brennstoffeinlässen in Abhängigkeit der ermittelten Temperaturverteilung variiert wird. Dadurch wird eine relativ genaue Regelung der Zufuhrmengen erreicht, in Abhängigkeit von dem Ort in dem Calcinator, an dem die Temperaturabweichungen auftreten, sodass eine lokale Temperaturregelung innerhalb des Calcinators erfolgt.According to a further embodiment, the amount of preheated raw meal is increased if a temperature value in one of the measuring levels exceeds the previously determined or determined mean value by about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C. For example, the amount of preheated raw meal is supplied in or in the vicinity of the area of the measuring plane in which the temperature values exceed the average temperature value by the above-mentioned value. Raw meal serves as a temperature sink and enables the temperature to be reduced locally, preferably in the area in which the temperature deviation exceeds the aforementioned value. According to a further embodiment, the amount of fuel is increased if at least one temperature value in the measuring plane falls below a previously determined or determined average temperature value by about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C. The amount of fuel is preferably supplied in or in the vicinity of the area of the measuring plane in which preferably all temperature values are below the average temperature value by the above-mentioned value. An increased amount of fuel ensures a local temperature increase in the combustion chamber of the calciner. The amount of combustion air is preferably increased at the same time. In particular, the amount of fuel supplied to the calciner is constant, so that only the input amount at one of the plurality of fuel inlets is varied as a function of the determined temperature distribution. As a result, a relatively precise regulation of the feed quantities is achieved, depending on the location in the calciner at which the temperature deviations occur, so that local temperature regulation takes place within the calciner.

Die Erfindung umfasst auch einen Calcinator einer Zementherstellungsanlage mit einer Brennkammer, wobei an der Brennkammer zumindest ein Einlass zum Einlassen von vorgewärmten Rohmehl in die Brennkammer, zumindest ein Brennstoffeinlass zum Einlassen von Brennstoff in die Brennkammer und zumindest ein Lufteinlass zum Einlassen von Verbrennungsluft in die Brennkammer angeordnet sind. In der Brennkammer sind zumindest zwei Messebenen mit jeweils zumindest einer Temperaturmesseinrichtung zur Ermittlung der Temperaturverteilung in der jeweiligen Messebene angeordnet. Eine Steuerungs-/ Regelungseinrichtung ist vorgesehen, die derart ausgebildet ist, dass sie die Menge an vorgewärmten Rohmehl, Brennstoff und/ oder Verbrennungsluft in die Brennkammer in Abhängigkeit der ermittelten Temperaturverteilung steuert/ regelt.The invention also comprises a calciner of a cement production plant with a combustion chamber, at least one inlet for admitting preheated raw meal into the combustion chamber, at least one fuel inlet for admitting fuel into the combustion chamber and at least one air inlet for admitting combustion air into the combustion chamber being arranged on the combustion chamber are. At least two measuring planes, each with at least one temperature measuring device for determining the temperature distribution in the respective measuring plane, are arranged in the combustion chamber. A control / A control device is provided which is designed in such a way that it controls / regulates the amount of preheated raw meal, fuel and / or combustion air in the combustion chamber as a function of the determined temperature distribution.

Die Brennkammer ist vorzugsweise als Steigleitung ausgebildet, wobei der Materialstrom aus Brennstoff, Rohmehl und Verbrennungsluft von unten nach oben durch die Steigleitung strömt. Insbesondere steht die Steuerungs-/ Regelungseinrichtung mit jeder der Temperaturmesseinrichtungen in Verbindung, sodass diese die ermittelte Temperaturverteilung an die Steuerungs-/ Regelungseinrichtung übermitteln. Beispielsweise sind eine Mehrzahl von Temperaturmesseinrichtungen in einer Messebene angeordnet, insbesondere 2 bis 10, vorzugsweise 4 bis 8 oder 6.The combustion chamber is preferably designed as a riser, with the material flow of fuel, raw meal and combustion air flowing from bottom to top through the riser. In particular, the control / regulating device is connected to each of the temperature measuring devices, so that they transmit the determined temperature distribution to the control / regulating device. For example, a plurality of temperature measuring devices are arranged in a measuring plane, in particular 2 to 10, preferably 4 to 8 or 6.

Die mit Bezug auf das Verfahren zum Betreiben eines Calcinators beschriebenen Vorteile treffen in vorrichtungsmäßiger Entsprechung auch auf den Calcinator zu.The advantages described with reference to the method for operating a calciner also apply to the calciner in a corresponding device-related manner.

Gemäß einer Ausführungsform weist zumindest einer der Einlässe zum Einlassen von vorgewärmten Rohmehl, Brennstoff und/ oder Verbrennungsluft ein Mittel zum Regeln der Menge an durch den Einlass in die Brennkammer strömendes vorgewärmtes Rohmehl, Brennstoff und/ oder Verbrennungsluft auf. Vorzugsweise weisen mehrere oder alle der Einlässe ein solches Mittel auf. Die Steuerungs-/ Regelungseinrichtung steht gemäß einer weiteren Ausführungsform mit zumindest einem der Mittel in Verbindung steht, sodass die Steuerungs-/ Regelungseinrichtung die Menge an vorgewärmten Rohmehl, Brennstoff und/ oder Verbrennungsluft in die Brennkammer, vorzugsweise die Steigleitung, in Abhängigkeit der mittels der Temperaturmesseinrichtung ermittelten Temperatur, insbesondere Temperaturverteilung steuert/ regelt.According to one embodiment, at least one of the inlets for admitting preheated raw meal, fuel and / or combustion air has a means for regulating the amount of preheated raw meal, fuel and / or combustion air flowing through the inlet into the combustion chamber. Preferably several or all of the inlets have such a means. According to a further embodiment, the control / regulating device is connected to at least one of the means, so that the control / regulating device transfers the amount of preheated raw meal, fuel and / or combustion air into the combustion chamber, preferably the riser, as a function of the means of the temperature measuring device determined temperature, in particular temperature distribution controls / regulates.

Gemäß einer weiteren Ausführungsform sind die Messebenen in Strömungsrichtung zueinander beabstandet angeordnet. Vorzugsweise sind die Messebenen parallel zueinander angeordnet. Jede der Messebenen weist gemäß einer weiteren Ausführungsform eine Mehrzahl von Temperaturmesseinrichtungen auf, wobei die Temperaturmesseinrichtungen insbesondere gleichmäßig zueinander beabstandet sind. Die Temperaturmesseinrichtungen sind vorzugsweise an der Innenwand der Brennkammer des Calcinators angeordnet. Gemäß einer weiteren Ausführungsform ist die Temperaturmesseinrichtung ein akustischer Sensor. Insbesondere weist der Calcinator eine Mehrzahl von Brennkammern auf, wobei zumindest eine Brennkammer als Steigleitung ausgebildet ist und jede der Brennkammern zumindest mit der als Steigleitung ausgebildeten Brennkammer in Verbindung steht.According to a further embodiment, the measuring planes are arranged at a distance from one another in the direction of flow. The measuring planes are preferably arranged parallel to one another. According to a further embodiment, each of the measuring planes has a plurality of temperature measuring devices, the temperature measuring devices being in particular evenly spaced from one another. The temperature measuring devices are preferably arranged on the inner wall of the combustion chamber of the calciner. According to a further embodiment, the temperature measuring device is an acoustic sensor. In particular, the calciner has a plurality of combustion chambers, at least one combustion chamber as Riser is formed and each of the combustion chambers is at least connected to the combustion chamber formed as a riser.

Beschreibung der ZeichnungenDescription of the drawings

Die Erfindung ist nachfolgend anhand mehrerer Ausführungsbeispiele mit Bezug auf die beiliegenden Figuren näher erläutert.

Fig. 1
zeigt eine schematische Darstellung einer Zementherstellungsanlage mit einem Calcinator gemäß einem Ausführungsbeispiel.
Fig. 2
zeigt eine schematische Darstellung eines Calcinators gemäß einem Ausführungsbeispiel.
Fig. 3
zeigt eine schematische Darstellung eines Calcinators gemäß einem Ausführungsbeispiel.
The invention is explained in more detail below on the basis of several exemplary embodiments with reference to the accompanying figures.
Fig. 1
shows a schematic representation of a cement production plant with a calciner according to an embodiment.
Fig. 2
shows a schematic representation of a calciner according to an embodiment.
Fig. 3
shows a schematic representation of a calciner according to an embodiment.

Fig. 1 zeigt eine Anlage zur Herstellung von beispielsweise Zementklinker mit einem mehrstufigen Vorwärmer 12 zum Vorwärmen von Zementrohmehl 28, einem Calcinator 16 zum Vorcalcinieren des vorgewärmten Zementrohmehls 14, einen Ofen 22 zum Brennen des vorcalcinierten Zementrohmehls 18 zu Zementklinker und einen Kühler 26 zum Kühlen des Zementklinkers. Der Vorwärmer 12 weist beispielhaft vier Zyklonstufen auf, wobei die erste Zyklonstofe im Anschluss an den Einlass des Zementrohmehls 28 und die letzte, vierte Zyklonstufe in Strömungsrichtung des Rohmehls vor dem Einlass in den Ofen 22 angeordnet ist. Jede Zyklonstufe weist einen Zyklon auf, der der Abscheidung des Rohmehls aus dem Materialstrom aus Ofenabgas uns Rohmehl dient. Zwischen der letzten und der vorletzten Zyklonstufe ist der Calcinator 16 angeordnet, in dem das Rohmehl vorzugsweise vorcalciniert wird. Die im Ofen 22 entstehenden Heißgase 20 durchströmen zunächst den Calcinator 16 und anschließend den Vorwärmer 12 im Gegenstrom zu dem Zementrohmehl. Ferner wird eine im Kühler 22 entstehende Kühlerabluft 24 als Verbrennungsluft im Calcinator 16 genutzt. Fig. 1 shows a plant for the production of cement clinker, for example, with a multi-stage preheater 12 for preheating cement raw meal 28, a calciner 16 for precalcining the preheated cement raw meal 14, an oven 22 for burning the precalcined cement raw meal 18 to cement clinker and a cooler 26 for cooling the cement clinker. The preheater 12 has, for example, four cyclone stages, the first cyclone substance being arranged following the inlet of the cement raw meal 28 and the last, fourth cyclone stage in the flow direction of the raw meal before the inlet into the furnace 22. Each cyclone stage has a cyclone, which is used to separate the raw meal from the material flow of kiln exhaust gas and raw meal. The calciner 16, in which the raw meal is preferably precalcined, is arranged between the last and the penultimate cyclone stage. The hot gases 20 produced in the furnace 22 first flow through the calciner 16 and then through the preheater 12 in countercurrent to the raw cement meal. Furthermore, an exhaust air 24 produced in the cooler 22 is used as combustion air in the calciner 16.

Fig. 2 zeigt einen Calcinator 16, der eine als Steigleitung ausgebildete Brennkammer 46 mit einem beispielhaft rechteckigen Querschnitt, in der die Verbrennung von Brennstoff 30 zusammen mit Verbrennungsluft 32 zum Erhitzen des vorgewärmten Rohmehls 14 erfolgt. Die sauerstoffhaltige Verbrennungsluft 32 ist beispielswiese Kühlerabluft gemäß Fig. 1 oder mit Sauerstoff angereicherte Umgebungsluft. Die Steigleitung 46 weist zwei Einlässe 48, 50 zum Fig. 2 shows a calciner 16, which has a combustion chamber 46 designed as a riser with an exemplary rectangular cross section, in which the combustion of fuel 30 takes place together with combustion air 32 for heating the preheated raw meal 14. The oxygen-containing combustion air 32 is, for example, cooler exhaust air according to FIG Fig. 1 or ambient air enriched with oxygen. The riser 46 has two inlets 48, 50 for

Einlassen von vorgewärmten Rohmehl 14 in die Steigleitung 46 auf. Es ist ebenfalls denkbar mehr als zwei Einlässe zum Einlassen von vorgewärmten Rohmehl 14 an der Steigleitung 46 vorzusehen. Die Einlässe 48, 50 sind in der mit dem Pfeil gekennzeichneten Strömungsrichtung des Materialstroms zueinander beabstandet angeordnet. Beispielsweise sind zwei bis vier Rohmehleinlässe an dem Calcinator 16 angeordnet, die beispielsweise in Umfangsrichtung und/ oder in Materialströmungsrichtung zueinander beabstandet sind.Admitting preheated raw meal 14 into the riser line 46. It is also conceivable to provide more than two inlets for admitting preheated raw meal 14 on the riser line 46. The inlets 48, 50 are arranged at a distance from one another in the direction of flow of the material flow indicated by the arrow. For example, two to four raw meal inlets are arranged on the calciner 16, which are for example spaced apart from one another in the circumferential direction and / or in the material flow direction.

In Strömungsrichtung des Materials vor den Einlässen 48, 50 sind beispielhaft zwei Brennstoffeinlässe 52, 54 an der Steigleitung 46 angebracht, durch welche Brennstoff 30 in die Steigleitung 46 eingeleitet wird. Es ist ebenfalls denkbar, eine Mehrzahl von Brennstoffeinlässen in Umfangsrichtung und/ oder in Materialströmungsrichtung zueinander beabstandet an der Steigleitung 46 anzuordnen. Zumindest einer der Brennstoffeinlässe 52, 54 kann stromabwärts eines der Einlässe 48 50 angeordnet sein.In the flow direction of the material upstream of the inlets 48, 50, two fuel inlets 52, 54 are attached to the riser line 46, through which fuel 30 is introduced into the riser line 46. It is also conceivable to arrange a plurality of fuel inlets at a distance from one another in the circumferential direction and / or in the material flow direction on the riser line 46. At least one of the fuel inlets 52, 54 can be arranged downstream of one of the inlets 48, 50.

Die Steigleitung 46 weist auch eine Mehrzahl von Lufteinlässen 56, 58 auf, durch welche Verbrennungsluft 32 in die Steigleitung eingeführt wird. Beispielhaft sind in Fig. 2 zwei Lufteinlässe 56, 58 gezeigt, wobei die Steigleitung auch mehr als zwei Lufteinlässe aufweisen kann, die in Umfangsrichtung der Steigleitung 46 und/ oder in Materialströmungsrichtung zueinander beabstandet an der Steigleitung 46 angebracht sind. Zumindest einer oder jeder der Einlässe 48, 50, 52, 54, 56, 58 zum Einlassen von vorgewärmten Rohmehl 14, Brennstoff 30 oder Verbrennungsluft 32 weist insbesondere Mittel zur Dosierung der Einlassmenge auf, mittels welchem die Menge an vorgewärmten Rohmehl, Brennstoff oder Verbrennungsluft einstellbar ist. Solche Mittel sind beispielsweise Klappen, Waagen, volumetrische Dosiereinrichtungen oder Fördereinrichtungen, wie Förderschnecken, Förderbänder oder pneumatische Transportsysteme.The riser 46 also has a plurality of air inlets 56, 58 through which combustion air 32 is introduced into the riser. Examples are in Fig. 2 two air inlets 56, 58 are shown, wherein the riser can also have more than two air inlets, which are attached to the riser 46 in the circumferential direction of the riser 46 and / or spaced apart from one another in the material flow direction. At least one or each of the inlets 48, 50, 52, 54, 56, 58 for admitting preheated raw meal 14, fuel 30 or combustion air 32 has in particular means for metering the inlet quantity, by means of which the quantity of preheated raw meal, fuel or combustion air can be adjusted is. Such means are, for example, flaps, scales, volumetric metering devices or conveying devices such as screw conveyors, conveyor belts or pneumatic transport systems.

In der Steigleitung sind zwei Messebenen 34, 36 angeordnet, die sich im Wesentlichen orthogonal zur Strömungsrichtung erstrecken und vorzugweise eine Querschnittsebene der Steigleitung 46 bilden. Die Messebenen 34, 36 sind in Strömungsrichtung des Materials zueinander beabstandet in der Steigleitung 46 angeordnet und beispielsweise zueinander parallel. Beispielhaft ist die erste Messebene 34 in Strömungsrichtung hinter der zweiten Messebene 36 und vorzugsweise zwischen den Einlässen 48, 50 zum Einlassen von Rohmehl 14 angeordnet. Die zweite Messebene 36 ist beispielhaft zwischen den Brennstoffeinlässen 52, 54 angeordnet.Two measuring planes 34, 36 are arranged in the riser, which extend essentially orthogonally to the direction of flow and preferably form a cross-sectional plane of the riser 46. The measuring planes 34, 36 are arranged in the riser 46 at a distance from one another in the flow direction of the material and are, for example, parallel to one another. For example, the first measuring plane 34 is arranged behind the second measuring plane 36 in the direction of flow and preferably between the inlets 48, 50 for admitting raw meal 14. The second measuring plane 36 is arranged, for example, between the fuel inlets 52, 54.

In jeder Messebene 34, 36 weist die Steigleitung 46 jeweils eine Mehrzahl von Temperaturmesseinrichtung 40 zum Ermitteln der Temperator innerhalb der Steigleitung 46 auf. Beispielhaft sind in jeder Messebene 34, 36 jeweils vier Temperaturmesseinrichtung 40 angebracht. Vorzugweise weist jede Messebene 2-10, vorzugsweise 4-6 Temperaturmesseinrichtungen 40 auf. Die Temperaturmesseinrichtungen 40 sind vorzugsweise an der Innenwand des Steigrohrs 46 in der Messebene 34, 36 angebracht und insbesondere gleichmäßig zueinander beabstandet angeordnet. Es ist ebenfalls denkbar, in jeder Messebene 34, 36 lediglich eine Temperaturmesseinrichtung 40 anzuordnen.In each measuring plane 34, 36, the riser 46 has a plurality of temperature measuring devices 40 for determining the temperature within the riser 46. For example, four temperature measuring devices 40 are attached in each measuring plane 34, 36. Each measuring plane preferably has 2-10, preferably 4-6, temperature measuring devices 40. The temperature measuring devices 40 are preferably attached to the inner wall of the riser pipe 46 in the measuring plane 34, 36 and, in particular, are arranged at a uniform distance from one another. It is also conceivable to arrange only one temperature measuring device 40 in each measuring plane 34, 36.

Die Temperaturmesseinrichtungen 40 sind insbesondere dazu ausgebildet eine Temperaturverteilung innerhalb der Messebene 34, 36 zu ermitteln. Dazu eignet sind insbesondere die Verwendung eines akustischen Sensors als Temperaturmesseinrichtung.The temperature measuring devices 40 are designed in particular to determine a temperature distribution within the measuring plane 34, 36. The use of an acoustic sensor as a temperature measuring device is particularly suitable for this purpose.

Der Calcinator weist vorzugweise einen in Fig. 2 nicht dargestellte Steuerungs-/Regelungseinrichtung zum Steuern/ Regeln der Materialströme auf. Die Steuerungs-/Regelungseinrichtung ist mit zumindest einer der Temperaturmesseinrichtungen 40 verbunden, sodass diese die ermittelte Temperatur, insbesondere die ermittelte Temperaturverteilung in der jeweiligen Messebene an die Steuerungs-/Regelungseinrichtung übermittelt. Vorzugsweise ist die Steuerungs-/Regelungseinrichtung mit jeder Temperaturmesseinrichtung 40 des Calcinators verbunden. Des Weiteren ist die Steuerungs-/Regelungseinrichtung mit den Einlässen 48, 50, 52, 54, 56, 58, insbesondere mit dem Mittel zur Dosierung der Einlassmenge des jeweiligen Einlasses 48, 50, 52, 54, 56, 58 in Verbindung, sodass die Steuerungs-/Regelungseinrichtung die Menge an vorgewärmten Rohmehl, Brennstoff und/ oder Verbrennungsluft in den Calcinator 16, insbesondere in die Steigleitung 46 des Calcinators 16 steuert/ regelt. Die Menge an vorgewärmten Rohmehl, Brennstoff und/ oder Verbrennungsluft in den Calcinator 16 wird insbesondere in Abhängigkeit der vorab mittels der Temperaturmesseinrichtungen 40 ermittelten Temperaturverteilung gesteuert/ geregelt.The calciner preferably has an in Fig. 2 Control / regulating device, not shown, for controlling / regulating the material flows. The control / regulating device is connected to at least one of the temperature measuring devices 40, so that it transmits the ascertained temperature, in particular the ascertained temperature distribution in the respective measuring plane, to the control / regulating device. The control / regulating device is preferably connected to each temperature measuring device 40 of the calciner. Furthermore, the control / regulating device is connected to the inlets 48, 50, 52, 54, 56, 58, in particular to the means for metering the inlet quantity of the respective inlet 48, 50, 52, 54, 56, 58, so that the Control / regulating device controls / regulates the amount of preheated raw meal, fuel and / or combustion air in the calciner 16, in particular in the riser line 46 of the calciner 16. The amount of preheated raw meal, fuel and / or combustion air in the calciner 16 is controlled / regulated in particular as a function of the temperature distribution determined in advance by means of the temperature measuring devices 40.

Beispielsweise erfolgt die Steuerung/ Regelung derart, dass eine möglichst gleichmäßige Temperaturverteilung über die jeweilige Messebene 34, 36 erreicht wird. Vorzugsweise beträgt die mittlere Temperatur in einer Messebene 34, 36 etwa 700-1100°, vorzugsweise 850-950°C, insbesondere 900°C. Die ermittelte Temperaturverteilung wird vorzugsweise mit einer voran ermittelten mittleren Temperatur oder einer vorab festgelegten mittleren Temperatur verglichen. Bei einer Abweichung von dieser Temperatur um beispielsweise mehr als +/- 25-150°C, vorzugsweise +/-50°-100°C, insbesondere +/-60-80°C, wird die Menge an vorgewärmten Rohmehl, Brennstoff und / oder Verbrennungsluft in die Steigleitung 46 derart gesteuert/ geregelt, dass die Abweichung der Temperatur auf einen Wert unterhalb des beschriebenen Wertes verringert.For example, the control / regulation takes place in such a way that the most uniform possible temperature distribution over the respective measuring plane 34, 36 is achieved. The mean temperature in a measuring plane 34, 36 is preferably approximately 700-1100 °, preferably 850-950 ° C, in particular 900 ° C. The determined temperature distribution is preferably compared with a previously determined mean temperature or a previously determined mean temperature. In the event of a deviation from this temperature by, for example, more than +/- 25-150 ° C., preferably +/- 50 ° -100 ° C., in particular +/- 60-80 ° C., the amount of preheated Raw meal, fuel and / or combustion air in the riser 46 is controlled / regulated in such a way that the deviation in temperature is reduced to a value below the value described.

Übersteigt beispielsweise die Temperatur in einem bestimmten Bereich innerhalb der Messebene die ermittelte oder festgelegte mittlere Temperatur um den oben angegebenen Wert von etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C, wird die Menge an vorgewärmten Rohmehl, das durch einen der Einlässe 48, 50 in die Steigleitung 46 aufgegeben wird, erhöht. Rohmehl dient als Wärmesenke und verringert die Temperatur innerhalb der Steigleitung 46. Beispielweise wird die Menge an Rohmehl 14 an dem Einlass 48, 50 erhöht, der dem Bereich der Messebene 34, 36, in dem die Temperatur erhöht ist, am nächsten ist.For example, if the temperature in a certain area within the measurement plane exceeds the determined or specified mean temperature by the above-mentioned value of about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C, the amount is preheated Raw meal that is fed into the riser line 46 through one of the inlets 48, 50 is increased. Raw meal serves as a heat sink and reduces the temperature within the riser line 46. For example, the amount of raw meal 14 is increased at the inlet 48, 50 which is closest to the area of the measuring plane 34, 36 in which the temperature is increased.

Unterschreitet die Temperatur in einem bestimmten Bereich innerhalb der Messebene 34, 36 die ermittelte oder festgelegte mittlere Temperatur um etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C, wird die Menge an Brennstoff 30, der in die Steigleitung 46 aufgegeben wird erhöht. Insbesondere wird die Menge an Brennstoff 30 an dem Einlass 52, 54 erhöht, der dem Bereich der Messebene 34, 36, in dem die Temperatur erhöht ist, am nächsten ist.If the temperature in a certain range within the measuring plane 34, 36 falls below the determined or specified mean temperature by about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C, the amount of fuel 30, the abandoned in the riser 46 is increased. In particular, the amount of fuel 30 is increased at the inlet 52, 54 which is closest to the area of the measuring plane 34, 36 in which the temperature is increased.

Beispielsweise wird die Menge an Verbrennungsluft erhöht, wenn die Temperatur in einem bestimmten Bereich innerhalb der Messebene 34, 36 die ermittelte oder festgelegte mittlere Temperatur um etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C unterschreitet, wobei vorzugsweise die Menge an Verbrennungsluft an dem Einlass erhöht wird, der dem Bereich der Messebene 34, 36, in dem die Temperatur erhöht ist, am nächsten ist.For example, the amount of combustion air is increased if the temperature in a certain area within the measuring plane 34, 36 falls below the determined or specified mean temperature by about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C , wherein the amount of combustion air is preferably increased at the inlet which is closest to the area of the measuring plane 34, 36 in which the temperature is increased.

Fig. 3 zeigt ein weiteres Ausführungsbeispiel eines Calcinators 16 mit einer ersten Brennkammer 46, die als Steigleitung ausgebildet ist und einer zweiten Brennkammer 44, die mit der ersten Brennkammer derart verbunden ist, dass ein Materialstrom aus erhitzen Rohmehl 14 von der zweiten Brennkammer 44 in die erste Brennkammer 46 strömt. Die erste Brennkammer 46 entspricht vorzugweise der mit Bezug auf Fig. 2 beschriebenen Brennkammer 46, in der zwei Messebenen 34, 36 angeordnet sind. Beispielhaft weist die erste Brennkammer 46 der Fig. 3 lediglich einen Brennstoffeinlass 52 und einen Verbrennungslufteinlass 52 auf, die jeweils unterhalb der zweiten, unteren Messebene angeordnet sind. Des Weiteren weist die erste Brennkammer insbesondere zwei Einlässe 48, 50 zum Einlassen von vorgewärmten Rohmehl 14 auf, wobei der erste Einlass 50 in Strömungsrichtung des Materialstroms vor dem zweiten Einlass 48 und den Messebenen 34, 36 angeordnet ist und der zweite Einlass 48 stromabwärts des ersten Einlasses 50 und der beiden Messebenen 34, 36 angeordnet ist. Die zweite Brennkammer 44 ist beispielhaft nicht als Steigleitung ausgebildet. Es ist ebenfalls denkbar, mehr als zwei Brennkammern 44, 46 in dem Calcinator 16 vorzusehen, wobei die Brennkammern 44, 46 miteinander verbunden sind und zumindest eine Brennkammer 44, 46 als Steigleitung ausgebildet ist. Fig. 3 shows a further embodiment of a calciner 16 with a first combustion chamber 46, which is designed as a riser pipe and a second combustion chamber 44, which is connected to the first combustion chamber in such a way that a material flow of heated raw meal 14 from the second combustion chamber 44 into the first combustion chamber 46 flows. The first combustion chamber 46 preferably corresponds to that with reference to FIG Fig. 2 described combustion chamber 46, in which two measuring planes 34, 36 are arranged. By way of example, the first combustion chamber 46 has Fig. 3 only one fuel inlet 52 and one combustion air inlet 52, which are each arranged below the second, lower measuring plane. Furthermore, the first combustion chamber has in particular two inlets 48, 50 for admitting preheated raw meal 14, the first inlet 50 being arranged in the flow direction of the material flow upstream of the second inlet 48 and the measuring planes 34, 36 and the second inlet 48 downstream of the first inlet 50 and the two measuring planes 34, 36 is arranged. The second combustion chamber 44 is not designed as a riser, for example. It is also conceivable to provide more than two combustion chambers 44, 46 in the calciner 16, the combustion chambers 44, 46 being connected to one another and at least one combustion chamber 44, 46 being designed as a riser.

Die untere der beiden Messebenen 34, 36 erstreckt sich von der ersten Brennkammer 46 in die zweite Brennkammer 44. Die zweite Brennkammer 44 weist beispielhaft einen Brennstoffeinlass 60 zum Einlassen von Brennstoff in die zweite Brennkammer 44 auf. Die zweite Brennkammer 44 weist beispielhaft einen im Wesentlichen horizontalen Auflagebereich zur Aufnahme von Brennstoff 30 auf, wobei der Brennstoffeinlass 60 derart angeordnet ist, dass Brennstoff 30 aus dem Brennstoffeinlass 60 auf den Auflagebereich fällt. Des Weiteren weist die zweite Brennkammer 44 einen Verbrennungslufteinlass 62 und einen Einlass 64 zum Einlassen von vorgewärmten Rohmehl 14 auf. An den horizontalen Auflagebereich der zweiten Brennkammer 44 schließt sich ein vertikal abfallender Bereich, insbesondere ein Rutsche, an, der in die zweite Brennkammer 46 mündet. Der Brennstoff 30 wird beispielsweise nach einer ausreichenden Verweilzeit auf dem Auflagebereich in den abfallenden Bereich geschoben. Dies kann vorzugsweise durch mechanische Fördereinrichtungen wir Förderschnecken oder Schieber oder auch pneumatische Luftstoßeinrichtungen erfolgen. Der Brennstoff 30 der zweiten Brennkammer wird anschließend von dem Materialstrom der als Steigleitung 46 ausgebildeten ersten Brennkammer erfasst und weiter verbrannt.The lower of the two measuring planes 34, 36 extends from the first combustion chamber 46 into the second combustion chamber 44. The second combustion chamber 44 has, for example, a fuel inlet 60 for admitting fuel into the second combustion chamber 44. The second combustion chamber 44 has, for example, an essentially horizontal support area for receiving fuel 30, the fuel inlet 60 being arranged such that fuel 30 falls from the fuel inlet 60 onto the support area. Furthermore, the second combustion chamber 44 has a combustion air inlet 62 and an inlet 64 for admitting preheated raw meal 14. The horizontal support area of the second combustion chamber 44 is followed by a vertically sloping area, in particular a chute, which opens into the second combustion chamber 46. The fuel 30 is pushed into the sloping area, for example after a sufficient dwell time on the support area. This can preferably be done by mechanical conveying devices such as screw conveyors or slides or pneumatic air blast devices. The fuel 30 of the second combustion chamber is then captured by the material flow of the first combustion chamber, which is designed as a riser 46, and is burned further.

In der zweiten Brennkammer 44 ist lediglich eine Messebene 36 angeordnet. Die sich von der zweiten Brennkammer 44 in einem Winkel zur Horizontalen von etwa 10- 60°, vorzugswiese 20-50°, insbesondere 45° in die erste Brennkammer 46 erstreckt. Die Fläche der unteren, zweiten Messebene 36 ist daher vorzugsweise größer als die Fläche der ersten darüber angeordnete Messebene 34, die sich lediglich innerhalb der ersten Brennkammer 46 erstreckt. Die zweite Messebene 36 weist beispielhalft acht Temperaturmesseinrichtungen 40 auf, die vorzugsweise gleichmäßig zueinander beabstandet an der Innenseite der ersten und zweiten Brennkammer 44, 46 angebracht sind. Eine davon abweichende Anzahl an Temperaturmesseinrichtungen 40, wie beispielsweise 10 bis 20 Temperaturmesseinrichtungen 40 ist ebenfalls denkbar. Die Temperaturmesseinrichtungen 40 der zweiten Messebene 36 ermitteln eine Temperaturverteilung der sich von der ersten Brennkammer 46 in die zweite Brennkammer 44 ersteckenden Messebene 36. Die Anordnung der ersten Messebene entspricht der mit Bezug auf Fig. 2 beschriebenen Anordnung der Messebene 34.Only one measuring plane 36 is arranged in the second combustion chamber 44. Which extends from the second combustion chamber 44 at an angle to the horizontal of approximately 10-60 °, preferably 20-50 °, in particular 45 °, into the first combustion chamber 46. The area of the lower, second measuring plane 36 is therefore preferably larger than the area of the first measuring plane 34 arranged above it, which only extends within the first combustion chamber 46. The second measuring plane 36 has, for example, eight temperature measuring devices 40, which are preferably attached to the inside of the first and second combustion chambers 44, 46 at a uniform distance from one another. A different number of temperature measuring devices 40, such as 10 to 20 temperature measuring devices 40, is also conceivable. The temperature measuring devices 40 of the second measuring plane 36 determine a temperature distribution of the measuring plane 36 extending from the first combustion chamber 46 into the second combustion chamber 44. The arrangement of the first measuring plane corresponds to that with reference to FIG Fig. 2 described arrangement of the measuring plane 34.

Zumindest eine oder alle Temperaturmesseinrichtungen 40 der ersten und zweiten Messebenen 34, 36 sind ebenfalls mit einer nicht dargestellten Steuerungs-/Regelungseinrichtung zum Steuern/ Regeln der Materialströme auf, wobei die ermittelte Temperatur, insbesondere die ermittelte Temperaturverteilung in der jeweiligen Messebene an die Steuerungs-/Regelungseinrichtung übermittelt wird. Des Weiteren ist die Steuerungs-/Regelungseinrichtung mit den Einlässen 48, 50, 52, 54, 56, 58, 60, 62, 64 insbesondere mit dem Mittel zur Dosierung der Einlassmenge des jeweiligen Einlasses 48-64 in Verbindung, sodass die Steuerungs-/Regelungseinrichtung die Menge an vorgewärmten Rohmehl, Brennstoff und/ oder Verbrennungsluft in den Calcinator 16, insbesondere in die erste und/oder zweite Brennkammer 44, 46 des Calcinators 16 steuert/ regelt. Die Menge an vorgewärmten Rohmehl, Brennstoff und/ oder Verbrennungsluft in den Calcinator 16 wird wie bereits mit Bezug auf Fig. 2 beschrieben, in Abhängigkeit der vorab mittels der Temperaturmesseinrichtungen 40 ermittelten Temperaturverteilung gesteuert/ geregelt.At least one or all of the temperature measuring devices 40 of the first and second measuring planes 34, 36 are also provided with a control / regulating device (not shown) for controlling / regulating the material flows, with the determined temperature, in particular the determined temperature distribution in the respective measuring plane being transmitted to the control / regulating device. Control device is transmitted. Furthermore, the control / regulating device is connected to the inlets 48, 50, 52, 54, 56, 58, 60, 62, 64 in particular with the means for metering the inlet quantity of the respective inlet 48-64, so that the control / Control device controls / regulates the amount of preheated raw meal, fuel and / or combustion air in the calciner 16, in particular in the first and / or second combustion chamber 44, 46 of the calciner 16. The amount of preheated raw meal, fuel and / or combustion air in the calciner 16 is as already described with reference to FIG Fig. 2 described, controlled / regulated as a function of the temperature distribution determined in advance by means of the temperature measuring devices 40.

Übersteigt beispielsweise die Temperatur in einem Bereich innerhalb der zweiten Messebene 36, der innerhalb der ersten Brennkammer 46 liegt, die ermittelte oder festgelegte mittlere Temperatur um den oben angegebenen Wert von etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C, wird die Menge an vorgewärmten Rohmehl, das durch einen der Einlässe 48, 50 in die erste Brennkammer 46 aufgegeben wird, erhöht. Die Menge an vorgewärmten Rohmehl, das durch einen den Einlass 60 in die zweite Brennkammer 46 aufgegeben wird, wird erhöht, wenn die Temperatur in einem Bereich innerhalb der zweiten Messebene 36, der innerhalb der zweiten Brennkammer 44 liegt, die ermittelte oder festgelegte mittlere Temperatur um den oben angegebenen Wert von etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C übersteigt.If, for example, the temperature in an area within the second measurement plane 36, which lies within the first combustion chamber 46, exceeds the determined or specified mean temperature by the above-specified value of about 25-150 ° C., preferably 50 ° -100 ° C., in particular 60 -80 ° C, the amount of preheated raw meal that is fed through one of the inlets 48, 50 into the first combustion chamber 46 is increased. The amount of preheated raw meal that is fed through the inlet 60 into the second combustion chamber 46 is increased when the temperature in an area within the second measurement plane 36, which is within the second combustion chamber 44, exceeds the determined or specified mean temperature the above value of about 25-150 ° C, preferably 50 ° -100 ° C, in particular 60-80 ° C exceeds.

Unterschreitet die Temperatur in einem Bereich innerhalb der zweiten Messebene 36, der innerhalb der ersten Brennkammer 46 liegt, die ermittelte oder festgelegte mittlere Temperatur um etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C, wird die Menge an Brennstoff 30, der in die erste Brennkammer 46 aufgegeben wird erhöht. Insbesondere wird die Menge an Brennstoff 30 an dem Einlass 52, 54 erhöht, der dem Bereich der Messebene 34, 36, in dem die Temperatur erhöht ist, am nächsten ist.If the temperature in an area within the second measurement plane 36, which is within the first combustion chamber 46, falls below the determined or specified mean temperature by approximately 25-150 ° C., preferably 50 ° -100 ° C., in particular 60-80 ° C. the amount of fuel 30 that is fed into the first combustor 46 increases. In particular, the amount of fuel 30 is increased at the inlet 52, 54 which is closest to the area of the measuring plane 34, 36 in which the temperature is increased.

Beispielsweise wird die Menge an Verbrennungsluft, die in die erste Brennkammer 46 aufgegeben wird, erhöht, wenn die Temperatur in einem bestimmten Bereich in einem Bereich innerhalb der zweiten Messebene 36, der innerhalb der ersten Brennkammer 46 liegt, die ermittelte oder festgelegte mittlere Temperatur um etwa 25-150°C, vorzugsweise 50°-100°C, insbesondere 60-80°C unterschreitet. Auf die gleiche Weise wird die Menge an Verbrennungsluft in der zweiten Brennkammer geregelt.For example, the amount of combustion air that is fed into the first combustion chamber 46 is increased when the temperature is in a certain range in an area within the second measurement plane 36, which lies within the first combustion chamber 46, the determined or specified mean temperature falls below about 25-150 ° C., preferably 50 ° -100 ° C., in particular 60-80 ° C. The amount of combustion air in the second combustion chamber is regulated in the same way.

Eine Regelung der Menge an Brennstoff, Verbrennungsluft und/ oder vorgewärmten Rohmehl in Abhängigkeit der ermittelten Temperatur, insbesondere der Temperaturverteilung, ermöglicht eine optimale Verbrennung, wobei gleichzeitig eine Beschädigung des Calcinators durch überhitze verhindert wird. Auch ein optimales Erhitzen des Rohmehls zum Erreichen einer Kalzinierung wird durch den voran beschriebenen Calcinator erreicht.Controlling the amount of fuel, combustion air and / or preheated raw meal as a function of the determined temperature, in particular the temperature distribution, enables optimal combustion, while at the same time preventing damage to the calciner from overheating. Optimal heating of the raw meal to achieve calcination is also achieved by the calciner described above.

BezugszeichenlisteList of reference symbols

  • 10 Anlage zur Herstellung von Zement10 Plant for the production of cement
  • 12 Vorwärmer12 preheaters
  • 14 vorgewärmtes Rohmehl14 preheated raw meal
  • 16 Calcinator16 calciner
  • 18 vorcalciniertes Rohmehl18 precalcined raw meal
  • 20 Heißgase20 hot gases
  • 22 Ofen22 oven
  • 24 Kühlerabluft24 Cooler exhaust air
  • 26 Kühler26 cooler
  • 28 Rohmehl28 raw meal
  • 30 Brennstoff30 fuel
  • 32 Verbrennungsluft32 Combustion air
  • 34 erste Messebene34 first measuring level
  • 36 zweite Messebene36 second measuring level
  • 40 Temperaturmesseinrichtung40 temperature measuring device
  • 44 Brennkammer44 combustion chamber
  • 46 Steigleitung46 Riser
  • 46 Einlass zum Einlassen von vorgewärmten Rohmehl46 Inlet for admitting preheated raw meal
  • 50 Einlass zum Einlassen von vorgewärmten Rohmehl50 Inlet for admitting preheated raw meal
  • 52 Brennstoffeinlass52 fuel inlet
  • 54 Brennstoffeinlass54 Fuel inlet
  • 56 Verbrennungslufteinlass56 Combustion air inlet
  • 58 Verbrennungslufteinlass58 Combustion air inlet
  • 60 Brennstoffeinlass60 fuel inlet
  • 62 Verbrennungslufteinlass62 Combustion air inlet
  • 64 Einlass zum Einlassen von vorgewärmten Rohmehl64 Inlet for admitting preheated raw meal

Claims (15)

  1. A method of operating a calciner (16) of a cement production plant, having the steps of
    - ascertaining a temperature distribution in each of at least two measurement planes (34, 36) within the calciner (16), and characterized by
    - closed-loop/open-loop control of an amount of fuel (30), preheated raw meal (14) and/or combustion air (32) into the calciner (16) as a function of the temperature distributions ascertained.
  2. The method as claimed in claim 1, wherein the temperature distribution in at least two measurement planes (34, 36) is ascertained simultaneously.
  3. The method as claimed in either of the preceding claims, wherein the at least two measurement planes (34, 36) extend transverse to the flow direction of the material flow of raw meal (14) and/or of the fuel (30) in the calciner (16).
  4. The method as claimed in any of the preceding claims, wherein at least one of the temperature distributions is ascertained acoustically.
  5. The method as claimed in any of the preceding claims, wherein the temperature distributions ascertained are compared with a temperature average ascertained or determined beforehand and a variance from this temperature average is ascertained.
  6. The method as claimed in any of the preceding claims, wherein at least one region in the measurement plane (34, 36) in which the variance exceeds a value of about +/-25-150°C, preferably +/-50°-100°C, especially +/-60-80°C is ascertained.
  7. The method as claimed in any of the preceding claims, wherein the amount of fuel (30), preheated raw meal (14) and/or combustion air (32) is increased or reduced when a temperature value of one of the temperature distributions in the respective measurement plane (34, 36) exceeds a temperature average ascertained or determined beforehand by about +/-25-150°C, preferably +/-50°-100°C, especially +/-60-80°C.
  8. The method as claimed in any of the preceding claims, wherein the amount of preheated raw meal (14) is increased when a temperature value of one of the temperature distributions in the respective measurement plane (34, 36) exceeds the temperature average ascertained or determined beforehand by 25-150°C, preferably 50°-100°C, especially 60-80°C.
  9. The method as claimed in any of the preceding claims, wherein the amount of fuel is increased when a temperature value of one of the temperature distributions in the respective measurement plane is below a temperature average ascertained or determined beforehand by about 25-150°C, preferably 50°-100°C, especially 60-80°C.
  10. A calciner (16) of a cement production plant having a combustion chamber (44, 46), wherein
    the combustion chamber (46) incorporates at least one inlet (48, 50, 64) for admission of preheated raw meal (14) into the combustion chamber (44, 46),
    at least one fuel inlet (52, 54, 60) for admission of fuel (30) into the combustion chamber (44, 46) and
    at least one air inlet (56, 58, 62) for admission of combustion air (32) into the combustion chamber (44, 46), characterized in that
    the combustion chamber (44, 46) incorporates at least two measurement planes (34, 36) each having at least one temperature measurement device (40) for ascertaining a temperature distribution in the respective measurement plane (34, 36), and
    an open-loop/closed-loop control device is provided, which is set up so as to control the amount of preheated raw meal (14), fuel (30) and/or combustion air (32) into the combustion chamber (44, 46) as a function of the temperature distribution ascertained.
  11. The calciner (16) as claimed in claim 10, wherein at least one of the inlets (48-64) for admission of preheated raw meal (14), fuel (30) and/or combustion air (32) a means of metering of the amount of preheated raw meal (14), fuel (30) and/or combustion air (32) flowing into the combustion chamber through the inlet (48-64).
  12. The calciner (16) as claimed in claim 10 or 11, wherein the open-loop/closed-loop control device is connected to at least one means, such that the open-loop/closed-loop control device controls the amount of preheated raw meal (14), fuel (30) and/or combustion air (32) into the combustion chamber (44, 46) as a function of the temperature, especially temperature distribution, ascertained by means of the temperature measurement device (40).
  13. The calciner (16) as claimed in any of claims 10 to 12, wherein the measurement planes (34, 36) are spaced apart from one another in the flow direction of the material flow.
  14. The calciner (16) as claimed in any of claims 10 to 13, wherein each measurement plane (34, 36) has a multitude of temperature measurement devices (40) and wherein the temperature measurement devices (40) are spaced apart uniformly from one another.
  15. The calciner (16) as claimed in any of claims 10 to 14, wherein the temperature measurement device (40) is an acoustic sensor.
EP19703661.9A 2018-02-09 2019-02-01 Calciner of a cement production system, and method for operating a calciner Active EP3749906B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018202063.9A DE102018202063A1 (en) 2018-02-09 2018-02-09 Calciner of a cement manufacturing plant and method of operating a calciner
PCT/EP2019/052462 WO2019154723A1 (en) 2018-02-09 2019-02-01 Calciner of a cement production system, and method for operating a calciner

Publications (2)

Publication Number Publication Date
EP3749906A1 EP3749906A1 (en) 2020-12-16
EP3749906B1 true EP3749906B1 (en) 2021-09-01

Family

ID=65324340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19703661.9A Active EP3749906B1 (en) 2018-02-09 2019-02-01 Calciner of a cement production system, and method for operating a calciner

Country Status (4)

Country Link
EP (1) EP3749906B1 (en)
CN (1) CN111684228B (en)
DE (1) DE102018202063A1 (en)
WO (1) WO2019154723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210323864A1 (en) * 2018-09-10 2021-10-21 Thyssenkrupp Industrial Solutions Ag Cooler for cooling clinker and method for operating a cooler for cooling clinker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS63655B1 (en) 2020-05-05 2022-11-30 Thyssenkrupp Ind Solutions Ag Cement-manufacturing plant and process for producing cement clinker
CN113251435B (en) * 2021-06-15 2021-11-09 天津国能津能滨海热电有限公司 Combustor adjusting method and system based on temperature field, DCS (distributed control System) and medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1234567A (en) 1915-09-14 1917-07-24 Edward J Quigley Soft collar.
DE3433786A1 (en) * 1984-09-14 1986-03-27 Klöckner-Humboldt-Deutz AG, 5000 Köln Process and plant for heat-treating mineral raw meal, in particular carbonate-containing raw meal
CN1024653C (en) * 1988-02-27 1994-05-25 武汉工业大学 Calcining process and apparatus for black raw material vertical decomposition furnace
CN2109534U (en) * 1991-12-28 1992-07-08 长沙交通学院 Vertical kiln temperature detecting and controlling device for cement machine
CN1137623A (en) * 1995-06-08 1996-12-11 褚衍旭 Vertical refuse calcining furnace
JP5110684B2 (en) * 2007-02-15 2012-12-26 太平洋セメント株式会社 Operation method of drying equipment
CN103183460B (en) * 2011-12-27 2015-11-18 川崎重工业株式会社 Sludge treatment device
DE102013006237B4 (en) * 2013-04-11 2016-06-16 Khd Humboldt Wedag Gmbh Process for the operation of a plant for the production of cement and plant for the production of cement
DE102016211181A1 (en) * 2016-06-22 2017-12-28 Thyssenkrupp Ag Plant and process for the thermal treatment of flyable raw material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210323864A1 (en) * 2018-09-10 2021-10-21 Thyssenkrupp Industrial Solutions Ag Cooler for cooling clinker and method for operating a cooler for cooling clinker

Also Published As

Publication number Publication date
CN111684228B (en) 2022-10-04
DE102018202063A1 (en) 2019-08-14
CN111684228A (en) 2020-09-18
EP3749906A1 (en) 2020-12-16
WO2019154723A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
EP3749906B1 (en) Calciner of a cement production system, and method for operating a calciner
EP3475637B1 (en) Installation and method for the thermal treatment of raw material that can become airborne
EP4111118B1 (en) Device and method for firing and/or calcining lumpy goods
EP0313871B1 (en) Process and device for the thermal treatment of fines
EP3911615B1 (en) Method for the production of cement clinker
EP4146997A1 (en) Installation for the thermal treatment of dispersible raw material, and method for operating such an installation
EP0078250B1 (en) Process and installation for the production of cement
EP3423769B1 (en) Furnace and method for operating a furnace
DE102020205672A1 (en) Cement manufacturing plant and method for manufacturing cement clinker
EP4247767B1 (en) Method for thermal treatment of air-dispersible raw material
EP3155342B1 (en) Method for exhaust gas treatment, and system comprising an exhaust gas treatment device
EP3347660B1 (en) Method and apparatus for reducing nox emissions in a rotary kiln
BE1029102B1 (en) Plant and method for the thermal treatment of airworthy raw material
BE1030366B1 (en) Method for operating a burner of a rotary kiln
DE2121400A1 (en) Apparatus and method for controlling the operation of a furnace
BE1028194B1 (en) Process for the production of cement clinker
BE1028269B1 (en) Cement manufacturing plant and method for manufacturing cement clinker
DE102022202711A1 (en) Method for operating a burner of a rotary kiln
DE102017212322A1 (en) Method and system for purifying a gas stream
DE102021201356A1 (en) Plant and method for the thermal treatment of airworthy raw material
WO2023180199A1 (en) Method for operating a burner of a rotary kiln
DE2822395A1 (en) Cement calcination in a fluidised bed - with outlet at the bottom and air cooled cooling zone

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

Owner name: THYSSENKRUPP AG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210616

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1426650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002204

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20211126

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002204

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502019002204

Country of ref document: DE

Owner name: THYSSENKRUPP POLYSIUS GMBH, DE

Free format text: FORMER OWNERS: THYSSENKRUPP AG, 45143 ESSEN, DE; THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, 45143 ESSEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502019002204

Country of ref document: DE

Owner name: THYSSENKRUPP AG, DE

Free format text: FORMER OWNERS: THYSSENKRUPP AG, 45143 ESSEN, DE; THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, 45143 ESSEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 6

Ref country code: CZ

Payment date: 20240119

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240223

Year of fee payment: 6