EP3670756B1 - Schale für die herstellung eines hybrid-auflagerings und hybrid-auflagering - Google Patents

Schale für die herstellung eines hybrid-auflagerings und hybrid-auflagering Download PDF

Info

Publication number
EP3670756B1
EP3670756B1 EP19209028.0A EP19209028A EP3670756B1 EP 3670756 B1 EP3670756 B1 EP 3670756B1 EP 19209028 A EP19209028 A EP 19209028A EP 3670756 B1 EP3670756 B1 EP 3670756B1
Authority
EP
European Patent Office
Prior art keywords
support ring
mould
shell
hybrid
hybrid support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19209028.0A
Other languages
English (en)
French (fr)
Other versions
EP3670756A1 (de
Inventor
Tobias Heger
Roland Hendel
Markus Kaiser
Guido Kania
Peter Staschik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rehau Industries SE and Co KG
Original Assignee
Rehau Industries SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rehau Industries SE and Co KG filed Critical Rehau Industries SE and Co KG
Publication of EP3670756A1 publication Critical patent/EP3670756A1/de
Application granted granted Critical
Publication of EP3670756B1 publication Critical patent/EP3670756B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/12Manhole shafts; Other inspection or access chambers; Accessories therefor
    • E02D29/14Covers for manholes or the like; Frames for covers

Definitions

  • the invention relates to a shell for producing a hybrid support ring, a hybrid support ring and a shaft structure with such a hybrid support ring.
  • load-distributing support rings are necessary to accommodate covers, for example in the form of a grid or plate.
  • load-distributing support rings made of concrete. However, these have a very high weight and are susceptible to breakage during transport and installation, even though they have steel reinforcement.
  • the JP 2015004199 A discloses an adjustment ring attached to one end of a shaft.
  • the shaft includes a shaft base, an adjustment ring, a receiving frame and a grille cover.
  • the shaft base has a large number of screw holes in the opening. A bolt is screwed into each screw hole.
  • the receiving frame is detachably placed on a surface of the adjusting ring, the cover body is carried by the receiving frame. Then every screw is in every one Screw hole of the shaft base is screwed in, inserted and screwed through each insertion hole of the adjustment ring and each insertion hole of the receiving frame. This means that the mounting frame with the adjustment ring and cover is fixed by the screws so that it does not fall off when it is inserted into the opening of the lower part of the shaft.
  • the adjusting ring extends in a ring shape and has a rectangular cross section with the same thickness. It comprises a ring made of recycled plastic, with an annular groove that continues in the circumferential direction and opens towards the top. The groove of the ring is completely filled with concrete.
  • the adjusting ring also has through holes through which the screws can be passed.
  • the GB 2145444 A discloses a well including a chamber and a cover assembly.
  • the chamber is made of a plastic material such as polyethylene and includes a cylindrical sidewall reinforced by peripheral ribs and inwardly projecting steps suitably spaced apart and molded integrally with the sidewall.
  • the cover arrangement consists of a cover plate, an adapter ring, one or more spacer rings, a frame ring and a lid6.
  • Each of the components of the cover assembly consists of a mold made of a plastic material and a concrete filling. The cover assembly is secured together in the order shown with adhesive between all plastic components except the lid and frame.
  • the JP H 10292 411 A discloses a pressing device that can be easily inserted into an inner frame to improve workability and hold the inner frame securely.
  • plastic concrete is poured between an outer frame and an inner frame to install the lid support that holds a lid disposed at an adjusted height on the opening portion Ma of a channel buried in the ground, this pressing device presses the inner frame to the inside of the opening portion of the shaft and up the inside of the lid support and thus holds the inner frame.
  • the pressing device is provided with a plurality of pressing plates with contact surfaces which are held in contact with the inner frame and are arranged at intervals along the inner periphery of the inner frame, a holding mechanism which positions and holds the pressing plates of the pressing device of the inner frame, and holding mechanisms which hold the end portions of the inner frame Hold press plates.
  • the CN 103452138 A discloses an inspection shaft cover made of plastic composite material with a support frame which is welded into a ring structure using metal, in particular angle steel, flat steel or square steel, by a mechanical ring-circle combination.
  • the main body shape of the support frame is, for example, a square, a circle or a polygon.
  • the annular cavity of the support frame is filled with plastic or foamed cement to form a solid body.
  • a decorative veneer is laminated or glued onto the surface, which is formed after the above filling process is completed.
  • the decorative veneer is a composite layer of colored plastic, resin or metal tips.
  • the underside of the outer ring of the support frame is formed into a rectangular edge by punching and the inner ring is provided with a manhole cover receiving chuck with a punched flange.
  • Another object of the present invention is to provide a hybrid bearing ring made using the shell.
  • the first object of the present invention is solved by the subject matter of claim 1.
  • a shell for the production of a hybrid support ring overcomes the disadvantages of the prior art if it is provided that the shell has walls through which a volume is defined which is suitable for receiving a hardening material is designed to form the hybrid support ring by hardening the hardening material into a hardened material, wherein the shell consists of a polymer material that is thermoplastic or thermoset, or of a metal or contains such and is annular and has a passage and wherein at least one support surface of the hybrid support ring to be formed with the shell is formed on the shell, wherein at least one opening is provided in at least one wall, which is characterized in that the support surface is a first support surface, the surface of which is structured, which has a plurality of depressions and elevations, that a plurality of openings are provided in the wall of the shell are that the openings are arranged in the first support surface of the shell.
  • the shell according to the invention is designed in such a way that by filling the volume defined by the walls of the shell with a hardening material and hardening the hardening material to a hardened material, a hybrid support ring can be provided, which has the above-mentioned concrete -Support rings overcomes the disadvantages described.
  • the hybrid support ring can be produced either in a production facility or directly at the construction site by filling a hardening material, such as concrete, into the volume of the shell and hardening there.
  • a hardening material such as concrete
  • the concrete can, for example, be reinforced, for which reinforcing iron or steel components known as such are used; other options for reinforcement consist of adding metal fibers or glass fibers or the like to the concrete.
  • the complex transport from a production site to the construction site can be avoided, thereby reducing costs by avoiding storage, but also the risk of storage and transport damage.
  • At least one support surface of the hybrid support ring to be formed with the shell is formed on the shell, such a hybrid support ring can be produced in a particularly simple and efficient manner, since this way the technical requirements for this support surface are met Dimensions, design and surface finish can be specified by the shell.
  • the shell is designed to be rotationally symmetrical to an axis A.
  • a shell can be produced very easily, since a tool for such a rotationally symmetrical shell is easy to design and build.
  • a hybrid support ring can be produced in a simple manner with this shell, which can be installed in a shaft structure without any special effort, since it can be easily aligned due to its rotational symmetry and does not require any special alignment with respect to the axis A.
  • the present invention can be very advantageous if it is provided that the walls of the shell have the same or approximately the same thickness at all points.
  • a shell can be provided which has a very low weight and which is particularly accessible in a simple manufacturing process.
  • Such a shell must also be manufactured with extreme precision, as this means that distortions or sink marks can be avoided.
  • the present invention can be very advantageous if it is provided that the shell has at least one opening in at least one wall.
  • the hardened material that fills or fills the volume of the shell in the hybrid support ring can come into contact with hardening material that is used in the construction of the shaft structure.
  • a displacement-proof arrangement of the hybrid support ring in the shaft structure can be achieved in particular, in which the hardened material of the hybrid support ring comes into contact, for example, with hardening material when arranging the cover and thus forms a firm connection with it, so that the hybrid Support ring is connected to the cover in a fluid-tight manner.
  • opening or openings can be designed in various ways, for example a circular, an angular, an oval or a differently designed geometry, but it is also possible for the opening or openings to be designed, for example, as a partially circumferential slot concentric to the axis A or as a partially circumferential spiral Slot is formed.
  • openings can already be formed during the initial shaping of the shell, in that the tool used for production already creates them.
  • openings can be made, for example, by punching or milling or other material-removing techniques.
  • a point or a plurality of points, in particular marked points are provided on the wall of the shell, at which the wall thickness of the shell is reduced and is, for example, only 5 to 10% of the wall thickness, as it exists in the areas that are not such places.
  • the wall of the hybrid support ring is broken through at this point, for example with the help of a tool, the hardened material is exposed there and can be used advantageously for the connection as shown above.
  • the shell is designed in such a way that it is shaped to be largely closed and only has a small opening for filling in the hardening material. In a further development, this can be carried out in such a way that only one opening is provided for filling the volume of the bowl and one opening for venting the volume of the bowl.
  • the shell is designed in such a way that it is largely open, i.e. the volume to be filled with the hardening material to form the hybrid support ring is only partially limited. It is preferred if the shell is shaped in such a way that it is oriented towards the inside of the shaft structure in order to prevent the aggressive media from the shaft structure from coming into contact with the hardened material of the hybrid support ring. Accordingly, further delimiting walls must then be formed during the production of the hybrid support ring using, for example, reusable formwork, for example those made of metal, wood or polymer material.
  • receiving means are provided in order to be able to receive the hybrid support ring to be formed with the shell, for example in order to move it, load and unload it, position it, move it and the like.
  • Such receiving means can include eyelets which are formed in the area of the wall of the shell.
  • the wall of the shell has openings at suitable points in order to allow a receiving means in the form of a metal rod or a metal rope, which is firmly embedded in the hardened material of the hybrid support ring, to protrude from the shell at these points.
  • the first support surface has a surface that is structured to ensure good bonding of a hardening material, such as mortar, for fastening the cover to be arranged on the first support surface.
  • a hardening material such as mortar
  • the surface of the first support surface has a large number of depressions and elevations.
  • the surface of the first support surface can also be made hydrophilic by physical and/or chemical treatment, for example by treating the surface with the aid of a flame and/or a plasma and/or laser radiation and/or UV radiation and/or an etching process and or of an adhesion promoter order is activated.
  • fibers protruding from the polymer matrix in particular mineral fibers and/or glass fibers and/or metal fibers, or by suitable fillers for improved binding of the hardening material - as described above.
  • an axial wall of small height is formed on the first support surface along at least a section of the edge delimiting the first support surface towards the breakthrough, which makes it easy to harden on the first support surface Material, such as mortar, for attaching the to the first support surface to apply the cover to be arranged and to pull this material smooth, for example with a trowel using the upper edge of this wall, which on the one hand allows a uniform thickness of the material to be produced on the first support surface and on the other hand prevents material from flowing undesirably into the opening.
  • Material such as mortar
  • the hybrid support ring has an identification device which is arranged either in the shell of the hybrid support ring or in the hardened mass of the hybrid support ring.
  • an identification device can be an RFID chip with which the hybrid support ring can be clearly identified and in this way significantly simplifies the management of a fluid system with such a hybrid support ring.
  • the shell according to the present invention can be shaped in such a way that it has a vertical, radially outwardly projecting wall on its outer edge, which has at least a partial load-bearing effect when installed in a shaft structure and is thus used for the production of an improved hybrid support ring Available.
  • the shell consists of or contains a polymer material that is thermoplastic or thermoset, or of a metal.
  • a polyolefin such as a polypropylene or a polyethylene or a polybutylene or a polyvinyl chloride, which the shell consists of or which contains the shell.
  • the above-mentioned polymer materials are inert, durable, corrosion-resistant, easily moldable, inexpensive and available.
  • the shell of the present invention may be manufactured in a polymer molding process, such as an injection molding process, or a rotational molding process, or a rotational sintering process, or a pressing process, or a deep drawing process, or an extrusion blow molding process, or an additive manufacturing process, such as a 3D printing process, or a combination of the processes listed above.
  • a polymer molding process such as an injection molding process, or a rotational molding process, or a rotational sintering process, or a pressing process, or a deep drawing process, or an extrusion blow molding process, or an additive manufacturing process, such as a 3D printing process, or a combination of the processes listed above.
  • the shell is manufactured entirely or partially using a generative manufacturing process, for example a 3D printing process.
  • a data processing machine-readable three-dimensional model can advantageously be used for production.
  • the invention also includes a method for generating a computer-readable three-dimensional model for use in a manufacturing process for a shell.
  • the method also includes, in particular, the input of data representing a shell into a data processing machine and the use of the data to represent a shell as a three-dimensional model, the three-dimensional model being suitable for use in the production of a shell.
  • Also included in the method is a technique in which the input data of one or more 3D scanners, which function either on contact or contactless, in the latter case energy is released onto a shell and the reflected energy is received, and wherein a virtual three-dimensional Model of a shell is generated using computer-aided design software.
  • the manufacturing process can be a generative powder bed process, in particular selective laser melting (SLM), selective laser sintering (SLS), selective heat sintering (Selective Heat Sintering - SHS), selective electron beam melting (Electron Beam Melting - EBM / Electron Beam Additive Manufacturing - EBAM) or solidification of powder material using binder jetting.
  • SLM selective laser melting
  • SLS selective laser sintering
  • SHS selective heat sintering
  • SHS Selective Heat Sintering - SHS
  • selective electron beam melting Electron Beam Melting - EBM / Electron Beam Additive Manufacturing - EBAM
  • solidification of powder material using binder jetting in particular selective laser melting (SLM), selective laser sintering (SLS), selective heat sintering (Selective Heat Sintering - SHS), selective electron beam melting (Electron Beam Melting - EBM / Electron Beam Additive Manufacturing - EBAM) or solidification
  • the manufacturing process can be a generative free-space process, in particular deposition welding, wax deposition modeling (WDM), contour crafting, metal powder deposition process (MPA), plastic powder deposition process, cold gas spraying, electron beam melting (Electron Beam Welding - EBW) or melt deposition processes such as fused deposition Modeling (FDM) or Fused Filament Fabrication (FFF).
  • the manufacturing process can be a generative liquid material process, in particular stereolithography (SLA), digital light processing (DLP), multi jet Modeling (MJM), Polyjet Modeling or Liquid Composite Molding (LCM).
  • the manufacturing process can include other generative layer construction processes, in particular Laminated Object Modeling (LOM), 3D screen printing or light-controlled electrophoretic deposition.
  • LOM Laminated Object Modeling
  • the second object of the present invention to provide a hybrid support ring, is solved according to the subject matter of claim 7.
  • the hybrid support ring of the above invention comprises a shell, as described above, and a hardened material with which the volume of the shell is at least partially filled, in particular a hardened mineral material.
  • Such a mineral material can in particular be concrete, but other hardening materials, such as polymer concrete, are also possible.
  • the concrete can be reinforced with fibers, for example glass fibers, metal fibers or fibers made of polymer material. Reinforcements can also be provided in the concrete in the form of reinforcements that are designed in the shape of a basket or similar.
  • the hybrid support ring is manufactured entirely or partially using a generative manufacturing process, for example a 3D printing process.
  • a data processing machine-readable three-dimensional model can advantageously be used for production.
  • the invention also includes a method for generating a data processing machine-readable three-dimensional model for use in a manufacturing process for a hybrid bearing ring.
  • the method also includes, in particular, the input of data representing a hybrid support ring into a data processing machine and the use of the data to represent a hybrid support ring as a three-dimensional model, the three-dimensional model being suitable for use in the production of a hybrid -Support ring.
  • Also included in the method is a technique in which the input data from one or more 3D scanners, which operate either on contact or non-contact, in the latter case energy is delivered to a hybrid support ring and the reflected energy is received, and wherein a virtual three-dimensional model of a hybrid support ring is generated using computer-aided design software.
  • the manufacturing process can be a generative powder bed process, in particular selective laser melting (SLM), selective laser sintering (SLS), selective heat sintering (Selective Heat Sintering - SHS), selective electron beam melting (Electron Beam Melting - EBM / Electron Beam Additive Manufacturing - EBAM) or solidification of powder material using binder jetting.
  • SLM selective laser melting
  • SLS selective laser sintering
  • SHS selective heat sintering
  • SHS Selective Heat Sintering - SHS
  • selective electron beam melting Electron Beam Melting - EBM / Electron Beam Additive Manufacturing - EBAM
  • solidification of powder material using binder jetting in particular selective laser melting (SLM), selective laser sintering (SLS), selective heat sintering (Selective Heat Sintering - SHS), selective electron beam melting (Electron Beam Melting - EBM / Electron Beam Additive Manufacturing - EBAM) or solidification
  • the manufacturing process can be a generative free-space process, in particular deposition welding, wax deposition modeling (WDM), contour crafting, metal powder deposition process (MPA), plastic powder deposition process, cold gas spraying, electron beam melting (Electron Beam Welding - EBW) or melt deposition processes such as fused deposition Modeling (FDM) or Fused Filament Fabrication (FFF).
  • the manufacturing process can include a generative liquid material process, in particular stereolithography (SLA), digital light processing (DLP), multi jet modeling (MJM), polyjet modeling or liquid composite molding (LCM).
  • the manufacturing process can include other generative layer construction processes, in particular Laminated Object Modeling (LOM), 3D screen printing or light-controlled electrophoretic deposition.
  • LOM Laminated Object Modeling
  • the present invention is used in the area of shaft structures and street inlets in wastewater technology and rainwater technology; this can affect both new construction of shaft structures or street inlets as well as their renovation. Furthermore, the present invention can be widely used in agricultural and industrial applications, in sewage treatment plant technology, in swimming pool technology, in fish farming, in food and beverage production technology, in fruit and horticulture and in other areas.
  • the shell 1 is shown in a perspective view.
  • the shell 1 is annular and has a passage 4.
  • the shell 1 has walls 2 which define a volume 3 of the shell 1.
  • the shell 1 is designed to be rotationally symmetrical relative to an axis A, the axis A being defined by the two surface centers, the first surface center P1 and the second surface center P2.
  • the first surface center P1 refers to the surface of the passage 4 of the shell 1 at its first end E1 Fig. 1
  • the second surface center P2 refers to the surface of the passage 4 of the shell 1 at its second end E2 as shown in Fig. 1 .
  • the shell 1 is shown in a perspective, partially sectioned view.
  • the walls 2, which define the volume 3 of the shell 1, are designed in such a way that a first wall 2.1 extends from an upper outer edge at the second end E2 of the shell 1 in the axial direction, to which a second wall 2.2 is arranged at an obtuse angle , which is designed as a conical surface section towards the axis A.
  • a third wall 2.3 in turn extends at an obtuse angle in the radial direction towards the axis A, on which a fourth wall 2.4 is arranged axially approximately at right angles in the direction of the upper edge of the shell 1.
  • a fifth wall 2.5 extends from the fourth wall 2.4 at approximately a 90° angle radially inwards towards the axis A, which in turn is connected approximately at right angles to an axial sixth wall 2.6, the sixth wall 2.6 approximately like the fourth wall 2.4 is aligned.
  • the sixth wall 2.6 is connected to a seventh wall 2.7 which extends radially outwards.
  • An eighth wall 2.8 which defines the inner upper edge of the shell 1, extends axially from the seventh wall 2.7 towards the second end E2.
  • All walls 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 extend around the shell in the same way, so that it is rotationally symmetrical with respect to axis A.
  • FIG. 3 a perspective, partially sectioned view of a hybrid support ring 10 is shown.
  • the hybrid support ring 10 is formed in that a hardening material is filled into the volume 3 of the shell 1 and this hardening material is hardened into a hardened material 9.
  • the hardened material 9 fills the volume 3 of the shell 1 up to the upper edge of the shell 1.
  • volume 3 of the shell 1 is only partially filled with the hardening material.
  • Support surfaces are formed on the hybrid support ring 10, with a first support surface 6.1 and a second support surface 6.2 being provided.
  • the first support surface 6.1 and the second support surface 6.2 are aligned approximately parallel to one another.
  • Both the first support surface 6.1 and the second support surface 6.2 are formed in an annular manner on the hybrid support ring 10.
  • the first support surface 6.1 is smaller than the second support surface 6.2 of the hybrid support ring 10.
  • the hybrid support ring 10 When installing the hybrid support ring 10 in a shaft structure 30, it is provided that the hybrid support ring 10 is positioned so that it is in contact with the second support surface 6.2
  • Support 34 which is designed as a bedding and consists, for example, in the form of a concrete slab or a bed of grit, is placed and the cover 35 is arranged on its first support surface 6.1, which forms the end to the upper edge of the terrain GOK, which in Fig. 6 is shown in detail.
  • a smooth second support surface 6.2 can be produced by pulling the hardening material off and smoothing it with, for example, a trowel along the upper free edges of the walls 2 delimiting the shell 1 at the second end E2 occurs.
  • the hybrid support ring 10 is shown in a perspective view.
  • the hybrid support ring is designed to be rotationally symmetrical.
  • the shell 1, which is used to form the hybrid support ring 10 is shown, as well as the first support surface 6.1 on the hybrid support ring 10.
  • the hybrid support ring 10 has, at least in sections, a conical section surface on its outer surface, which stabilizes it particularly advantageously and whereby the forces acting on it when installed are distributed downwards in a favorable manner.
  • a hybrid support ring 10 shown in a perspective view in a second embodiment.
  • the shell 1 used to produce the hybrid support ring 10 is designed in such a way that openings 5 are arranged in the first support surface 6.1 of the shell 1, so that during the production of the hybrid support ring 10 by filling the volume 3 of the shell 1 with a hardening material and the hardening of the hardening material to the hardened material 9, this hardened material 9 penetrates into the openings 5 or is present at the openings 5 of the shell 1 and is exposed there.
  • the openings 5 of the shell 1 on the first support surface 6.1 are circular and arranged in a large number. It is provided here that the distance between an opening 5 and its two respective neighbors is always the same.
  • the shaft structure 30 is installed in the ground and comprises a lower shaft part 31, which is set up to transport a fluid, for which purpose, for example, a channel and connections for pipes are provided, a shaft ring 32 which is placed on the lower shaft part 31 in a fluid-tight manner, and a shaft cone which is placed on the shaft ring in a fluid-tight manner 33, and a hybrid support ring 10, which is connected in a fluid-tight manner to the shaft cone 33 and in turn rests on a support 34, which in the present case is designed as a concrete slab.
  • a cover 35 is fluid-tightly connected to the hybrid support ring 10 and, in a manner known per se, represents a cover for the upper edge of the terrain GOK, which is designed, for example, in the form of a plate or a grid.
  • the top of the cover 35 ends with the top edge of the terrain GOK.
  • the hybrid support ring 10 has a first support surface 6.1, on which the cover 35 is placed and connected in a fluid-tight manner. It is helpful if it is provided that a layer of mortar is applied between the first support surface 6.1 of the hybrid support ring 10 and the underside of the cover 35, which is to be placed on the first support surface 6.1, in order to ensure a fluid-tight connection of the cover 35 to the hybrid -Produce support ring 10.
  • the mortar layer can be on the first support surface 6.1 of the hybrid support ring 10 with the hardened material 9, which is in or on the openings 5 and is exposed there Come into contact and form a particularly strong connection with this person. This can ensure that the cover 35 is secured against displacement on the hybrid support ring 10.
  • the hybrid support ring 10 is placed with its second support surface 6.2 on the support 34 in the form of a concrete slab.
  • a layer of mortar is arranged between the support 34 in the form of a concrete slab and the second support surface 6.2 of the hybrid support ring 10 in order to ensure a firm and, in particular, shift-proof arrangement of the hybrid support ring 10 on the support 34 to ensure.
  • water can flow into the shaft structure 30 from the upper edge of the GOK, and the interior of the shaft structure 30 can also be accessed through the passage 4 for inspections, maintenance, cleaning work and repairs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)

Description

  • Die Erfindung betrifft eine Schale für die Herstellung eines Hybrid-Auflagerings, einen Hybrid-Auflagering und ein Schachtbauwerk mit einem solchen Hybrid-Auflagering.
  • Beim Bau von Abwasserschächten oder Straßenabläufen sind zur Aufnahme von Abdeckungen, beispielsweise in Form eines Gitters oder einer Platte, lastverteilende Auflageringe notwendig.
  • Diese sind aus Gusseisen, Beton, Stahlfaserbeton oder Polymermaterial.
  • Am meisten verbreitet sind solche lastverteilenden Auflageringe aus Beton. Diese besitzen jedoch ein sehr hohes Eigengewicht und sind beim Transport und beim Einbau bruchanfällig, obwohl diese eine Stahlbewehrung aufweisen.
  • Ein weiterer Nachteil besteht darin, dass die dem Abwasserschacht zugewandte innere Ringfläche des Auflagerings dem Gasraum des Abwasserbauwerks zugewandt ist. Aufgrund der sich in solchen Abwasserbauwerken sammelnden korrosiven Gase, wie beispielsweise Schwefelwasserstoff und andere, kommt es bei solchen Auflageringen aus Beton an dieser Ringfläche oftmals zu korrosiven Angriffen, sodass der Auflagering innerhalb weniger Jahre erheblich beschädigt oder zerstört wird. Hierdurch senkt sich die Abdeckung gegenüber dem Straßenniveau und muss kostenaufwendig repariert werden.
  • Ein weiterer Nachteil bei solchen Auflageringen aus Beton ist der Angriff durch Tausalze, die gerade im Winter in den Schmelzwässern vorhanden sind und zusammen mit den häufigen Temperaturwechseln ebenso den Beton des Auflagerings angreifen und letztlich zerstören können.
  • Die JP 2015004199 A offenbart einen Einstellring, der an einem Ende eines Schachtes angebracht ist. Der Schacht umfasst ein Schachtunterteil, einen Einstellring, einen Aufnahmerahmen und einen Gitterdeckel. Das Schachtunterteil weist eine Vielzahl von Schraubenlöchern in der Öffnung auf. In jedes Schraubenloch wird ein Bolzen eingeschraubt. Der Aufnahmerahmen wird lösbar auf eine Oberfläche des Einstellrings aufgesetzt, der Deckelkörper wird von dem Aufnahmerahmen getragen. Dann wird jede Schraube, die in jedem Schraubenloch des Schachtunterteils eingeschraubt ist, durch jedes Einsteckloch des Einstellrings und jedes Einsteckloch des Aufnahmerahmens gesteckt und verschraubt. Damit ist der Aufnahmerahmen mit dem Einstellring und Deckel so durch die Schrauben fixiert, dass er beim Einsetzen in die Öffnung des Schachtunterteils nicht abfällt. Der Einstellring erstreckt sich ringförmig, weist einen rechteckigen Querschnitt mit gleicher Dicke auf. Er umfasst einem Ring aus recyceltem Kunststoff, mit einer ringförmigen Nut, die sich in Umfangsrichtung fortsetzt und nach oben hin öffnet. Die Nut des Ringes ist komplett mit Beton gefüllt. Weiter weist der Einstellring Durchgangs- Löcher auf, durch welche die Schrauben hindurchführbar sind.
  • Die GB 2145444 A offenbart einen Schacht, der eine Kammer und eine Abdeckungs-anordnung umfasst. Die Kammer ist aus einem Kunststoffmaterial wie Polyethylen hergestellt und enthält eine zylindrische Seitenwand, die durch Umfangsrippen verstärkt ist und nach innen vorstehende Stufen, die geeignet voneinander beabstandet sind und einstückig mit der Seitenwand geformt sind. Die Abdeckanordnung besteht aus einer Abdeckplatte, einem Adapterring, einem oder mehreren Distanzringen, einem Rahmenring und einem Deckel6. Jede der Komponenten der Abdeckungsanordnung besteht aus einer Form0, die aus einem Kunststoffmaterial hergestellt ist und einer Betonfüllung. Die Abdeckungsanordnung wird in der gezeigten Reihenfolge mit Klebstoff zwischen allen Kunststoff- Komponenten mit Ausnahme des Deckels und des Rahmens zusammen fixiert.
  • Die JP H 10292 411 A offenbart eine Pressvorrichtung, die leicht in einen Innenrahmen eingesetzt werden kann, um die Verarbeitbarkeit zu verbessern und den Innerahmen sicher zu halten. Wenn Plastikbeton zwischen einem Außenrahmen und einem Innenrahmen gegossen wird, um den Deckelträger zu installieren, der einen in einer angepassten Höhe auf dem Öffnungsabschnitt Ma eines im Boden vergrabenen Kanals angeordnete Deckel hält, drückt diese Pressvorrichtung den Innenrahmen auf die Innenseite des Öffnungsabschnitts des Schachtes und auf die Innenseite des Deckel-trägers und hält so den Innerahmen. Die Pressvorrichtung ist mit mehreren Pressplatten mit Kontaktflächen versehen, die mit dem Innenrahmen in Kontakt gehalten werden und in Abständen entlang der inneren Peripherie des Innenrahmens angeordnet sind, einem Haltemechanismus, der die Pressplatten der Pressvorrichtung des Innenrahmens positioniert und hält sowie Haltemechanismen, die die Endabschnitte der Pressplatten halten.
  • Die CN 103452138 A offenbart eine Inspektionsschachtabdeckung aus Kunststoff-verbundwerkstoff mit einem Stützrahmen, der unter Verwendung von Metall insbesondere von Winkelstahl, Flachstahl oder Vierkantstahl durch mechanische Ring-Kreis-Kombination zu einer Ringstruktur verschweißt ist. Die Hauptkörperform des Stützrahmens ist bspw. ein Quadrat, ein Kreis oder ein Polygon. Der ringförmige Hohlraum des Stützrahmens wird mit Kunststoff oder geschäumtem Zement ausgefüllt, um einen festen Körper zu bilden. Dann wird ein dekoratives Furnier auf die Oberfläche laminiert oder geklebt, die nach Abschluss des obigen Füll- Prozesses gebildet wird. Das dekorative Furnier ist eine Verbundschicht aus farbigem Kunststoff, Harz oder Metallspitzen. Die Unterseite des Außenrings des Tragrahmens ist durch Stanzen zu einer rechtwinkligen Kante geformt und der Innenring ist mit einem Schachtdeckel- Aufnahmefutter mit gestanztem Flansch versehen.
  • Hier setzt die Erfindung ein, die es sich zur Aufgabe gemacht hat, die vorstehend geschilderten Nachteile des Standes der Technik zu überwinden und dazu einen verbesserten Auflagering bereitzustellen, wozu eine Schale für die Herstellung eines Hybrid-Auflagerings vorgesehen ist.
  • Eine weitere Aufgabe der vorliegenden Erfindung liegt darin, einen Hybrid-Auflagering bereitzustellen, der mit Hilfe der Schale hergestellt ist.
  • Schließlich ist es noch Aufgabe der vorliegenden Erfindung, ein Schachtbauwerk mit einem solchen Hybrid-Auflagering anzugeben.
  • Die Lösung der ersten Aufgabe der vorliegenden Erfindung erfolgt durch den Gegenstand des Anspruchs 1.
  • Es wurde im Rahmen der vorliegenden Erfindung erkannt, dass eine Schale für die Herstellung eines Hybrid-Auflagerings die Nachteile des Standes der Technik überwindet, wenn vorgesehen ist, dass die Schale Wände aufweist, durch die ein Volumen definiert ist, das zur Aufnahme eines aushärtenden Materials ausgebildet ist, um den Hybrid-Auflagering durch Aushärten des aushärtenden Materials zu einem ausgehärteten Material zu bilden, wobei die Schale aus einem Polymermaterial, das thermoplastisch oder duroplastisch ist, oder aus einem Metall besteht oder ein solches enthält und diese ringförmig ausgebildet ist und einen Durchgang aufweist, und wobei an der Schale wenigstens eine Auflagefläche des mit der Schale zu bildenden Hybrid-Auflagerings ausgebildet ist, wobei in wenigstens einer Wand wenigstens ein Durchbruch vorgesehen ist, welche sich dadurch auszeichnet, dass die Auflagefläche eine erste Auflagefläche ist, deren Oberfläche strukturiert ist, wobei diese eine Vielzahl von Vertiefungen und Erhöhungen aufweist, dass eine Vielzahl von Durchbrüchen in der Wand der Schale vorgesehen sind, dass die Durchbrüche in der ersten Auflagefläche der Schale angeordnet sind.
  • Die erfindungsgemäße Schale ist dabei derartig gestaltet, dass durch Ausfüllen des Volumens, das durch die Wände der Schale definiert ist, mit einem aushärtenden Material und Aushärten des aushärtenden Materials zu einem ausgehärteten Material ein Hybrid-Auflagering bereitstellbar ist, der die vorstehend bei den bekannten Beton-Auflageringen geschilderten Nachteile überwindet.
  • In einfacher Weise kann dazu der Hybrid-Auflagering entweder in einer Fertigungsstätte oder direkt an der Baustelle dadurch hergestellt werden, dass ein aushärtendes Material, wie beispielsweise Beton, in das Volumen der Schale eingefüllt wird und dort aushärtet.
  • Je nach Notwendigkeit kann der Beton beispielsweise armiert sein, wozu als solche bekannte Armiereisen bzw. Stahlbauteile Verwendung finden, andere Möglichkeiten der Armierung bestehen darin, dass dem Beton beispielsweise Metallfasern oder Glasfasern oder ähnliches zugefügt werden.
  • Durch die Herstellung des Hybrid-Auflagerings an der Baustelle kann der aufwendige Transport von einer Fertigungsstätte zur Baustelle vermieden werden, hierdurch können die Kosten durch Vermeiden der Lagerhaltung, aber auch die Gefahr von Lager- und Transportschäden vermieden werden.
  • Durch das Vorsehen gemäß vorliegender Erfindung, dass an der Schale wenigstens eine Auflagefläche des mit der Schale zu bildenden Hybrid-Auflagerings ausgebildet ist, kann ein solcher Hybrid-Auflagering in besonders einfacher und effizienter Weise hergestellt werden, da so die technischen Notwendigkeiten für diese Auflagefläche hinsichtlich Abmessungen, Gestaltung und Oberflächenausführung gleich durch die Schale vorgebbar sind.
  • Bei der vorliegenden Erfindung kann sich als sehr günstig erweisen, wenn vorgesehen ist, dass die Schale rotationssymmetrisch zu einer Achse A ausgebildet ist.
  • Durch diese Maßnahme kann eine solche Schale sehr einfach hergestellt werden, da ein Werkzeug für eine solche rotationssymmetrisch ausgebildete Schale einfach zu konstruieren und zu bauen ist. Zum anderen ist dadurch mit dieser Schale ein Hybrid-Auflagering in einfacher Weise herstellbar, der ohne besonderen Aufwand in ein Schachtbauwerk einbaubar ist, da dieser aufgrund seiner Rotationssymmetrie in einfacher Weise ausrichtbar ist bzw. keiner besonderen Ausrichtung in Bezug auf die Achse A bedarf.
  • Als sehr vorteilhaft kann sich bei der vorliegenden Erfindung ergeben, wenn vorgesehen ist, dass die Wände der Schale an allen Stellen eine gleiche oder eine etwa gleiche Dicke aufweisen.
  • Hierdurch kann eine Schale bereitgestellt werden, die ein sehr geringes Gewicht aufweist, und die insbesondere in einem einfachen Herstellverfahren zugänglich ist. Auch ist eine solche Schale überaus maßgenau herzustellen, da so Verzüge oder Einfallstellen vermieden werden können.
  • Als sehr günstig kann sich bei der vorliegenden Erfindung ergeben, wenn vorgesehen ist, dass die Schale in wenigstens einer Wand wenigstens einen Durchbruch aufweist. Dadurch kann im Bereich des Durchbruchs in der Wand der Schale das ausgehärtete Material, dass das Volumen der Schale beim Hybrid-Auflagering füllt bzw. ausfüllt, in Kontakt treten mit aushärtendem Material, das beim Bau des Schachtbauwerks verwendet wird. Hierdurch kann insbesondere eine verschiebesichere Anordnung des Hybrid-Auflagerings beim Schachtbauwerk erreicht werden, in dem das ausgehärtete Material des Hybrid-Auflagerings beispielsweise mit aushärtenden Material bei der Anordnung der Abdeckung in Kontakt kommt und so eine feste Verbindung mit diesem eingeht, so dass der Hybrid-Auflagering mit der Abdeckung fluiddicht verbunden ist.
  • Es kann mit Vorteil vorgesehen sein, dass nicht nur ein Durchbruch in der Wand der Schale, sondern eine Vielzahl von Durchbrüchen in der Wand der Schale vorgesehen sind. Der oder die Durchbrüche können in verschiedener Weise ausgebildet sein, beispielsweise eine kreisförmige, eine eckige, eine ovale oder eine andersartig gestaltete Geometrie aufweisen, es ist aber auch möglich, dass der oder die Durchbrüche beispielsweise als zur Achse A konzentrischer teilumlaufender Schlitz oder als teilumlaufener spiralfömiger Schlitz ausgebildet ist.
  • Solche Durchbrüche können bereits bei der Urformung der Schale gebildet sein, indem das zur Herstellung eingesetzte Werkzeug solche bereits erzeugt. In anderen Fertigungsprozessen können solche Durchbrüche beispielsweise durch Stanzen oder Fräsen oder andere materialabtragende Techniken hergestellt sein.
  • In einer anderen Ausführungsform der Erfindung kann auch vorgesehen sein, dass an der Wand der Schale eine Stelle oder eine Mehrzahl von Stellen, insbesondere gekennzeichnete Stellen vorgesehen sind, an denen die Wandstärke der Schale reduziert ist und beispielsweise nur 5 bis 10 % der Wandstärke beträgt, wie sie in den Bereich vorliegt, die keine derartigen Stellen sind.
  • Wird die Wand beim Hybrid-Auflagering an dieser Stelle beispielsweise mit Hilfe eines Werkzeugs durchbrochen, so liegt das ausgehärtete Material dort frei und kann zur Verbindung wie oben dargestellt vorteilhaft genutzt werden.
  • In einer anderen vorteilhaften Ausführung der Erfindung kann vorgesehen sein, dass die Schale derartig ausgebildet ist, dass diese weitgehend geschlossen geformt ist und nur eine kleine Öffnung zum Einfüllen des aushärtenden Materials aufweist. Dies kann in einer Fortbildung derart ausgeführt sein, dass nur eine Öffnung zum befüllen des Volumens der Schale und eine Öffnung zur Entlüftung des Volumens der Schale vorgesehen ist.
  • In einer weiteren vorteilhaften Ausführung der Erfindung kann aber auch vorgesehen sein, dass die Schale derartig ausgebildet ist, dass diese weitgehend offen ist, also das mit dem aushärtenden Material zu füllende Volumen zur Bildung des Hybrid-Auflagerings nur teilweise begrenzt. Bevorzugt ist dabei vorgesehen, wenn die Schale so geformt ist, dass diese zur Innenseite des Schachtbauwerks hin orientiert ist, um so die aggressiven Medien aus dem Schachtbauwerk nicht mit dem ausgehärteten Material des Hybrid-Auflagerings in Kontakt kommen zu lassen. Entsprechend sind weitere begrenzende Wände bei der Herstellung des Hybrid-Auflagerings dann durch beispielsweise wiederverwendbare Schalungen, zum Beispiel solchen aus Metall, Holz oder Polymermaterial, zu bilden.
  • Als günstig kann sich bei der vorliegenden Erfindung erweisen, wenn vorgesehen ist, dass Aufnahmemittel vorgesehen sind, um den mit der Schale zu bildenden Hybrid-Auflagering aufnehmen zu können, um diesen beispielsweise zu bewegen, auf- und abzuladen, zu positionieren, zu versetzen und dergleichen. Solche Aufnahmemittel können Ösen umfassen, die im Bereich der Wand der Schale ausgebildet sind. Es kann auch vorgesehen sein, dass die Wand der Schale an geeigneten Stellen Durchbrüche aufweist, um an diesen Stellen beispielsweise ein Aufnahmemittel in Form einer Metallstange oder eines Metallseils, das fest im ausgehärteten Material des Hybrid-Auflagerings eingebettet ist, aus der Schale herausragen zu lassen. Bewährt hat sich im Erfindungszusammenhang, wenn vorgesehen ist, wenigstens drei solche Ösen, Metallstangen oder Metallseile anzuordnen, da dies das Aufnehmen des Hybrid-Auflagerings erheblich vereinfacht.
  • Es ist gemäß der Erfindung vorgesehen, dass die erste Auflagefläche eine Oberfläche aufweist, die strukturiert ist, um ein gute Anbindung eines aushärtenden Materials, wie beispielsweise Mörtel, zur Befestigung der an der ersten Auflagefläche anzuordnenden Abdeckung zu gewährleisten. Hierzu weist die Oberfläche der ersten Auflagefläche eine Vielzahl von Vertiefungen und Erhöhungen auf.
  • Es kann dazu auch vorgesehen sein, diese Oberfläche durch einen Strahlprozess, beispielsweise einen Sandstrahlprozess, aufzurauhen.
  • Auch kann die Oberfläche der ersten Auflagefläche durch physikalische und / oder chemische Behandlung hydrophil gemacht werden, indem die Oberfläche beispielsweise mit Hilfe einer Flamme und / oder eines Plasmas und / oder einer Laserstrahlung und / oder einer UV-Strahlung und / oder eines Ätzprozesses und oder eines Haftvermittlerauftrags aktiviert wird.
  • Es ist ebenso möglich, die Oberfläche der ersten Auflagefläche durch dort aus der Polymermatrix herausragende Fasern, insbesondere Mineralfasern und / oder Glasfasern und / oder Metallfasern, oder durch geeignete Füllstoffe zur verbesserten Anbindung des aushärtenden Material - wie vorstehend beschrieben - zu optimieren.
  • Die vorstehend genannten Möglichkeiten zur Modifikation der Oberfläche der ersten Auflagefläche können auch in Kombination miteinander vorgesehen sein.
  • Zur weiteren Verbesserung der vorliegenden Erfindung kann darüber hinaus noch vorgesehen sein, dass an der ersten Auflagefläche entlang wenigstens eines Abschnittes des die erste Auflagefläche zum Durchbruch hin begrenzenden Randes eine axiale Wand geringer Höhe ausgebildet ist, die es leicht ermöglicht, auf der ersten Auflagefläche ein aushärtendes Material, wie beispielsweise Mörtel, zur Befestigung der an der ersten Auflagefläche anzuordnenden Abdeckung aufzutragen und dieses Material beispielsweise mit einer Kelle unter Nutzung der Oberkante dieser Wand glattzuziehen, wodurch einerseits eine gleichmäßige Dicke des Materials auf der ersten Auflagefläche hergestellt werden kann und andererseits vermieden wird, dass Material in den Durchbruch unerwünscht hineinfließt.
  • In einer weiteren vorteilhaften Ausführung der Erfindung kann vorgesehen sein, dass der Hybrid-Auflagering eine Identifikationsvorrichtung aufweist, die entweder in der Schale des Hybrid-Auflagerings oder in der ausgehärteten Masse des Hybrid-Auflagerings angeordnet ist. Eine solche Identifikationsvorrichtung kann ein RFID-Chip sein, mit dem der Hybrid-Auflagering eindeutig identifizierbar ist und auf diese Weise die Verwaltung eines Fluidsystems mit einem derartigen Hybrid-Auflagering wesentlich vereinfacht.
  • Die Schale gemäß vorliegender Erfindung kann in einer günstigen Ausbildung so geformt sein, dass sie an ihrem äußeren Rand eine senkrecht radial nach außen wegstehende Wand aufweist, die beim Einbau in ein Schachtbauwerk zumindest partiell lastabtragend wirkt und so für die Herstellung eines verbesserten Hybrid-Auflagerings zur Verfügung steht.
  • Bei der vorliegenden Erfindung kann sich als sehr vorteilhaft erweisen, wenn vorgesehen ist, dass die Schale aus einem Polymermaterial, das thermoplastisch oder duroplastisch ist, oder aus einem Metall besteht oder ein solches enthält.
  • Bevorzugt ist in diesem Zusammenhang ein Polyolefin, wie ein Polypropylen oder ein Polyethylen oder ein Polybutylen oder ein Polyvinylchlorid, aus dem die Schale besteht oder welches die Schale enthält.
  • Die vorstehend genannten Polymermaterialien sind inert, langlebig, korrosionsbeständig, leicht formbar, günstig und verfügbar.
  • Durch die Trennung der ausgehärteten Masse in der Schale, also beispielsweise dem Beton, durch das Polymermaterial der Wand der Schale von den korrosiven Gasen im Schachtbauwerk kann es zu keinem korrosiven Angriff des Betons kommen, so dass die vorstehend beschriebenen Nachteile des Standes der Technik überwunden werden können.
  • Die Schale der vorliegenden Erfindung kann in einem Polymerformgebungsprozess, wie einem Spritzgussprozess oder einem Rotationsgießprozess oder einem Rotationssinterprozess oder einem Pressprozess oder einem Tiefziehprozess oder einem Extrusionsblasprozess oder einem additiven Fertigungsprozess, wie einem 3D-Druckprozess, oder einer Kombination der vorstehend aufgeführten Prozesse hergestellt sein.
  • Die vorstehend genannten Prozesse sind geeignet, eine Schale gemäß vorliegender Erfindung in großer Stückzahl reproduzierbar, maßhaltig und kostengünstig herzustellen.
  • Alternativ kann vorgesehen sein, dass die Schale ganz oder teilweise unter Verwendung eines generativen Fertigungsverfahrens, beispielsweise durch ein 3-D-Druckverfahren, hergestellt ist.
  • Hierzu kann mit Vorteil ein datenverarbeitungsmaschinenlesbares dreidimensionales Modell für die Herstellung genutzt werden.
  • Die Erfindung umfasst auch ein Verfahren zur Erzeugung eines datenverarbeitungsmaschinenlesbaren dreidimensionalen Modells zur Verwendung in einem Herstellungsverfahren für eine Schale. Hierbei umfasst das Verfahren insbesondere auch die Eingabe von Daten, die eine Schale darstellen, in eine Datenverarbeitungsmaschine und die Nutzung der Daten, um ein Schale als dreidimensionales Modell darzustellen, wobei das dreidimensionale Modell geeignet ist zur Nutzung bei der Herstellung einer Schale. Ebenfalls umfasst ist bei dem Verfahren eine Technik, bei der die eingegebenen Daten eines oder mehrerer 3D-Scanner, die entweder auf Berührung oder berührungslos funktionieren, wobei bei letzteren Energie auf eine Schale abgegeben wird und die reflektierte Energie empfangen wird, und wobei ein virtuelles dreidimensionales Modell einer Schale unter Verwendung einer computer-unterstützten Design-Software erzeugt wird.
  • Das Fertigungsverfahren kann ein generatives Pulverbettverfahren, insbesondere selektives Laserschmelzen (SLM), selektives Lasersintern (SLS), selektives Hitzesintern (Selective Heat Sintering - SHS), selektives Elektronenstrahlschmelzen (Electron Beam Melting - EBM / Electron Beam Additive Manufacturing - EBAM) oder Verfestigen von Pulvermaterial mittels Binder (Binder Jetting) umfassen. Das Fertigungsverfahren kann ein generatives Freiraumverfahren, insbesondere Auftragsschweißen, Wax Deposition Modeling (WDM), Contour Crafting, Metall-Pulver-Auftragsverfahren (MPA), Kunststoff-Pulver-Auftragsverfahren, Kaltgasspritzen, Elektronenstrahlschmelzen (Electron Beam Welding - EBW) oder Schmelzeschichtungsverfahren wie Fused Deposition Modeling (FDM) oder Fused Filament Fabrication (FFF) umfassen. Das Fertigungsverfahren kann ein generatives Flüssigmaterialverfahren, insbesondere Stereolithografie (SLA), Digital Light Processing (DLP), Multi Jet Modeling (MJM), Polyjet Modeling oder Liquid Composite Moulding (LCM) umfassen. Ferner kann das Fertigungsverfahren andere generative Schichtaufbauverfahren, insbesondere Laminated Object Modelling (LOM), 3D-Siebdruck oder die Lichtgesteuerte Elektrophoretische Abscheidung umfassen.
  • Die zweite Aufgabe der vorliegenden Erfindung, einen Hybrid-Auflagering bereitzustellen, erfährt ihre Lösung gemäß dem Gegenstand des Anspruchs 7.
  • Der Hybrid-Auflagering der vorstehenden Erfindung umfasst eine Schale, wie vorstehend beschrieben, und ein ausgehärtetes Material, mit dem das Volumen der Schale zumindest partiell gefüllt ist, insbesondere einem ausgehärteten mineralischen Material.
  • Ein solches mineralisches Material kann insbesondere Beton sein, aber auch andere aushärtenden Materialien, wie beispielsweise Polymerbeton, sind möglich.
  • In bekannter Weise kann der Beton mit Fasern, beispielsweise Glasfasern, Metallfasern oder Fasern aus Polymermaterial verstärkt sein, Verstärkungen können im Beton auch in Form von Armierungen vorgesehen sein, die korbförmig oder ähnlich gestaltet sind.
  • Auch hier kann vorgesehen sein, dass der Hybrid-Auflagering ganz oder teilweise unter Verwendung eines generativen Fertigungsverfahrens, beispielsweise durch ein 3-D-Druckverfahren, hergestellt ist.
  • Hierzu kann mit Vorteil ein datenverarbeitungsmaschinenlesbares dreidimensionales Modell für die Herstellung genutzt werden.
  • Die Erfindung umfasst auch ein Verfahren zur Erzeugung eines datenverarbeitungsmaschinenlesbaren dreidimensionalen Modells zur Verwendung in einem Herstellungsverfahren für einen Hybrid-Auflagering. Hierbei umfasst das Verfahren insbesondere auch die Eingabe von Daten, die einen Hybrid-Auflagering darstellen, in eine Datenverarbeitungsmaschine und die Nutzung der Daten, um einen Hybrid-Auflagering als dreidimensionales Modell darzustellen, wobei das dreidimensionale Modell geeignet ist zur Nutzung bei der Herstellung eines Hybrid-Auflagerings. Ebenfalls umfasst ist bei dem Verfahren eine Technik, bei der die eingegebenen Daten eines oder mehrerer 3D-Scanner, die entweder auf Berührung oder berührungslos funktionieren, wobei bei letzteren Energie auf einen Hybrid-Auflagering abgegeben wird und die reflektierte Energie empfangen wird, und wobei ein virtuelles dreidimensionales Modell eines Hybrid-Auflagerings unter Verwendung einer computerunterstützten Design-Software erzeugt wird.
  • Das Fertigungsverfahren kann ein generatives Pulverbettverfahren, insbesondere selektives Laserschmelzen (SLM), selektives Lasersintern (SLS), selektives Hitzesintern (Selective Heat Sintering - SHS), selektives Elektronenstrahlschmelzen (Electron Beam Melting - EBM / Electron Beam Additive Manufacturing - EBAM) oder Verfestigen von Pulvermaterial mittels Binder (Binder Jetting) umfassen. Das Fertigungsverfahren kann ein generatives Freiraumverfahren, insbesondere Auftragsschweißen, Wax Deposition Modeling (WDM), Contour Crafting, Metall-Pulver-Auftragsverfahren (MPA), Kunststoff-Pulver-Auftragsverfahren, Kaltgasspritzen, Elektronenstrahlschmelzen (Electron Beam Welding - EBW) oder Schmelzeschichtungsverfahren wie Fused Deposition Modeling (FDM) oder Fused Filament Fabrication (FFF) umfassen. Das Fertigungsverfahren kann ein generatives Flüssigmaterialverfahren, insbesondere Stereolithografie (SLA), Digital Light Processing (DLP), Multi Jet Modeling (MJM), Polyjet Modeling oder Liquid Composite Moulding (LCM) umfassen. Ferner kann das Fertigungsverfahren andere generative Schichtaufbauverfahren, insbesondere Laminated Object Modelling (LOM), 3D-Siebdruck oder die Lichtgesteuerte Elektrophoretische Abscheidung umfassen.
  • Die letzte Aufgabe der vorliegenden Erfindung, ein Schachtbauwerk bereitzustellen, ist mit dem Gegenstand des Anspruchs 8 gelöst.
  • Im Rahmen der vorliegenden Erfindung wurde erkannt, dass ein Schachtbauwerk mit einem Hybrid-Auflagering, wie er vorstehend beschrieben ist, in ganz besonderer Weise geeignet ist, die Nachteile, die aus dem Stand der Technik bekannt sind, erheblich zu reduzieren bzw. zu vermeiden.
  • Verwendung findet die vorliegende Erfindung im Bereich von Schachtbauwerken und Straßeneinläufen in der Abwassertechnik und der Regenwassertechnik, dies kann sowohl Neubauten von Schachtbauwerken bzw. Straßeneinläufen, wie auch deren Sanierung betreffen. Weiterhin kann die vorliegende Erfindung in weitem Umfang in landwirtschaftlichen und industriellen Anwendungen, in der Kläranlagentechnik, in der Schwimmbadtechnik, in der Fischzucht, in der Nahrungsmittel- und Getränkeproduktionstechnik, im Obst- und Gartenbau und in weiteren Bereichen eingesetzt werden.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Figuren und aus der zugehörigen Figurenbeschreibung.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Fig. dargestellt und werden in der nachfolgenden Beschreibung weiter ausgeführt.
  • Die vorliegende Erfindung wird anhand der beigefügten Figuren näher erläutert.
  • Hierzu zeigt:
  • Fig. 1
    eine perspektivische Ansicht einer Schale;
    Fig. 2
    eine perspektivische teilweise geschnittene Ansicht der Schale aus Fig. 1;
    Fig. 3
    eine perspektivische teilweise geschnittene Ansicht eines Hybrid-Auflagerings;
    Fig. 4
    eine perspektivische Ansicht des Hybrid-Auflagerings aus Fig. 3;
    Fig. 5
    eine perspektivische Ansicht eines Hybrid-Auflagerings in einer zweiten Ausführung;
    Fig. 6
    eine geschnittene Ansicht eines Schachtbauwerks.
  • In der Fig. 1 ist die Schale 1 in einer perspektivischen Ansicht gezeigt.
  • Die Schale 1 ist ringförmig ausgebildet und weist einen Durchgang 4 auf. Die Schale 1 weist Wände 2 auf, welche ein Volumen 3 der Schale 1 definieren.
  • Die Schale 1 ist rotationssymmetrisch gegenüber einer Achse A ausgebildet, wobei die Achse A durch die beiden Flächenmittelpunkte, den ersten Flächenmittelpunkt P1 und den zweiten Flächenmittelpunkt P2 definiert ist. Der erste Flächenmittelpunkt P1 bezieht sich dabei auf die Fläche des Durchgangs 4 der Schale 1 an ihrem ersten Ende E1 gemäß Fig. 1, der zweite Flächenmittelpunkt P2 bezieht sich auf die Fläche des Durchgangs 4 der Schale 1 an ihrem zweiten Ende E2 gemäß der Darstellung in Fig. 1.
  • In der Fig. 2 ist die Schale 1 in einer perspektivischen teilweise geschnittenen Ansicht gezeigt.
  • Die Bezugszeichen in Fig. 2 entsprechen denen aus der vorherigen Figur.
  • Die Wände 2, die das Volumen 3 der Schale 1 definieren, sind hierbei derart ausgebildet, dass sich eine erste Wand 2.1 von einem oberen äußeren Rand am zweiten Ende E2 der Schale 1 in axialer Richtung erstreckt, zu der stumpfwinklig eine zweite Wand 2.2 angeordnet ist, die zur Achse A hin als Kegelmantelabschnittsfläche ausgebildet ist.
  • Von der zweiten Wand 2.2 erstreckt sich wiederum stumpfwinklig ein dritte Wand 2.3 in radialer Richtung zur Achse A hin, an der eine vierte Wand 2.4 etwa rechtwinklig in Richtung des oberen Randes der Schale 1 axial angeordnet ist.
  • Von der vierten Wand 2.4 erstreckt sich etwa unter einem 90°-Winkel radial nach innen zur Achse A hin eine fünfte Wand 2.5, die wiederum mit einer axialen sechsten Wand 2.6 etwa rechtwinklig verbunden ist, wobei die sechste Wand 2.6 etwa wie die vierte Wand 2.4 ausgerichtet ist.
  • Die sechste Wand 2.6 ist mit einer siebten Wand 2.7 verbunden, die sich radial nach außen erstreckt.
  • Von der siebten Wand 2.7 erstreckt sich axial zum zweiten Ende E2 weisend eine achte Wand 2.8, die den inneren oberen Rand der Schale 1 definiert.
  • Alle Wände 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 und 2.8 ziehen sich in gleicher Weise um die Schale, so dass diese gegenüber der Achse A rotationssymmetrisch ausgebildet ist.
  • Es versteht sich, dass auch andere Ausgestaltungsmöglichkeiten der Schale 1, insbesondere solche mit anderen Anordnungen von Wänden 2, möglich sind.
  • In der Fig. 3 ist eine perspektivische teilweise geschnittene Ansicht eines Hybrid-Auflagerings 10 gezeigt.
  • Die Bezugszeichen der Fig. 3 entsprechen denen aus den vorherigen Figuren.
  • Der Hybrid-Auflagering 10 ist dadurch gebildet, dass in das Volumen 3 der Schale 1 ein aushärtendes Material eingefüllt ist, und dieses aushärtende Material zu einem ausgehärteten Material 9 ausgehärtet ist. Das ausgehärtete Material 9 füllt das Volumen 3 der Schale 1 bis zur Oberkante der Schale 1 auf.
  • Es ist aber auch möglich, dass das Volumen 3 der Schale 1 nur teilweise mit dem aushärtenden Material aufgefüllt wird.
  • Am Hybrid-Auflagering 10 sind Auflageflächen ausgebildet, wobei eine erste Auflagefläche 6.1 und eine zweite Auflagefläche 6.2 vorgesehen sind. Die erste Auflagefläche 6.1 und die zweite Auflagefläche 6.2 sind etwa parallel zueinander ausgerichtet. Sowohl die erste Auflagefläche 6.1 wie auch die zweite Auflagefläche 6.2 sind ringförmig umlaufend am Hybrid-Auflagering 10 ausgebildet. Die erste Auflagefläche 6.1 ist kleiner als die zweite Auflagefläche 6.2 des Hybrid-Auflagerings 10. Beim Einbau des Hybrid-Auflagerings 10 in ein Schachtbauwerk 30 ist vorgesehen, dass der Hybrid-Auflagering 10 so positioniert ist, dass er mit der zweiten Auflagefläche 6.2 auf ein Auflager 34, das als Bettung ausgebildet ist und beispielsweise in Form einer Betonplatte oder eines Bettes aus Splitt besteht, aufgelegt wird und an seiner ersten Auflagefläche 6.1 die Abdeckung 35 angeordnet wird, die den Abschluss zur Geländeoberkante GOK bildet, was in Fig. 6 detailliert gezeigt ist.
  • In vorteilhafter Weise kann nach dem Einfüllen des aushärtenden Materials in das Volumen 3 der Schale 1 eine glatte zweite Auflagefläche 6.2 dadurch hergestellt werden, dass das aushärtende Material durch Abziehen und Glattziehen mit beispielsweise einer Kelle entlang der oberen freien Ränder der die Schale 1 begrenzenden Wände 2 an deren zweiten Ende E2 erfolgt.
  • In der Fig. 4 ist der Hybrid-Auflagering 10 in einer perspektivischen Ansicht gezeigt.
  • Die Bezugszeichen der Fig. 4 entsprechen denen aus den vorherigen Figuren.
  • Der Hybrid-Auflagering ist rotationssymmetrisch ausgebildet.
  • In der Ansicht gemäß Fig. 4 ist die Schale 1, die zur Bildung des Hybrid-Auflagerings 10 herangezogen ist, gezeigt, weiterhin die erste Auflagefläche 6.1 am Hybrid-Auflagering 10. Der Hybrid-Auflagering 10 weist zumindest abschnittsweise an seiner Außenoberfläche eine Kegelabschnittsfläche auf, was ihn besonders vorteilhaft stabilisiert und wodurch die im Einbauzustand auf ihn einwirkenden Kräfte in günstiger Weise nach unten verteilt weitergeleitet werden.
  • In der Fig. 5 ist ein Hybrid-Auflagering 10 in einer perspektivischen Ansicht in einer zweiten Ausführungsart gezeigt.
  • Die Bezugszeichen der Fig. 5 entsprechen denen aus den vorherigen Figuren.
  • Die zur Herstellung des Hybrid-Auflagerings 10 verwendete Schale 1 ist dabei so gestaltet, dass Durchbrüche 5 in der ersten Auflagefläche 6.1 der Schale 1 angeordnet sind, sodass bei der Herstellung des Hybrid-Auflagerings 10 durch Füllen des Volumens 3 der Schale 1 mit einem aushärtenden Material und dem Aushärten des aushärtenden Materials zum ausgehärteten Material 9 dieses ausgehärtete Material 9 in die Durchbrüche 5 eindringt bzw. an den Durchbrüchen 5 der Schale 1 ansteht und dort freiliegt.
  • Die Durchbrüche 5 der Schale 1 an der ersten Auflagefläche 6.1 sind kreisrund ausgebildet und in einer Vielzahl angeordnet. Hierbei ist vorgesehen, dass der Abstand eines Durchbruchs 5 zu seinen beiden jeweiligen Nachbarn stets gleichbemessen ist.
  • In der Fig. 6 ist eine geschnittene Ansicht eines Schachtbauwerks 30 gezeigt.
  • Die Bezugszeichen der Fig. 6 entsprechen denen aus den vorherigen Figuren.
  • Das Schachtbauwerk 30 ist im Erdreich eingebaut und umfasst ein Schachtunterteil 31, welches eingerichtet ist, ein Fluid zu transportieren, wozu beispielsweise ein Gerinne und Anschlüsse für Rohre vorgesehen sind, einen auf das Schachtunterteil 31 fluiddicht aufgesetzten Schachtring 32, einen auf den Schachtring fluiddicht aufgesetzten Schachtkonus 33, und einen Hybrid-Auflagering 10, der fluiddicht mit dem Schachtkonus 33 verbunden ist und seinerseits auf ein Auflager 34, das vorliegend als Betonplatte ausgebildet ist, aufliegt.
  • Mit dem Hybrid-Auflagering 10 ist fluiddicht eine Abdeckung 35 verbunden, die in an sich bekannter Weise eine Abdeckung zur Geländeoberkante GOK darstellt, die beispielsweise in Form einer Platte oder eines Gitters ausgebildet ist. Die Oberseite der Abdeckung 35 schließt hierbei mit der Geländeoberkante GOK ab.
  • In der Fig. 6 ist ein Detail X in einer vergrößerten Darstellung gezeigt.
  • Der Hybrid-Auflagering 10 weist eine erste Auflagefläche 6.1 auf, auf der die Abdeckung 35 fluiddicht aufgelegt und verbunden ist. Hilfreich ist dabei, wenn vorgesehen ist, dass zwischen der ersten Auflagefläche 6.1 des Hybrid-Auflagerings 10 und der Unterseite der Abdeckung 35, die auf die erste Auflagefläche 6.1 aufzulegen ist, eine Mörtelschicht aufgetragen wird, um eine fluiddichte Anbindung der Abdeckung 35 an den Hybrid-Auflagering 10 herzustellen.
  • Soweit ein Hybrid-Auflagering 10 der zweiten Ausführung gemäß Fig. 5 eingesetzt wird, kann die Mörtelschicht auf der ersten Auflagefläche 6.1 des Hybrid-Auflagerings 10 mit dem ausgehärteten Material 9, das in oder an den Durchbrüchen 5 ansteht und dort freiliegt in Kontakt kommen und hier eine besonders feste Verbindung mit diesem eingehen. Hierdurch kann eine verschiebesichere Befestigung der Abdeckung 35 an dem Hybrid-Auflagering 10 sichergestellt werden.
  • Der Hybrid-Auflagering 10 ist mit seiner zweiten Auflagefläche 6.2 auf dem Auflager 34 in Form einer Betonplatte aufgelegt. Auch hier kann es sich als sehr hilfreich erweisen, wenn vorgesehen ist, dass zwischen dem Auflager 34 in Form einer Betonplatte und der zweiten Auflagefläche 6.2 des Hybrid-Auflagerings 10 eine Mörtelschicht angeordnet wird, um eine feste und insbesondere verschiebesichere Anordnung des Hybrid-Auflagerings 10 auf dem Auflager 34 sicherzustellen.
  • Durch den Durchgang 4 des Hybrid-Auflagerings 10 kann Wasser in das Schachtbauwerk 30 von der Geländeoberkante GOK her einströmen, auch ist das Innere des Schachtbauwerks 30 durch den Durchgang 4 für Inspektionen, Wartungen, Reinigungsarbeiten und Reparaturen begehbar.
  • Bezugszeichenliste
  • 1
    Schale
    2
    Wand
    2.1
    erste Wand
    2.2
    zweite Wand
    2.3
    dritte Wand
    2.4
    vierte Wand
    2.5
    fünfte Wand
    2.6
    sechste Wand
    2.7
    siebte Wand
    2.8
    achte Wand
    3
    Volumen
    4
    Durchgang
    5
    Durchbruch
    6
    Auflagefläche
    6.1
    erste Auflagefläche
    6.2
    zweite Auflagefläche
    9
    ausgehärtetes Material
    10
    Hybrid-Auflagering
    30
    Schachtbauwerk
    31
    Schachtunterteil
    32
    Schachtring
    33
    Schachtkonus
    34
    Auflager
    35
    Abdeckung
    A
    Achse
    E1
    erstes Ende
    E2
    zweites Ende
    GOK
    Geländeoberkante
    P1
    erster Flächenmittelpunkt
    P2
    zweiter Flächenmittelpunkt
    X
    Detail

Claims (8)

  1. Schale (1) für die Herstellung eines Hybrid-Auflagerings (10) für ein Schachtbauwerk (30), mit Wänden (2), durch die ein Volumen (3) definiert ist, das zur Aufnahme eines aushärtenden Materials ausgebildet ist, um den Hybrid-Auflagering (10) durch Aushärten des aushärtenden Materials zu einem ausgehärteten Material (9) zu bilden, wobei die Schale (1) aus einem Polymermaterial, das thermoplastisch oder duroplastisch ist, oder aus einem Metall besteht oder ein solches enthält, und diese ringförmig ausgebildet ist und einen Durchgang (4) aufweist, und wobei an der Schale (1) wenigstens eine Auflagefläche (6) des mit der Schale (1) zu bildenden Hybrid-Auflagerings (10) ausgebildet ist, wobei in wenigstens einer Wand (2) wenigstens ein Durchbruch (5) vorgesehen ist, und wobei die Auflagefläche (6) eine erste Auflagefläche (6.1) ist, deren Oberfläche strukturiert ist, wobei diese eine Vielzahl von Vertiefungen und Erhöhungen aufweist, wobei eine Vielzahl von Durchbrüchen (5) in der Wand (2) der Schale (1) vorgesehen sind, und wobei die Durchbrüche (5) in der ersten Auflagefläche (6.1) der Schale (1) angeordnet sind.
  2. Schale (1) nach Anspruch 1, dadurch gekennzeichnet, dass diese rotationssymmetrisch zu einer Achse A ausgebildet ist.
  3. Schale (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wände (2) an allen Stellen ein gleiche oder eine etwa gleiche Dicke aufweisen.
  4. Schale (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Hybrid- Auflagering (10) zumindest abschnittsweise an seiner Außenoberfläche eine Kegelabschnittsfläche aufweist.
  5. Schale (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus einem Polyolefin, wie einem Polypropylen oder einem Polyethylen oder einem Polybutylen, oder einem Polyvinylchlorid, besteht oder ein solches enthält.
  6. Schale (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese in einem Polymerformgebungsprozess, wie einem Spritzgussprozess oder einem Rotationsgießprozess oder einem Rotationssinterprozess oder einem Pressprozess oder einem Tiefziehprozess oder einem Extrusionsblasprozess oder einem additiven Fertigungsprozess, wie einem 3D-Druckprozess, oder einer Kombination der vorstehend aufgeführten Prozesse hergestellt ist.
  7. Hybrid-Auflagering (10), umfassend eine Schale (1) nach einem der Ansprüche 1 bis 6 und ein ausgehärtetes Material (9), mit dem das Volumen (3) der Schale (1) zumindest partiell gefüllt ist, insbesondere einem ausgehärteten mineralischen Material (9).
  8. Schachtbauwerk (30) mit einem Hybrid-Auflagering (10) nach Anspruch 7.
EP19209028.0A 2018-12-18 2019-11-14 Schale für die herstellung eines hybrid-auflagerings und hybrid-auflagering Active EP3670756B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202018107215.3U DE202018107215U1 (de) 2018-12-18 2018-12-18 Schale für die Herstellung eines Hybrid-Auflagerings und Hybrid-Auflagering

Publications (2)

Publication Number Publication Date
EP3670756A1 EP3670756A1 (de) 2020-06-24
EP3670756B1 true EP3670756B1 (de) 2024-01-03

Family

ID=68654318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19209028.0A Active EP3670756B1 (de) 2018-12-18 2019-11-14 Schale für die herstellung eines hybrid-auflagerings und hybrid-auflagering

Country Status (2)

Country Link
EP (1) EP3670756B1 (de)
DE (1) DE202018107215U1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2145444B (en) * 1983-08-05 1988-04-07 John Patrick Telford Manhole chambers
JPH10292411A (ja) * 1997-04-16 1998-11-04 Eiji Yamamuro マンホールの蓋受台設置用押え装置
CN103452138A (zh) * 2013-01-09 2013-12-18 丁永杰 塑胶复合检查井盖支座
JP6319957B2 (ja) * 2013-06-20 2018-05-09 日本ステップ工業株式会社 マンホール用調整リング
ITUB20160313A1 (it) * 2016-01-22 2017-07-22 Bruno Zanatta Chiusino o caditoia regolabile in altezza e relativo metodo di installazione

Also Published As

Publication number Publication date
DE202018107215U1 (de) 2020-03-19
EP3670756A1 (de) 2020-06-24

Similar Documents

Publication Publication Date Title
DE102012102637A1 (de) Verfahren zum Herstellen eines Fußboden- oder Wandelements
DE102007058885A1 (de) Verbundrohr und Verfahren zu dessen Herstellung
EP3670756B1 (de) Schale für die herstellung eines hybrid-auflagerings und hybrid-auflagering
EP3670755A1 (de) Schalungsring für einen hybrid-ausgleichsring, hybrid-ausgleichsring und schachtbauwerk
DE202009017953U1 (de) Vorrichtung zur Herstellung einer Form für die Fertigung von Schachtbodenstücken und Vorrichtung zur Herstellung von Schachtbodenstücken
DE202018107216U1 (de) Schalungsring für einen Hybrid-Auflagering und Hybrid-Auflagering
WO2014095856A2 (de) Variable formvorrichtung zur herstellung einer halbschale für ein rotorblatt für eine windenergieanlage
DE202017107706U1 (de) Dichtungselement
EP0659949A1 (de) Schachtbodenstück und Verfahren zur Herstellung von Betonformteilen, insbesondere Schachtbodenstücke
DE29701512U1 (de) Formschalung für tragende Bauteile
DE102009053179A1 (de) Verfahren und Vorrichtung zur Herstellung von Schachtunterteilen und ein solches Schachtunterteil
AT507316B1 (de) Rillenwalze, scheibenelement zum ausbilden der rillenschicht auf einer rillenwalze und verfahren zum herstellen einer rillenwalze
DE29521347U1 (de) Wiederverwendbares Schalungssystem für zylinderförmige oder prismatische Betonsäulen
DE202018100554U1 (de) Adapterbauteil
EP3649305A1 (de) Verfahren zur herstellung einer betonschalung für ein turmsegment und verfahren zur herstellung eines turmsegments für einen turm einer windenergieanlage
DE102019007023B4 (de) Strukturbauteil und Verfahren zu dessen Herstellung
WO2006114110A1 (de) Wasserturbine, insbesondere francisturbine
DE102009005805A1 (de) Verfahren zur Herstellung eines Bauteils als Bauwerkstoff
DE202018106600U1 (de) Konusbauteil
DE102022113426A1 (de) Verfahren zum Herstellen eines Funktionselementes für den Bau und Funktionselement für den Bau
EP4272930A1 (de) Schachtbauteil oder schacht
DE102008032365B4 (de) Verfahren zum Aufbau einer Räumerlauffläche und Flüssigkeitsbehälter
DE202018106597U1 (de) Aufbauadapter
EP3832188A1 (de) Anschlusssystem mit einem ansatzelement
DE102022111199A1 (de) Schachtbauteil oder Schacht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REHAU AG + CO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201216

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REHAU INDUSTRIES SE & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220525

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: REHAU INDUSTRIES SE & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E02D 29/14 20060101AFI20230707BHEP

INTG Intention to grant announced

Effective date: 20230801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019010272

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240503