EP3668665A2 - Lingotière de coulée continue de métaux, système et procédé de détection de percée dans une installation de coulée continue de métaux - Google Patents

Lingotière de coulée continue de métaux, système et procédé de détection de percée dans une installation de coulée continue de métaux

Info

Publication number
EP3668665A2
EP3668665A2 EP19712581.8A EP19712581A EP3668665A2 EP 3668665 A2 EP3668665 A2 EP 3668665A2 EP 19712581 A EP19712581 A EP 19712581A EP 3668665 A2 EP3668665 A2 EP 3668665A2
Authority
EP
European Patent Office
Prior art keywords
mold
optical fiber
channel
plates
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19712581.8A
Other languages
German (de)
English (en)
Inventor
Gianni Zuliani
Etienne Castiaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebds Engineering
Original Assignee
Ebds Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebds Engineering filed Critical Ebds Engineering
Publication of EP3668665A2 publication Critical patent/EP3668665A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • B22D11/201Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
    • B22D11/202Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • B22D2/006Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass for the temperature of the molten metal

Definitions

  • the invention relates to a continuous casting plant of metals. More particularly, the invention relates to a casting mold for continuous casting of metals. According to other aspects, the invention relates to a system and method for detecting breakthrough in a continuous metal casting plant.
  • a continuous metal casting plant for example, a continuous steel casting plant, generally comprises a mold in which a liquid metal is poured in order to solidify it in a suitable form. It may for example be a bottomless mold, in which case the metal cools to form a slab.
  • a liquid metal is poured in order to solidify it in a suitable form. It may for example be a bottomless mold, in which case the metal cools to form a slab.
  • walls of the mold are contiguous to cooling devices, for example of the liquid type.
  • the mold and the cooling devices are dimensioned according to the flow velocity of the metal so that the slab, when it leaves the mold, has a solidified outer surface of a thickness large enough to trap the still liquid metal in the heart of the slab.
  • thermocouples regularly distributed on the walls of the mold so as to detect any temperature anomaly as soon as possible.
  • thermocouples do not always make it possible to make an accurate and reliable measurement of the temperature of the walls, so that they can generate an unsatisfactory number of false alarms, that is to say alarms signaling a breakthrough imminent when it is not.
  • Another problem is related to the configuration of the mold which is usually constituted by an assembly of metal plates backed by cooling devices configured to allow cooling of the metal plates by the circulation of a cooling fluid. To reach the areas of the mold where the temperature must be measured, it is necessary to pass through this cooling device and therefore through the circulating water. This causes other sealing and wiring problems.
  • An additional problem that is encountered with the molds of the state of the art provided with measuring devices is also related to the very restricted accessibility of the mold, and in particular its walls, in the process of use. It would be particularly advantageous to have an ingot mold whose temperature measuring device can, in case of failure, be replaced, without having to dismantle the entire installation.
  • the mold is formed by an assembly of four copper plates 10, at least one of these plates having several channels 12 each receiving an optical fiber 20. They allow the measurement of the temperature of the metal flowing in the mold, the document citing especially the method "Fiber Bragg Grating".
  • the optical fibers 20 extend perpendicular to the direction of casting of the metal.
  • the channels disclosed in this document have a diameter of between 0.3 and 1.2 mm and never have a diameter greater than 1.2 mm.
  • An object of the invention is to improve breakthrough detection by overcoming the disadvantages set out above.
  • a mold for continuous casting of metals of the type consisting of an assembly of metal plates backed by cooling devices configured to allow the cooling of the metal plates by the circulation of a cooling fluid, comprising an optical fiber, having a plurality of Bragg filters, extending in a wall of at least one of said plates, the fiber optical fiber extending in a direction not parallel to the mold casting axis, wherein the optical fiber has a diameter greater than 1.6 mm.
  • the diameter of the optical fiber takes into account the possible presence of a coating, a sheath, a tube or a combination thereof (for example the core may be provided with a thin sheath itself inserted into a tube, itself provided with a coating).
  • the diameter of the optical fiber is the diameter of the assembly consisting of the core, the sheath and, if appropriate, the coating or tube or a combination thereof.
  • thermocouples of the prior art are replaced by an optical fiber comprising Bragg filters. These allow, by means of the emission of a light beam in the fiber and the detection of the reflected beam and / or transmitted, the measurement of the temperature in the wall at each of the filters. It is understood that the optical fiber is much less bulky than thermocouples and is much easier to set up. In addition, the temperature measurement with Bragg filters is more accurate than that obtained with thermocouples, so that the number of false alarms is reduced.
  • the optical fiber by providing the optical fiber with a sufficiently large diameter, it greatly facilitates the manufacture of the mold, particularly the preparation of a channel in the wall in which to insert the optical fiber. Indeed, it is industrially difficult to accurately drill a channel of great length and small diameter.
  • the diameter of the channel should be approximately equal to that of the optical fiber so that there is no uncertainty about the actual position of the fiber in the channel, which would distort the measurement of the temperature.
  • the optical fiber is provided with a coating or a tube.
  • the optical fiber has a diameter greater than or equal to 2 mm, preferably greater than or equal to 2.5 mm, preferably equal to 3 mm.
  • the direction has an angle with the casting axis of between 75 ° and 105 °.
  • the mold has a square or rectangular cross section.
  • the installation thus allows the production of a metal slab square or rectangular section, which is generally convenient for the subsequent use is made of the slab.
  • the mold comprises optical fibers in at least two plates located opposite one another, preferably in four plates.
  • the mold is made of copper or cuprous alloy.
  • the mold is thus made of a material having a high thermal conductivity. This facilitates the exchange of heat between the cooling devices and the metal passing through the mold.
  • the optical fiber is installed naked in the mold.
  • the optical fiber is provided with a coating.
  • the optical fiber is inserted into a tube extending in a wall of at least one of said plates.
  • the mold comprises optical fibers in at least two plates located vis-à-vis, preferably in four plates.
  • the mold comprises a single optical fiber.
  • the mold is thus simple to produce and has a moderate manufacturing cost.
  • the optical fiber comprises at least ten Bragg filters per meter, preferably at least twenty Bragg filters per meter, preferably at least thirty Bragg filters per meter, and even more preferably at least forty Bragg filters per meter.
  • the mold comprises at least two optical fibers extending parallel to one another, preferably spaced between 10 and 25 centimeters and more preferably spaced between 15 and 22. centimeters. It is thus possible to measure the temperature of the walls of the mold at two different altitudes of the mold. This is particularly effective because it allows to better follow the propagation of the adhesion phenomenon along the mold, and thus to better determine if a breakthrough is likely to occur.
  • a mold for continuous casting of metals of the type consisting of an assembly of metal plates backed by cooling devices configured to allow the cooling of the metal plates by the circulation of a cooling fluid.
  • which has at least one channel extending in a direction not parallel to a casting axis of the mold, in a wall of at least one of said plates, wherein the channel has a diameter greater than or equal to 1.6 mm .
  • the channel has a diameter greater than or equal to 2 mm, preferably greater than or equal to 2.5 mm, and preferably equal to 3 mm.
  • the channel is through.
  • the channel opens on a single lateral end of the plate.
  • each of the channels extending over at least half the length of the plate and opening on two opposite lateral ends of the plate.
  • the mold has two coaxial channels, non-communicating, opening on two opposite lateral ends of the plate.
  • the channel or channels are generated by drilling the wall of the plate.
  • the channel or channels are generated by digging, for example by milling, one or more grooves in the wall of the plate and then by clogging an upper portion of the grooves.
  • a breakthrough detection system in a continuous casting system of metals comprising:
  • a transceiver arranged to send light into the optical fiber and to receive reflected light and / or light transmitted by the optical fiber
  • a processor arranged to transform data on the reflected and / or transmitted light received by the transceiver into information on the detection of a breakthrough
  • a terminal comprising a user interface, connected to the processor.
  • Also provided according to the invention is a method for detecting a breakthrough in a continuous casting plant of metals, characterized in that the temperature of a wall of a mold as defined in what above.
  • FIG. 1 is an overall view of a continuous metal casting plant comprising an ingot mold according to the invention
  • FIGS. 2a and 2b are diagrams illustrating the operation of the installation of FIG. 1,
  • FIG. 3 is a sectional view of the ingot mold of the installation of FIG. 1,
  • FIG. 4 is a perspective view of a plate of the mold of FIG. 3;
  • FIG. 5 is a longitudinal sectional view of an optical fiber contained in the wall of FIG. 4;
  • FIG. 6 is a diagram explaining the operation of the optical fiber of FIG. 5, and
  • Figures 7a, 7b, 7c and 7d are sectional views of the mold of Figure 3 illustrating the genesis of a breakthrough.
  • Figure 1 There is shown in Figure 1 a continuous casting installation of metals 2. It has a conventional configuration, so that most of its components will be presented only briefly.
  • the installation 2 comprises pockets 4 containing liquid metal which it is desired to cool.
  • the pockets 4 are here two in number and are carried by a motorized arm 6.
  • This motorized arm 6 is particularly able to move the pockets 4 which are brought full in the casting zone by a transport system (for example an overhead crane , not shown) from a filling zone where the molten metal can be poured therein, for example a furnace or a converter (not shown) before bringing them to the position illustrated in FIG.
  • a transport system for example an overhead crane , not shown
  • the motorized arm 6 After emptying the bag 4, the motorized arm 6 also positions the empty bag in a position where the transport system can resume and bring it to the preparation area where it will be reconditioned before returning to the filling area.
  • the installation 2 comprises a dispenser or distribution basin 8 located below the pockets 4. The latter have a working bottom for pouring the liquid metal into the distributor 8.
  • the dispenser 8 comprises a flow orifice which can be closed by a stopper 10 which makes it possible to control the flow of liquid metal.
  • the flow orifice of the distributor is extended by a submerged inlet pipe 11 (SEN) for protecting the liquid metal poured into the mold 12.
  • SEN submerged inlet pipe 11
  • the submerged inlet tube 11 opens into an upper opening of a mold 12.
  • This is a bottomless mold having a casting axis which is vertical.
  • the mold 12 will be described in more detail later.
  • the installation 2 comprises cooling devices 14 positioned on an outer surface of the mold 12. These are cooling devices of the liquid type. They comprise for this purpose ducts in which flows a refrigerant fluid, for example water. The refrigerant absorbs the heat of the liquid metal in the mold 12 to cool and solidify. Here, the metal solidifies in the form of a slab having a solidified outer surface 18 enclosing a liquid core 20.
  • the installation 2 comprises a roller guide 16 located downstream of the mold 12.
  • the guide 16 guides the slab, an outer surface 18 is solidified out of the mold 12.
  • the slab gradually solidifies as it moves in the guide 16. In other words, the further one moves away from the mold 12, the more the solidified outer surface 18 of the slab increases in volume and the more the liquid core 20 of the slab decreases in volume.
  • the mold 12 is shown in more detail in Figure 3. It has four plates 22 here (the fourth is not visible because of the position of the cutting plane).
  • the plates 22 are made of copper or cuprous alloy, which are materials having a high thermal conductivity and thus facilitate the heat exchange between the cooling devices 14 and the mold 12.
  • the plates 22 are arranged so that the mold 12 has a rectangular or square straight section. However, it would be possible to arrange the plates so that the mold has a completely different shape of cross section.
  • the plate 22 has in its wall at least one channel 24 extending in a direction not parallel to the casting axis of the mold 12. More specifically, the channel 24 has an angle with the casting axis of between 75 ° and 105 °. Here, the channel 24 is perpendicular to the casting axis.
  • the channel 24 has a diameter greater than or equal to 1.6 mm. Preferably, the channel 24 has a diameter greater than or equal to 2 mm, preferred way greater than or equal to 2.5 mm. It has a diameter of 3 mm here.
  • the channels 24 are here four in number.
  • a protective cover 26 is installed on the area of the plate 22 where the channels 24 open to protect them.
  • the channels 24 are through.
  • the channels open on a single lateral end of the plate.
  • the plate comprises two parallel but non-coaxial channels, each of the channels extending over at least half the length of the plate and opening on two opposite lateral ends of the plate.
  • the plate comprises two coaxial channels, non-communicating, opening on two opposite lateral ends of the plate.
  • the channels 24 are generated by drilling the wall of the plate 22. Alternatively, it can however be provided that the channels are generated by digging one or more grooves in the wall of the plate and by clogging an upper part of the grooves.
  • each optical fiber 28 is housed in each of the channels 24.
  • the optical fiber 28 has a diameter that is approximately equal to the diameter of the channel 24.
  • the optical fiber 28 has a diameter greater than or equal to 1, 6 mm.
  • the optical fiber 28 has a diameter greater than or equal to 2 mm, preferably greater than or equal to 2.5 mm. It has a diameter of 3 mm here as the channel 24.
  • each optical fiber 28 comprises an optical cladding 30 and a core 32 surrounded by the optical cladding 30.
  • the optical fiber 28 comprises in its core 32 several Bragg filters 34.
  • the optical fiber 28 comprises at least ten Bragg filters per meter, preferably at least twenty Bragg filters per meter, preferably at least thirty Bragg filters per meter, and even more preferably at least forty Bragg filters per meter.
  • the mold contains only one optical fiber.
  • the optical fiber 28 can be housed as naked in the channel 24 as provided with a protective coating or be inserted into a tube before being installed.
  • the diameter of the optical fiber 28 takes into account the possible presence of a coating or a tube.
  • the diameter of the optical fiber 28 is the diameter of the assembly consisting of the core 32, the optical cladding 30 and, if appropriate, the coating or tube.
  • This coating or tube may have the specific function of increasing the radius of the optical fiber 28 in order to fill all or almost all the diameter of the channel 24. Indeed, it is relatively difficult to drill a small diameter channel over a large length. As a result, increasing the diameter of the optical fiber 28 makes it possible to increase the possible diameter of the channel 24 and thus facilitate its generation.
  • the Bragg filters 34 are filters that make it possible to reflect light over a range of wavelengths centered on a predetermined value, referred to as the reflected wavelength. , adjustable by the filter manufacturer. This predetermined value is also a function in particular of the temperature at which the filter is located, so that for each filter it is possible to write:
  • A is the wavelength effectively reflected by the filter
  • f is a known function
  • T is the temperature of the filter 0 and the wavelength reflected by the filter to a predetermined temperature, for example at room temperature.
  • Bragg filters 34 having distinct and selected reflected wavelength values 10 , for example shifted one by one by 5 nanometers, are installed in the optical fiber 28.
  • a light beam having a polychromatic spectrum 35a for example white light, is then sent into the optical fiber 28 and the peaks of wavelengths represented in the spectrum of the reflected beam 35b are then determined.
  • the filter is calculated the temperature T in question with the function f.
  • optical fibers 28 in the walls of the mold 12 makes it possible to measure the temperature of these walls in predetermined positions to follow its evolution over time. In order to obtain a sufficient number of measuring points, it is preferred to place at least one optical fiber 28 in each of the four plates 22 of the mold 12. However, a more economical solution would be to place optical fibers 28 only in two plates 22 vis-à-vis.
  • the two optical fibers 28 can be placed in each plate so that they are parallel and spaced 15 to 25 centimeters apart. the other.
  • FIGS. 7a to 7d show the propagation of an area 36 in which the metal contained in the mold 12 adheres to one of the plates 22 thereof.
  • the graphs located in the lower right zone of each of these figures represent a revolution of the temperature measured by a Bragg filter 34 of an upper optical fiber 28a (top curve) and by a Bragg filter 34 of a lower optical fiber ( 28b) as a function of time.
  • the upper optical fiber 28a detects an abnormal rise in temperature which corresponds to the adhesion of the metal to the mold 12 in zone 36. a first sign that a breakthrough is imminent.
  • the lower optical fiber 28b detects the abnormal temperature rise previously detected by the upper optical fiber 28a. This is a second sign that a breakthrough is imminent, which is a confirmation that the breakthrough does not seem avoidable.
  • the latter comprises:
  • a transceiver arranged to send light into the optical fibers and to receive reflected light and / or light transmitted by the optical fibers
  • a processor arranged to transform data on the reflected and / or transmitted light received by the transceiver into information on the detection of a breakthrough
  • a terminal comprising a user interface, connected to the processor.
  • the mold 12 equipped with the optical fibers 28, the transceiver, the processor and the terminal form a breakthrough detection system.
  • users can take actions to reduce the damage caused by the breakthrough or even prevent it.
  • Nomenclature 2 installation (continuous casting of metals) 4: pocket

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Cette lingotière (12) de coulée continue de métaux est du type constituée par un assemblage de plaques métalliques (22) adossées à des dispositifs de refroidissement (14) configurés pour permettre le refroidissement des plaques métalliques (22) par la circulation d'un fluide de refroidissement. Elle comprend une fibre optique présentant un diamètre supérieur à 1,6 mm, comportant une pluralité de filtres de Bragg, s'étendant dans une paroi d'au moins une desdites plaques (22) dans une direction non parallèle à l'axe de coulée de la lingotière (12).

Description

LINGOTIÈRE DE COULÉE CONTINUE DE MÉTAUX, SYSTÈME ET PROCÉDÉ DE
DÉTECTION DE PERCÉE DANS UNE INSTALLATION DE COULÉE CONTINUE DE
MÉTAUX
[0001] L’invention concerne une installation de coulée continue de métaux. Plus particulièrement, l’invention concerne une lingotière de coulée continue de métaux. Selon d'autres de ses aspects, l'invention concerne un système et un procédé de détection de percée dans une installation de coulée continue de métaux.
[0002] Une installation de coulée continue de métaux, par exemple, une installation de coulée continue d'acier, comprend généralement une lingotière dans laquelle on verse un métal liquide en vue de sa solidification sous une forme adéquate. Il peut par exemple s’agir d’une lingotière sans fond, auquel cas le métal refroidit en formant une brame. Pour refroidir le métal liquide, des parois de la lingotière sont accolées à des dispositifs de refroidissement, par exemple du type à liquide. La lingotière et les dispositifs de refroidissement sont dimensionnés en fonction de la vitesse d’écoulement du métal de sorte que la brame, lorsqu’elle sort de la lingotière, présente une surface externe solidifiée d’une épaisseur suffisamment importante pour piéger le métal encore liquide se trouvant au cœur de la brame.
[0003] Lors de l’écoulement du métal liquide dans la lingotière, il peut arriver que le métal adhère aux parois de la lingotière, ce qui n’est pas souhaité et peut avoir des conséquences considérables sur la production de l’installation. Cela engendre notamment le phénomène de percée bien connu. L’adhérence du métal à la paroi crée une zone dans la brame dans laquelle la solidification du métal ne se fait pas convenablement, si bien que la brame sort de la lingotière avec surface externe d’épaisseur insuffisante dans cette zone. Il s’ensuit qu’elle se déchire et laisse le métal encore liquide au cœur de la brame s’écouler en dehors de celle-ci. Au-delà de la perte de rendement, le métal liquide, donc à très haute température, peut endommager l’installation voire même constituer un danger pour des opérateurs de l’installation. Il est donc nécessaire de détecter dès que possible ces percées pour pouvoir prendre des mesures préventives, par exemple ralentir la vitesse d'extraction de la brame, temporairement mettre à l’arrêt l’installation ou toute autre mesure corrective.
[0004] On connaît dans l’état de la technique un procédé pour détecter si le métal adhère aux parois de la lingotière, signe d’une percée imminente. Il se base sur la mesure de la température des parois de la lingotière en différents points. En effet, il a été remarqué que les parois présentent un profil de température particulier lorsque le métal y adhère. Un moyen connu de mesurer cette température consiste à installer des thermocouples régulièrement répartis sur les parois de la lingotière de manière à pouvoir détecter dès que possible toute anomalie de température.
[0005] Ce procédé de détection est intéressant mais pose certains problèmes. En effet, pour pouvoir mesurer la température des parois en un nombre maximal de positions, il est nécessaire d’installer un grand nombre de thermocouples. Cela non seulement augmente le coût de fabrication de la lingotière mais rend également complexe la connexion électrique des thermocouples. Par ailleurs, les thermocouples ne permettent pas toujours d’effectuer une mesure précise et fiable de la température des parois, si bien qu’ils peuvent générer un nombre non satisfaisant de fausses alarmes, c’est-à-dire des alarmes signalant une percée imminente alors qu’il n’en est rien.
[0006] Un autre problème est lié à la configuration de la lingotière qui est habituellement constituée par un assemblage de plaques métalliques adossées à des dispositifs de refroidissement configurés pour permettre le refroidissement des plaques métalliques par la circulation d'un fluide de refroidissement. Pour atteindre les zones de la lingotière où la température doit être mesurée, il convient de passer au travers de ce dispositif de refroidissement et donc, à travers l'eau en circulation. Ceci entraîne d'autres problèmes d'étanchéité et de câblage.
[0007] Un problème supplémentaire que l'on rencontre avec les lingotières de l'état de la technique pourvues de dispositifs de mesure est également lié à l'accessibilité très restreinte de la lingotière, et en particulier de ses parois, en cours d'utilisation. Il serait particulièrement avantageux de pouvoir disposer d'une lingotière dont le dispositif de mesure de la température puisse, en cas de défaillance, être remplacé, sans devoir démonter toute l'installation.
[0008] WO-A1 -2017/032488 divulgue une lingotière pour la coulée continue de métaux. La lingotière est formée par un assemblage de quatre plaques en cuivre 10, au moins l'une de ces plaques présentant plusieurs canaux 12 recevant chacun une fibre optique 20. Elles permettent la mesure de la température du métal coulant dans la lingotière, le document citant notamment la méthode "Fiber Bragg Grating". Dans le mode de réalisation illustré en figure 1 c, les fibres optiques 20 s'étendent perpendiculairement à la direction de coulée du métal. Toutefois, les canaux divulgués dans ce document présentent un diamètre compris entre 0.3 et 1.2 mm et ne présentent jamais un diamètre supérieur à 1 .2 mm.
[0009] Un but de l’invention est d’améliorer la détection de percée en remédiant aux inconvénients énoncés ci-dessus.
[00010] A cet effet, on prévoit selon l’invention une lingotière de coulée continue de métaux, du type constituée par un assemblage de plaques métalliques adossées à des dispositifs de refroidissement configurés pour permettre le refroidissement des plaques métalliques par la circulation d'un fluide de refroidissement, comprenant une fibre optique, comportant une pluralité de filtres de Bragg, s’étendant dans une paroi d’au moins une desdites plaques, la fibre optique s’étendant dans une direction non parallèle à l’axe de coulée de la lingotière, dans laquelle la fibre optique présente un diamètre supérieur à 1 ,6 mm. Le diamètre de la fibre optique prend en compte l’éventuelle présence d’un revêtement, d'une gaine, d’un tube ou d'une combinaison de ceux-ci (par exemple l'âme peut être pourvue d'une gaine fine, elle-même insérée dans un tube, lui- même pourvu d'un revêtement). En d’autres termes, le diamètre de la fibre optique est le diamètre de l’assemblage constitué de l’âme, de la gaine et, le cas échéant, du revêtement ou du tube ou d'une combinaison de ceux-ci.
[0001 1 ] Ainsi, on remplace les thermocouples de l’art antérieur par une fibre optique comprenant des filtres de Bragg. Ces derniers permettent, au moyen de l’émission d’un faisceau lumineux dans la fibre et la détection du faisceau réfléchi et/ou transmis, la mesure de la température dans la paroi au niveau de chacun des filtres. On comprend que la fibre optique est bien moins encombrante que les thermocouples et qu’elle est bien plus simple à mettre en place. De plus, la mesure de température grâce aux filtres de Bragg est plus précise que celle obtenue avec les thermocouples, si bien que le nombre de fausses alarmes s’en trouve diminué.
[00012] Au surplus, en dotant la fibre optique d’un diamètre suffisamment important, on facilite grandement la fabrication de la lingotière, plus particulièrement la préparation d’un canal dans la paroi dans lequel insérer la fibre optique. En effet, il est industriellement difficile de forer avec précision un canal de grande longueur et de faible diamètre. Le diamètre du canal doit être environ égal à celui de la fibre optique afin qu’il n’y ait pas d’incertitude sur la position réelle de la fibre dans le canal, ce qui fausserait la mesure de la température. En augmentant le diamètre de la fibre optique, on peut augmenter le diamètre du canal et ainsi faciliter sa préparation.
[00013] Avantageusement, la fibre optique est munie d’un revêtement ou d’un tube.
[00014] On peut ainsi facilement augmenter le diamètre de la fibre optique si nécessaire.
[00015] Avantageusement, la fibre optique présente un diamètre supérieur ou égal à 2 mm, de préférence supérieur ou égal à 2,5 mm, de manière préférée égal à 3 mm.
[00016] Avantageusement, la direction présente un angle avec l’axe de coulée compris entre 75° et 105°.
[00017] Avantageusement, la lingotière présente une section droite carrée ou rectangulaire. [00018] L’installation permet ainsi la production d’une brame métallique à section carrée ou rectangulaire, ce qui est généralement commode pour l’utilisation ultérieure qui est faite de la brame.
[00019] De préférence, la lingotière comprend des fibres optiques dans au moins deux plaques situées en vis-à-vis, de préférence dans quatre plaques.
[00020] Avantageusement, la lingotière est réalisée en cuivre ou en alliage cuivreux.
[00021 ] La lingotière est ainsi réalisée dans un matériau présentant une grande conductivité thermique. Cela facilite les échanges de chaleur entre les dispositifs de refroidissement et le métal transitant dans la lingotière.
[00022] Avantageusement, la fibre optique est installée nue dans la lingotière.
[00023] Selon une variante de réalisation, la fibre optique est munie d’un revêtement.
[00024] Selon une autre variante de réalisation, la fibre optique est insérée dans un tube s’étendant dans une paroi d’au moins une desdites plaques.
[00025] Ainsi, il est possible de moduler le diamètre de la fibre optique grâce à la présence ou non d’un revêtement ou d'un tube. Cela permet d’avoir plus de liberté dans le dimensionnement du canal de la paroi de la plaque de la lingotière et ainsi faciliter sa génération.
[00026] Avantageusement, la lingotière comprend des fibres optiques dans au moins deux plaques situées en vis-à-vis, de préférence dans quatre plaques.
[00027] On améliore ainsi la mesure de la température dans les parois de la lingotière, ce qui permet de fiabiliser davantage la détection de percée.
[00028] Selon une variante de réalisation, la lingotière comprend une unique fibre optique.
[00029] La lingotière est ainsi simple à réaliser et présente un coût de fabrication modéré.
[00030] Avantageusement, la fibre optique comporte au moins dix filtres de Bragg par mètre, de préférence au moins vingt filtres de Bragg par mètre, de manière préférée au moins trente filtres de Bragg par mètre, et de manière encore plus préférée au moins quarante filtres de Bragg par mètre.
[00031 ] Il est ainsi possible de mesurer la température dans les parois de la lingotière en un nombre élevé de points, ce qui contribue à fiabiliser davantage la détection de percée.
[00032] Avantageusement, la lingotière comprend au moins deux fibres optiques s’étendant parallèlement l’une par rapport à l’autre, de préférence espacées d’entre 10 et 25 centimètres et de manière plus préférée, espacées d'entre 15 et 22 centimètres. [00033] On peut ainsi mesurer la température des parois de la lingotière à deux altitudes différentes de la lingotière. Cela est particulièrement efficace car cela permet de mieux suivre la propagation du phénomène d’adhérence le long de la lingotière, et donc de mieux déterminer si une percée est susceptible de se produire.
[00034] On prévoit également selon l’invention une lingotière de coulée continue de métaux, du type constitué par un assemblage de plaques métalliques adossées à des dispositifs de refroidissement configurés pour permettre le refroidissement des plaques métalliques par la circulation d'un fluide de refroidissement, qui présente au moins un canal s’étendant dans une direction non parallèle à un axe de coulée de la lingotière, dans une paroi d’au moins une desdites plaques, dans laquelle le canal présente un diamètre supérieur ou égal à 1 ,6 mm.
[00035] Avantageusement, le canal présente un diamètre supérieur ou égal à 2 mm, de préférence supérieur ou égal à 2,5 mm, de manière préférée égal à 3 mm.
[00036] Selon un premier mode de réalisation, le canal est traversant.
[00037] Selon un deuxième mode de réalisation, le canal débouche sur une seule extrémité latérale de la plaque.
[00038] Selon un troisième mode de réalisation, chacun des canaux s’étendant sur au moins la moitié de la longueur de la plaque et débouchant sur deux extrémités latérales opposées de la plaque.
[00039] Selon un quatrième mode de réalisation, la lingotière présente deux canaux coaxiaux, non communicants, débouchant sur deux extrémités latérales opposées de la plaque.
[00040] De préférence, le ou les canaux sont générés par perçage de la paroi de la plaque.
[00041 ] Selon une variante de réalisation, le ou les canaux sont générés par creusage par exemple par fraisage, d’une ou plusieurs rainures dans la paroi de la plaque puis par le colmatage d’une partie supérieure des rainures.
[00042] Ces différents modes de réalisations correspondent à autant de moyens d’installer la fibre optique dans la lingotière, ce qui montre la versatilité de l’invention.
[00043] On prévoit aussi selon l’invention un système de détection de percée dans un système de coulée continue de métaux, comprenant :
- une lingotière telle que définie dans ce qui précède,
- un émetteur-récepteur agencé pour envoyer de la lumière dans la fibre optique et recevoir de la lumière réfléchie et/ou de la lumière transmise par la fibre optique,
- un processeur agencé pour transformer des données sur la lumière réfléchie et/ou transmise reçue par l’émetteur-récepteur en une information sur la détection d’une percée, et
- un terminal comprenant une interface utilisateur, connecté au processeur.
[00044] On prévoit également selon l’invention un procédé de détection d’une percée dans une installation de coulée continue de métaux, caractérisé en ce qu’on mesure la température d’une paroi d’une lingotière telle que définie dans ce qui précède.
[00045] Nous allons maintenant présenter un mode de réalisation de l’invention donné à titre d’exemple non limitatif et à l’appui des figures annexées sur lesquelles :
- la figure 1 est une vue d’ensemble d’une installation de coulée continue de métaux comprenant une lingotière selon l’invention,
- les figures 2a et 2b sont des schémas illustrant le fonctionnement de l’installation de la figure 1 ,
- la figure 3 est une vue en coupe de la lingotière de l’installation de la figure 1 ,
- la figure 4 est une vue en perspective d’une plaque de la lingotière de la figure 3, - la figure 5 est une vue en coupe longitudinale d’une fibre optique contenue dans la paroi de la figure 4,
- la figure 6 est un schéma expliquant le fonctionnement de la fibre optique de la figure 5, et
- les figures 7a, 7b, 7c et 7d sont des vues en coupe de la lingotière de la figure 3 illustrant la genèse d’une percée.
[00046] On a représenté en figure 1 une installation de coulée continue de métaux 2. Elle a une configuration classique, si bien que la plupart de ses éléments constitutifs ne seront présentés que brièvement.
[00047] L’installation 2 comprend des poches 4 contenant du métal liquide qu’on souhaite faire refroidir. Les poches 4 sont ici au nombre de deux et sont portées par un bras motorisé 6. Ce bras motorisé 6 est notamment apte à déplacer les poches 4 qui sont amenées pleine dans la zone de coulée par un système de transport (par exemple un pont roulant, non représenté) en provenance d’une zone de remplissage où le métal fondu peut y être versé, par exemple un four ou un convertisseur (non représenté) avant de les amener à la position illustrée en figure 1 . Après vidange de la poche 4, le bras motorisé 6 permet également de positionner la poche vide dans une position où le système de transport peut la reprendre et l'amener en zone de préparation où elle sera reconditionnée avant de retourner en zone de remplissage.
[00048] L’installation 2 comprend un distributeur ou bassin répartiteur 8 situé en dessous des poches 4. Ces dernières présentent un fond ouvrable permettant de faire couler le métal liquide dans le distributeur 8. [00049] Le distributeur 8 comprend un orifice d’écoulement qui peut être obturé par une quenouille 10 qui permet de contrôler l’écoulement de métal liquide. L'orifice d'écoulement du distributeur se prolonge par un tube de coulée 11 d'entrée immergée (SEN) permettant de protéger le métal liquide déversé dans la lingotière 12.
[00050] Comme cela est plus visible sur la figure 2a et à plus grande échelle sur la figure 2b, le tube de coulée 11 d'entrée immergée débouche dans une ouverture supérieure d’une lingotière 12. Il s’agit ici d’une lingotière sans fond présentant un axe de coulée qui est vertical. La lingotière 12 sera décrite plus en détails plus loin.
[00051 ] L’installation 2 comprend des dispositifs de refroidissement 14 positionnés sur une surface externe de la lingotière 12. Il s’agit de dispositifs de refroidissement du type à liquide. Ils comprennent à cet effet des conduits dans lequel s’écoule un fluide réfrigérant, par exemple de l’eau. Le fluide réfrigérant absorbe la chaleur du métal liquide se trouvant dans la lingotière 12 afin de le faire refroidir et solidifier. Ici, le métal se solidifie sous la forme d’une brame présentant une surface externe solidifiée 18 enclavant un noyau liquide 20.
[00052] L’installation 2 comprend un guide à rouleaux 16 se trouvant en aval de la lingotière 12. Le guide 16 permet de guider la brame, dont une surface externe 18 est solidifiée, hors de la lingotière 12. Comme cela est visible sur la figure 2a, la brame se solidifie progressivement à mesure qu’elle se déplace dans le guide 16. En d’autres termes, plus on s’éloigne de la lingotière 12, plus la surface externe solidifiée 18 de la brame augmente en volume et plus le noyau liquide 20 de la brame diminue en volume.
[00053] On a représenté la lingotière 12 plus en détails sur la figure 3. Elle présente ici quatre plaques 22 (la quatrième n’étant pas visible du fait de la position du plan de coupe). Les plaques 22 sont réalisées en cuivre ou en alliage cuivreux, qui sont des matériaux présentant une grande conductivité thermique et facilitent donc les échanges de chaleur entre les dispositifs de refroidissement 14 et la lingotière 12. Les plaques 22 sont agencées de sorte que la lingotière 12 présente une section droite rectangulaire ou carrée. On pourrait toutefois prévoir d’agencer les plaques de sorte que la lingotière présente une toute autre forme de section droite.
[00054] Une des plaques 22 de la lingotière 12 est représentée à plus grande échelle sur la figure 4, sur laquelle l’axe de coulée correspond à la direction verticale. La plaque 22 comporte dans sa paroi au moins un canal 24 s’étendant dans une direction non parallèle à l’axe de coulée de la lingotière 12. Plus précisément, le canal 24 présente un angle avec l’axe de coulée compris entre 75° et 105°. Ici, le canal 24 est perpendiculaire à l’axe de coulée. Le canal 24 présente un diamètre supérieur ou égal à 1 ,6 mm. De préférence, le canal 24 présente un diamètre supérieur ou égal à 2mm, de manière préférée supérieur ou égal à 2,5 mm. Il présente ici un diamètre de 3 mm. Les canaux 24 sont ici au nombre de quatre. Un capot de protection 26 est installé sur la zone de la plaque 22 où les canaux 24 débouchent pour les protéger.
[00055] Dans ce premier mode de réalisation de l’invention, les canaux 24 sont traversant. Selon un deuxième mode de réalisation de l’invention, les canaux débouchent sur une seule extrémité latérale de la plaque. Selon un troisième mode de réalisation de l’invention, la plaque comporte deux canaux parallèles mais non coaxiaux, chacun des canaux s’étendant sur au moins la moitié de la longueur de la plaque et débouchant sur deux extrémités latérales opposées de la plaque. Selon un quatrième mode de réalisation de l’invention, la plaque comporte deux canaux coaxiaux, non communicants, débouchant sur deux extrémités latérales opposées de la plaque.
[00056] Les canaux 24 sont générés par perçage de la paroi de la plaque 22. A titre de variante, on peut toutefois prévoir que les canaux soient générés par creusage d’une ou plusieurs rainures dans la paroi de la plaque puis par le colmatage d’une partie supérieure des rainures.
[00057] Une fibre optique 28 est logée dans chacun des canaux 24. La fibre optique 28 présente un diamètre qui est environ égal au diamètre du canal 24. La fibre optique 28 présente un diamètre supérieur ou égal à 1 ,6 mm. De préférence, la fibre optique 28 présente un diamètre supérieur ou égal à 2mm, de manière préférée supérieur ou égal à 2,5 mm. Il présente ici un diamètre de 3 mm comme le canal 24. On peut toutefois prévoir une tolérance entre les diamètres du canal 24 et de la fibre optique 28, par exemple inférieure à 0,1 mm voire inférieure à 0.05 mm. En référence aux figures 5 et 6, chaque fibre optique 28 comprend une gaine optique 30 ainsi qu’une âme 32 entourée par la gaine optique 30. La fibre optique 28 comprend dans son âme 32 plusieurs filtres de Bragg 34. La fibre optique 28 comporte au moins dix filtres de Bragg par mètre, de préférence au moins vingt filtres de Bragg par mètre, de manière préférée au moins trente filtres de Bragg par mètre, et de manière encore plus préférée au moins quarante filtres de Bragg par mètre. A titre de variante de réalisation, on pourrait prévoir que la lingotière ne contienne qu’une seule fibre optique.
[00058] La fibre optique 28 peut être aussi bien logée nue dans le canal 24 que munie d’un revêtement de protection ou être insérée dans un tube avant d’être installée. Comme mentionné plus haut, le diamètre de la fibre optique 28 prend en compte l’éventuelle présence d’un revêtement ou d’un tube. En d’autres termes, le diamètre de la fibre optique 28 est le diamètre de l’assemblage constitué de l’âme 32, de la gaine optique 30 et, le cas échéant, du revêtement ou du tube. Ce revêtement ou tube peut avoir spécifiquement pour fonction d’augmenter le rayon de la fibre optique 28 afin de combler tout ou presque tout le diamètre du canal 24. En effet, il est relativement difficile de percer un canal de faible diamètre sur une grande longueur. De ce fait, augmenter le diamètre de la fibre optique 28 permet d’augmenter le diamètre possible du canal 24 et donc faciliter sa génération.
[00059] Le fonctionnement de la fibre optique 28 est illustré en figure 6. Les filtres de Bragg 34 sont des filtres qui permettent de réfléchir la lumière sur une plage de longueur d’onde centrée sur une valeur prédéterminée, dite longueur d’onde réfléchie, réglable par le constructeur du filtre. Cette valeur prédéterminée est par ailleurs une fonction notamment de la température à laquelle se situe le filtre, de sorte qu’on peut écrire pour chaque filtre :
^réfléchie = f ( lo, T )
où Aréfiéchie est la longueur d’onde effectivement réfléchie par le filtre, f est une fonction connue, T est la température du filtre et l0 la longueur d’onde réfléchie par le filtre à une température prédéterminée, par exemple à température ambiante.
[00060] Ces deux propriétés permettent d’utiliser la fibre optique 28 en tant que capteur de température. Dans un premier temps, on installe dans la fibre optique 28 des filtres de Bragg 34 ayant des valeurs de longueur d’onde réfléchie l0 distinctes et choisies, par exemple décalée une à une de 5 nanomètres. On envoie ensuite un faisceau lumineux présentant un spectre polychromatique 35a, par exemple de la lumière blanche, dans la fibre optique 28 puis on détermine les pics de longueurs d’onde représentées dans le spectre du faisceau réfléchi 35b. A chaque pic, on compare la valeur mesurée Aréf|échie et la valeur théorique de la longueur d’onde réfléchie à température ambiante A0, et on calcule la température T du filtre en question grâce à la fonction f. De manière alternative, il est aussi possible d’effectuer ces étapes sur la base des creux dans le spectre du faisceau transmis 35c si la configuration du canal 24 dans lequel est logée la fibre optique 28 le permet.
[00061 ] Ainsi, l'installation de fibres optiques 28 dans les parois de la lingotière 12 permet de mesurer la température de ces parois en des positions prédéterminées suivre son évolution dans le temps. Afin d’obtenir un nombre suffisant de points de mesure, il est préféré de placer au moins une fibre optique 28 dans chacune des quatre plaques 22 de la lingotière 12. Toutefois, une solution plus économique serait de placer des fibres optiques 28 uniquement dans deux plaques 22 en vis-à-vis.
[00062] Par ailleurs, il est aussi préféré de placer deux fibres optiques 28 par plaque 22 de manière à pouvoir mesurer la température de la lingotière 12 à deux altitudes différentes. Par exemple, on peut placer les deux fibres optiques 28 dans chaque plaque de sorte qu’elles soient parallèles et espacées de 15 à 25 centimètres l’une de l’autre.
[00063] La détection de percée se fait de la manière suivante.
[00064] On a représenté en figures 7a à 7d la propagation d’une zone 36 dans laquelle le métal contenu dans la lingotière 12 adhère à une des plaques 22 de celle-ci. Les graphes situés en zone inférieure droite de chacune de ces figures représentent révolution de la température mesurée par un filtre de Bragg 34 d’une fibre optique supérieure 28a (courbe du haut) et par un filtre de Bragg 34 d’une fibre optique inférieure (28b) en fonction du temps.
[00065] Comme cela est visible sur les graphes des figures 7a et 7b, la fibre optique supérieure 28a détecte une élévation de température anormale qui correspond à l’adhérence du métal à la lingotière 12 dans la zone 36. Il s’agit d’un premier signe qu’une percée est imminente.
[00066] Ensuite, comme cela est visible sur les graphes des figures 7c et 7d, la fibre optique inférieure 28b détecte l’élévation de température anormale précédemment détectée par la fibre optique supérieure 28a. Il s’agit d’un second signe qu’une percée est imminente, ce qui forme une confirmation que la percée ne semble pas évitable.
[00067] Afin que les informations relevées par les fibres optiques 28a et 28b soient communiquées aux utilisateurs de l’installation 2, cette dernière comprend :
- un émetteur-récepteur agencé pour envoyer de la lumière dans les fibres optiques et recevoir de la lumière réfléchie et/ou la lumière transmise par les fibres optiques,
- un processeur agencé pour transformer des données sur la lumière réfléchie et/ou transmise reçue par l’émetteur-récepteur en une information sur la détection d’une percée, et
- un terminal comprenant une interface utilisateur, connecté au processeur.
[00068] Grâce à ces éléments (qui n’ont pas été représentés sur les figures pour des raisons de clarté), il est possible de transformer la mesure de température effectuée par les fibres optiques 28 en une information, compréhensible par les utilisateurs de l’installation 2, sur la détection ou non d’une percée. En d’autres termes, la lingotière 12 équipée des fibres optiques 28, l’émetteur-récepteur, le processeur et le terminal forment un système de détection de percée. En cas de détection positive d’une percée, les utilisateurs peuvent prendre des actions visant à réduire les dégâts engendrés par la percée voire même l’empêcher.
[00069] L'invention n'est pas limitée aux modes de réalisation présentés et d'autres modes de réalisation apparaîtront clairement à l'homme du métier.
Nomenclature 2 : installation (de coulée continue de métaux) 4 : poche
6 : bras motorisé
8 : distributeur
10 : quenouille
11 : tube de coulée
12 : lingotière
14 : dispositifs de refroidissement
16 : guide
18 : surface externe solidifiée
20 : noyau liquide
22 : plaque
24 : canal
26 : capot de protection
28 : fibre optique
30 : gaine optique
32 : âme
34 : filtre de Bragg
35a : spectre polychromatique
35b : spectre du faisceau réfléchi
35c : spectre du faisceau transmis
36 : zone

Claims

Revendications
1. Lingotière (12) de coulée continue de métaux, du type constituée par un assemblage de plaques métalliques (22) adossées à des dispositifs de refroidissement (14) configurés pour permettre le refroidissement des plaques métalliques (22) par la circulation d'un fluide de refroidissement, comprenant une fibre optique (28), comportant une pluralité de filtres de Bragg (34), s’étendant dans une paroi d’au moins une desdites plaques (22), la fibre optique (28) s’étendant dans une direction non parallèle à l’axe de coulée de la lingotière (12), caractérisée en ce que la fibre optique (28) présente un diamètre supérieur à 1 ,6 mm.
2. Lingotière (12) selon la revendication précédente, dans laquelle la fibre optique (28) est munie d’un revêtement ou d’un tube.
3. Lingotière (12) selon l’une quelconque des revendications précédentes, dans lequel la direction présente un angle avec l’axe de coulée compris entre 75° et 105°.
4. Lingotière (12) selon l’une quelconque des revendications précédentes, présentant une section droite carrée ou rectangulaire et comprenant des fibres optiques
(28) dans au moins deux plaques (22) situées en vis-à-vis, de préférence dans quatre plaques (22).
5. Lingotière (12) selon l’une quelconque des revendications précédentes, dans lequel la fibre optique (28) comporte au moins dix filtres de Bragg par mètre, de préférence au moins vingt filtres de Bragg par mètre, de manière préférée au moins trente filtres de Bragg par mètre, et de manière encore plus préférée au moins quarante filtres de Bragg par mètre.
6. Lingotière (12) selon l’une quelconque des revendications précédentes, comprenant au moins deux fibres optiques (28) s’étendant parallèlement l’une par rapport à l’autre, de préférence espacées d’entre 10 et 25 centimètres et de manière plus préférée, espacées d'entre 15 et 22 centimètres.
7. Lingotière (12) de coulée continue de métaux, du type constitué par un assemblage de plaques métalliques (22) adossées à des dispositifs de refroidissement (14) configurés pour permettre le refroidissement des plaques métalliques (22) par la circulation d'un fluide de refroidissement, la lingotière présentant au moins un canal (24) s’étendant dans une direction non parallèle à un axe de coulée de la lingotière (12), dans une paroi d’au moins une desdites plaques (22), caractérisée en ce que le canal présente un diamètre supérieur ou égal à 1 ,6 mm.
8. Lingotière selon la revendication 7, dans laquelle le canal présente un diamètre supérieur ou égal à 2 mm, de préférence supérieur ou égal à 2,5 mm, de manière préférée égal à 3 mm.
9. Lingotière (12) selon la revendication 7 ou 8, dans lequel le canal débouche sur une seule extrémité latérale de la plaque.
10. Lingotière (12) selon la revendication 7 ou 8, présentant deux canaux parallèles mais non coaxiaux, chacun des canaux s’étendant sur au moins la moitié de la longueur de la plaque et débouchant sur deux extrémités latérales opposées de la plaque.
11. Lingotière (12) selon la revendication 7 ou 8, présentant deux canaux coaxiaux, non communicants, débouchant sur deux extrémités latérales opposées de la plaque.
12. Lingotière (12) selon l’une quelconque des revendications 7 à 11 , dans lequel le ou les canaux sont générés par perçage de la paroi de la plaque.
13. Lingotière (12) selon l’une quelconque des revendications 7 à 11 , dans lequel le ou les canaux sont générés par creusage d’une ou plusieurs rainures dans la paroi de la plaque puis par le colmatage d’une partie supérieure des rainures.
14. Système de détection de percée dans un système de coulée continue de métaux, comprenant :
- une lingotière (12) selon au moins l’une quelconque des revendications 1 à 6,
- un émetteur-récepteur agencé pour envoyer de la lumière dans la fibre optique (28) et recevoir de la lumière réfléchie et/ou de la lumière transmise par la fibre optique (28),
- un processeur agencé pour transformer des données sur la lumière réfléchie et/ou transmise reçue par l’émetteur-récepteur en une information sur la détection d’une percée, et
- un terminal comprenant une interface utilisateur, connecté au processeur.
15. Procédé de détection d’une percée dans une installation de coulée continue de métaux, caractérisé en ce qu’on mesure la température d’une paroi d’une lingotière (12) selon l’une quelconque des revendications 1 à 6.
EP19712581.8A 2018-03-23 2019-03-22 Lingotière de coulée continue de métaux, système et procédé de détection de percée dans une installation de coulée continue de métaux Withdrawn EP3668665A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2018/5193A BE1025314B1 (fr) 2018-03-23 2018-03-23 Lingotière de coulée continue de métaux, système et procédé de détection de percée dans une installation de coulée continue de métaux
PCT/EP2019/057284 WO2019180229A2 (fr) 2018-03-23 2019-03-22 Lingotière de coulée continue de métaux, système et procédé de détection de percée dans une installation de coulée continue de métaux

Publications (1)

Publication Number Publication Date
EP3668665A2 true EP3668665A2 (fr) 2020-06-24

Family

ID=61868098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19712581.8A Withdrawn EP3668665A2 (fr) 2018-03-23 2019-03-22 Lingotière de coulée continue de métaux, système et procédé de détection de percée dans une installation de coulée continue de métaux

Country Status (8)

Country Link
US (1) US20210001393A1 (fr)
EP (1) EP3668665A2 (fr)
JP (1) JP2021519216A (fr)
KR (1) KR20200127034A (fr)
BE (1) BE1025314B1 (fr)
BR (1) BR112020018996A2 (fr)
CA (1) CA3094862A1 (fr)
WO (1) WO2019180229A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1026740B1 (fr) * 2019-06-21 2020-05-28 Ebds Eng Sprl Procédé pour équilibrer un écoulement d'acier liquide dans une lingotière et système de coulée continue d'acier liquide
BE1026975B1 (fr) * 2019-06-21 2020-08-12 Ebds Eng Sprl Lingotière de coulée continue de métaux, système de mesure de la température et système et procédé de détection de percée dans une installation de coulée continue de métaux
CN114309520B (zh) * 2020-09-30 2024-02-13 宝山钢铁股份有限公司 一种钢水液面稳定性监控的反馈方法
CN113894260B (zh) * 2021-09-30 2023-04-11 上海二十冶建设有限公司 一种大断面矩形坯连铸机快速脱引锭结构及操作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688755B2 (ja) 2006-08-17 2011-05-25 新日本製鐵株式会社 鋼の連続鋳造方法
DE102008029742A1 (de) * 2008-06-25 2009-12-31 Sms Siemag Aktiengesellschaft Kokille zum Gießen von Metall
WO2011093561A1 (fr) * 2010-01-29 2011-08-04 주식회사 풍산 Plaque de lingotière, ensemble de plaque de lingotière et moule de coulée
JP5525966B2 (ja) * 2010-08-27 2014-06-18 三島光産株式会社 連続鋳造用鋳型
JP6515329B2 (ja) * 2015-04-08 2019-05-22 日本製鉄株式会社 連続鋳造用鋳型
WO2016207801A1 (fr) * 2015-06-22 2016-12-29 Milorad Pavlicevic Moule pour coulée continue
WO2017032392A1 (fr) * 2015-08-21 2017-03-02 Abb Schweiz Ag Moule de coulée et procédé de mesure de la température d'un moule de coulée
AT518569A1 (de) 2016-04-27 2017-11-15 Primetals Technologies Austria GmbH Instrumentierung einer Seitenwand einer Stranggießkokille mit Lichtwellenleitern
EP3424614A1 (fr) 2017-07-03 2019-01-09 Primetals Technologies Austria GmbH Montage d'un capteur de température à fibre optique dans un moule et moule comprenant plusieurs capteurs de température à fibre optique

Also Published As

Publication number Publication date
KR20200127034A (ko) 2020-11-09
BE1025314B1 (fr) 2019-01-17
BR112020018996A2 (pt) 2020-12-29
WO2019180229A3 (fr) 2019-11-14
WO2019180229A2 (fr) 2019-09-26
JP2021519216A (ja) 2021-08-10
CA3094862A1 (fr) 2019-09-26
US20210001393A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
EP3668665A2 (fr) Lingotière de coulée continue de métaux, système et procédé de détection de percée dans une installation de coulée continue de métaux
CN1820189A (zh) 测量熔融物质的冷却曲线的方法和装置
BE1026975B1 (fr) Lingotière de coulée continue de métaux, système de mesure de la température et système et procédé de détection de percée dans une installation de coulée continue de métaux
BE1026740B1 (fr) Procédé pour équilibrer un écoulement d'acier liquide dans une lingotière et système de coulée continue d'acier liquide
EP0743114B2 (fr) Procédé de lubrification des parois d'une lingotière de coulée continue des métaux et lingotière pour sa mise en oeuvre
CA3020354C (fr) Systeme et procede de controle de la coulee d'un produit
EP1654083B1 (fr) Methode de decision de reutilisation ou de rejet d'une plaque refractaire d'une fermeture a tiroir et dispositif prevu a cet effet
BE1023950B1 (fr) Mesure de température en continu dans un métal liquide
WO1997037792A1 (fr) Lingotiere de coulee continue en charge verticale des metaux
EP0913218B1 (fr) Procédé et installation de coulée de bandes minces sur un ou entre deux cylindres
EP2705407B1 (fr) Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage
FR3112606A1 (fr) Système à rotor de mesure du débit d’un fluide comportant du liquide, et équipement associé
FR2560993A1 (fr) Dispositif du type lance de mesure et de prelevement d'echantillon pour la determination de caracteristiques d'un metal en fusion
EP1981666A1 (fr) Procede de controle de l'ecoulement d'un adjuvant de coulee d'un metal fondu
FR2496514A1 (fr) Dispositif de coulee centrifuge
FR2757430A1 (fr) Lingotiere a largeur variable pour la coulee continue de produits metalliques
EP0055947A1 (fr) Procédé et dispositif d'automatisation d'un cycle de coulée du type à basse-pression
FR2528740A1 (fr) Dispositif de controle de la coulee continue de l'acier
EP0424346A2 (fr) Dispositif pour la mesure continue de la température d'un bain métallique et son procédé d'utilisation
FR2618704A3 (fr) Procede et dispositif d'alimentation d'une lingotiere de coulee continue de produits minces
FR2609254A1 (fr) Dispositif pour controler l'etat d'agregation d'un metal sur la surface de la coquille
EP1228825A1 (fr) Procédé et dispositif de contrôle de l'écoulement d'un adjuvant de coulée d'un métal fondu
FR2558399A1 (fr) Perfectionnements aux lingotieres de coulee continue des metaux, et notamment de l'acier
BE899618A (fr) Procede de conduite d'une operation de coulee de metal liquide.
LU85883A1 (fr) Procede de conduite d'une operation de coulee de metal liquide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200319

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200805

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 11/20 20060101ALI20210129BHEP

Ipc: B22D 11/22 20060101AFI20210129BHEP

Ipc: B22D 2/00 20060101ALI20210129BHEP

Ipc: B22D 11/055 20060101ALI20210129BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20210319

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

TPAC Observations by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

INTG Intention to grant announced

Effective date: 20210319

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211117