EP3655176B1 - Forging method, in particular lightweight construction alloy forging method, and forging press - Google Patents

Forging method, in particular lightweight construction alloy forging method, and forging press Download PDF

Info

Publication number
EP3655176B1
EP3655176B1 EP18743519.3A EP18743519A EP3655176B1 EP 3655176 B1 EP3655176 B1 EP 3655176B1 EP 18743519 A EP18743519 A EP 18743519A EP 3655176 B1 EP3655176 B1 EP 3655176B1
Authority
EP
European Patent Office
Prior art keywords
forging
tool
component
cooling
forged component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18743519.3A
Other languages
German (de)
French (fr)
Other versions
EP3655176A1 (en
Inventor
Ephraim SCHWEGLER
Andreas Kroner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leiber Group & Co KG GmbH
Original Assignee
Leiber Group & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leiber Group & Co KG GmbH filed Critical Leiber Group & Co KG GmbH
Publication of EP3655176A1 publication Critical patent/EP3655176A1/en
Application granted granted Critical
Publication of EP3655176B1 publication Critical patent/EP3655176B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • B21J5/025Closed die forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/022Special design or construction multi-stage forging presses
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention relates to a forging process, in particular a lightweight alloy forging process, according to the preamble of claim 1.
  • a forging process in particular a lightweight alloy forging process, according to the preamble of claim 1.
  • Forging processes in particular lightweight alloy forging processes, are already known which are provided for the production of forged components, in particular forged aluminum components.
  • the object of the invention is in particular to provide a generic method with improved properties with regard to achievable material properties of forged components and with regard to process stability.
  • the object is achieved according to the invention by the features of claim 1, while advantageous configurations and developments of the invention can be found in the subclaims.
  • the invention is based on a forging process, in particular a lightweight alloy forging process, in particular for the production of lightweight alloy components for the automotive, aviation and / or industrial sectors, with a forged component being cooled in at least one process step a forging tool, in particular in a forming, punching and / or calibrating tool, with at least one forging press parameter of a forging press, which is designed as a maximum press force and / or a press ram position, depending on the cooling of the forged component in at least one process step the forging tool is changed.
  • At least one forging tool part in particular at least one die half of the forging tool designed as a die, move closer to the forged component and / or Forging component arranged in the forging tool acting press force is increased.
  • the forged component is preferably cooled directly in the forging tool, in particular immediately following hot forming of the forged component or already during hot forming of the forged component.
  • the forging process is preferably designed in a manner already known to a person skilled in the art such that an at least substantially entire material cross section of the forged component is plasticized in at least one process step of the forging process.
  • the forging process preferably results in a three-dimensional stress distribution in the forged component while a semi-finished product is being formed into a forged component.
  • a semi-finished product in the form of a continuously cast material or an extruded material is preferably used to produce the forged component by means of the forging process.
  • the forging process is preferably designed in such a way that the most homogeneous possible temperature distribution in the forged component can be achieved, for example by means of a forging tool already known to a person skilled in the art, which is preferably designed as a pre-die, in particular by means of local degrees of deformation in the forged component in a targeted manner in a manner already known to a person skilled in the art and way to influence.
  • the forged component is hot-formed in a forging tool.
  • the forging tool in which the forging component is hot worked can be different from the forging tool in which the forging component is cooled or it can be the same forging tool in which the forging component is hot worked and is cooled.
  • the forging tool is preferably designed as a die, such as, for example, as a pre-die, as a finished die or as a different one, a person skilled in the art a die that appears sensible.
  • the forging tool, in particular designed as a die can be designed as a forming, punching or calibrating tool.
  • the forged component is preferably deformed in the forging tool, in particular designed as a die, at a deformation temperature of in particular more than 300 ° C, preferably more than 400 ° C, particularly preferably more than 490 ° C and very particularly preferably less than 700 ° C .
  • the forged component is preferably reshaped in the forging tool, in particular designed as a die, at a reshaping temperature with a value from a value range of 500.degree. C. to 560.degree.
  • At least one semi-finished product that is used for forging the forged component is preheated, in particular to a temperature of more than 300 ° C, preferably more than 400 ° C, particularly preferably more than 490 ° C and very particularly preferably less than 700 ° C.
  • the forged component is preferably preheated by means of a device already known to a person skilled in the art, such as a furnace or the like.
  • a transfer, in particular an at least partially automatic transfer, of the semifinished product to a forging device preferably takes place in at least one process step, in particular before a forged component is cooled in a forging tool and in particular after the semifinished product has been preheated.
  • the forging device preferably comprises at least the forging tool in which the forged component is cooled, in particular after hot forming.
  • the forging device can have further forging tools for processing the semi-finished product and / or the forged component, such as a forging tool for preforming the semi-finished product, a forging tool for deburring and / or cutting the forged component, a forging tool for calibrating the forged component and / or other forging tools that appear useful to a specialist.
  • the semi-finished product or the forged component can be transferred to different forging devices with different forging tools during the forging process for pre-processing, processing and / or post-processing, such as preforming, hot forming, cutting, cooling, calibrating or the like, can be transferred.
  • Artificial aging of the forged component is preferably carried out in at least one process step of the forging process, in particular after cooling of the forged component in a forging tool, in particular to achieve a T4, T5, T6 or T7 state in accordance with DIN EN 515 Forged component at a temperature of in particular less than 280 ° C, preferably less than 250 ° C and particularly preferably less than 220 ° C. It is very particularly preferable for the forged component to be artificially aged at a temperature with a value from a range of 120.degree. C. to 250.degree.
  • the forged component is preferably transferred from the forging device to an artificial aging device already known to a person skilled in the art at a temperature which is above the artificial aging temperature of the forged component.
  • the forging process is preferably designed in such a way that residual heat in a ridge of the forged component is advantageously used to heat the forged component after cooling in the forging tool to an artificial aging temperature.
  • the forging press parameter can be changed as a function of a cooling start time.
  • the forging press preferably comprises a displacement measuring device which is provided to detect at least one travel path of a forging press ram and / or at least one forging tool part, in particular at least one die half of the forging tool designed as a die.
  • a displacement measuring device which is provided to detect at least one travel path of a forging press ram and / or at least one forging tool part, in particular at least one die half of the forging tool designed as a die.
  • Under "provided” in particular specially designed and / or specially equipped. Including that one item and / or a unit is / are provided for a specific function, it should be understood in particular that the element and / or the unit fulfill / fulfill and / or execute / execute this specific function in at least one application and / or operating state.
  • the forging press is preferably designed in such a way that at least one forging tool part, in particular at least one die half of the forging tool designed as a die, can be adjusted in a position and / or in a force acting on the forged component depending on a shrinkage parameter of the forged component caused by cooling of the forged component.
  • At least one forging tool part in particular at least one die half of the forging tool designed as a die, is moved closer to the forging tool in the forging and / or depending on a shrinkage parameter caused by cooling of the forged component arranged forged component acting press force is increased, in particular to counteract a loss of contact between the forged component due to a shrinkage of the forged component caused by the cooling.
  • the forging tool part in particular the at least one die half of the forging tool embodied as a die, has individually movable subregions which are independently of one another, in particular in addition to a travel path of the entire forging tool part, in particular the at least one die half of the forging tool embodied as a die, are movable, in particular in order to specifically cool down individual areas of the forged component which, for example, have a greater maximum material thickness than other areas of the forged component, in particular to achieve a largely homogeneous temperature distribution in the forged component while the forged component cools down in the forging tool.
  • the individually movable subregions of the forging tool are preferably designed in such a way that they are independent of one another and / or independent of a base body of the Forging tool are movable.
  • a tracking movement of the individual subregions of the forging tool is preferably carried out in at least one method step as a function of a shrinkage of the forged component caused by the cooling of the forged component.
  • a tracking movement of the individual sub-areas of the forging tool or of the entire forging tool, in particular of the forging tool designed as a die half, is preferably carried out in at least one process step, depending on the shrinkage of the forged component caused by the cooling of the forged component, so that the individual sub-areas of the forging tool or the forging tool are advantageously in contact to allow reliable cooling on an outer surface of the forged component arranged in the forging tool.
  • the position of the individual subregions of the forging tool or of the entire forging tool, in particular the forging tool designed as a die half is preferably changed as a function of the shrinkage of the forged component caused by the cooling of the forged component. It is also conceivable that in at least one method step the individual sub-areas of the forging tool are moved differently, in particular at different speeds, different distances or the like, from one another, in particular depending on a cooling rate of individual areas of the forged component.
  • the forging tool is designed as a completely closable die, which has at least one cooling fluid connection line, by means of which a cooling fluid can be introduced into the forging tool, which is provided for cooling the forged component arranged in the forging tool.
  • at least one parameter such as an amount of cooling fluid, a cooling fluid temperature or the like, of the cooling fluid is regulated as a function of a cooling, in particular a shrinkage of the forged component caused by the cooling of the forged component.
  • the forging device designed as a forging press comprises at least one sensor unit for detecting a cooling parameter of the forged component.
  • the forging device designed as a forging press comprises at least one control and / or regulating unit for controlling and / or regulating the parameter of the cooling fluid and / or the forging press parameter.
  • the cooling parameter of the forged component can be recorded directly or indirectly by means of the sensor unit.
  • an advantageous material property of the forged component can be achieved.
  • a high process stability of the forging process can advantageously be achieved.
  • An advantageous energy efficiency of the forging process can be achieved, in particular since a large cooling surface can be made available by the forging tool.
  • a slight distortion can advantageously be implemented in the forged component, in particular since an at least essentially direct and rapid cooling of the forged component in the fixed state can be carried out after or during hot forming.
  • An advantageous material property of the forged component can be achieved.
  • a high process stability of the forging process can advantageously be achieved.
  • An advantageous energy efficiency of the forging process can be achieved, in particular since a large cooling surface can be made available by the forging tool.
  • a slight distortion can advantageously be implemented in the forged component, in particular since an at least essentially direct and rapid cooling of the forged component in the fixed state can be carried out after or during hot forming.
  • the forged component in the forging tool in particular starting from a deformation temperature of the forged component of more than 400 ° C, preferably more than 500 ° C and particularly preferably less than 700 ° C, to a temperature of less than 300 ° C, preferably less than 250 ° C, is cooled, in particular directly in the forging tool in which the forged component, in particular starting from a semi-finished product, is hot-formed.
  • the forged component is preferably cooled in the forging tool, in particular starting from a deformation temperature of the forged component of more than 400 ° C, to a temperature with a value from a value range of 150 ° C to 180 ° C, in particular directly in the forging tool in which the Forged component, in particular starting from a semi-finished product, is hot-formed.
  • the forging tool in which the forged component is cooled can be different from the forging tool in which the forged component is hot-worked or it can be the same forging tool in which the forged component is hot-worked and is cooled directly after the hot forming.
  • a high strength of the forged component can advantageously be realized.
  • a high ductility of the forged component can advantageously be realized.
  • a slight distortion can advantageously be realized in the forged component, in particular since an at least essentially direct and rapid cooling of the forged component in the fixed state, in particular arranged and / or fixed in the forging tool, can be carried out after or during hot forming.
  • an, in particular average, cooling rate of the forged component, in particular during cooling, in the forging tool is greater than 25 K / s.
  • An, in particular average, cooling rate of the forged component in the forging tool is preferably greater than 50 K / s, preferably greater than 100 K / s and particularly preferably greater than 200 K / s.
  • a particularly average cooling rate of the forged component in the forging tool is preferred, in particular less than 400 K / s, preferably less than 350 K / s and particularly preferably less than 310 K / s.
  • the forged component is cooled after a deformation, in particular a hot deformation, of the forged component in the forging tool.
  • the forging tool in which the forged component is cooled is preferably the same forging tool in which the forged component is hot-worked.
  • the forged component is preferably cooled in the forging tool directly after the hot forming by the forging tool.
  • the forging component be cooled in the forging tool after a forming, in particular hot forming, of the forged component carried out in a further forging tool, in particular after an, in particular at least partially automatic, forged component transfer of the forged component from the further forging tool to the forging tool.
  • the forged component is hot-formed in the further forging tool designed as a pre-die, then again, in particular also or additionally, hot-formed in the forging tool designed as a finished die, and then or simultaneously cooled in the forging tool designed as a finished die.
  • the forged component is hot-formed in the further forging tool designed as a finished die and then cooled in the forging tool designed as a punching and / or cutting tool.
  • an advantageous material property of the forged component can be achieved.
  • An optimized process sequence, in particular as a function of process requirements, can advantageously be implemented.
  • the forging process can advantageously be used particularly flexibly.
  • an at least partially automatic forging component transfer from the further forging tool to the forging tool takes place in at least one process step to cool the forged component in the forging tool.
  • the forging tool and the further forging tool can be arranged together in a forging device, in particular in at least one forging press, or the forging tool and the further forging tool can be arranged in different forging devices, in particular in different forging presses.
  • the at least partially automatic forged component transfer of the forged component from the further forging tool to the forging tool can take place by means of a walking beam system, by means of a robot or by means of another device that appears useful to a person skilled in the art.
  • the forged component is transferred manually from the further forging tool to the forging tool.
  • an optimized process sequence can advantageously be implemented, in particular as a function of process requirements. That Forging process can advantageously be used particularly flexibly.
  • An advantageous material property of the forged component can be achieved.
  • the forging tool be actively cooled in at least one method step.
  • a cooling medium in particular a cooling fluid, such as, for example, cooling water, cooling oil, graphite emulsion or the like, is preferably actively fed to the forging tool at least for cooling the forged component in the forging tool.
  • the forging tool preferably comprises at least one cooling unit which is integrated at least in a forging tool part of the forging tool, in particular in at least one die half of the forging tool designed as a die.
  • the forging tool is preferably designed as an open die. An undesired pressure change in the forging tool as a result of an inflow of cooling medium can advantageously be avoided.
  • cooling medium can flow out of the forging tool, in particular between at least two die halves of the forging tool designed as a die.
  • the forging tool is designed as a closed die.
  • the forging tool is preferably actively cooled in at least one process step, the forging component in the forging tool being cooled by means of a cooling fluid that is guided through the forging tool in a contour following manner in bore cavities, in particular cooling cavities of the cooling unit, of the forging tool.
  • the cooling cavities of the forging tool can be produced, for example, via a separating process such as drilling, eroding or similar machining processes known to a person skilled in the art, as well as by a generative tool structure in which the cooling cavities that conduct the cooling fluid can be produced in a construction process of a selected generative process.
  • a separating process such as drilling, eroding or similar machining processes known to a person skilled in the art
  • a generative tool structure in which the cooling cavities that conduct the cooling fluid can be produced in a construction process of a selected generative process.
  • an embodiment of the forging tools in the form of a multi-part structure is envisaged, in which the cooling cavities are formed by half-sided recesses in the individual tool segments, in particular die halves, of the forging tool and lead to a closed channel structure by assembling the tool segments.
  • a high cooling rate of the forged component can advantageously be achieved by means of the configuration according to the invention.
  • a forged component with high strength and high ductility can advantageous
  • the forged component is actively treated, in particular sprayed, with a cooling fluid in the forging tool.
  • the forging tool preferably comprises at least one cooling supply opening, via which the cooling fluid can be actively supplied to the forged component arranged in the forging tool, at least during a cooling step.
  • the forging tool preferably comprises a multiplicity of cooling supply openings, via which the cooling fluid can be actively supplied to the forged component arranged in the forging tool, at least during a cooling step.
  • a high cooling rate of the forged component can advantageously be achieved by means of the configuration according to the invention.
  • a forged component with high strength and high ductility can advantageously be achieved.
  • the invention is based on a forging device designed as a forging press, in particular for carrying out a forging process according to the invention, with at least one forging tool, in particular a forming, punching or calibrating tool and with at least one cooling unit arranged at least partially on the forging tool, the forging press such is designed that at least one forging press parameter and / or a parameter of a cooling fluid is changed as a function of cooling of a forging component arranged in the forging tool, and with at least one control and / or regulating unit for controlling and / or regulating the parameter of the cooling fluid and / or the forging press parameters.
  • the forging press have at least one sensor unit for detecting a cooling parameter of the forged component, with at least one forging tool part, in particular at least one die half of the forging tool designed as a die, closer to the forging component, depending on a shrinkage parameter of the forged component caused by cooling of the forged component Forged component can be approached and / or a press force acting on the forged component arranged in the forging tool can be increased.
  • the cooling unit is preferably provided to actively cool the forging tool, in particular in order to advantageously actively dissipate heat from the forged component arranged in the forging tool.
  • the cooling unit is provided for active cooling of the forged component arranged in the forging tool, such as For example, for spraying and / or wetting of the forged component arranged in the forging tool by means of a cooling fluid or the like.
  • the forging tool in particular at least in the area of a forging engraving of the forging tool, has full-surface contact with the forging component in order to cool the forged component in the forging tool or that the forging tool, in particular at least in the area of a forging engraving of the forging tool, has partial contact with the forging component for cooling of the forged component in the forging tool.
  • Cooling rate of the forged component can be realized.
  • a forged component with high strength and high ductility can advantageously be achieved.
  • a forged component in particular a lightweight alloy forged component, which is produced by means of a forging method according to the invention, is proposed.
  • the forged component is preferably formed from an aluminum alloy, a titanium alloy or another lightweight alloy that appears sensible to a person skilled in the art.
  • the forged component is preferably made of an alloy, in particular an aluminum alloy, from the 2000 series (EN AW 2xxx), the 3000 series (EN AW 3XXX), the 4000 series (EN AW 4XXX), the 5000 series (EN AW 5xxx), the 6000 series (EN AW 6xxx), the 7000 series (EN AW 7xxx) or the 8000 series (EN AW 8xxx).
  • the forged component is preferably made in particular from a technically usable aluminum alloy whose alloy composition coincides with values of at least one series from the EN-AW 1XXXer-8XXXer series.
  • the forged component produced by means of the forging process according to the invention preferably has a maximum material thickness of in particular less than 200 mm, preferably less than 100 mm and particularly preferably less than 10 mm.
  • the forging process according to the invention has a maximum material thickness with a value from a value range of 1 mm to 200 mm.
  • the forging method according to the invention and / or the forging device according to the invention should / should not be restricted to the application and embodiment described above.
  • the forging method according to the invention and / or the forging device according to the invention can have a number that differs from a number of individual elements, components and units as well as method steps mentioned herein in order to fulfill a mode of operation described herein.
  • those specified in this disclosure can have a number that differs from a number of individual elements, components and units as well as method steps mentioned herein in order to fulfill a mode of operation described herein.
  • Figure 1 shows a forging production line 30a with a forging device for carrying out a forging process 10a, in particular a lightweight forging process, for producing a forged component 12a, in particular for producing lightweight alloy components for the automotive, aerospace and / or industrial sectors.
  • a forging process 10a in particular a lightweight forging process
  • forged components 12a to be produced by means of the forging process 10a which can be used in another area that appears sensible to a person skilled in the art, such as an aircraft area or the like
  • Individual process steps of the forging process 10a are graphically assigned to a temperature profile in the forged component 12a, in particular starting from a semi-finished product 32a to a fully forged forged component 12a (see temperature-time diagram and corresponding dashed assignment in Figure 1 ).
  • a semi-finished product 32a is fed to a preheating device 34a of forging production line 30a, in which semi-finished product 32a is preheated in at least one, in particular second, process step of forging process 10a, in particular starting from a room temperature of semi-finished product 32a , in particular up to a temperature of more than 300.degree. C., preferably more than 400.degree. C., particularly preferably more than 490.degree. C. and very particularly preferably less than 700.degree.
  • the preheating device 34a preferably has a configuration already known to a person skilled in the art, such as a configuration as a preheating furnace or the like.
  • a transfer, in particular an at least partially automatic transfer, of the semifinished product 32a to a forging device of the forging production line 30a takes place.
  • the forging device in particular for carrying out a forging process 10a, comprises at least one forging tool 14a, 16a, in particular a forming, punching or calibration tool.
  • the Forging device is preferably designed as a forging press 20a.
  • the forging press 20a can be designed as a screw press, as a hydraulic press, as a servo press or as another press that appears useful to a person skilled in the art.
  • the transfer of the semifinished product 32a from the preheating device 34a can take place manually, partially automatically or fully automatically.
  • a fully automatic transfer of the semi-finished product 32a to the forging device preferably takes place, in particular by means of a transfer device 36a of the forging production line 30a.
  • the transfer device 36a can be designed as a robot, as a walking beam device, as a conveyor device or the like.
  • the forging device preferably comprises at least one forging tool 14a, in particular in a forming, punching and / or calibrating tool, in which the forged component 12a can be cooled.
  • the forging device preferably comprises at least one further forging tool 16a for forming, in particular hot forming, of the forged component 12a, in particular before cooling of the forged component 12a in the forging tool 14a.
  • the forging tool 14a is preferably designed as a finished die.
  • the further forging tool 16a is preferably designed as a pre-die.
  • the forged component 12a is preferably cut to size in the forging tool 14a.
  • the forging tool 14a is preferably designed in one piece with a cutting tool or a punching tool.
  • the forged component 12a is preformed by means of the further forging tool 16a.
  • a forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component 12a from the further forging tool 16a to the forging tool 14a preferably takes place in at least one, in particular fifth, method step of the forging process 10a.
  • the forged component transfer of the forged component 12a from the further forging tool 16a to the forging tool 14a can take place manually, partially automatically or fully automatically.
  • the forged component 12a is preferably transferred fully automatically from the further forging tool 16a to the forging tool 14a, in particular by means of a transfer device (not shown here) of the forging production line 30a arranged on the forging device.
  • a transfer device (not shown here) of the forging production line 30a arranged on the forging device.
  • the one arranged on the forging device Transfer device can be designed as a robot, as a walking beam device, as a conveyor device or the like.
  • a deformation, in particular a hot deformation, of the forged component 12a takes place in the forging tool 14a, in particular designed as a die, at a deformation temperature of in particular more than 300 ° C, preferably more than 400 ° C, particularly preferably more than 490 ° C and very particularly preferably less than 700 ° C.
  • a deformation, in particular a hot deformation, of the forged component 12a is preferably carried out in the forging tool 14a, in particular in the form of a die, at a deformation temperature with a value from a value range of 500.degree. C. to 560.degree.
  • the forged component 12a is cooled in the forging tool 14a.
  • the forging component 12a is cooled after the forging component 12a has been deformed in the forging tool 14a.
  • the forging component 12a is preferably cooled in the forging tool 14a after a deformation, in particular preforming, of the forged component 12a carried out in the further forging tool 16a.
  • the forging component 12a is cooled in the forging tool 14a by an at least partially automatic forging component transfer from the further forging tool 16a to the forging tool 14a.
  • the forging device comprises at least one cooling unit 24a, 26a which is arranged at least partially on the forging tool 14a, in particular at least partially integrated in the forging tool 14a.
  • the forged component 12a is preferably cooled directly after the hot forming of the forged component 12a that has taken place in the forging tool 14a, in particular directly, in the forging tool 14a.
  • forging tool 14a is actively cooled. Cooling fluid is preferably supplied to the forging tool 14a by means of the cooling unit 24a, 26a and passed through the forging tool 14a.
  • At least one cooling unit 24a, 26a is arranged, which is provided for cooling the corresponding forging tool part, in particular the corresponding die half.
  • the forged component 12a is actively treated with a cooling fluid in the forging tool 14a, in particular sprayed and / or flowed around it.
  • the forging tool 14a is alternatively or additionally flowed through with a cooling fluid, in particular for an advantageous heat dissipation from the forging component 12a and / or the forging tool 14a.
  • the forged component 12a is preferably cooled in the forging tool 14a, in particular starting from a deformation temperature of the forged component 12a of more than 400.degree. C., to a temperature of less than 300.degree.
  • the forged component 12a is cooled in the forging tool 14a, in particular starting from a deformation temperature of the forged component 12a of more than 400 ° C, to a temperature with a value from a value range of 150 ° C to 180 ° C, in particular directly in the forging tool 14a , in which the forged component 12a was / is hot-worked.
  • a cooling rate of the forging component 12a in the forging tool 14a is greater than 25 K / s, in particular as a result of a heat transfer of heat from the forging component 12a to the forging tool 14a and / or the cooling fluid.
  • a cooling rate of the forged component 12a in the forging tool 14a is preferably greater than 50 K / s, preferably greater than 100 K / s and particularly preferably greater than 200 K / s.
  • a cooling rate of the forged component 12a in the forging tool 14a is preferably less than 400 K / s, preferably less than 350 K / s and particularly preferably less than 310 K / s.
  • At least one forging press parameter in particular a maximum press force and / or a press ram position, of the forging device designed as a forging press 20a is changed (cf. Figure 2 ).
  • the forging press parameter can preferably be dependent on a cooling start time and / or on at least one parameter of the forged component 12a caused by the cooling of the forged component 12a in the forging tool 14a, in particular a shrinkage parameter of the forged component 12a.
  • the forging press 20a preferably comprises a displacement measuring device 38a, which is provided to detect at least one travel path of a forging press ram and / or at least one forging tool part, in particular at least one die half of the forging tool 14a designed as a die.
  • the forging press 20a is preferably designed in such a way that at least one forging tool part, in particular at least one die half of the forging tool 14a designed as a die, depending on a shrinkage parameter of the forging component 12a caused by cooling of the forging component 12a in one position and / or in a force acting on the Forged component 12a is adjustable.
  • At least one forging tool part in particular at least one die half of the forging tool 14a designed as a die, is preferably brought closer to the forged part 12a depending on a shrinkage parameter of the forged component 12a caused by cooling of the forged component 12a and / or a press force acting on the forged component 12a arranged in the forging tool 14a is increased, in particular to counteract a loss of contact between the forged component 12a as a result of the cooling-induced shrinkage of the forged component 12a.
  • a press force acting on the forging component 12a arranged in the forging tool 14a is reduced as a function of a cooling start time, in particular in order to specifically influence a cooling effect of the forging tool 14a on the forging component 12a arranged in the forging tool 14a.
  • artificial aging of the forged component 12a takes place, in particular after active cooling of the forged component 12a in the forging tool 14a, in particular to achieve a T4, T5, T6 or T7 state according to DIN EN 515 of the forged component 12a.
  • Artificial aging of the forged component 12a preferably takes place at a temperature of, in particular, less than 280.degree. C., preferably less than 250.degree. C. and particularly preferably less than 220.degree. It is very particularly preferable for the forged component 12a to be artificially aged at a temperature with a value from a value range of 120.degree. C. to 250.degree.
  • a forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component 12a from the forging device to an artificial aging device 28a already known to a person skilled in the art, in particular after, in particular active, cooling of the forged component 12a preferably takes place in at least one, in particular seventh, method step of the forging process 10a in the forging tool 14a.
  • the forged component 12a is preferably transferred from the forging device to an artificial aging device 28a already known to a person skilled in the art by means of a further transfer device 40a of the forging production line 30a.
  • the further transfer device 40a is preferably designed at least essentially analogously to the transfer device 36a.
  • the forged component 12a is preferably transferred from the forging device to an artificial aging device 28a already known to a person skilled in the art at a temperature which is above the artificial aging temperature of the forged component 12a.
  • the forging process 10a is preferably designed in such a way that a residual heat in a ridge of the forged component 12a is advantageously used to heat the forged component 12a after, in particular active, cooling of the forged component 12a in the forging tool 14a to an artificial aging temperature.
  • Figures 3 and 4th show further embodiments of the invention.
  • the following descriptions and the drawings are essentially limited to the differences between the exemplary embodiments, whereby with regard to identically designated components, in particular with regard to components with the same reference numerals, in principle also to the drawings and / or the description of the other exemplary embodiments, in particular the Figures 1 and 2 , can be referenced.
  • the letter a is the reference number of the exemplary embodiment in FIG Figures 1 and 2 re-enacted.
  • the letter a is replaced by the letters b and c.
  • Figure 3 shows a forging production line 30b with a forging device for carrying out a forging process 10b, in particular a lightweight forging process, for producing a forged component 12b, in particular for the production of lightweight alloy components for the automotive, aviation, or industrial sectors.
  • a forging process 10b in particular a lightweight forging process
  • forged components 12b are produced that can be used in another area that appears sensible to a person skilled in the art, such as an aircraft area or the like
  • Individual process steps of the forging process 10b are graphically assigned to a temperature profile in the forged component 12b, in particular starting from a semi-finished product 32b to a fully forged forged component 12b (see temperature-time diagram and corresponding dashed assignment in Figure 3 ).
  • the forging production line 30b shown and the forging process 10b that can be carried out with it differs from that in FIG Figure 1 forging production line 30a shown and of the forging process 10a that can be carried out with it, in that the forging production line 30b comprises a forging device which comprises at least three forging tools 14b, 16b, 18b, in particular a forming, punching and / or calibrating tool.
  • the forged component 12b in particular after a, in particular direct, cooling in the forging tool 14b, which is preferably designed as a finished die, is in at least one process step of the forging process 10b to an additional forging tool 18b, which is preferably designed as a punching and / or cutting tool, to hand over.
  • a forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component 12b from the forging device to an artificial aging device 28b already known to a person skilled in the art preferably takes place in at least one method step of the forging process 10b, in particular after machining with the additional forging tool 18b.
  • Figure 4 shows a forging production line 30c with a forging device for carrying out a forging process 10c, in particular a lightweight forging process, for producing a forged component 12c, in particular for producing lightweight alloy components, for automobiles, aviation, or industrial sector.
  • a forging process 10c in particular a lightweight forging process
  • for producing a forged component 12c in particular for producing lightweight alloy components, for automobiles, aviation, or industrial sector.
  • forging components 12c to be produced by means of the forging process 10c which can be used in another area that appears sensible to a person skilled in the art, such as an aircraft area or the like
  • Individual process steps of the forging process 10c are graphically assigned to a temperature profile in the forged component 12c, in particular starting from a semi-finished product 32c to a fully forged forged component 12c (see temperature-time diagram and corresponding dashed assignment in Figure 4 ).
  • Forging production line 30c shown and the forging process 10c that can be carried out with it differs from that in FIG Figure 1 shown forging production line 30a and of the forging process 10a that can be carried out therewith in that the forging production line 30c has a forging device with at least one forging tool 14c and with at least one further forging tool 16c and at least one further forging device, which is designed as a forging press 22c, with at least one additional forging tool 18c, which is preferably designed as a punching and / or cutting tool.
  • the further forging device is preferably designed as a forging press 22c.
  • the forged component 12c in particular after forming, in particular hot forming, in the forging tool 14c, which is preferably designed as a finished die, is transferred to the further forging device in at least one process step of the forging process 10c, in particular at least partially automatically, in particular by means of an additional transfer device 42c the forging production line 30c.
  • the forged component 12c in particular after forming, in particular hot forming, in the forging tool 14c, which is preferably designed as a finished die, is attached to the additional forging tool 18c, which is preferably designed as a punching and / or cutting tool, in at least one process step of the forging process 10c , to hand over.
  • the forging component 12c is cooled in the additional forging tool 18c.
  • the forging component 12c is preferably cooled after the forging component 12c has been deformed in the forging tool 14c.
  • the forging component 12c is cooled in the additional forging tool 18c after one in the forging tool 14c and the further forging tool 16c performed reshaping of the forged component 12c.
  • a forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component 12c from the further forging device to an artificial aging device 28c already known to a person skilled in the art preferably takes place in at least one method step of the forging process 10c, in particular carried out after cooling in the additional forging tool 18c.
  • functions and / or process steps of the forging production line 30c and the forging process 10c that can be carried out with it reference may be made to the description of the in FIG Figure 1 Forging production line 30a shown and the forging process 10a that can be carried out therewith are referred to.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Schmiedeverfahren, insbesondere ein Leichtbaulegierungsschmiedeverfahren, nach dem Oberbegriff des Anspruchs 1. Aus EP 3 124 633 A1 und EP 2 644 727 B1 sind bereits Schmiedeverfahren, insbesondere Leichtbaulegierungsschmiedeverfahren, bekannt, die zu einer Herstellung von geschmiedeten Bauteilen vorgesehen sind, insbesondere von geschmiedeten Aluminiumbauteilen.The invention relates to a forging process, in particular a lightweight alloy forging process, according to the preamble of claim 1. From EP 3 124 633 A1 and EP 2 644 727 B1 Forging processes, in particular lightweight alloy forging processes, are already known which are provided for the production of forged components, in particular forged aluminum components.

Ferner sind aus DE 10 2007 040 597 A1 und DE 27 14 648 A1 bereits Schmiedeverfahren bekannt, bei denen in zumindest einem Verfahrensschritt eine Abkühlung eines Schmiedebauteils in einem Schmiedewerkzeug erfolgt.Furthermore are off DE 10 2007 040 597 A1 and DE 27 14 648 A1 Forging processes are already known in which a forged component is cooled in a forging tool in at least one process step.

Zudem ist aus US 2015/202680 A1 ein gattungsgemäßes Schmiedeverfahren bekannt, wobei in zumindest einem Verfahrensschritt eine Abkühlung eines Schmiedebauteils in einem Schmiedewerkzeug erfolgt, wobei in zumindest einem Verfahrensschritt zumindest eine Pressenstößelposition einer Schmiedepresse in Abhängigkeit von einer Abkühlung des Schmiedebauteils in dem Schmiedewerkzeug geändert wird.It is also off US 2015/202680 A1 a generic forging process known, wherein a forged component is cooled in a forging tool in at least one method step, with at least one press ram position of a forging press being changed depending on a cooling of the forged component in the forging tool in at least one method step.

Die Aufgabe der Erfindung besteht insbesondere darin, ein gattungsgemäßes Verfahren mit verbesserten Eigenschaften hinsichtlich erzielbarer Werkstoffeigenschaften von geschmiedeten Bauteilen und hinsichtlich einer Prozessstabilität bereitzustellen. Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.The object of the invention is in particular to provide a generic method with improved properties with regard to achievable material properties of forged components and with regard to process stability. The object is achieved according to the invention by the features of claim 1, while advantageous configurations and developments of the invention can be found in the subclaims.

Vorteile der ErfindungAdvantages of the invention

Die Erfindung geht aus von einem Schmiedeverfahren, insbesondere von einem Leichtbaulegierungsschmiedeverfahren, insbesondere zu einer Herstellung von Leichtbaulegierungsbauteilen für den Automobil-, Luftfahrt- und/oder Industriebereich, wobei in zumindest einem Verfahrensschritt eine Abkühlung eines Schmiedebauteils in einem Schmiedewerkzeug, insbesondere in einem Umform-, Stanz- und/oder Kalibrierwerkzeug, erfolgt, wobei in zumindest einem Verfahrensschritt zumindest eine Schmiedepressenkenngröße einer Schmiedepresse, die als eine maximale Pressenkraft und/oder eine Pressenstößelposition ausgebildet ist, in Abhängigkeit von einer Abkühlung des Schmiedebauteils in dem Schmiedewerkzeug geändert wird.The invention is based on a forging process, in particular a lightweight alloy forging process, in particular for the production of lightweight alloy components for the automotive, aviation and / or industrial sectors, with a forged component being cooled in at least one process step a forging tool, in particular in a forming, punching and / or calibrating tool, with at least one forging press parameter of a forging press, which is designed as a maximum press force and / or a press ram position, depending on the cooling of the forged component in at least one process step the forging tool is changed.

Es wird vorgeschlagen, dass während einer Abkühlung des Schmiedebauteils im Schmiedewerkzeug in Abhängigkeit von einer durch eine Abkühlung des Schmiedebauteils bedingte Schrumpfkenngröße des Schmiedebauteils zumindest ein Schmiedewerkzeugteil, insbesondere zumindest eine Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs, näher an das Schmiedebauteil herangefahren und/oder eine auf das im Schmiedewerkzeug angeordnete Schmiedebauteil wirkende Pressenkraft erhöht wird . Bevorzugt erfolgt eine Abkühlung des Schmiedebauteils direkt im Schmiedewerkzeug, insbesondere in einem unmittelbaren Anschluss an eine Warmumformung des Schmiedebauteils oder bereits während einer Warmumformung des Schmiedebauteils.It is proposed that during a cooling of the forged component in the forging tool, depending on a shrinkage parameter of the forged component caused by cooling of the forged component, at least one forging tool part, in particular at least one die half of the forging tool designed as a die, move closer to the forged component and / or Forging component arranged in the forging tool acting press force is increased. The forged component is preferably cooled directly in the forging tool, in particular immediately following hot forming of the forged component or already during hot forming of the forged component.

Vorzugsweise ist das Schmiedeverfahren derart auf eine, einem Fachmann bereits bekannte Art und Weise ausgelegt, dass in zumindest einem Verfahrensschritt des Schmiedeverfahrens ein zumindest im Wesentlichen gesamter Werkstoffquerschnitt des Schmiedebauteils plastifiziert wird. Bevorzugt erfolgt durch das Schmiedeverfahren eine dreidimensionale Spannungsverteilung im Schmiedebauteil während einer Umformung eines Halbzeugs zum Schmiedebauteil. Vorzugsweise wird ein Halbzeug in Form eines Stranggussmaterials oder eines Strangpressmaterials zu einer Herstellung des Schmiedebauteils mittels des Schmiedeverfahrens genutzt. Bevorzugt ist das Schmiedeverfahren derart ausgestaltet, dass eine möglichst homogene Temperaturverteilung im Schmiedebauteil realisierbar ist, wie beispielsweise mittels eines, einem Fachmann bereits bekannten Schmiedewerkzeugs, das bevorzugt als Vorgesenk ausgebildet ist, insbesondere um lokale Umformgrade im Schmiedebauteil gezielt auf eine, einem Fachmann bereits bekannte Art und Weise zu beeinflussen.The forging process is preferably designed in a manner already known to a person skilled in the art such that an at least substantially entire material cross section of the forged component is plasticized in at least one process step of the forging process. The forging process preferably results in a three-dimensional stress distribution in the forged component while a semi-finished product is being formed into a forged component. A semi-finished product in the form of a continuously cast material or an extruded material is preferably used to produce the forged component by means of the forging process. The forging process is preferably designed in such a way that the most homogeneous possible temperature distribution in the forged component can be achieved, for example by means of a forging tool already known to a person skilled in the art, which is preferably designed as a pre-die, in particular by means of local degrees of deformation in the forged component in a targeted manner in a manner already known to a person skilled in the art and way to influence.

Vorzugsweise erfolgt in zumindest einem Verfahrensschritt, insbesondere vor einer Abkühlung eines Schmiedebauteils in einem Schmiedewerkzeug, eine Warmumformung des Schmiedebauteils in einem Schmiedewerkzeug. Das Schmiedewerkzeug, in dem das Schmiedebauteil warmumgeformt wird, kann verschieden sein von dem Schmiedewerkzeug, in dem das Schmiedebauteil abgekühlt wird oder es kann dasselbe Schmiedewerkzeug sein, in dem das Schmiedebauteil warmumgeformt wird und abgekühlt wird. Bevorzugt ist das Schmiedewerkzeug als Gesenk ausgebildet, wie beispielsweise als Vorgesenk, als Fertiggesenk oder als ein anderes, einem Fachmann als sinnvoll erscheinendes Gesenk. Das, insbesondere als Gesenk ausgebildete, Schmiedewerkzeug kann als Umform-, Stanz- oder Kalibrierwerkzeug ausgebildet sein.Preferably, in at least one method step, in particular before a forged component is cooled in a forging tool, the forged component is hot-formed in a forging tool. The forging tool in which the forging component is hot worked can be different from the forging tool in which the forging component is cooled or it can be the same forging tool in which the forging component is hot worked and is cooled. The forging tool is preferably designed as a die, such as, for example, as a pre-die, as a finished die or as a different one, a person skilled in the art a die that appears sensible. The forging tool, in particular designed as a die, can be designed as a forming, punching or calibrating tool.

Bevorzugt erfolgt eine Umformung des Schmiedebauteils in dem, insbesondere als Gesenk ausgebildeten, Schmiedewerkzeug bei einer Umformtemperatur von insbesondere mehr als 300 °C, vorzugsweise mehr als 400 °C, besonders bevorzugt mehr als 490 °C und ganz besonders bevorzugt von weniger als 700 °C. Vorzugsweise erfolgt eine Umformung des Schmiedebauteils in dem, insbesondere als Gesenk ausgebildeten, Schmiedewerkzeug bei einer Umformtemperatur mit einem Wert aus einem Wertebereich von 500 °C bis 560 °C. Vorzugsweise wird in zumindest einem Verfahrensschritt des Schmiedeverfahrens, insbesondere vor einer Abkühlung eines Schmiedebauteils in einem Schmiedewerkzeug und/oder vor einem als Warmumformung ausgebildeten Verfahrensschritt des Schmiedeverfahrens, zumindest ein Halbzeug, das zum Schmieden des Schmiedebauteils genutzt wird, vorgewärmt, insbesondere bis auf eine Temperatur von mehr als 300 °C, vorzugsweise von mehr als 400 °C, besonders bevorzugt von mehr als 490 °C und ganz besonders bevorzugt von weniger als 700 °C. Vorzugsweise erfolgt eine Vorwärmung des Schmiedebauteils mittels einer, einem Fachmann bereist bekannten Vorrichtung, wie beispielsweise einem Ofen o. dgl.The forged component is preferably deformed in the forging tool, in particular designed as a die, at a deformation temperature of in particular more than 300 ° C, preferably more than 400 ° C, particularly preferably more than 490 ° C and very particularly preferably less than 700 ° C . The forged component is preferably reshaped in the forging tool, in particular designed as a die, at a reshaping temperature with a value from a value range of 500.degree. C. to 560.degree. Preferably, in at least one process step of the forging process, in particular before cooling a forged component in a forging tool and / or before a process step of the forging process designed as hot forming, at least one semi-finished product that is used for forging the forged component is preheated, in particular to a temperature of more than 300 ° C, preferably more than 400 ° C, particularly preferably more than 490 ° C and very particularly preferably less than 700 ° C. The forged component is preferably preheated by means of a device already known to a person skilled in the art, such as a furnace or the like.

Bevorzugt erfolgt in zumindest einem Verfahrensschritt, insbesondere vor einer Abkühlung eines Schmiedebauteils in einem Schmiedewerkzeug und insbesondere nach einer Vorwärmung des Halbzeugs, eine Übergabe, insbesondere eine zumindest teilweise automatische Übergabe, des Halbzeugs zu einer Schmiedevorrichtung. Die Schmiedevorrichtung umfasst vorzugsweise zumindest das Schmiedewerkzeug, in dem das Schmiedebauteil, insbesondere nach einer Warmumformung, abgekühlt wird. Zusätzlich kann die Schmiedevorrichtung weitere Schmiedewerkzeuge zu einer Bearbeitung des Halbzeugs und/oder des Schmiedebauteils aufweisen, wie beispielsweise ein Schmiedewerkzeug zu einer Vorformung des Halbzeugs, ein Schmiedewerkzeug zu einem Entgraten und/oder Zuschneiden des Schmiedebauteils, ein Schmiedewerkzeug zu einem Kalibrieren des Schmiedebauteils und/oder weitere, einem Fachmann als sinnvoll erscheinende Schmiedewerkzeuge. Es ist jedoch auch denkbar, dass das Halbzeug oder das Schmiedebauteil während des Schmiedeverfahrens an unterschiedliche Schmiedevorrichtungen mit voneinander verschiedenen Schmiedewerkzeugen zu einer Vorbearbeitung, Bearbeitung und/oder Nachbearbeitung, wie beispielsweise ein Vorformen, ein Warmumformen, ein Zuschneiden, ein Abkühlen, ein Kalibrieren o. dgl., übergeben werden.A transfer, in particular an at least partially automatic transfer, of the semifinished product to a forging device preferably takes place in at least one process step, in particular before a forged component is cooled in a forging tool and in particular after the semifinished product has been preheated. The forging device preferably comprises at least the forging tool in which the forged component is cooled, in particular after hot forming. In addition, the forging device can have further forging tools for processing the semi-finished product and / or the forged component, such as a forging tool for preforming the semi-finished product, a forging tool for deburring and / or cutting the forged component, a forging tool for calibrating the forged component and / or other forging tools that appear useful to a specialist. However, it is also conceivable that the semi-finished product or the forged component can be transferred to different forging devices with different forging tools during the forging process for pre-processing, processing and / or post-processing, such as preforming, hot forming, cutting, cooling, calibrating or the like, can be transferred.

Bevorzugt erfolgt in zumindest einem Verfahrensschritt des Schmiedeverfahrens ein Warmauslagern des Schmiedebauteils, insbesondere nach einer Abkühlung des Schmiedebauteils in einem Schmiedewerkzeug, insbesondere zu einer Erreichung eines T4-, T5-, T6- oder T7-Zustands gemäß DIN EN 515. Vorzugsweise erfolgt eine Warmauslagerung des Schmiedebauteils bei einer Temperatur von insbesondere weniger als 280 °C, bevorzugt von weniger als 250 °C und besonders bevorzugt von weniger als 220 °C. Ganz besonders bevorzugt erfolgt eine Warmauslagerung des Schmiedebauteils bei einer Temperatur mit einem Wert aus einem Wertebereich von 120 °C bis 250 °C. Vorzugsweise erfolgt in zumindest einem Verfahrensschritt des Schmiedeverfahrens eine Schmiedebauteilübergabe, insbesondere eine zumindest teilweise automatische Schmiedebauteilübergabe, des Schmiedebauteils von der Schmiedevorrichtung an eine, einem Fachmann bereits bekannte Warmauslagerungsvorrichtung, insbesondere nach einer Abkühlung des Schmiedebauteils in einem Schmiedewerkzeug. Bevorzugt erfolgt eine Schmiedebauteilübergabe des Schmiedebauteils von der Schmiedevorrichtung an eine, einem Fachmann bereits bekannte Warmauslagerungsvorrichtung bei einer Temperatur, die oberhalb einer Warmauslagerungstemperatur des Schmiedebauteils liegt. Vorzugsweise ist das Schmiedeverfahren derart ausgestaltet, dass eine Restwärme in einem Grat des Schmiedebauteils vorteilhaft zu einer Erwärmung des Schmiedebauteils nach einer Abkühlung in dem Schmiedewerkzeug auf eine Warmauslagerungstemperatur genutzt wird.Artificial aging of the forged component is preferably carried out in at least one process step of the forging process, in particular after cooling of the forged component in a forging tool, in particular to achieve a T4, T5, T6 or T7 state in accordance with DIN EN 515 Forged component at a temperature of in particular less than 280 ° C, preferably less than 250 ° C and particularly preferably less than 220 ° C. It is very particularly preferable for the forged component to be artificially aged at a temperature with a value from a range of 120.degree. C. to 250.degree. A forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component from the forging device to an artificial aging device already known to a person skilled in the art, preferably takes place in at least one process step of the forging process, in particular after the forged component has cooled in a forging tool. The forged component is preferably transferred from the forging device to an artificial aging device already known to a person skilled in the art at a temperature which is above the artificial aging temperature of the forged component. The forging process is preferably designed in such a way that residual heat in a ridge of the forged component is advantageously used to heat the forged component after cooling in the forging tool to an artificial aging temperature.

Alternativ oder zusätzlich kann die Schmiedepressenkenngröße in Abhängigkeit von einem Abkühlungsstartzeitpunkt geändert werden. Vorzugsweise umfasst die Schmiedepresse eine Wegmessvorrichtung, die dazu vorgesehen ist, zumindest einen Verfahrweg eines Schmiedepressenstößels und/oder zumindest eines Schmiedewerkzeugteils, insbesondere zumindest einer Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs, zu erfassen. Unter "vorgesehen" soll insbesondere speziell ausgelegt und/oder speziell ausgestattet verstanden werden. Darunter, dass ein Element und/oder eine Einheit zu einer bestimmten Funktion vorgesehen ist/sind, soll insbesondere verstanden werden, dass das Element und/oder die Einheit diese bestimmte Funktion in zumindest einem Anwendungs- und/oder Betriebszustand erfüllen/erfüllt und/oder ausführen/ausführt. Bevorzugt ist die Schmiedepresse derart ausgebildet, dass zumindest ein Schmiedewerkzeugteil, insbesondere zumindest eine Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs, in Abhängigkeit von einer durch eine Abkühlung des Schmiedebauteils bedingte Schrumpfkenngröße des Schmiedebauteils in einer Position und/oder in einer Krafteinwirkung auf das Schmiedebauteil anpassbar ist. Erfindungsgemäß wird während einer Abkühlung des Schmiedebauteils im Schmiedewerkzeug, zumindest ein Schmiedewerkzeugteil, insbesondere zumindest eine Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs, in Abhängigkeit von einer durch eine Abkühlung des Schmiedebauteils bedingte Schrumpfkenngröße des Schmiedebauteils näher an das Schmiedebauteil herangefahren und/oder eine auf das im Schmiedewerkzeug angeordnete Schmiedebauteil wirkende Pressenkraft wird erhöht, insbesondere um einem Kontaktverlust zwischen dem Schmiedebauteil infolge einer durch die Abkühlung bedingte Schrumpfung des Schmiedebauteils entgegenzuwirken.As an alternative or in addition, the forging press parameter can be changed as a function of a cooling start time. The forging press preferably comprises a displacement measuring device which is provided to detect at least one travel path of a forging press ram and / or at least one forging tool part, in particular at least one die half of the forging tool designed as a die. Under "provided" in particular specially designed and / or specially equipped. Including that one item and / or a unit is / are provided for a specific function, it should be understood in particular that the element and / or the unit fulfill / fulfill and / or execute / execute this specific function in at least one application and / or operating state. The forging press is preferably designed in such a way that at least one forging tool part, in particular at least one die half of the forging tool designed as a die, can be adjusted in a position and / or in a force acting on the forged component depending on a shrinkage parameter of the forged component caused by cooling of the forged component. According to the invention, while the forged component is cooling down in the forging tool, at least one forging tool part, in particular at least one die half of the forging tool designed as a die, is moved closer to the forging tool in the forging and / or depending on a shrinkage parameter caused by cooling of the forged component arranged forged component acting press force is increased, in particular to counteract a loss of contact between the forged component due to a shrinkage of the forged component caused by the cooling.

Es ist auch denkbar, dass das Schmiedewerkzeugteil, insbesondere die zumindest eine Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs, einzeln bewegbar ausgebildete Teilbereiche aufweist, die unabhängig voneinander, insbesondere zusätzlich zu einem Verfahrweg des gesamten Schmiedewerkzeugteils, insbesondere der zumindest einen Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs, bewegbar sind, insbesondere um gezielt einzelne Bereiche des Schmiedebauteils abzukühlen, die beispielsweise eine größere maximale Materialstärke aufweisen als andere Bereiche des Schmiedebauteils, insbesondere zu einer Erreichung einer weitestgehend homogenen Temperaturverteilung im Schmiedebauteil während einer Abkühlung des Schmiedebauteils im Schmiedewerkzeug. Vorzugsweise sind die einzeln bewegbar ausgebildeten Teilbereiche des Schmiedewerkzeugs derart ausgebildet, dass diese unabhängig voneinander und/oder unabhängig von einem Grundkörper des Schmiedewerkzeugs bewegbar sind. Vorzugsweise erfolgt in zumindest einem Verfahrensschritt eine Nachführbewegung der einzelnen Teilbereiche des Schmiedewerkzeugs in Abhängigkeit von einem durch die Abkühlung des Schmiedebauteils bedingten Schrumpfen des Schmiedebauteils. Bevorzugt erfolgt zumindest einem Verfahrensschritt eine Nachführbewegung der einzelnen Teilbereiche des Schmiedewerkzeugs oder des gesamten Schmiedewerkzeugs, insbesondere des als Gesenkhälfte ausgebildeten Schmiedewerkzeugs, in Abhängigkeit von einem durch die Abkühlung des Schmiedebauteils bedingten Schrumpfen des Schmiedebauteils, um vorteilhaft ein Anliegen der einzelnen Teilbereiche des Schmiedewerkzeugs oder des Schmiedewerkzeugs an einer Außenfläche des im Schmiedewerkzeug angeordneten Schmiedebauteils zu einer zuverlässigen Abkühlung zu ermöglichen. Bevorzugt erfolgt in zumindest einem Verfahrensschritt eine Positionsänderung der einzelnen Teilbereiche des Schmiedewerkzeugs oder des gesamten Schmiedewerkzeugs, insbesondere des als Gesenkhälfte ausgebildeten Schmiedewerkzeugs, in Abhängigkeit von einem durch die Abkühlung des Schmiedebauteils bedingten Schrumpfen des Schmiedebauteils. Es ist auch denkbar, dass in zumindest einem Verfahrensschritt die einzelnen Teilbereiche des Schmiedewerkzeugs unterschiedlich, insbesondere unterschiedlich schnell, unterschiedlich weit o. dgl., voneinander bewegt werden, insbesondere in Abhängigkeit von einer Abkühlrate von einzelnen Bereichen des Schmiedebauteils.It is also conceivable that the forging tool part, in particular the at least one die half of the forging tool embodied as a die, has individually movable subregions which are independently of one another, in particular in addition to a travel path of the entire forging tool part, in particular the at least one die half of the forging tool embodied as a die, are movable, in particular in order to specifically cool down individual areas of the forged component which, for example, have a greater maximum material thickness than other areas of the forged component, in particular to achieve a largely homogeneous temperature distribution in the forged component while the forged component cools down in the forging tool. The individually movable subregions of the forging tool are preferably designed in such a way that they are independent of one another and / or independent of a base body of the Forging tool are movable. A tracking movement of the individual subregions of the forging tool is preferably carried out in at least one method step as a function of a shrinkage of the forged component caused by the cooling of the forged component. A tracking movement of the individual sub-areas of the forging tool or of the entire forging tool, in particular of the forging tool designed as a die half, is preferably carried out in at least one process step, depending on the shrinkage of the forged component caused by the cooling of the forged component, so that the individual sub-areas of the forging tool or the forging tool are advantageously in contact to allow reliable cooling on an outer surface of the forged component arranged in the forging tool. In at least one process step, the position of the individual subregions of the forging tool or of the entire forging tool, in particular the forging tool designed as a die half, is preferably changed as a function of the shrinkage of the forged component caused by the cooling of the forged component. It is also conceivable that in at least one method step the individual sub-areas of the forging tool are moved differently, in particular at different speeds, different distances or the like, from one another, in particular depending on a cooling rate of individual areas of the forged component.

Es ist auch denkbar, dass das Schmiedewerkzeug als vollständig verschließbares Gesenk ausgebildet ist, das zumindest eine Kühlfluidanschlussleitung aufweist, mittels derer ein Kühlfluid in das Schmiedewerkzeug einbringbar ist, das zu einer Abkühlung des im Schmiedewerkzeug angeordneten Schmiedebauteils vorgesehen ist. Vorzugsweise wird in zumindest einem Verfahrensschritt zumindest eine Kenngröße, wie beispielsweise eine Kühlfluidmenge, eine Kühlfluidtemperatur o. dgl., des Kühlfluids in Abhängigkeit von einer Abkühlung, insbesondere von einem durch die Abkühlung des Schmiedebauteils bedingten Schrumpfen, des Schmiedebauteils geregelt. Erfindungsgemäß umfasst die als Schmiedepresse ausgebildete Schmiedevorrichtung zumindest eine Sensoreinheit zu einer Erfassung einer Abkühlkenngröße des Schmiedebauteils. Erfindungsgemäß umfasst die als Schmiedepresse ausgebildete Schmiedevorrichtung zumindest eine Steuer- und/oder Regeleinheit zu einer Steuerung und/oder Regelung der Kenngröße des Kühlfluids und/oder der Schmiedepressenkenngröße. Die Abkühlkenngröße des Schmiedebauteils kann direkt oder indirekt mittels der Sensoreinheit erfasst werden. Weitere, einem Fachmann als sinnvoll erscheinende Ausgestaltungen des Schmiedeverfahrens sind ebenfalls denkbar.It is also conceivable that the forging tool is designed as a completely closable die, which has at least one cooling fluid connection line, by means of which a cooling fluid can be introduced into the forging tool, which is provided for cooling the forged component arranged in the forging tool. Preferably, in at least one method step, at least one parameter, such as an amount of cooling fluid, a cooling fluid temperature or the like, of the cooling fluid is regulated as a function of a cooling, in particular a shrinkage of the forged component caused by the cooling of the forged component. According to the invention, the forging device designed as a forging press comprises at least one sensor unit for detecting a cooling parameter of the forged component. According to the invention, the forging device designed as a forging press comprises at least one control and / or regulating unit for controlling and / or regulating the parameter of the cooling fluid and / or the forging press parameter. The cooling parameter of the forged component can be recorded directly or indirectly by means of the sensor unit. Another, one Configurations of the forging process that appear sensible to a person skilled in the art are also conceivable.

Mittels der erfindungsgemäßen Ausgestaltung des Schmiedeverfahrens kann eine vorteilhafte Werkstoffeigenschaft des Schmiedebauteils erreicht werden. Es kann vorteilhaft eine hohe Prozessstabilität des Schmiedeverfahrens erreicht werden. Es kann eine vorteilhafte Energieeffizienz des Schmiedeverfahrens erreicht werden, insbesondere da durch das Schmiedewerkzeug eine große Kühloberfläche zur Verfügung gestellt werden kann. Es kann vorteilhaft ein geringer Verzug im Schmiedebauteil realisiert werden, insbesondere da eine zumindest im Wesentlichen direkte und schnelle Abkühlung des Schmiedebauteils im fixierten Zustand nach oder während einer Warmumformung durchführbar ist. Es kann eine vorteilhafte Werkstoffeigenschaft des Schmiedebauteils erreicht werden. Es kann vorteilhaft eine hohe Prozessstabilität des Schmiedeverfahrens erreicht werden. Es kann eine vorteilhafte Energieeffizienz des Schmiedeverfahrens erreicht werden, insbesondere da durch das Schmiedewerkzeug eine große Kühloberfläche zur Verfügung gestellt werden kann. Es kann vorteilhaft ein geringer Verzug im Schmiedebauteil realisiert werden, insbesondere da eine zumindest im Wesentlichen direkte und schnelle Abkühlung des Schmiedebauteils im fixierten Zustand nach oder während einer Warmumformung durchführbar ist.By means of the embodiment of the forging process according to the invention, an advantageous material property of the forged component can be achieved. A high process stability of the forging process can advantageously be achieved. An advantageous energy efficiency of the forging process can be achieved, in particular since a large cooling surface can be made available by the forging tool. A slight distortion can advantageously be implemented in the forged component, in particular since an at least essentially direct and rapid cooling of the forged component in the fixed state can be carried out after or during hot forming. An advantageous material property of the forged component can be achieved. A high process stability of the forging process can advantageously be achieved. An advantageous energy efficiency of the forging process can be achieved, in particular since a large cooling surface can be made available by the forging tool. A slight distortion can advantageously be implemented in the forged component, in particular since an at least essentially direct and rapid cooling of the forged component in the fixed state can be carried out after or during hot forming.

Des Weiteren wird vorgeschlagen, dass das Schmiedebauteil in dem Schmiedewerkzeug, insbesondere ausgehend von einer Umformtemperatur des Schmiedebauteils von mehr als 400 °C, bevorzugt von mehr als 500 °C und besonders bevorzugt von weniger als 700 °C, auf eine Temperatur von weniger als 300 °C, bevorzugt von weniger als 250 °C, abgekühlt wird, insbesondere direkt in dem Schmiedewerkzeug, in dem das Schmiedebauteil, insbesondere ausgehend von einem Halbzeug, warmumgeformt wird. Bevorzugt wird das Schmiedebauteil in dem Schmiedewerkzeug, insbesondere ausgehend von einer Umformtemperatur des Schmiedebauteils von mehr als 400 °C, auf eine Temperatur mit einem Wert aus einem Wertebereich von 150 °C bis 180 °C abgekühlt, insbesondere direkt in dem Schmiedewerkzeug, in dem das Schmiedebauteil, insbesondere ausgehend von einem Halbzeug, warmumgeformt wird. Das Schmiedewerkzeug, in dem das Schmiedebauteil abgekühlt wird, kann verschieden sein von dem Schmiedewerkzeug, in dem das Schmiedebauteil warmumgeformt wird oder es kann das selbe Schmiedewerkzeug sein, in dem das Schmiedebauteil warmumgeformt wird und direkt anschließend an die Warmumformung abgekühlt wird. Mittels der erfindungsgemäßen Ausgestaltung des Schmiedeverfahrens kann eine vorteilhafte Werkstoffeigenschaft des Schmiedebauteils erreicht werden. Es kann vorteilhaft eine hohe Festigkeit des Schmiedebauteils realisiert werden. Es kann vorteilhaft eine hohe Duktilität des Schmiedebauteils realisiert werden. Es kann vorteilhaft ein geringer Verzug im Schmiedebauteil realisiert werden, insbesondere da eine zumindest im Wesentlichen direkte und schnelle Abkühlung des Schmiedebauteils im fixierten Zustand, insbesondere im Schmiedewerkzeug angeordneten und/oder fixierten Zustan, nach oder während einer Warmumformung durchführbar ist.Furthermore, it is proposed that the forged component in the forging tool, in particular starting from a deformation temperature of the forged component of more than 400 ° C, preferably more than 500 ° C and particularly preferably less than 700 ° C, to a temperature of less than 300 ° C, preferably less than 250 ° C, is cooled, in particular directly in the forging tool in which the forged component, in particular starting from a semi-finished product, is hot-formed. The forged component is preferably cooled in the forging tool, in particular starting from a deformation temperature of the forged component of more than 400 ° C, to a temperature with a value from a value range of 150 ° C to 180 ° C, in particular directly in the forging tool in which the Forged component, in particular starting from a semi-finished product, is hot-formed. The forging tool in which the forged component is cooled can be different from the forging tool in which the forged component is hot-worked or it can be the same forging tool in which the forged component is hot-worked and is cooled directly after the hot forming. By means of the embodiment of the forging process according to the invention, an advantageous material property of the forged component can be achieved. A high strength of the forged component can advantageously be realized. A high ductility of the forged component can advantageously be realized. A slight distortion can advantageously be realized in the forged component, in particular since an at least essentially direct and rapid cooling of the forged component in the fixed state, in particular arranged and / or fixed in the forging tool, can be carried out after or during hot forming.

Ferner wird vorgeschlagen, dass eine, insbesondere durchschnittliche, Abkühlrate des Schmiedebauteils, insbesondere während der Abkühlung, in dem Schmiedewerkzeug größer ist als 25 K/s. Vorzugsweise ist eine, insbesondere durchschnittliche, Abkühlrate des Schmiedebauteils in dem Schmiedewerkzeug insbesondere größer als 50 K/s, bevorzugt größer als 100 K/s und besonders bevorzugt größer als 200 K/s. Bevorzugt ist eine, insbesondere durchschnittliche, Abkühlrate des Schmiedebauteils in dem Schmiedewerkzeug insbesondere kleiner als 400 K/s, bevorzugt kleiner als 350 K/s und besonders bevorzugt kleiner als 310 K/s. Mittels der erfindungsgemäßen Ausgestaltung des Schmiedeverfahrens kann eine vorteilhafte Werkstoffeigenschaft des Schmiedebauteils erreicht werden.It is also proposed that an, in particular average, cooling rate of the forged component, in particular during cooling, in the forging tool is greater than 25 K / s. An, in particular average, cooling rate of the forged component in the forging tool is preferably greater than 50 K / s, preferably greater than 100 K / s and particularly preferably greater than 200 K / s. A particularly average cooling rate of the forged component in the forging tool is preferred, in particular less than 400 K / s, preferably less than 350 K / s and particularly preferably less than 310 K / s. By means of the embodiment of the forging process according to the invention, an advantageous material property of the forged component can be achieved.

Zudem wird vorgeschlagen, dass die Abkühlung des Schmiedebauteils nach einer Umformung, insbesondere einer Warmumformung, des Schmiedebauteils in dem Schmiedewerkzeug erfolgt. Vorzugsweise ist das Schmiedewerkzeug, in dem das Schmiedebauteil abgekühlt wird, dasselbe Schmiedewerkzeug, in dem das Schmiedebauteil warmumgeformt wird. Bevorzugt wird das Schmiedebauteil direkt anschließend an die Warmumformung durch das Schmiedewerkzeug in dem Schmiedewerkzeug abgekühlt. Mittels der erfindungsgemäßen Ausgestaltung des Schmiedeverfahrens kann eine vorteilhaft geringe Taktzeit realisiert werden. Es kann eine vorteilhafte Werkstoffeigenschaft des Schmiedebauteils erreicht werden.It is also proposed that the forged component is cooled after a deformation, in particular a hot deformation, of the forged component in the forging tool. The forging tool in which the forged component is cooled is preferably the same forging tool in which the forged component is hot-worked. The forged component is preferably cooled in the forging tool directly after the hot forming by the forging tool. By means of the embodiment of the forging process according to the invention, an advantageously short cycle time can be achieved. An advantageous material property of the forged component can be achieved.

Des Weiteren wird, insbesondere in einer alternativen Ausgestaltung des Schmiedeverfahrens, vorgeschlagen, dass die Abkühlung des Schmiedebauteils in dem Schmiedewerkzeug nach einer in einem weiteren Schmiedewerkzeug durchgeführten Umformung, insbesondere einer Warmumformung, des Schmiedebauteils erfolgt, insbesondere nach einer, insbesondere zumindest teilweise automatischen, Schmiedebauteilübergabe des Schmiedebauteils von dem weiteren Schmiedewerkzeug zu dem Schmiedewerkzeug. Beispielsweise ist es denkbar, dass das Schmiedebauteil in dem als Vorgesenk ausgebildeten weiteren Schmiedewerkzeug warmumgeformt wird, anschließend in dem als Fertiggesenk ausgebildeten Schmiedewerkzeug erneut, insbesondere ebenfalls oder zusätzlich, warmumgeformt wird und anschließend oder gleichzeitig in dem als Fertiggesenk ausgebildeten Schmiedewerkzeug abgekühlt wird. Es ist jedoch auch denkbar, dass das Schmiedebauteil in dem als Fertiggesenk ausgebildeten weiteren Schmiedewerkzeug warmumgeformt wird und anschließend in dem als Stanz- und/oder Schnittwerkzeug ausgebildeten Schmiedewerkzeug abgekühlt wird. Mittels der erfindungsgemäßen Ausgestaltung des Schmiedeverfahrens kann eine vorteilhafte Werkstoffeigenschaft des Schmiedebauteils erreicht werden. Es kann vorteilhaft ein optimierter Prozessablauf, insbesondere in Abhängigkeit von Prozessanforderungen, realisiert werden. Das Schmiedeverfahren kann vorteilhaft besonders flexibel eingesetzt werden.Furthermore, it is proposed, in particular in an alternative embodiment of the forging process, that the forging component be cooled in the forging tool after a forming, in particular hot forming, of the forged component carried out in a further forging tool, in particular after an, in particular at least partially automatic, forged component transfer of the forged component from the further forging tool to the forging tool. For example, it is conceivable that the forged component is hot-formed in the further forging tool designed as a pre-die, then again, in particular also or additionally, hot-formed in the forging tool designed as a finished die, and then or simultaneously cooled in the forging tool designed as a finished die. However, it is also conceivable that the forged component is hot-formed in the further forging tool designed as a finished die and then cooled in the forging tool designed as a punching and / or cutting tool. By means of the embodiment of the forging process according to the invention, an advantageous material property of the forged component can be achieved. An optimized process sequence, in particular as a function of process requirements, can advantageously be implemented. The forging process can advantageously be used particularly flexibly.

Ferner wird, insbesondere in einer alternativen Ausgestaltung des Schmiedeverfahrens, vorgeschlagen, dass in zumindest einem Verfahrensschritt zu einer Abkühlung des Schmiedebauteils in dem Schmiedewerkzeug eine zumindest teilweise automatische Schmiedebauteilübergabe von dem weiteren Schmiedewerkzeug zu dem Schmiedewerkzeug erfolgt. Das Schmiedewerkzeug und das weitere Schmiedewerkzeug können zusammen in einer Schmiedevorrichtung, insbesondere in zumindest einer Schmiedepresse, angeordnet sein oder das Schmiedewerkzeug und das weitere Schmiedewerkzeug können in unterschiedlichen Schmiedevorrichtungen, insbesondere in unterschiedlichen Schmiedepressen, angeordnet sein. Die zumindest teilweise automatische Schmiedebauteilübergabe des Schmiedebauteils von dem weiteren Schmiedewerkzeug zu dem Schmiedewerkzeug kann mittels eines Hubbalkensystems, mittels eines Roboters oder mittels einer anderen, einem Fachmann als sinnvoll erscheinenden Vorrichtung erfolgen. Es ist jedoch auch denkbar, dass die Schmiedebauteilübergabe des Schmiedebauteils von dem weiteren Schmiedewerkzeug zu dem Schmiedewerkzeug händisch erfolgt. Mittels der erfindungsgemäßen Ausgestaltung des Schmiedeverfahrens kann vorteilhaft ein optimierter Prozessablauf, insbesondere in Abhängigkeit von Prozessanforderungen, realisiert werden. Das Schmiedeverfahren kann vorteilhaft besonders flexibel eingesetzt werden. Es kann eine vorteilhafte Werkstoffeigenschaft des Schmiedebauteils erreicht werden.Furthermore, in particular in an alternative embodiment of the forging process, it is proposed that an at least partially automatic forging component transfer from the further forging tool to the forging tool takes place in at least one process step to cool the forged component in the forging tool. The forging tool and the further forging tool can be arranged together in a forging device, in particular in at least one forging press, or the forging tool and the further forging tool can be arranged in different forging devices, in particular in different forging presses. The at least partially automatic forged component transfer of the forged component from the further forging tool to the forging tool can take place by means of a walking beam system, by means of a robot or by means of another device that appears useful to a person skilled in the art. However, it is also conceivable that the forged component is transferred manually from the further forging tool to the forging tool. By means of the embodiment of the forging process according to the invention, an optimized process sequence can advantageously be implemented, in particular as a function of process requirements. That Forging process can advantageously be used particularly flexibly. An advantageous material property of the forged component can be achieved.

Des Weiteren wird vorgeschlagen, dass in zumindest einem Verfahrensschritt das Schmiedewerkzeug aktiv gekühlt wird. Vorzugsweise wird zumindest zu einer Abkühlung des Schmiedebauteils im Schmiedewerkzeug dem Schmiedewerkzeug aktiv ein Kühlmedium, insbesondere ein Kühlfluid, wie beispielsweise Kühlwasser, Kühlöl, Graphitemulsion o. dgl., zugeführt. Vorzugsweise umfasst das Schmiedewerkzeug zumindest eine Kühleinheit, die zumindest in ein Schmiedewerkzeugteil des Schmiedewerkzeugs, insbesondere in zumindest eine Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs, integriert ist. Vorzugsweise ist das Schmiedewerkzeug als offenes Gesenk ausgebildet. Es kann vorteilhaft eine ungewollte Druckänderung im Schmiedewerkzeug infolge eines Einströmens von Kühlmedium vermieden werden. Es kann vorteilhaft ein Abfließen von Kühlmedium aus dem Schmiedewerkzeug ermöglicht werden, insbesondere zwischen zumindest zwei Gesenkhälften des als Gesenk ausgebildeten Schmiedewerkzeugs. Es ist jedoch auch denkbar, dass das Schmiedewerkzeug als geschlossenes Gesenk ausgebildet ist. Vorzugsweise wird in zumindest in einem Verfahrensschritt das Schmiedewerkzeug aktiv gekühlt, wobei eine Abkühlung des Schmiedebauteils im Schmiedewerkzeug mittels eines Kühlfluids erfolgt, das in Bohrungskavitäten, insbesondere Kühlkavitäten der Kühleinheit, des Schmiedewerkzeugs konturfolgend durch das Schmiedewerkzeug geleitet wird. Die Kühlkavitäten des Schmiedewerkzeugs können beispielsweise über ein trennendes Verfahren, wie Bohren, Erodieren oder ähnliche, einem Fachmann bekannte Bearbeitungsverfahren, als auch durch einen generativen Werkzeugaufbau hergestellt werden, bei dem die das Kühlfluid leitenden Kühlkavitäten in einem Aufbauprozess eines gewählten generativen Verfahrens herstellbar sind. Insbesondere ist eine Ausgestaltung der Schmiedewerkzeuge in Form eines mehrteiligen Aufbaus angedacht, bei dem die Kühlkavitäten durch halbseitige Ausnehmungen in den einzelnen Werkzeugsegementen, insbesondere Gesenkhälften, des Schmiedewerkzeugs gebildet sind und durch einen Zusammenbau der Werkzeugsegemente zu einer geschlossenen Kanalstruktur führen. Mittels der erfindungsgemäßen Ausgestaltung kann vorteilhaft eine hohe Abkühlrate des Schmiedebauteils realisiert werden. Es kann vorteilhaft ein Schmiedebauteil mit einer hohen Festigkeit und einer hohen Duktilität erreicht werden.It is also proposed that the forging tool be actively cooled in at least one method step. A cooling medium, in particular a cooling fluid, such as, for example, cooling water, cooling oil, graphite emulsion or the like, is preferably actively fed to the forging tool at least for cooling the forged component in the forging tool. The forging tool preferably comprises at least one cooling unit which is integrated at least in a forging tool part of the forging tool, in particular in at least one die half of the forging tool designed as a die. The forging tool is preferably designed as an open die. An undesired pressure change in the forging tool as a result of an inflow of cooling medium can advantageously be avoided. It can advantageously be made possible for cooling medium to flow out of the forging tool, in particular between at least two die halves of the forging tool designed as a die. However, it is also conceivable that the forging tool is designed as a closed die. The forging tool is preferably actively cooled in at least one process step, the forging component in the forging tool being cooled by means of a cooling fluid that is guided through the forging tool in a contour following manner in bore cavities, in particular cooling cavities of the cooling unit, of the forging tool. The cooling cavities of the forging tool can be produced, for example, via a separating process such as drilling, eroding or similar machining processes known to a person skilled in the art, as well as by a generative tool structure in which the cooling cavities that conduct the cooling fluid can be produced in a construction process of a selected generative process. In particular, an embodiment of the forging tools in the form of a multi-part structure is envisaged, in which the cooling cavities are formed by half-sided recesses in the individual tool segments, in particular die halves, of the forging tool and lead to a closed channel structure by assembling the tool segments. A high cooling rate of the forged component can advantageously be achieved by means of the configuration according to the invention. A forged component with high strength and high ductility can advantageously be achieved.

Ferner wird vorgeschlagen, dass in zumindest einem Verfahrensschritt das Schmiedebauteil in dem Schmiedewerkzeug aktiv mit einem Kühlfluid behandelt, insbesondere besprüht, wird. Vorzugsweise umfasst das Schmiedewerkzeug zumindest eine Kühlzuführöffnung, über die das Kühlfluid dem im Schmiedewerkzeug angeordneten Schmiedebauteil zumindest während eines Abkühlungsschritts aktiv zuführbar ist. Bevorzugt umfasst das Schmiedewerkzeug eine Vielzahl an Kühlzuführöffnungen, über die das Kühlfluid dem im Schmiedewerkzeug angeordneten Schmiedebauteil zumindest während eines Abkühlungsschritts aktiv zuführbar ist. Mittels der erfindungsgemäßen Ausgestaltung kann vorteilhaft eine hohe Abkühlrate des Schmiedebauteils realisiert werden. Es kann vorteilhaft eine ein Schmiedebauteil mit einer hohen Festigkeit und einer hohen Duktilität erreicht werden.It is further proposed that in at least one method step the forged component is actively treated, in particular sprayed, with a cooling fluid in the forging tool. The forging tool preferably comprises at least one cooling supply opening, via which the cooling fluid can be actively supplied to the forged component arranged in the forging tool, at least during a cooling step. The forging tool preferably comprises a multiplicity of cooling supply openings, via which the cooling fluid can be actively supplied to the forged component arranged in the forging tool, at least during a cooling step. A high cooling rate of the forged component can advantageously be achieved by means of the configuration according to the invention. A forged component with high strength and high ductility can advantageously be achieved.

Zudem geht die Erfindung aus von einer als Schmiedepresse ausgebildeten Schmiedevorrichtung, insbesondere zu einer Durchführung eines erfindungsgemäßen Schmiedeverfahrens, mit zumindest einem Schmiedewerkzeug, insbesondere einem Umform-, Stanz- oder Kalibrierwerkzeug und mit zumindest einer zumindest teilweise an dem Schmiedewerkzeug angeordneten Kühleinheit, wobei die Schmiedepresse derart ausgebildet ist, dass zumindest eine Schmiedepressenkenngröße und/oder eine Kenngröße eines Kühlfluids in Abhängigkeit von einer Abkühlung eines im Schmiedewerkzeug angeordneten Schmiedebauteils geändert wird, und mit zumindest einer Steuer- und/oder Regeleinheit zu einer Steuerung und/oder Regelung der Kenngröße des Kühlfluids und/oder der Schmiedepressenkenngröße. Es wird vorgeschlagen, dass die Schmiedepresse zumindest eine Sensoreinheit zu einer Erfassung einer Abkühlkenngröße des Schmiedebauteils aufweist, wobei in Abhängigkeit von einer durch eine Abkühlung des Schmiedebauteils bedingte Schrumpfkenngröße des Schmiedebauteils zumindest ein Schmiedewerkzeugteil, insbesondere zumindest eine Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs, näher an das Schmiedebauteil heranfahrbar ist und/oder eine auf das im Schmiedewerkzeug angeordnete Schmiedebauteil wirkende Pressenkraft erhöhbar ist. Die Kühleinheit ist vorzugsweise dazu vorgesehen, das Schmiedewerkzeug aktiv zu kühlen, insbesondere um vorteilhaft von dem im Schmiedewerkzeug angeordneten Schmiedebauteil aktiv Wärme abzuführen. Alternativ oder zusätzlich ist die Kühleinheit zu einer aktiven Kühlung des im Schmiedewerkzeug angeordneten Schmiedebauteils vorgesehen, wie beispielsweise zu einer Besprühung und/oder Benetzung des im Schmiedewerkzeug angeordneten Schmiedebauteils mittels eines Kühlfluids o. dgl. Es ist denkbar, dass das Schmiedewerkzeug, insbesondere zumindest im Bereich einer Schmiedegravur des Schmiedewerkzeugs, zu einer Abkühlung des Schmiedebauteils im Schmiedewerkzeug einen vollflächen Kontakt zum Schmiedebauteil aufweist oder dass das Schmiedewerkzeug, insbesondere zumindest im Bereich einer Schmiedegravur des Schmiedewerkzeugs, zu einer Abkühlung des Schmiedebauteils im Schmiedewerkzeug einen partiellen Kontakt zum Schmiedebauteil aufweist. Mittels der erfindungsgemäßen Ausgestaltung kann vorteilhaft eine hoheIn addition, the invention is based on a forging device designed as a forging press, in particular for carrying out a forging process according to the invention, with at least one forging tool, in particular a forming, punching or calibrating tool and with at least one cooling unit arranged at least partially on the forging tool, the forging press such is designed that at least one forging press parameter and / or a parameter of a cooling fluid is changed as a function of cooling of a forging component arranged in the forging tool, and with at least one control and / or regulating unit for controlling and / or regulating the parameter of the cooling fluid and / or the forging press parameters. It is proposed that the forging press have at least one sensor unit for detecting a cooling parameter of the forged component, with at least one forging tool part, in particular at least one die half of the forging tool designed as a die, closer to the forging component, depending on a shrinkage parameter of the forged component caused by cooling of the forged component Forged component can be approached and / or a press force acting on the forged component arranged in the forging tool can be increased. The cooling unit is preferably provided to actively cool the forging tool, in particular in order to advantageously actively dissipate heat from the forged component arranged in the forging tool. As an alternative or in addition, the cooling unit is provided for active cooling of the forged component arranged in the forging tool, such as For example, for spraying and / or wetting of the forged component arranged in the forging tool by means of a cooling fluid or the like. It is conceivable that the forging tool, in particular at least in the area of a forging engraving of the forging tool, has full-surface contact with the forging component in order to cool the forged component in the forging tool or that the forging tool, in particular at least in the area of a forging engraving of the forging tool, has partial contact with the forging component for cooling of the forged component in the forging tool. By means of the configuration according to the invention, a high

Abkühlrate des Schmiedebauteils realisiert werden. Es kann vorteilhaft ein Schmiedebauteil mit einer hohen Festigkeit und einer hohen Duktilität erreicht werden.Cooling rate of the forged component can be realized. A forged component with high strength and high ductility can advantageously be achieved.

Des Weiteren wird ein Schmiedebauteil, insbesondere ein Leichtbaulegierungsschmiedebauteil, das mittels eines erfindungsgemäßen Schmiedeverfahrens hergestellt ist, vorgeschlagen. Vorzugsweise ist das Schmiedebauteil aus einer Aluminiumlegierung, einer Titanlegierung oder einer anderen, einem Fachmann als sinnvoll erscheinenden Leichtbaulegierung gebildet. Bevorzugt ist das Schmiedebauteil aus einer Legierung, insbesondere einer Aluminiumlegierung, aus der 2000er- (EN AW 2xxx), der 3000er- (EN AW 3XXX), der 4000er- (EN AW 4XXX), der 5000er- (EN AW 5xxx), der 6000er- (EN AW 6xxx), der 7000er- (EN AW 7xxx) oder der 8000er-Reihe (EN AW 8xxx) hergestellt. Bevorzugt ist das Schmiedebauteil insbesondere aus einer technisch nutzbaren Aluminiumlegierung hergestellt, die in Ihrer Legierungszusammensetzung mit Werten zumindest einer Reihe aus den EN-AW 1XXXer-8XXXer-Reihen zusammenfällt. Vorzugsweise weist das mittels des erfindungsgemäßen Schmiedeverfahrens hergestellte Schmiedebauteil eine maximale Materialstärke von insbesondere weniger als 200 mm, bevorzugt von weniger als 100 mm und besonders bevorzugt von weniger als 10 mm auf. Ganz besonders bevorzugt weist das mittels des erfindungsgemäßen Schmiedeverfahrens eine maximale Materialstärke mit einem Wert aus einem Wertebereich von 1 mm bis 200 mm auf. Mittels der erfindungsgemäßen Ausgestaltung kann besonders vorteilhaft ein dünnwandiges Schmiedebauteil mit einer hohen Festigkeit und einer hohen Duktilität erreicht werden. Es kann vorteilhaft ein dünnwandiges Schmiedebauteil realisiert werden, das eine hohe Widerstandsfähigkeit aufweist.Furthermore, a forged component, in particular a lightweight alloy forged component, which is produced by means of a forging method according to the invention, is proposed. The forged component is preferably formed from an aluminum alloy, a titanium alloy or another lightweight alloy that appears sensible to a person skilled in the art. The forged component is preferably made of an alloy, in particular an aluminum alloy, from the 2000 series (EN AW 2xxx), the 3000 series (EN AW 3XXX), the 4000 series (EN AW 4XXX), the 5000 series (EN AW 5xxx), the 6000 series (EN AW 6xxx), the 7000 series (EN AW 7xxx) or the 8000 series (EN AW 8xxx). The forged component is preferably made in particular from a technically usable aluminum alloy whose alloy composition coincides with values of at least one series from the EN-AW 1XXXer-8XXXer series. The forged component produced by means of the forging process according to the invention preferably has a maximum material thickness of in particular less than 200 mm, preferably less than 100 mm and particularly preferably less than 10 mm. Very particularly preferably, the forging process according to the invention has a maximum material thickness with a value from a value range of 1 mm to 200 mm. By means of the configuration according to the invention, a thin-walled forged component with high strength and high ductility can be achieved particularly advantageously. A thin-walled forged component that has a high level of resistance can advantageously be realized.

Das erfindungsgemäße Schmiedeverfahren und/oder die erfindungsgemäße Schmiedevorrichtung sollen/soll hierbei nicht auf die oben beschriebene Anwendung und Ausführungsform beschränkt sein. Insbesondere können/kann das erfindungsgemäße Schmiedeverfahren und/oder die erfindungsgemäße Schmiedevorrichtung zu einer Erfüllung einer hierin beschriebenen Funktionsweise eine von einer hierin genannten Anzahl von einzelnen Elementen, Bauteilen und Einheiten sowie Verfahrensschritten abweichende Anzahl aufweisen. Zudem sollen bei den in dieser Offenbarung angegebenenThe forging method according to the invention and / or the forging device according to the invention should / should not be restricted to the application and embodiment described above. In particular, the forging method according to the invention and / or the forging device according to the invention can have a number that differs from a number of individual elements, components and units as well as method steps mentioned herein in order to fulfill a mode of operation described herein. In addition, with those specified in this disclosure

Wertebereichen auch innerhalb der genannten Grenzen liegende Werte als offenbart und als beliebig einsetzbar gelten.Ranges of values, even values lying within the stated limits, are deemed to be disclosed and can be used in any way.

Zeichnungendrawings

Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.Further advantages emerge from the following description of the drawings. Exemplary embodiments of the invention are shown in the drawings. The drawings, the description and the claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into meaningful further combinations.

Es zeigen:

Fig. 1
ein erstes Ausführungsbeispiel eines erfindungsgemäßen Schmiedeverfahrens, das mittels einer erfindungsgemäßen Schmiedevorrichtung durchführbar ist, in einer schematischen Darstellung,
Fig. 2
Diagramme eines Wärmeverlaufs in einem mittels der erfindungsgemäßen Schmiedevorrichtung geschmiedeten Schmiedebauteil während des erfindungsgemäßen Schmiedeverfahrens im Vergleich zu einem Kraftverlauf in der Schmiedevorrichtung in einer schematischen Darstellung,
Fig. 3
ein zweites Ausführungsbeispiel eines erfindungsgemäßen Schmiedeverfahrens, das mittels einer erfindungsgemäßen Schmiedevorrichtung durchführbar ist, in einer schematischen Darstellung und
Fig. 4
ein drittes Ausführungsbeispiel eines erfindungsgemäßen Schmiedeverfahrens, das mittels einer erfindungsgemäßen Schmiedevorrichtung durchführbar ist, in einer schematischen Darstellung.
Show it:
Fig. 1
a first embodiment of a forging process according to the invention, which can be carried out by means of a forging device according to the invention, in a schematic representation,
Fig. 2
Diagrams of a heat profile in a forged component forged by means of the forging device according to the invention during the forging method according to the invention compared to a force profile in the forging device in a schematic representation,
Fig. 3
a second embodiment of a forging process according to the invention, which can be carried out by means of a forging device according to the invention, in a schematic representation and
Fig. 4
a third embodiment of a forging process according to the invention, which can be carried out by means of a forging device according to the invention, in a schematic representation.

Beschreibung der AusführungsbeispieleDescription of the exemplary embodiments

Figur 1 zeigt eine Schmiedeproduktionslinie 30a mit einer Schmiedevorrichtung zu einer Durchführung eines Schmiedeverfahrens 10a, insbesondere eines Leichtbauschmiedeverfahrens, zu einer Herstellung von einem Schmiedebauteil 12a insbesondere zu einer Herstellung von Leichtbaulegierungsbauteilen für den Automobil-, Luftfahrt- und/oder Industriebereich. Es ist jedoch auch denkbar, dass mittels des Schmiedeverfahrens 10a Schmiedebauteile 12a hergestellt werden, die in einem anderen, einem Fachmann als sinnvoll erscheinenden Bereich einsetzbar sind, wie beispielsweise einem Flugzeugbereich o. dgl. In der Figur 1 sind einzelne Verfahrensschritte des Schmiedeverfahrens 10a grafisch einem Temperaturverlauf in dem Schmiedebauteil 12a, insbesondere ausgehend von einem Halbzeug 32a bis zu einem fertig geschmiedeten Schmiedebauteil 12a, zugeordnet (vgl. Temperatur-Zeit-Diagramm und entsprechend gestrichelte Zuordnung in Figur 1). Figure 1 shows a forging production line 30a with a forging device for carrying out a forging process 10a, in particular a lightweight forging process, for producing a forged component 12a, in particular for producing lightweight alloy components for the automotive, aerospace and / or industrial sectors. However, it is also conceivable for forged components 12a to be produced by means of the forging process 10a which can be used in another area that appears sensible to a person skilled in the art, such as an aircraft area or the like Figure 1 Individual process steps of the forging process 10a are graphically assigned to a temperature profile in the forged component 12a, in particular starting from a semi-finished product 32a to a fully forged forged component 12a (see temperature-time diagram and corresponding dashed assignment in Figure 1 ).

In zumindest einem, insbesondere ersten, Verfahrensschritt des Schmiedeverfahrens 10a wird ein Halbzeug 32a einer Vorwärmvorrichtung 34a der Schmiedeproduktionslinie 30a zugeführt, in der das Halbzeug 32a in zumindest einem, insbesondere zweiten, Verfahrensschritt des Schmiedeverfahrens 10a vorgewärmt wird, insbesondere ausgehend von einer Raumtemperatur des Halbzeugs 32a, insbesondere bis auf eine Temperatur von mehr als 300 °C, vorzugsweise von mehr als 400 °C, besonders bevorzugt von mehr als 490 °C und ganz besonders bevorzugt von weniger als 700 °C. Die Vorwärmvorrichtung 34a weist vorzugsweise eine, einem Fachmann bereits bekannte Ausgestaltung auf, wie beispielsweise eine Ausgestaltung als Vorwärmeofen o. dgl. Vorzugsweise wird das Halbzeug 32a in Form eines Stranggussmaterials oder eines Strangpressmaterials zu einer Herstellung des Schmiedebauteils 12a mittels des Schmiedeverfahrens 10a genutzt.In at least one, in particular first, process step of forging process 10a, a semi-finished product 32a is fed to a preheating device 34a of forging production line 30a, in which semi-finished product 32a is preheated in at least one, in particular second, process step of forging process 10a, in particular starting from a room temperature of semi-finished product 32a , in particular up to a temperature of more than 300.degree. C., preferably more than 400.degree. C., particularly preferably more than 490.degree. C. and very particularly preferably less than 700.degree. The preheating device 34a preferably has a configuration already known to a person skilled in the art, such as a configuration as a preheating furnace or the like.

In zumindest einem, insbesondere dritten, Verfahrensschritt des Schmiedeverfahrens 10a, insbesondere nach einer Vorwärmung des Halbzeugs 32a in der Vorwärmvorrichtung 34a, erfolgt eine Übergabe, insbesondere eine zumindest teilweise automatische Übergabe, des Halbzeugs 32a an eine Schmiedevorrichtung der Schmiedeproduktionslinie 30a. Die Schmiedevorrichtung, insbesondere zu einer Durchführung eines Schmiedeverfahrens 10a, umfasst zumindest ein Schmiedewerkzeug 14a, 16a, insbesondere ein Umform-, Stanz- oder Kalibrierwerkzeug. Die Schmiedevorrichtung ist vorzugsweise als Schmiedepresse 20a ausgebildet. Die Schmiedepresse 20a kann als Spindelpresse, als Hydraulikpresse, als Servopresse oder als eine andere, einem Fachmann als sinnvoll erscheinende Presse ausgebildet sein. Die Übergabe des Halbzeugs 32a von der Vorwärmvorrichtung 34a kann manuell, teilautomatisch oder vollautomatisch erfolgen. Vorzugsweise erfolgt eine vollautomatische Übergabe des Halbzeugs 32a an die Schmiedevorrichtung, insbesondere mittels einer Übergabevorrichtung 36a der Schmiedeproduktionslinie 30a. Die Übergabevorrichtung 36a kann als Roboter, als Hubbalkenvorrichtung, als Fördervorrichtung o. dgl. ausgebildet sein. Die Schmiedevorrichtung umfasst vorzugsweise zumindest ein Schmiedewerkzeug 14a, insbesondere in einem Umform-, Stanz- und/oder Kalibrierwerkzeug, in dem das Schmiedebauteil 12a abgekühlt werden kann. Die Schmiedevorrichtung umfasst vorzugsweise zumindest ein weiteres Schmiedewerkzeug 16a zu einer Umformung, insbesondere einer Warmumformung, des Schmiedebauteils 12a, insbesondere vor einer Abkühlung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a. Das Schmiedewerkzeug 14a ist vorzugsweise als Fertiggesenk ausgebildet. Das weitere Schmiedewerkzeug 16a ist bevorzugt als Vorgesenk ausgebildet. Vorzugsweise erfolgt ein Zuschnitt des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a. Das Schmiedewerkzeug 14a ist bevorzugt einteilig mit einem Zuschnittwerkzeug oder einem Stanzwerkzeug ausgebildet.In at least one, in particular third, method step of the forging process 10a, in particular after preheating of the semifinished product 32a in the preheating device 34a, a transfer, in particular an at least partially automatic transfer, of the semifinished product 32a to a forging device of the forging production line 30a takes place. The forging device, in particular for carrying out a forging process 10a, comprises at least one forging tool 14a, 16a, in particular a forming, punching or calibration tool. the Forging device is preferably designed as a forging press 20a. The forging press 20a can be designed as a screw press, as a hydraulic press, as a servo press or as another press that appears useful to a person skilled in the art. The transfer of the semifinished product 32a from the preheating device 34a can take place manually, partially automatically or fully automatically. A fully automatic transfer of the semi-finished product 32a to the forging device preferably takes place, in particular by means of a transfer device 36a of the forging production line 30a. The transfer device 36a can be designed as a robot, as a walking beam device, as a conveyor device or the like. The forging device preferably comprises at least one forging tool 14a, in particular in a forming, punching and / or calibrating tool, in which the forged component 12a can be cooled. The forging device preferably comprises at least one further forging tool 16a for forming, in particular hot forming, of the forged component 12a, in particular before cooling of the forged component 12a in the forging tool 14a. The forging tool 14a is preferably designed as a finished die. The further forging tool 16a is preferably designed as a pre-die. The forged component 12a is preferably cut to size in the forging tool 14a. The forging tool 14a is preferably designed in one piece with a cutting tool or a punching tool.

In zumindest einem, insbesondere vierten, Verfahrensschritt des Schmiedeverfahrens 10a erfolgt eine Vorformung des Schmiedebauteils 12a mittels des weiteren Schmiedewerkzeugs 16a. Vorzugsweise erfolgt in zumindest einem, insbesondere fünften, Verfahrensschritt des Schmiedeverfahrens 10a eine Schmiedebauteilübergabe, insbesondere eine zumindest teilweise automatische Schmiedebauteilübergabe, des Schmiedebauteils 12a von dem weiteren Schmiedewerkzeug 16a an das Schmiedewerkzeug 14a. Die Schmiedebauteilübergabe des Schmiedebauteils 12a von dem weiteren Schmiedewerkzeug 16a zum Schmiedewerkzeug 14a kann manuell, teilautomatisch oder vollautomatisch erfolgen. Vorzugsweise erfolgt eine vollautomatische Schmiedebauteilübergabe des Schmiedebauteils 12a von dem weiteren Schmiedewerkzeug 16a zum Schmiedewerkzeug 14a, insbesondere mittels einer an der Schmiedevorrichtung angeordneten Übergabevorrichtung (hier nicht näher dargestellt) der Schmiedeproduktionslinie 30a. Die an der Schmiedevorrichtung angeordnete Übergabevorrichtung kann als Roboter, als Hubbalkenvorrichtung, als Fördervorrichtung o. dgl. ausgebildet sein.In at least one, in particular fourth, method step of the forging method 10a, the forged component 12a is preformed by means of the further forging tool 16a. A forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component 12a from the further forging tool 16a to the forging tool 14a preferably takes place in at least one, in particular fifth, method step of the forging process 10a. The forged component transfer of the forged component 12a from the further forging tool 16a to the forging tool 14a can take place manually, partially automatically or fully automatically. The forged component 12a is preferably transferred fully automatically from the further forging tool 16a to the forging tool 14a, in particular by means of a transfer device (not shown here) of the forging production line 30a arranged on the forging device. The one arranged on the forging device Transfer device can be designed as a robot, as a walking beam device, as a conveyor device or the like.

In zumindest einem, insbesondere fünften, Verfahrensschritt des Schmiedeverfahrens 10a erfolgt eine Umformung, insbesondere eine Warmumformung, des Schmiedebauteils 12a in dem, insbesondere als Gesenk ausgebildeten, Schmiedewerkzeug 14a bei einer Umformtemperatur von insbesondere mehr als 300 °C, vorzugsweise mehr als 400 °C, besonders bevorzugt mehr als 490 °C und ganz besonders bevorzugt von weniger als 700 °C. Vorzugsweise erfolgt eine Umformung, insbesondere eine Warmumformung, des Schmiedebauteils 12a in dem, insbesondere als Gesenk ausgebildeten, Schmiedewerkzeug 14a bei einer Umformtemperatur mit einem Wert aus einem Wertebereich von 500 °C bis 560 °C.In at least one, in particular fifth, process step of the forging process 10a, a deformation, in particular a hot deformation, of the forged component 12a takes place in the forging tool 14a, in particular designed as a die, at a deformation temperature of in particular more than 300 ° C, preferably more than 400 ° C, particularly preferably more than 490 ° C and very particularly preferably less than 700 ° C. A deformation, in particular a hot deformation, of the forged component 12a is preferably carried out in the forging tool 14a, in particular in the form of a die, at a deformation temperature with a value from a value range of 500.degree. C. to 560.degree.

In zumindest einem, insbesondere sechsten, Verfahrensschritt erfolgt eine Abkühlung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a. Die Abkühlung des Schmiedebauteils 12a erfolgt nach einer Umformung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a. Vorzugsweise erfolgt die Abkühlung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a nach einer in dem weiteren Schmiedewerkzeug 16a durchgeführten Umformung, insbesondere Vorformung, des Schmiedebauteils 12a. In zumindest einem Verfahrensschritt erfolgt zu einer Abkühlung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a eine zumindest teilweise automatische Schmiedebauteilübergabe von dem weiteren Schmiedewerkzeug 16a zu dem Schmiedewerkzeug 14a. Die Schmiedevorrichtung umfasst zu einer Abkühlung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a zumindest eine zumindest teilweise an dem Schmiedewerkzeug 14a angeordnete, insbesondere zumindest teilweise in dem Schmiedewerkzeug 14a integrierte, Kühleinheit 24a, 26a. Das Schmiedebauteil 12a wird vorzugsweise direkt anschließend an die in dem Schmiedewerkzeug 14a erfolgte Warmumformung des Schmiedebauteils 12a, insbesondere direkt, in dem Schmiedewerkzeug 14a abgekühlt. In zumindest einem Verfahrensschritt, insbesondere im sechsten Verfahrensschritt, des Schmiedeverfahrens 10a, wird das Schmiedewerkzeug 14a aktiv gekühlt. Vorzugsweise wird dem Schmiedewerkzeug 14a mittels der Kühleinheit 24a, 26a Kühlfluid zugeführt und durch das Schmiedewerkzeug 14a geleitet. Bevorzugt ist jeweils an einem Schmiedewerkzeugteil des Schmiedewerkzeugs 14a, insbesondere jeweils an zumindest einer Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs 14a, zumindest eine Kühleinheit 24a, 26a angeordnet, die zu einer Kühlung des entsprechenden Schmiedewerkzeugteils, insbesondere der entsprechenden Gesenkhälfte, vorgesehen ist.In at least one, in particular sixth, method step, the forged component 12a is cooled in the forging tool 14a. The forging component 12a is cooled after the forging component 12a has been deformed in the forging tool 14a. The forging component 12a is preferably cooled in the forging tool 14a after a deformation, in particular preforming, of the forged component 12a carried out in the further forging tool 16a. In at least one method step, the forging component 12a is cooled in the forging tool 14a by an at least partially automatic forging component transfer from the further forging tool 16a to the forging tool 14a. In order to cool the forged component 12a in the forging tool 14a, the forging device comprises at least one cooling unit 24a, 26a which is arranged at least partially on the forging tool 14a, in particular at least partially integrated in the forging tool 14a. The forged component 12a is preferably cooled directly after the hot forming of the forged component 12a that has taken place in the forging tool 14a, in particular directly, in the forging tool 14a. In at least one method step, in particular in the sixth method step, of forging method 10a, forging tool 14a is actively cooled. Cooling fluid is preferably supplied to the forging tool 14a by means of the cooling unit 24a, 26a and passed through the forging tool 14a. It is preferred in each case on a forging tool part of the forging tool 14a, in particular in each case on at least one die half of the as Forging tool 14a formed in the die, at least one cooling unit 24a, 26a is arranged, which is provided for cooling the corresponding forging tool part, in particular the corresponding die half.

In zumindest einem Verfahrensschritt, insbesondere im sechsten Verfahrensschritt, des Schmiedeverfahrens 10a, wird das Schmiedebauteil 12a in dem Schmiedewerkzeug 14a aktiv mit einem Kühlfluid behandelt, insbesondere besprüht und/oder umströmt. Es ist jedoch auch denkbar, dass das Schmiedewerkzeug 14a alternativ oder zusätzlich mit einem Kühlfluid durchströmt wird, insbesondere zu einer vorteilhaft Wärmeabführung aus dem Schmiedebauteil 12a und/oder dem Schmiedewerkzeug 14a. Bevorzugt wird das Schmiedebauteil 12a in dem Schmiedewerkzeug 14a, insbesondere ausgehend von einer Umformtemperatur des Schmiedebauteils 12a von mehr als 400 °C, auf eine Temperatur von weniger als 300 °C abgekühlt. Insbesondere wird das Schmiedebauteil 12a in dem Schmiedewerkzeug 14a, insbesondere ausgehend von einer Umformtemperatur des Schmiedebauteils 12a von mehr als 400 °C, auf eine Temperatur mit einem Wert aus einem Wertebereich von 150 °C bis 180 °C abgekühlt, insbesondere direkt in dem Schmiedewerkzeug 14a, in dem das Schmiedebauteil 12a warmumgeformt wurde/wird. Eine Abkühlrate des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a ist größer als 25 K/s, insbesondere infolge einer Wärmeübertragung einer Wärme des Schmiedebauteils 12a an das Schmiedewerkzeug 14a und/oder das Kühlfluid. Vorzugsweise ist eine Abkühlrate des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a insbesondere größer als 50 K/s, bevorzugt größer als 100 K/s und besonders bevorzugt größer als 200 K/s. Bevorzugt ist eine Abkühlrate des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a insbesondere kleiner als 400 K/s, bevorzugt kleiner als 350 K/s und besonders bevorzugt kleiner als 310 K/s.In at least one process step, in particular in the sixth process step, of the forging process 10a, the forged component 12a is actively treated with a cooling fluid in the forging tool 14a, in particular sprayed and / or flowed around it. However, it is also conceivable that the forging tool 14a is alternatively or additionally flowed through with a cooling fluid, in particular for an advantageous heat dissipation from the forging component 12a and / or the forging tool 14a. The forged component 12a is preferably cooled in the forging tool 14a, in particular starting from a deformation temperature of the forged component 12a of more than 400.degree. C., to a temperature of less than 300.degree. In particular, the forged component 12a is cooled in the forging tool 14a, in particular starting from a deformation temperature of the forged component 12a of more than 400 ° C, to a temperature with a value from a value range of 150 ° C to 180 ° C, in particular directly in the forging tool 14a , in which the forged component 12a was / is hot-worked. A cooling rate of the forging component 12a in the forging tool 14a is greater than 25 K / s, in particular as a result of a heat transfer of heat from the forging component 12a to the forging tool 14a and / or the cooling fluid. A cooling rate of the forged component 12a in the forging tool 14a is preferably greater than 50 K / s, preferably greater than 100 K / s and particularly preferably greater than 200 K / s. A cooling rate of the forged component 12a in the forging tool 14a is preferably less than 400 K / s, preferably less than 350 K / s and particularly preferably less than 310 K / s.

In zumindest einem Verfahrensschritt, insbesondere im sechsten Verfahrensschritt, des Schmiedeverfahrens 10a wird zumindest eine Schmiedepressenkenngröße, insbesondere eine maximale Pressenkraft und/oder eine Pressenstößelposition, der als Schmiedepresse 20a ausgebildeten Schmiedevorrichtung geändert (vgl. hierzu auch Figur 2). Vorzugsweise kann die Schmiedepressenkenngröße in Abhängigkeit von einem Abkühlungsstartzeitpunkt und/oder von zumindest einer durch die Abkühlung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a bedingte Kenngröße des Schmiedebauteils 12a, insbesondere eine Schrumpfkenngröße des Schmiedebauteils 12a, geändert werden. Vorzugsweise umfasst die Schmiedepresse 20a eine Wegmessvorrichtung 38a, die dazu vorgesehen ist, zumindest einen Verfahrweg eines Schmiedepressenstößels und/oder zumindest eines Schmiedewerkzeugteils, insbesondere zumindest einer Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs 14a, zu erfassen. Bevorzugt ist die Schmiedepresse 20a derart ausgebildet, dass zumindest ein Schmiedewerkzeugteil, insbesondere zumindest eine Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs 14a, in Abhängigkeit von einer durch eine Abkühlung des Schmiedebauteils 12a bedingte Schrumpfkenngröße des Schmiedebauteils 12a in einer Position und/oder in einer Krafteinwirkung auf das Schmiedebauteil 12a anpassbar ist. Bevorzugt wird, insbesondere während einer Abkühlung des Schmiedebauteils 12a im Schmiedewerkzeug 14a, zumindest ein Schmiedewerkzeugteil, insbesondere zumindest eine Gesenkhälfte des als Gesenk ausgebildeten Schmiedewerkzeugs 14a, in Abhängigkeit von einer durch eine Abkühlung des Schmiedebauteils 12a bedingte Schrumpfkenngröße des Schmiedebauteils 12a näher an das Schmiedebauteil 12a herangefahren und/oder eine auf das im Schmiedewerkzeug 14a angeordnete Schmiedebauteil 12a wirkende Pressenkraft wird erhöht, insbesondere um einem Kontaktverlust zwischen dem Schmiedebauteil 12a infolge einer durch die Abkühlung bedingte Schrumpfung des Schmiedebauteils 12a entgegenzuwirken. Es ist jedoch auch denkbar, dass eine auf das im Schmiedewerkzeug 14a angeordnete Schmiedebauteil 12a wirkende Pressenkraft in Abhängigkeit von einem Abkühlungsstartzeitpunkt reduziert wird, insbesondere um eine Kühlwirkung des Schmiedewerkzeugs 14a auf das im Schmiedewerkzeug 14a angeordnete Schmiedebauteil 12a gezielt zu beeinflussen.In at least one process step, in particular in the sixth process step, of the forging process 10a, at least one forging press parameter, in particular a maximum press force and / or a press ram position, of the forging device designed as a forging press 20a is changed (cf. Figure 2 ). The forging press parameter can preferably be dependent on a cooling start time and / or on at least one parameter of the forged component 12a caused by the cooling of the forged component 12a in the forging tool 14a, in particular a shrinkage parameter of the forged component 12a. The forging press 20a preferably comprises a displacement measuring device 38a, which is provided to detect at least one travel path of a forging press ram and / or at least one forging tool part, in particular at least one die half of the forging tool 14a designed as a die. The forging press 20a is preferably designed in such a way that at least one forging tool part, in particular at least one die half of the forging tool 14a designed as a die, depending on a shrinkage parameter of the forging component 12a caused by cooling of the forging component 12a in one position and / or in a force acting on the Forged component 12a is adjustable. At least one forging tool part, in particular at least one die half of the forging tool 14a designed as a die, is preferably brought closer to the forged part 12a depending on a shrinkage parameter of the forged component 12a caused by cooling of the forged component 12a and / or a press force acting on the forged component 12a arranged in the forging tool 14a is increased, in particular to counteract a loss of contact between the forged component 12a as a result of the cooling-induced shrinkage of the forged component 12a. However, it is also conceivable that a press force acting on the forging component 12a arranged in the forging tool 14a is reduced as a function of a cooling start time, in particular in order to specifically influence a cooling effect of the forging tool 14a on the forging component 12a arranged in the forging tool 14a.

Bevorzugt erfolgt in zumindest einem, insbesondere achten Verfahrensschritt, des Schmiedeverfahrens 10a ein Warmauslagern des Schmiedebauteils 12a, insbesondere nach einer aktiven Abkühlung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a, insbesondere zu einer Erreichung eines T4-, T5-, T6- oder T7-Zustands gemäß DIN EN 515 des Schmiedebauteils 12a. Vorzugsweise erfolgt eine Warmauslagerung des Schmiedebauteils 12a bei einer Temperatur von insbesondere weniger als 280 °C, bevorzugt von weniger als 250 °C und besonders bevorzugt von weniger als 220 °C. Ganz besonders bevorzugt erfolgt eine Warmauslagerung des Schmiedebauteils 12a bei einer Temperatur mit einem Wert aus einem Wertebereich von 120 °C bis 250 °C. Vorzugsweise erfolgt in zumindest einem, insbesondere siebten, Verfahrensschritt des Schmiedeverfahrens 10a eine Schmiedebauteilübergabe, insbesondere eine zumindest teilweise automatische Schmiedebauteilübergabe, des Schmiedebauteils 12a von der Schmiedevorrichtung an eine, einem Fachmann bereits bekannte Warmauslagerungsvorrichtung 28a, insbesondere nach einer, insbesondere aktiven, Abkühlung des Schmiedebauteils 12a im Schmiedewerkzeug 14a. Bevorzugt erfolgt eine Schmiedebauteilübergabe des Schmiedebauteils 12a von der Schmiedevorrichtung an eine, einem Fachmann bereits bekannte Warmauslagerungsvorrichtung 28a mittels einer weiteren Übergabevorrichtung 40a der Schmiedeproduktionslinie 30a. Die weitere Übergabevorrichtung 40a ist vorzugsweise zumindest im Wesentlichen analog zur Übergabevorrichtung 36a ausgebildet. Bevorzugt erfolgt eine Schmiedebauteilübergabe des Schmiedebauteils 12a von der Schmiedevorrichtung an eine, einem Fachmann bereits bekannte Warmauslagerungsvorrichtung 28a bei einer Temperatur, die oberhalb einer Warmauslagerungstemperatur des Schmiedebauteils 12a liegt. Vorzugsweise ist das Schmiedeverfahren 10a derart ausgestaltet, dass eine Restwärme in einem Grat des Schmiedebauteils 12a vorteilhaft zu einer Erwärmung des Schmiedebauteils 12a nach einer, insbesondere aktiven, Abkühlung des Schmiedebauteils 12a in dem Schmiedewerkzeug 14a auf eine Warmauslagerungstemperatur genutzt wird. Nach der Warmauslagerung des Schmiedebauteils 12a können weitere, einem Fachmann als sinnvoll erscheinende Verfahrensschritte folgen.Preferably, in at least one, in particular eighth method step, of the forging process 10a, artificial aging of the forged component 12a takes place, in particular after active cooling of the forged component 12a in the forging tool 14a, in particular to achieve a T4, T5, T6 or T7 state according to DIN EN 515 of the forged component 12a. Artificial aging of the forged component 12a preferably takes place at a temperature of, in particular, less than 280.degree. C., preferably less than 250.degree. C. and particularly preferably less than 220.degree. It is very particularly preferable for the forged component 12a to be artificially aged at a temperature with a value from a value range of 120.degree. C. to 250.degree. A forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component 12a from the forging device to an artificial aging device 28a already known to a person skilled in the art, in particular after, in particular active, cooling of the forged component 12a preferably takes place in at least one, in particular seventh, method step of the forging process 10a in the forging tool 14a. The forged component 12a is preferably transferred from the forging device to an artificial aging device 28a already known to a person skilled in the art by means of a further transfer device 40a of the forging production line 30a. The further transfer device 40a is preferably designed at least essentially analogously to the transfer device 36a. The forged component 12a is preferably transferred from the forging device to an artificial aging device 28a already known to a person skilled in the art at a temperature which is above the artificial aging temperature of the forged component 12a. The forging process 10a is preferably designed in such a way that a residual heat in a ridge of the forged component 12a is advantageously used to heat the forged component 12a after, in particular active, cooling of the forged component 12a in the forging tool 14a to an artificial aging temperature. After the artificial aging of the forged component 12a, further process steps that appear sensible to a person skilled in the art can follow.

Figuren 3 und 4 zeigen weitere Ausführungsbeispiele der Erfindung. Die nachfolgenden Beschreibungen und die Zeichnungen beschränken sich im Wesentlichen auf die Unterschiede zwischen den Ausführungsbeispielen, wobei bezüglich gleich bezeichneter Bauteile, insbesondere in Bezug auf Bauteile mit gleichen Bezugszeichen, grundsätzlich auch auf die Zeichnungen und/oder die Beschreibung der anderen Ausführungsbeispiele, insbesondere der Figuren 1 und 2, verwiesen werden kann. Zur Unterscheidung der Ausführungsbeispiele ist der Buchstabe a den Bezugszeichen des Ausführungsbeispiels in den Figuren 1 und 2 nachgestellt. In den Ausführungsbeispielen der Figuren 3 und 4 ist der Buchstabe a durch die Buchstaben b und c ersetzt. Figures 3 and 4th show further embodiments of the invention. The following descriptions and the drawings are essentially limited to the differences between the exemplary embodiments, whereby with regard to identically designated components, in particular with regard to components with the same reference numerals, in principle also to the drawings and / or the description of the other exemplary embodiments, in particular the Figures 1 and 2 , can be referenced. To distinguish the exemplary embodiments, the letter a is the reference number of the exemplary embodiment in FIG Figures 1 and 2 re-enacted. In the embodiments of Figures 3 and 4th the letter a is replaced by the letters b and c.

Figur 3 zeigt eine Schmiedeproduktionslinie 30b mit einer Schmiedevorrichtung zu einer Durchführung eines Schmiedeverfahrens 10b, insbesondere eines Leichtbauschmiedeverfahrens, zu einer Herstellung von einem Schmiedebauteil 12b, insbesondere zu einer Herstellung von Leichtbaulegierungsbauteilen, für den Automobil,-Luftfahrt,- oder Industriebereich. Es ist jedoch auch denkbar, dass mittels des Schmiedeverfahrens 10b Schmiedebauteil 12b hergestellt werden, die in einem anderen, einem Fachmann als sinnvoll erscheinenden Bereich einsetzbar sind, wie beispielsweise einem Flugzeugbereich o. dgl. In der Figur 3 sind einzelne Verfahrensschritte des Schmiedeverfahrens 10b grafisch einem Temperaturverlauf in dem Schmiedebauteil 12b, insbesondere ausgehend von einem Halbzeug 32b bis zu einem fertig geschmiedeten Schmiedebauteil 12b, zugeordnet (vgl. Temperatur-Zeit-Diagramm und entsprechend gestrichelte Zuordnung in Figur 3). Die in Figur 3 dargestellte Schmiedeproduktionslinie 30b und das damit durchführbare Schmiedeverfahren 10b unterscheidet sich von der in der Figur 1 dargestellten Schmiedeproduktionslinie 30a und von dem damit durchführbaren Schmiedeverfahren 10a dadurch, dass die Schmiedeproduktionslinie 30b eine Schmiedevorrichtung umfasst, die zumindest drei Schmiedewerkzeuge 14b, 16b, 18b, insbesondere ein Umform-, ein Stanz- und/oder ein Kalibrierwerkzeug, umfasst. Figure 3 shows a forging production line 30b with a forging device for carrying out a forging process 10b, in particular a lightweight forging process, for producing a forged component 12b, in particular for the production of lightweight alloy components for the automotive, aviation, or industrial sectors. However, it is also conceivable that by means of the forging process 10b, forged components 12b are produced that can be used in another area that appears sensible to a person skilled in the art, such as an aircraft area or the like Figure 3 Individual process steps of the forging process 10b are graphically assigned to a temperature profile in the forged component 12b, in particular starting from a semi-finished product 32b to a fully forged forged component 12b (see temperature-time diagram and corresponding dashed assignment in Figure 3 ). In the Figure 3 The forging production line 30b shown and the forging process 10b that can be carried out with it differs from that in FIG Figure 1 forging production line 30a shown and of the forging process 10a that can be carried out with it, in that the forging production line 30b comprises a forging device which comprises at least three forging tools 14b, 16b, 18b, in particular a forming, punching and / or calibrating tool.

Vorzugsweise wird das Schmiedebauteil 12b, insbesondere nach einer, insbesondere direkten, Abkühlung im Schmiedewerkzeug 14b, das vorzugsweise als Fertiggesenk ausgebildet ist, in zumindest einem Verfahrensschritt des Schmiedeverfahrens 10b an ein zusätzliches Schmiedewerkzeug 18b, das vorzugsweise als Stanz- und/oder Schnittwerkzeug ausgebildet ist, übergeben. Vorzugsweise erfolgt in zumindest einem, insbesondere nach einer Bearbeitung mit dem zusätzlichen Schmiedewerkzeug 18b durchgeführten, Verfahrensschritt des Schmiedeverfahrens 10b eine Schmiedebauteilübergabe, insbesondere eine zumindest teilweise automatische Schmiedebauteilübergabe, des Schmiedebauteils 12b von der Schmiedevorrichtung an eine, einem Fachmann bereits bekannte Warmauslagerungsvorrichtung 28b. Hinsichtlich weiterer Merkmale, Funktionen und/oder Verfahrensschritte der Schmiedeproduktionslinie 30b und des damit durchführbaren Schmiedeverfahrens 10b darf auf die Beschreibung der in der Figur 1 dargestellten Schmiedeproduktionslinie 30a und des damit durchführbaren Schmiedeverfahrens 10a verwiesen werden.Preferably, the forged component 12b, in particular after a, in particular direct, cooling in the forging tool 14b, which is preferably designed as a finished die, is in at least one process step of the forging process 10b to an additional forging tool 18b, which is preferably designed as a punching and / or cutting tool, to hand over. A forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component 12b from the forging device to an artificial aging device 28b already known to a person skilled in the art preferably takes place in at least one method step of the forging process 10b, in particular after machining with the additional forging tool 18b. With regard to further features, functions and / or process steps of the forging production line 30b and the forging process 10b that can be carried out with it, reference may be made to the description of the in FIG Figure 1 Forging production line 30a shown and the forging process 10a that can be carried out therewith are referred to.

Figur 4 zeigt eine Schmiedeproduktionslinie 30c mit einer Schmiedevorrichtung zu einer Durchführung eines Schmiedeverfahrens 10c, insbesondere eines Leichtbauschmiedeverfahrens, zu einer Herstellung von einem Schmiedebauteil 12c, insbesondere zu einer Herstellung von Leichtbaulegierungsbauteilen, für den Automobil,-Luftfahrt,- oder Industriebereich. Es ist jedoch auch denkbar, dass mittels des Schmiedeverfahrens 10c Schmiedebauteil 12c hergestellt werden, die in einem anderen, einem Fachmann als sinnvoll erscheinenden Bereich einsetzbar sind, wie beispielsweise einem Flugzeugbereich o. dgl. In der Figur 4 sind einzelne Verfahrensschritte des Schmiedeverfahrens 10c grafisch einem Temperaturverlauf in dem Schmiedebauteil 12c, insbesondere ausgehend von einem Halbzeug 32c bis zu einem fertig geschmiedeten Schmiedebauteil 12c, zugeordnet (vgl. Temperatur-Zeit-Diagramm und entsprechend gestrichelte Zuordnung in Figur 4). Die in Figur 4 dargestellte Schmiedeproduktionslinie 30c und das damit durchführbare Schmiedeverfahren 10c unterscheidet sich von der in der Figur 1 dargestellten Schmiedeproduktionslinie 30a und von dem damit durchführbaren Schmiedeverfahren 10a dadurch, dass die Schmiedeproduktionslinie 30c eine Schmiedevorrichtung mit zumindest einem Schmiedewerkzeug 14c und mit zumindest einem weiteren Schmiedewerkzeug 16c sowie zumindest eine weitere Schmiedevorrichtung, die als Schmiedepresse 22c ausgebildet ist, mit zumindest einem zusätzlichen Schmiedewerkzeug 18c, das vorzugsweise als Stanz- und/oder Schnittwerkzeug ausgebildet ist, aufweist. Bevorzugt ist die weitere Schmiedevorrichtung als Schmiedepresse 22c ausgebildet ist. Vorzugsweise wird das Schmiedebauteil 12c, insbesondere nach einer Umformung, insbesondere einer Warmumformung, im Schmiedewerkzeug 14c, das vorzugsweise als Fertiggesenk ausgebildet ist, in zumindest einem Verfahrensschritt des Schmiedeverfahrens 10c an die weitere Schmiedevorrichtung übergeben, insbesondere zumindest teilweise automatisch, insbesondere mittels einer zusätzlichen Übergabevorrichtung 42c der Schmiedeproduktionslinie 30c. Bevorzugt wird das Schmiedebauteil 12c, insbesondere nach einer Umformung, insbesondere einer Warmumformung, im Schmiedewerkzeug 14c, das vorzugsweise als Fertiggesenk ausgebildet ist, in zumindest einem Verfahrensschritt des Schmiedeverfahrens 10c an das zusätzliche Schmiedewerkzeug 18c, das vorzugsweise als Stanz- und/oder Schnittwerkzeug ausgebildet ist, übergeben. In zumindest einem Verfahrensschritt, insbesondere nach einer Übergabe des Schmiedebauteils 12c an das zusätzliche Schmiedewerkzeug 18c, erfolgt eine Abkühlung des Schmiedebauteils 12c in dem zusätzlichen Schmiedewerkzeug 18c. Die Abkühlung des Schmiedebauteils 12c erfolgt bevorzugt nach einer Umformung des Schmiedebauteils 12c in dem Schmiedewerkzeug 14c. Die Abkühlung des Schmiedebauteils 12c in dem zusätzlichen Schmiedewerkzeug 18c erfolgt nach einer in dem Schmiedewerkzeug 14c und dem weiteren Schmiedewerkzeug 16c durchgeführten Umformung des Schmiedebauteils 12c. Figure 4 shows a forging production line 30c with a forging device for carrying out a forging process 10c, in particular a lightweight forging process, for producing a forged component 12c, in particular for producing lightweight alloy components, for automobiles, aviation, or industrial sector. However, it is also conceivable for forging components 12c to be produced by means of the forging process 10c which can be used in another area that appears sensible to a person skilled in the art, such as an aircraft area or the like Figure 4 Individual process steps of the forging process 10c are graphically assigned to a temperature profile in the forged component 12c, in particular starting from a semi-finished product 32c to a fully forged forged component 12c (see temperature-time diagram and corresponding dashed assignment in Figure 4 ). In the Figure 4 Forging production line 30c shown and the forging process 10c that can be carried out with it differs from that in FIG Figure 1 shown forging production line 30a and of the forging process 10a that can be carried out therewith in that the forging production line 30c has a forging device with at least one forging tool 14c and with at least one further forging tool 16c and at least one further forging device, which is designed as a forging press 22c, with at least one additional forging tool 18c, which is preferably designed as a punching and / or cutting tool. The further forging device is preferably designed as a forging press 22c. Preferably, the forged component 12c, in particular after forming, in particular hot forming, in the forging tool 14c, which is preferably designed as a finished die, is transferred to the further forging device in at least one process step of the forging process 10c, in particular at least partially automatically, in particular by means of an additional transfer device 42c the forging production line 30c. Preferably, the forged component 12c, in particular after forming, in particular hot forming, in the forging tool 14c, which is preferably designed as a finished die, is attached to the additional forging tool 18c, which is preferably designed as a punching and / or cutting tool, in at least one process step of the forging process 10c , to hand over. In at least one method step, in particular after the forging component 12c has been transferred to the additional forging tool 18c, the forging component 12c is cooled in the additional forging tool 18c. The forging component 12c is preferably cooled after the forging component 12c has been deformed in the forging tool 14c. The forging component 12c is cooled in the additional forging tool 18c after one in the forging tool 14c and the further forging tool 16c performed reshaping of the forged component 12c.

Vorzugsweise erfolgt in zumindest einem, insbesondere nach einer Abkühlung in dem zusätzlichen Schmiedewerkzeug 18c durchgeführten, Verfahrensschritt des Schmiedeverfahrens 10c eine Schmiedebauteilübergabe, insbesondere eine zumindest teilweise automatische Schmiedebauteilübergabe, des Schmiedebauteils 12c von der weiteren Schmiedevorrichtung an eine, einem Fachmann bereits bekannte Warmauslagerungsvorrichtung 28c. Hinsichtlich weiterer Merkmale, Funktionen und/oder Verfahrensschritte der Schmiedeproduktionslinie 30c und des damit durchführbaren Schmiedeverfahrens 10c darf auf die Beschreibung der in der Figur 1 dargestellten Schmiedeproduktionslinie 30a und des damit durchführbaren Schmiedeverfahrens 10a verwiesen werden.A forged component transfer, in particular an at least partially automatic forged component transfer, of the forged component 12c from the further forging device to an artificial aging device 28c already known to a person skilled in the art preferably takes place in at least one method step of the forging process 10c, in particular carried out after cooling in the additional forging tool 18c. With regard to further features, functions and / or process steps of the forging production line 30c and the forging process 10c that can be carried out with it, reference may be made to the description of the in FIG Figure 1 Forging production line 30a shown and the forging process 10a that can be carried out therewith are referred to.

BezugszeichenReference number

1010
SchmiedeverfahrenForging process
1212th
SchmiedebauteilForged component
1414th
SchmiedewerkzeugBlacksmith tool
1616
SchmiedewerkzeugBlacksmith tool
1818th
SchmiedewerkzeugBlacksmith tool
2020th
SchmiedepresseForging press
2222nd
SchmiedepresseForging press
2424
KühleinheitCooling unit
2626th
KühleinheitCooling unit
2828
WarmauslagerungsvorrichtungArtificial aging device
3030th
SchmiedeproduktionslinieForging production line
3232
HalbzeugWorkpiece
3434
VorwärmvorrichtungPreheating device
3636
ÜbergabevorrichtungTransfer device
3838
WegmessvorrichtungPosition measuring device
4040
ÜbergabevorrichtungTransfer device
4242
ÜbergabevorrichtungTransfer device

Claims (9)

  1. Forging method, in particular lightweight construction alloy forging method,
    wherein in at least one method step a cooling of a forging component is effected in a forging tool (14, 16, 18), in particular in a forming, punching and/or calibration tool, wherein in at least one method step at least a maximum press force and/or a press piston position of a forging press (20, 22) are/is changed depending on a cooling of the forging component in the forging tool (14, 16, 18),
    characterised in that during a cooling of the forging component in the forging tool, depending on a shrinkage parameter of the forging component on account of a cooling of the forging component, at least one forging tool part, in particular at least one die half of the forging tool (14, 16, 18) realized as a die, is moved closer to the forging component and/or a press force which acts onto the forging component arranged in the forging tool (14, 16, 18) is increased.
  2. Forging method according to claim 1,
    characterised in that the forging component is cooled in the forging tool (14, 16, 18), in particular starting from a forming temperature of the forging component of more than 400°C, down to a temperature of less than 300°C.
  3. Forging method according to claim 1 or 2,
    characterised in that a cooling rate of the forging component in the forging tool (14, 16, 18) is greater than 25 K/s.
  4. Forging method according to one of the preceding claims,
    characterised in that the cooling of the forging component is effected after a forming of the forging component in the forging tool (14, 16, 18).
  5. Forging method according to one of claims 1 to 3,
    characterised in that the cooling of the forging component in the forging tool (14) is effected after a forming of the forging component carried out in a further forging tool (16, 18).
  6. Forging method according to claim 5,
    characterised in that in at least one method step, for a cooling of the forging component in the forging tool (14), an at least semiautomated forging component transfer is effected from the further forging tool (16, 18) to the forging tool (14).
  7. Forging method according to one of the preceding claims,
    characterised in that in at least one method step the forging tool (14, 16, 18) is cooled actively.
  8. Forging method according to one of the preceding claims,
    characterised in that in at least one method step the forging component in the forging tool (14, 16, 18) is actively treated, in particular sprayed, with a cooling fluid.
  9. Forging press, in particular for an execution of a forging method according to one of the preceding claims, with at least one forging tool (14, 16, 18), in particular a forming, punching or calibration tool, and with at least one cooling unit (24, 26), which is at least partly arranged on the forging tool (14, 16, 18),
    wherein the forging press is implemented in such a way that at least a forging press parameter and/or a parameter of a cooling fluid are/is changed depending on a cooling of a forging component arranged in the forging tool (14, 16, 18), and with at least one control and/or regulation unit for a control and/or regulation of the parameter of the cooling fluid and/or of the forging press parameter, characterised by at least one sensor unit for capturing a cooling parameter of the forging component wherein, depending on a shrinkage parameter of the forging component on account of a cooling of the forging component, at least one forging tool part, in particular at least one die half of the forging tool (14, 16, 18) realized as a die, can be moved closer to the forging component and/or a press force which acts onto the forging component arranged in the forging tool (14, 16, 18) is augmentable.
EP18743519.3A 2017-07-21 2018-07-20 Forging method, in particular lightweight construction alloy forging method, and forging press Active EP3655176B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017116556.8A DE102017116556B4 (en) 2017-07-21 2017-07-21 Forging processes, in particular lightweight alloy forging processes
PCT/EP2018/069830 WO2019016394A1 (en) 2017-07-21 2018-07-20 Forging method, in particular lightweight construction alloy forging method, and forging press

Publications (2)

Publication Number Publication Date
EP3655176A1 EP3655176A1 (en) 2020-05-27
EP3655176B1 true EP3655176B1 (en) 2021-08-04

Family

ID=62981256

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18743519.3A Active EP3655176B1 (en) 2017-07-21 2018-07-20 Forging method, in particular lightweight construction alloy forging method, and forging press

Country Status (3)

Country Link
EP (1) EP3655176B1 (en)
DE (1) DE102017116556B4 (en)
WO (1) WO2019016394A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120252A (en) * 1976-04-02 1977-10-08 Honda Motor Co Ltd Method and device for forging thin plate member
DE102007040597A1 (en) * 2007-08-27 2009-04-09 Brose Schließsysteme GmbH & Co. Kommanditgesellschaft Component i.e. sash fastener, manufacturing method for motor vehicle door, involves cooling metallic sleeve in die tool such that sleeve takes martensitic microstructure, and taking out sleeve from die tool as finished sash fastener
WO2010061007A1 (en) 2008-11-03 2010-06-03 Fundacion Labein Method for hardening a component obtained by hot-forging and device used
DE102009014670B4 (en) * 2009-03-27 2011-01-13 Thyssenkrupp Sofedit S.A.S Method and hot forming plant for the production of press-hardened shaped components from sheet steel
DE102010012579B3 (en) * 2010-03-23 2011-07-07 Benteler Automobiltechnik GmbH, 33102 Method and device for producing hardened molded components
EP2415882B1 (en) * 2010-08-02 2016-03-23 Benteler Automobiltechnik GmbH Method for producing a shaped metal sheet from a rolled, non-hardenable aluminium alloy
EP2583766B1 (en) * 2011-10-21 2019-04-17 EDAG Werkzeug + Karosserie GmbH Forming with cooling
JP5698695B2 (en) 2012-03-30 2015-04-08 株式会社神戸製鋼所 Aluminum alloy forgings for automobiles and manufacturing method thereof
JPWO2014010678A1 (en) 2012-07-12 2016-06-23 昭和電工株式会社 Hard disk drive device case body manufacturing method and case body shape material
JP5901738B2 (en) 2014-03-27 2016-04-13 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
DE102014108113A1 (en) * 2014-06-10 2015-12-17 Benteler Automobiltechnik Gmbh Method for producing a motor vehicle component from aluminum
DE102015103307A1 (en) * 2015-03-06 2016-09-08 Benteler Automobiltechnik Gmbh A method of manufacturing a hot formed and quench hardened hydroformed automotive component

Also Published As

Publication number Publication date
WO2019016394A1 (en) 2019-01-24
DE102017116556A1 (en) 2019-01-24
DE102017116556B4 (en) 2022-02-03
EP3655176A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
DE60010968T2 (en) Method and device for deforming metallic materials and deformed metallic materials
EP2851138B1 (en) Partially cooled hot forming tool
DE102015115683A1 (en) A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines
EP2415895B1 (en) Metal moulded part for motor vehicle
EP3138660A1 (en) Clamping jaw and method for producing a clamping jaw
EP3243580B1 (en) Method for producing an edge cover for a blade component of an aircraft engine or a gas turbine and edge cover for a blade component
DE1577042C2 (en) Upsetting tool for the final shaping of the preformed attachment pieces of a streamlined turbine or compressor blade
DE3842117A1 (en) METHOD AND DEVICE FOR PRODUCING HOLLOWING OBJECTS FROM SUPER AND TITANIUM ALLOYS
EP3655176B1 (en) Forging method, in particular lightweight construction alloy forging method, and forging press
DE102016124971B4 (en) Process for the production of light metal formed components
EP1252947B1 (en) Method for the manufacture of an axle element for a motor vehicle
AT512389B1 (en) Machine tool and method for machining a particular forged workpiece
DE112015006442T5 (en) Method for producing a metal element
DE102014213196A1 (en) Mold for the production of hot-formed components
DE102020118836B3 (en) Manufacturing process for a molding tool part of a molding tool
EP3212346B1 (en) Molding tool for producing hot-formed components
EP3888814B1 (en) Forging process, in particular lightweight alloy forging process
DE19746235A1 (en) Poppet valve manufacturing method for vehicle engine
DE102014203767A1 (en) Process for the production of vehicle components
DE102019125679A1 (en) Method for manufacturing a component
WO2014094708A1 (en) Friction stir tool, method for manufacturing the same, and friction stir method
DE102011002208B4 (en) Spreizschmiedeverfahren and apparatus for performing the Spreizschmiedeverfahrens
DE102018200310A1 (en) Method for producing a sheet steel component
DE102019125680B4 (en) Process for manufacturing a component
DE102013010919B4 (en) Method for machining a workpiece and a molded part produced by this method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210225

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1416448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006451

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006451

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220720

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230731

Year of fee payment: 6