EP3640407B1 - Getränktes gelege mit additiven - Google Patents

Getränktes gelege mit additiven Download PDF

Info

Publication number
EP3640407B1
EP3640407B1 EP18200952.2A EP18200952A EP3640407B1 EP 3640407 B1 EP3640407 B1 EP 3640407B1 EP 18200952 A EP18200952 A EP 18200952A EP 3640407 B1 EP3640407 B1 EP 3640407B1
Authority
EP
European Patent Office
Prior art keywords
fabric
impregnation
textile reinforcement
base material
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18200952.2A
Other languages
English (en)
French (fr)
Other versions
EP3640407A1 (de
EP3640407C0 (de
Inventor
Detlef Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koch GmbH
Original Assignee
Koch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koch GmbH filed Critical Koch GmbH
Priority to EP18200952.2A priority Critical patent/EP3640407B1/de
Priority to US16/655,611 priority patent/US20200123796A1/en
Publication of EP3640407A1 publication Critical patent/EP3640407A1/de
Application granted granted Critical
Publication of EP3640407C0 publication Critical patent/EP3640407C0/de
Publication of EP3640407B1 publication Critical patent/EP3640407B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof

Definitions

  • the invention relates to a method for producing a textile reinforcement from a scrim, wherein an impregnation is applied to a thread or a strand of the scrim or to the scrim. Furthermore, the invention relates to such a textile reinforcement.
  • Structures made of reinforced concrete are an integral part of the infrastructure in almost every country in the world.
  • many structures that are used for traffic are also made of reinforced concrete, e.g. parking garages, garages, highways, bridges, tunnels, etc. A large number of these structures are used for 50 to 100 years (and sometimes even longer).
  • de-icing salts are particularly damaging to reinforced concrete structures.
  • the de-icing salts usually contain chloride. When combined with water, solutions are created that trigger corrosion in the structures. In many buildings, substantial, cost-intensive repair work has to be carried out on the reinforcement after just 20-25 years.
  • the contaminated covering concrete is usually removed, the reinforcing steel is cleaned and provided with new corrosion protection (e.g. based on polymer or cement).
  • new corrosion protection e.g. based on polymer or cement.
  • the repaired area often only lasts a few years (due to mechanical, thermal and/or hygric incompatibilities), so further repairs are required as soon as possible, especially if the covering concrete is subject to heavy loads. This causes high costs, represents a significant intervention in the structure and, last but not least, leads to restrictions in use during repairs.
  • Cathodic corrosion protection wins as a largely non-destructive repair method is becoming increasingly important as an economical repair method for components at risk of or damaged by corrosion.
  • Previously soaked textile reinforcements also have in common that laying around corners and edges, or at acute angles and narrow radii of curvature (e.g. transition from floor to column) is very difficult.
  • the poor flexibility of the textile reinforcement or the creation of defects due to narrow radii of curvature means that the reinforcement and corrosion protection effects are not achieved as required.
  • CA 2 192 567 C shows a method for producing textile reinforcement according to the preamble of claim 1.
  • the invention is therefore based on the object of specifying a method for producing a textile reinforcement and a textile reinforcement which enables mechanical reinforcement for structures exposed to the weather and traffic and is easy to lay.
  • the textile reinforcement can also include glass, for example. If cathodic corrosion protection is also possible as part of the mechanical reinforcement, the use of a carbon fabric or a fabric that is at least partially made of carbon fibers is recommended.
  • scrim is understood to mean a flat structure which consists of several layers of essentially parallel stretched threads. The individual layers are placed on top of each other and fixed together at the intersection points. If the threads of different layers are aligned in two different directions, this is called a biaxial fabric. If several layers with multiple orientations are provided, this is called a multiaxial fabric. In the context of this application, the term scrim also means a grid which also has a corresponding structure.
  • the thread of a scrim is understood to be a single stretched strand.
  • This thread can consist of a number of carbon multifilaments, which together form a thread or strand.
  • the impregnation comprises a base material to which an additive is added.
  • the invention is based on the idea that the provision of sufficient mechanical reinforcement and, if necessary, sufficiently high conductivity for cathodic corrosion protection can be achieved by suitable selection of an impregnation medium. It has been shown that the fabric of the textile reinforcement can be particularly easily adapted to the specific requirements at the site of use if the impregnation and the base medium used for the impregnation are modified by adding additives to increase the electrical, mechanical and thermal properties. For example, it is possible to increase the electrical properties, in particular the conductivity, by adding carbon nanotubes, metal particles, salts (or ionic compounds) or graphite, while the thermal properties can be increased by adding metals, carbon and Graphite particles can be influenced. To improve the mechanical properties, especially the bond with the solid mortar, it is possible to add hard materials, for example in the form of silicon carbite, quartz and ceramics.
  • the addition of additives can ensure that the strength of the mortar is particularly high in the area of the scrim, while it is comparatively low on the surface.
  • This strength gradient, which slopes away from the scrim, enables particularly flexible use of the scrim.
  • the base material is preferably made by radical polymerization a monomer and a starter synthesized. It is now possible to add the additive to the monomer and/or the starter before synthesis. This allows the impregnation to be modified before the base material is synthesized. Additionally or alternatively, it is also possible to add the additive to the already synthesized base material before, during the impregnation and/or after the impregnation in the form of sprinkling onto the impregnated fabric.
  • the starter is applied to the fabric in a first process and then the monomer is applied so that the base material is synthesized directly on the fabric.
  • a polymethyl methacrylate as a base material for the impregnation has proven to be particularly advantageous. Due to its low density, this base material can be inserted particularly well into the spaces between the fabric and also into the spaces between the fiber strands.
  • the above-mentioned epoxy resins, styrene-butadiene rubbers and acrylates or polyurethanes are also conceivable.
  • the surface of the soaked fabric is roughened and thus enlarged.
  • additives in the form of particles are added to the coating medium, which cause such an increase in surface area.
  • Granite, quartz powder, cement stone or conductive particles are used.
  • the enlarged surface leads to a force-fitting and positive connection (reinforcement effect).
  • the charge transfer can be optimized to improve cathodic corrosion protection.
  • ionic compounds, concrete admixtures, mixtures of salts and microsilica (as a suspension or in solid form) or pozzolanic reactives can also be used. These can influence the hardening reaction kinetics, for example when using salts on the one hand, to increase the conductivity in the border area and, on the other hand, to increase the mortar strength in the fabric environment.
  • a coating can also be applied to the already soaked fabric so that, like the particles, the surface area is enlarged or the additives are better integrated. This coating can then either represent the carrier medium for the particles or itself ensure a higher bond.
  • additives to improve the electrical, thermal or mechanical properties are also added to this coating medium before, during or after application to the soaked fabric.
  • the impregnation or coating can be applied in particular using an immersion bath process, an emulation process, a spray process or even brushed or rolled.
  • the advantages achieved with the invention are, in particular, that by using an impregnation of the fabric that is tailored to the respective area of application and modified by an additive, in the case of a carbon fabric, in particular the carbon fibers, carbon threads or the entire carbon-containing fabric, the properties of the reinforcement the mortar in the immediate vicinity of the reinforcement can also be influenced.
  • a carbon fabric in particular the carbon fibers, carbon threads or the entire carbon-containing fabric
  • the properties of the reinforcement the mortar in the immediate vicinity of the reinforcement can also be influenced.
  • curved structures exposed to the weather and traffic can be permanently protected from steel corrosion and at the same time mechanically reinforced.
  • a particular advantage is that with suitable modification of the mechanical properties it can be achieved that the carbon fabric used here as a thin-layer textile concrete can provide sufficient load-bearing capacity or an increase in load-bearing capacity even without combination with cathodic corrosion protection.
  • the removal of thin old coverings that are no longer necessary for load-bearing capacity can lead to a reduction in load, an increase in load capacity
  • the main advantages of the coating medium used lie in the improvement of the electrical, chemical and mechanical properties of the entire system, in particular in the high mechanical resilience and load-bearing capacity of the materials used (e.g. in static and dynamic tensile, adhesive tensile and shear loads), long-term resistance to environmental influences, i.e. H. chemical inertness and temperature resistance in a temperature range from -20°C to 80°C.
  • the load behavior can be improved in a larger temperature range.
  • the advantages lie in the flexible processing and deformability (drapeability) while at the same time sufficient rigidity for laying the textile reinforcement. Connections across corners and edges can be made in a non-positive and electrically conductive manner. The rigidity also makes it easy to use when laying.
  • a thread 2 of a scrim is shown in cross section.
  • the thread 2 comprises a large number of individual carbon multifilaments 12, each of which have between several 1,000 and up to 100,000 individual filaments.
  • the thread 2 is in the exemplary embodiment Fig. 1 provided with an impregnation 10, to which one or more additives 14 were added in the impregnation process in order to improve the electrical, mechanical or thermal properties.
  • the thread 2 has been coated with a coating medium 16.
  • sanding took place so that the coating 16 serves as a carrier medium for the particles 18. The sanding increases the surface area of the thread 2, which results in better bonding properties with the mortar.
  • the clutch 1 after Fig. 2 comprises a plurality of threads 2 or strands that are arranged in two levels.
  • Each level includes a number of threads 2, which are spaced apart and essentially parallel to one another.
  • Each of these threads 2 comprises a number of carbon multifilaments, which in the present exemplary embodiment were glued into an elongated strand. However, it is also conceivable that these carbon multifilaments are sewn into a strand or connected in another way.
  • the threads 2 of two levels are essentially orthogonal to one another, which is why a lattice structure with square spaces is formed.
  • the threads 2 are fixed at the crossing points 4 with a continuous sewing thread 6, but can also be glued or connected to one another in another way.
  • the planes of the fabric 1 do not necessarily have to be arranged orthogonally to one another, but can also be arranged offset at a different angle depending on the intended use. It is also conceivable that more than two levels can be provided.
  • a band-shaped primary anode 8 is sewn along the entire length of a thread 2, whereby the anode system can be supplied with current over the entire length, in contrast to contacting at a single point.
  • the primary anode 8 is sewn into a thread 2 is sewn in and is therefore essentially completely surrounded by carbon multifilaments.
  • an impregnation 10 and then a coating are applied to the scrim 1 in accordance with the above statements.
  • a fabric 1 can be provided for an anode system which has optimal mechanical, electrical and thermal properties for the respective application and location.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Textilbewehrung aus einem Gelege, wobei eine Tränkung auf einen Faden oder eines Strangs des Geleges oder auf das Gelege aufgetragen wird. Weiterhin bezieht sich die Erfindung auf eine solche Textilbewehrung.
  • Bauwerke aus Stahlbeton sind integraler Bestandteil der Infrastruktur in fast allen Ländern der Welt. Neben Wohn- und Arbeitsgebäuden sind auch viele befahrene Bauwerke aus Stahlbeton gebaut, z.B. Parkhäuser, Garagen, Autobahnen, Brücken, Tunnel usw. Eine Großzahl dieser Bauwerke wird 50 bis 100 Jahre (und teilweise noch länger) genutzt. Allerdings setzen neben der mechanischen Beanspruchung vor allem Tausalze den Stahlbeton-Bauwerken zu. Die Tausalze sind in der Regel chloridhaltig. Es entstehen daher in Verbindung mit Wasser Lösungen, die Korrosion in den Bauwerken auslösen. Bei vielen Bauwerken müssen deshalb bereits nach 20-25 Jahren substantielle, kostenintensive Instandsetzungsarbeiten an der Bewehrung durchgeführt werden.
  • Dazu wird üblicherweise der kontaminierte Überdeckungsbeton abgetragen, der Bewehrungsstahl gereinigt und mit einem neuen Korrosionsschutz versehen (z.B. auf Polymer- oder Zementbasis). Der instandgesetzte Bereich hält häufig jedoch nur wenige Jahre (aufgrund mechanischer, thermischer und/oder hygrischer Inkompatibilitäten), so dass eine zeitnahe weitere Instandsetzung erforderlich wird, gerade dann, wenn der Überdeckungsbeton stark beansprucht wird. Dies verursacht hohe Kosten, stellt einen erheblichen Eingriff in das Bauwerk dar und führt nicht zuletzt zu Nutzungseinschränkungen während der Instandsetzung.
  • Eine Möglichkeit die Korrosion zu unterdrücken und im Idealfall zu verhindern stellt der kathodische Korrosionsschutz (KKS) von Bauwerken dar. Als eine zum größten Teil zerstörungsfreie Instandsetzungsmethode gewinnt der kathodische Korrosionsschutz als wirtschaftliches Instandsetzungsverfahren korrosionsgefährdeter bzw. -geschädigter Bauteile zunehmend an Bedeutung.
  • Insbesondere bei befahrenen Stahlbetonbauwerken, muss aber neben dem Korrosionsschutz und aufgrund eines stetig steigenden Verkehrsaufkommens und immer schwerer werdenden Fahrzeugen (LKW, SUV) viele befahrene Bauwerke (Brücken, Parkbauten) nachträglich verstärkt werden. Hier gibt es eine Vielzahl an Verfahren, wie z. B. Vorspannung mit externen Spanngliedern, Querkraftverstärkung mit Spanngliedern oder Schublaschen aus Stahl, Aufbetonierung mit Verdübelung, Querschnittsergänzungen durch Spritzbeton mit zusätzlicher Betonstahlbewehrung und (geschlitzt) geklebte CFK-(Stahl-) Lamellen.
  • Bislang ist allerdings kein Verfahren bekannt, das frei bewitterte und befahrene Stahlbetonbauwerke langfristig vor Stahlkorrosion schützt und gleichzeitig eine mechanische Verstärkung für das Bauwerk darstellt. Zwar werden vermehrt Verbundwerkstoffe aus Carbonbeton oder andere Textilbetone aus Basalt- oder AR-Glas-Faser verwendet, die in einem Epoxidharz oder Styrol-Butadien-Kautschuk getränkt werden, doch sind diese bislang in ihren Einsatzmöglichkeiten beschränkt, da sie beispielsweise nur für Innenbauten, in denen witterungsbedingte Einflüsse kaum auftreten, geeignet sind oder es fehlt ihnen an der oft notwendigen Formfreiheit.
  • So erfüllen bisherige textile Carbonbewehrungen nur die Funktion der Bauwerksverstärkung oder des Korrosionsschutzes. Es gibt allerdings bereits Ansätze die Carbonfasern in Epoxidharz oder Styrol-Butadien-Kautschuk zu tränken, um ein stabiles Gelege zu erhalten. Gelege mit Epoxidharztränkung weisen dabei eine hohe Verbundfestigkeit auf. Gelege mit Styrol-Butadien-Kautschuk zeichnen sich dagegen insbesondere durch ihre gute Verarbeitbarkeit, Formbarkeit und insbesondere ausreichende Polarisationseigenschaften aus. Allerdings gibt es derzeit noch keine Tränkung, die einen ausgeprägten mechanischen Verbund und gleichzeitig eine gute Verarbeitbarkeit/Formbarkeit sowie vorteilhafte Polarisationseigenschaften aufweist.
  • Bisherige getränkte textile Bewehrungen haben zudem gemeinsam, dass sich eine Verlegung um Ecken und Kanten, bzw. bei spitzen Winkeln und engen Krümmungsradien (z. B. Übergang Boden zu Stütze) als sehr schwierig gestaltet. Die schlechte Biegsamkeit der textilen Bewehrung oder das Verursachen von Fehlstellen durch enge Krümmungsradien führt dazu, dass die Verstärkungs- und Korrosionsschutzeffekte nicht wie benötigt erzielt werden.
  • CA 2 192 567 C zeigt ein Verfahren zur Herstellung einer Textilbewehrung gemäß dem Oberbegriff des Anspruchs 1.
  • Der Erfindung liegt daher die Aufgabe zugrunde ein Verfahren zur Herstellung einer Textilbewehrung und eine Textilbewehrung anzugeben, welche eine mechanische Verstärkung für frei bewitterte und befahrene Bauwerke ermöglicht und einfach zu verlegen ist.
  • Die Textilbewehrung kann dabei beispielsweise auch Glas umfassen. Sollte im Rahmen der mechanischen Verstärkung auch ein kathodischer Korrosionsschutz ermöglicht werden, bietet sich der Einsatz eines Carbongeleges bzw. eines Geleges welches zumindest zum Teil aus Carbonfasern gebildet wird an.
  • Unter Gelege wird dabei im Rahmen dieser Anmeldung ein Flächengebilde verstanden, welches aus mehreren Lagen von im Wesentlichen parallel verlaufenden gestreckten Fäden besteht. Dabei werden die einzelnen Lagen übereinandergelegt und an den Kreuzungspunkten miteinander fixiert. Sind die Fäden verschiedener Lagen in zwei unterschiedliche Richtungen ausgerichtet, spricht man von einem biaxialen Gelege, sind mehrere Lagen mit mehreren Ausrichtungen vorgesehen, wird von einem multiaxialen Gelege gesprochen. Im Rahmen dieser Anmeldung ist unter dem Begriff Gelege somit auch ein Gitter zu verstehen, welches ebenfalls einen entsprechenden Aufbau aufweist.
  • Als Faden eines Geleges wird dabei ein einzelner gestreckter Strang verstanden. Dieser Faden kann dabei aus einer Anzahl von Carbonmultifilamenten bestehen, die zusammen einen Faden bzw. Strang bilden.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem die Tränkung ein Basismaterial umfasst, welchem ein Additiv zugegeben wird.
  • Die Erfindung geht dabei von der Überlegung aus, dass die Bereitstellung einer ausreichenden mechanischen Verstärkung und gegebenenfalls einer genügend hohen Leitfähigkeit für den kathodischen Korrosionsschutz durch geeignete Auswahl eines Tränkungsmediums erzielt werden kann. Hierbei hat sich gezeigt, dass das Gelege der Textilbewehrung besonders leicht an die spezifischen Anforderungen am Einsatzort angepasst werden kann, wenn die Tränkung und dort das für die Tränkung verwendete Basismedium durch Zugabe von Additiven zur Erhöhung der elektrischen, mechanischen und thermischen Eigenschaften modifiziert wird. So ist es beispielsweise möglich, durch die Zugabe von Kohlenstoffnanoröhrchen (Carbon Nanotubes), Metallpartikeln, Salzen (bzw. ionischen Verbindungen) oder Graphit die elektrischen Eigenschaften, insbesondere die Leitfähigkeit zu erhöhen, während die thermischen Eigenschaften durch die Zugabe von Metallen, Carbon- und Grafitteilchen beeinflusst werden kann. Zur Verbesserung der mechanischen Eigenschaften, insbesondere auch des Verbundes mit dem Festmörtel, ist es möglich Hartstoffe, beispielsweise in Form von Siliziumcarbit, Quarzen und Keramiken, zuzufügen.
  • Weiterhin ist es möglich durch die Zugabe der Additive die Prozessparameter und mögliche Verarbeitbarkeit des Geleges, insbesondere eines Carbongeleges, zu modifizieren. So ist es denkbar Verflüssiger, Verzögerer oder Quellmittel zu verwenden, um die Eigenschaften des Frisch- und Festmörtels zu beeinflussen.
  • Insbesondere kann durch die Zugabe von Additiven erreicht werden, dass die Festigkeit des Mörtels im Bereich des Geleges besonders hoch ist, während sie an der Oberfläche vergleichsweise niedrig ausgebildet ist. Dieser Festigkeitsgradient, der vom Gelege weg abfällt, ermöglicht einen besonders flexiblen Einsatz des Geleges.
  • Für eine besonders flexible und vielfältige Möglichkeit der Modifikation wird das Basismaterial in bevorzugter Ausführung durch radikalische Polymerisation aus einem Monomer und einem Starter synthetisiert. Hierbei besteht nun die Möglichkeit das Additiv vor der Synthetisierung bereits dem Monomer und/oder dem Starter zuzufügen. Dies ermöglicht eine Modifizierung der Tränkung bereits im Vorfeld der Synthetisierung des Basismaterials. Zusätzlich oder alternativ ist es aber auch möglich das Additiv dem bereits synthetisierten Basismaterial vor, im Rahmen der Tränkung und/oder auch nach der Tränkung in Form eines Aufstreuens auf das getränkte Gelege.
  • In besonderen Form der Tränkung oder auch im Rahmen der späteren Beschichtung wird der Starter in einem ersten Prozess auf das Gelege aufgetragen und anschließend erst das Monomer aufgebracht, sodass die Synthetisierung des Basismaterials direkt an dem Gelege erfolgt.
  • Besonders vorteilhaft hat sich dabei die Verwendung eines Polymethylmethacrylat als Basismaterials für die Tränkung herausgestellt. Da sich dieses Basismaterial aufgrund der geringen Dichte besonders gut in die Zwischenräume des Geleges aber auch in die Zwischenräume der Faserstränge eingebracht werden kann. Neben der Verwendung von Polymethylmethacrylaten als Basismaterial sind aber ganz allgemein auch die oben bereits erwähnten Epoxidharze, Styrol-Butadien-Kautschuke und Acrylate oder Polyurethane denkbar.
  • Um einen festen Verbund zwischen getränkter Textilbewehrung und dem umgebenen Beton zu erzeugen, wird die Oberfläche des getränkten Geleges aufgeraut und damit vergrößert. Dazu werden dem Beschichtungsmedium Additive in Form von Partikeln zugefügt, die eine solche Oberflächenvergrößerung bewirken. Dabei werden Granit, Quarzmehl, Zementstein oder leitfähige Partikel verwendet. Die vergrößerte Oberfläche führt zu einem kraft- und formschlüssigen Verbund (Verstärkungseffekt). Durch die Zugabe leitfähiger Partikel kann der Ladungsübergang optimiert werden, um den kathodischen Korrosionsschutz zu verbessern. Alternativ oder zusätzlich können auch ionische Verbindungen, Betonzusatzmittel, Mischungen aus Salzen und Mikrosilika (als Suspension oder auch in fester Form) oder puzzolanische Reaktive verwendet werden. Diese können die Erhärtungsreaktionskinektik beeinflussen, um beispielsweise bei der Verwendung von Salzen einerseits die Leitfähigkeit im Grenzbereich und andererseits die Mörtelfestigkeit in der Gewebeumgebung zu erhöhen.
  • Neben oder zusätzlich zu der Vergrößerung der Oberfläche des Geleges durch Hinzugabe von Partikeln kann in vorteilhafter Ausführung auch eine Beschichtung auf das bereits getränkte Gelege aufgetragen werden, dass, wie auch die Partikel, die Oberfläche vergrößert bzw. die Additive besser eingebunden werden. Diese Beschichtung kann dann entweder das Trägermedium für die Partikel darstellen oder selbst für einen höheren Verbund sorgen. Auch diesem Beschichtungsmedium werden in bevorzugter Ausführung Additive zur Verbesserung der elektrischen, thermischen oder mechanischen Eigenschaften vor, während oder nach der Applikation auf das getränkte Gelege zugeführt.
  • Die Tränkung oder auch Beschichtung kann dabei insbesondere im Tauchbadverfahren, einem Emulationsverfahren, einem Spritzverfahren oder auch gestrichen oder gerollt aufgetragen werden.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Verwendung von einer auf den jeweiligen Anwendungsbereich abgestimmten und durch ein Additiv modifizierten Tränkung des Geleges, bei einem Carbongelege insbesondere der Carbonfasern, Carbonfäden oder des ganzen, carbonhaltigen Geleges, die Eigenschaften der Bewehrung aber auch des Mörtels in der direkten Umgebung der Bewehrung beeinflusst werden können. So können neben ebenen Flächen auch gekrümmte, frei bewitterte und befahrene Bauwerke dauerhaft vor Stahlkorrosion geschützt und gleichzeitig mechanisch verstärkt werden. Ein besonderer Vorteil ist dabei, dass es bei geeigneter Modifizierung der mechanischen Eigenschaften erreicht werden kann, dass das hierbei genutzte Carbongelege als dünnschichtiger Textilbeton auch ohne die Kombination mit einem kathodischen Korrosionsschutz eine ausreichende Tragfähigkeit oder eine Traglasterhöhung bereitstellen kann. Hier kann es somit zusätzlich mit dem Abtragen von dünnen Altbelägen, die nicht weiter zur Tragfähigkeit notwendig sind (wie Estrich, Asphalt oder minderfestem Beton) zu einer Auflastverringerung, Traglasterhöhung und größeren Durchfahrtshöhen in Parkhäusern kommen.
  • So führt die Erhöhung der Festigkeit in Fasernähe zu einer Verbesserung der Performance ohne eine zu hohe Schwindrissbildung zu bedingen. Weiterhin kann durch die Zugabe von Fließmitteln an der Faser das Eindringen in das Gewebe verbessert werden.
  • Im Detail liegen die wesentlichen Vorteile des verwendeten Beschichtungsmediums in der Verbesserung der elektrischen, chemischen und mechanischen Eigenschaften des gesamten Systems, insbesondere in der hohen mechanische Belastbarkeit bzw. Lastaufnahme der eingesetzten Materialien (z. B. bei statischen und dynamischen Zug-, Haftzug- und Scherbelastungen), der langfristige Resistenz gegen Umwelteinflüsse, d. h. chemische Inertheit sowie Temperaturbeständigkeit in einem Temperaturspektrum von -20°C bis 80°C. Dabei kann das Traglastverhalten im größeren Temperaturbereich verbessert werden. Weiterhin liegen die Vorteile in der flexiblen Verarbeitbarkeit und Verformbarkeit (Drapierbarkeit) bei gleichzeitig ausreichender Steifigkeit zum Verlegen der Textilbewehrung. Verbindungen über Ecken und Kanten können kraftschlüssig und elektrisch leitend hergestellt werden. Durch die Steifigkeit wird darüber hinaus eine einfache Anwendung bei der Verlegung ermöglicht. Weitere Vorteile liegen in der hohen Verbundfestigkeit zwischen Beton und textiler Bewehrung (gegebenenfalls durch die zusätzliche Verwendung eines Coatings) und der optimierten Leitfähigkeit im "metallischen" Leiter (Carbon, Leiter 1. Ordnung) und guter Ladungsübergang auf den ionischen Leiter (Zementstein; Leiter 2. Ordnung).
  • Ein nach dem obigen Verfahren hergestelltes Gelege ist in einem Ausführungsbeispiel der Erfindung in einer Zeichnung näher erläutert.
  • Darin zeigt:
    • Fig. 1 ein Querschnitt durch einen Faden des Geleges
    • Fig. 2 ein Gelege mit einer eingenähten Primäranode
  • In Fig. 1 ist ein Faden 2 eines Geleges im Querschnitt dargestellt. Der Faden 2 umfasst dabei eine Vielzahl von einzelnen Carbonmultifilamenten 12, die jeweils zwischen mehreren 1.000 und bis zu 100.000 Einzelfilamenten aufweisen. Der Faden 2 ist im Ausführungsbeispiel nach Fig. 1 mit einer Tränkung 10 versehen, der im Tränkungsverfahren ein oder mehrere Additive 14 zugegeben wurden, um die elektrischen, mechanischen oder auch thermischen Eigenschaften zu verbessern. In einem nachgelagerten Produktionsschritt ist der Faden 2 mit einem Beschichtungsmedium 16 beschichtet worden. Wobei im vorliegenden Fall eine Absandung erfolgte, sodass die Beschichtung 16 als Trägermedium für die Partikel 18 dient. Durch die Absandung wird die Oberfläche des Fadens 2 erhöht, wodurch sich bessere Verbundeigenschaften mit dem Mörtel ergeben.
  • Das Gelege 1 nach Fig. 2 umfasst eine Mehrzahl von Fäden 2 bzw. Strängen, die in zwei Ebenen angeordnet sind. Jede Ebene umfasst dabei eine Anzahl von Fäden 2, die beabstandet und im Wesentlichen parallel zueinander liegen. Jeder dieser Fäden 2 umfasst eine Anzahl von Carbonmultifilamente, die im vorliegenden Ausführungsbeispiel zu einem lang gestreckten Strang verklebt wurden. Es ist aber ebenfalls denkbar, dass diese Carbonmultifilamente zu einem Strang vernäht oder in einer anderen Art verbunden werden. Die Fäden 2 zweier Ebenden liegen im Wesentlichen orthogonal zueinander, weshalb sich eine Gitterstruktur mit viereckigen Zwischenräumen bildet. Die Fäden 2 werden an den Kreuzungspunkten 4 mit einem durchlaufenden Nähfaden 6 fixiert, können aber auch verklebt oder auf eine andere Art und Weise miteinander verbunden werden.
  • Es ist selbstverständlich, dass die Ebenen des Geleges 1 nicht zwangsläufig orthogonal zueinander angeordnet sein müssen, sondern je nach Einsatzzweck auch in einem anderen Winkel versetzt angeordnet sein können. Ebenso ist es denkbar, dass mehr als zwei Ebenen vorgesehen sein können.
  • Im Ausführungsbeispiel nach der Fig. 2 ist entlang der gesamten Länge auf einem Faden 2 eine bandförmige Primäranode 8 aufgenäht, wodurch das Anodensystem im Gegensatz zu einer Kontaktierung in einem einzelnen Punkt über die gesamte Länge mit Strom bespeist werden kann. Neben dem Aufnähen der Primäranode 8 auf einen Faden 2, ist es auch denkbar, dass die Primäranode 8 in einen Faden 2 eingenäht wird und somit von Carbonmultifilamenten im Wesentlichen vollständig umgeben wird.
  • Zur Erhöhung der mechanischen, elektrischen und thermischen Eigenschaften, insbesondere zur Verbesserung der Verlegbarkeit und Aktivierung der mechanischen Eigenschaften des Geleges 1 und auch des im Mörtel eingebetteten Anodensystems ist auf dem Gelege 1 eine Tränkung 10 und anschließend eine Beschichtung entsprechend den obigen Ausführungen aufgetragen. Hierbei kann durch geeignete Wahl der Tränkungs- und Beschichtungsrezeptur und durch Zugabe von entsprechenden Additiven eine Gelege 1 für ein Anodensystem bereitgestellt werden, welches optimale mechanische, elektrische und thermische Eigenschaften für den jeweiligen Anwendungszweck und Einsatzort aufweist.
  • Bezugszeichenliste
  • 1
    Gelege
    2
    Faden
    4
    Kreuzungspunkt
    6
    Nähfaden
    8
    Primäranode
    10
    Tränkung
    12
    Carbonmultifilamente
    14
    Additiv
    16
    Beschichtung
    18
    Partikel

Claims (6)

  1. Verfahren zur Herstellung einer Textilbewehrung aus einem Gelege (1), wobei eine Tränkung (10) auf einen Faden (2) des Geleges (1) oder auf das Gelege (1) aufgetragen wird, wobei die Tränkung (10) ein Basismaterial umfasst, welchem mindestens ein Additiv (14) zugegeben wird, dadurch gekennzeichnet, dass anschließend mindestens eine Beschichtung (16) mit Additiven in Form von Partikeln (18) zur Vergrößerung der Oberfläche aufgetragen wird, wobei die Partikel Granit, Quarzmehl, Zementstein oder leitfähige Partikel umfassen.
  2. Verfahren zur Herstellung einer Textilbewehrung nach Anspruch 1, dadurch gekennzeichnet, dass das Basismaterial durch radikalische Polymerisation aus einem Monomer und einem Starter synthetisiert wird und wobei das Additiv (14) dem Monomer, dem Starter und/oder dem synthetisiertem Basismaterial zugegeben wird.
  3. Verfahren zur Herstellung einer Textilbewehrung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Basismaterial ein Polymethylmethacrylat verwendet wird.
  4. Verfahren zur Herstellung einer Textilbewehrung nach Anspruch 1, dadurch gekennzeichnet, dass das Additiv in Form von Partikeln (18) vor, während oder nach der Beschichtung des Geleges zugegeben wird.
  5. Verfahren zur Herstellung einer Textilbewehrung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Tränkung (10) in einem Tauchbadverfahren, einem Emulationsverfahren oder einem Spritzverfahren aufgetragen wird.
  6. Textilbewehrung hergestellt nach einem Verfahren nach Anspruch 1 bis 5.
EP18200952.2A 2018-10-17 2018-10-17 Getränktes gelege mit additiven Active EP3640407B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18200952.2A EP3640407B1 (de) 2018-10-17 2018-10-17 Getränktes gelege mit additiven
US16/655,611 US20200123796A1 (en) 2018-10-17 2019-10-17 Impregnated nest with additives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18200952.2A EP3640407B1 (de) 2018-10-17 2018-10-17 Getränktes gelege mit additiven

Publications (3)

Publication Number Publication Date
EP3640407A1 EP3640407A1 (de) 2020-04-22
EP3640407C0 EP3640407C0 (de) 2023-12-06
EP3640407B1 true EP3640407B1 (de) 2023-12-06

Family

ID=63878525

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18200952.2A Active EP3640407B1 (de) 2018-10-17 2018-10-17 Getränktes gelege mit additiven

Country Status (2)

Country Link
US (1) US20200123796A1 (de)
EP (1) EP3640407B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218810A (en) * 1992-02-25 1993-06-15 Hexcel Corporation Fabric reinforced concrete columns
CA2192567C (en) * 1994-06-10 2006-04-25 Frederick P. Isley, Jr. High strength fabric reinforced walls
RU177233U1 (ru) * 2016-08-03 2018-02-14 Общество с ограниченной ответственностью "Знаменский Композитный Завод" Сетка армирующая полимерно-композитная преднапряженная с нанодобавками

Also Published As

Publication number Publication date
EP3640407A1 (de) 2020-04-22
EP3640407C0 (de) 2023-12-06
US20200123796A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
DE60007818T2 (de) Bauverstärkungselement und Verfahren zum Anwenden des Elementes zur Produktverstärkung
DE69923530T2 (de) Wasserdichte verkleidung
DE102014000316B4 (de) Verbundbauteil aus auf Stahlträgern aufgelagerten Deckenbetonfertigteilen
AT11192U1 (de) Verwendung eines als maschenware, insbesondere als gestricke oder gewirke, über ein einfaden- oder kettfadensystem hergestellten verbundstoffes
DE4026943C1 (de)
EP2182139B1 (de) Verfahren zum Anbringen einer Verstärkung bzw. Verkleidung an einem bestehenden Bauteil sowie Bauteil mit daran angebrachter Verstärkungs- bzw. Verkleidungsschicht
EP0732464A1 (de) Verfahren zur Herstellung von armierten Beschichtungen, insbesondere auf Betonoberflächen, und zugehöriges Armierungsnetz
WO2016135201A1 (de) Verfahren zum herstellen eines kathodischen korrosionsschutzes zum schutz von bewehrungsstahl in einem stahlbetonbauwerk
DE202008010803U1 (de) Wärmedämmender Mauerstein
EP3640407B1 (de) Getränktes gelege mit additiven
DE2930939C2 (de) Verfahren zum mechanischen Verstärken von formbaren und/oder härtbaren Massen
EP3707303B1 (de) Faserprodukte mit einer beschichtung aus wässrigen polymerdispersionen
DE60204809T2 (de) Zementmörtel, Struktur und Verfahren zur Verstärkung von Baukomponenten
DE3607459C2 (de)
EP1669511B1 (de) Leichtbauelement mit Fliesen und Verfahren zu dessen Herstellung
DE102005004148A1 (de) Leichtbauplatte
DE4106309C2 (de)
CA3165303A1 (en) Connection element, method for manufacturing a connection element and related installation kit
DE3032533A1 (de) Glasseiden armierungsgitter
EP3640370A1 (de) Gelege mit primäranode
DE2822601A1 (de) Zementhaltiges bauteil und verfahren zu seiner herstellung
DE112016005118T5 (de) Vorform für Fertigung der bewehrten belasteten Betonträger
DE202008017283U1 (de) Asphaltierte Verkehrsfläche
EP1364092A1 (de) Vorgefertigtes bauelement für gebäude
DE102016101360A1 (de) Fertigteil sowie Verfahren zur Herstellung eines Fertigteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201021

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220525

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230523

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013742

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240104

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206