EP3615783B1 - Zylinderkopfgehäuse, verfahren zur herstellung eines zylinderkopfgehäuses und giesskern - Google Patents

Zylinderkopfgehäuse, verfahren zur herstellung eines zylinderkopfgehäuses und giesskern Download PDF

Info

Publication number
EP3615783B1
EP3615783B1 EP18717361.2A EP18717361A EP3615783B1 EP 3615783 B1 EP3615783 B1 EP 3615783B1 EP 18717361 A EP18717361 A EP 18717361A EP 3615783 B1 EP3615783 B1 EP 3615783B1
Authority
EP
European Patent Office
Prior art keywords
manifold
channel
section
channels
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18717361.2A
Other languages
English (en)
French (fr)
Other versions
EP3615783A1 (de
Inventor
Paulo Urzua Torres
Michael Henn
Martin Bier
Madlen Rudloff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3615783A1 publication Critical patent/EP3615783A1/de
Application granted granted Critical
Publication of EP3615783B1 publication Critical patent/EP3615783B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/108Siamese-type cylinders, i.e. cylinders cast together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/38Cylinder heads having cooling means for liquid cooling the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/242Arrangement of spark plugs or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/243Cylinder heads and inlet or exhaust manifolds integrally cast together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • F02F2200/06Casting
    • F02F2200/08Casting using a lost model, e.g. foam casting

Definitions

  • the invention relates to a cylinder head housing for an internal combustion engine, a method for producing such a cylinder head housing and a casting core for use in such a method.
  • the invention further relates to an internal combustion engine with such a cylinder head housing and a motor vehicle with such an internal combustion engine.
  • Internal combustion engines are usually cooled by means of a coolant which, conveyed by at least one coolant pump, circulates in a cooling system of the internal combustion engine.
  • the cooling system includes cooling channels that are formed by a cylinder (crank) housing and a cylinder head housing of an internal combustion engine of the internal combustion engine.
  • the circulating cooling liquid allows thermal energy to be dissipated from the internal combustion engine and also other components of the internal combustion engine to at least one ambient heat exchanger, in which the thermal energy is then given off to the ambient air.
  • the DE 10 2007 031 350 A1 discloses a multi-part cylinder head housing for a multi-cylinder internal combustion engine of an internal combustion engine, the cylinder head housing forming a receiving opening for a spark plug and a total of four receiving openings for two intake and exhaust valves for each of the cylinders of the internal combustion engine. Furthermore, the cylinder head housing forms cooling ducts, which are provided for a flow of coolant, the cooling ducts comprising two distributor ducts which are arranged on both sides of the row of receiving openings assigned to the individual cylinders and which extend in the longitudinal direction of the cylinder head housing. A cooling channel extends from each of these distribution channels, one of which is guided in a ring shape around the associated spark plug receiving opening. Such a cylinder head housing can be improved with regard to the cooling effect that can be achieved by means of a flow through the cooling channels.
  • a cylinder head housing with integrated cooling ducts is known, the cooling ducts forming a cooling jacket which largely completely surrounds the receiving openings for spark plugs and gas exchange valves which are associated with the individual cylinders of an internal combustion engine comprising the cylinder head housing.
  • a to comparable cylinder head housing is still from EP 1 972 772 A2 known.
  • Such a cylinder head housing can be distinguished by a comparatively good cooling effect by means of a coolant flowing through the cooling jacket, but is difficult to produce and/or has a structural strength that is significantly impaired by the comparatively large volume of the cooling jacket.
  • Cylinder head housing with cooling channels formed therein in different configurations are also in the DE 10 2009 019 327 A1 , the JP 2003-035197 A , the CN 105 822 451 A , the JP 2002-256966 A and the U.S. 8,939,116 B2 disclosed.
  • the object of the invention was to optimize a cylinder head housing for an internal combustion engine that integrates cooling ducts with regard to the most advantageous possible cooling effect with the most compact dimensions possible.
  • a preferably one-piece cylinder head housing for a (reciprocating piston) internal combustion engine, the internal combustion engine forming at least two cylinders arranged in a row.
  • the cylinder head housing comprises receiving openings for each of the cylinders, which are provided at least for receiving one exhaust valve, hereinafter abbreviated as exhaust valve receiving opening.
  • Receiving openings for one fuel injector or one spark plug each, which are assigned to the individual cylinders of the internal combustion engine, can preferably also be provided. In the following, these are abbreviated as injector receiving openings.
  • the cylinder head housing further includes openings extending from the exhaust valve receiving openings (Integrated into the cylinder head housing) exhaust gas ducts, which are combined in an exhaust gas outlet duct, and (integrated) cooling ducts, which are provided for a flow of coolant.
  • such a cylinder head housing is characterized in that the cooling ducts comprise a roof distribution duct extending along the row of cylinders, which is provided with a preferably ring-shaped (and in particular one The injector cooling channel surrounding the injector receiving opening in a ring-shaped manner is connected in a fluid-conducting manner, the injector cooling channels each having a plurality of cooling channels extending in different radial directions with respect to a longitudinal axis of the respective injector cooling channels (whereby this longitudinal axis preferably corresponds to the longitudinal axis of the respective injector receiving opening and/or or the associated cylinder of the internal combustion engine or runs at least parallel to this/these) extending roof network channels are fluidly connected, which are directly or indirectly connected to at least two extending along the row of cylinders roof S collection channels are fluidly connected, which are arranged on different sides with respect to the row defined by the injector cooling channels.
  • the cooling ducts comprise a roof distribution duct extending along the row of cylinders, which is provided with
  • the roof mesh ducts can preferably also extend along the longitudinal axis of the respective injector cooling duct.
  • the cooling ducts include a manifold distribution duct, which extends along the row of exhaust valve receiving openings of the at least two cylinders, the manifold distribution duct having a plurality of manifold network ducts running along (all) the exhaust gas ducts fluidly connected, which are directly or indirectly fluidly connected to a manifold plenum extending along the row of exhaust valve receiving ports of the at least two cylinders.
  • a cylinder head housing according to the invention is therefore characterized, among other things, by a relatively large number of relatively small-sized cooling ducts (in particular the roof and manifold network ducts), as a result of which the (wall) surface that comes into contact with a coolant intended to flow through the cooling ducts , can be significantly increased compared to conventional cylinder head housings. As a result, a correspondingly high heat transfer from the cylinder head housing to the coolant can be achieved. Furthermore, this makes it possible to circulate an overall reduced volume flow of the coolant through the cooling channels without the cooling capacity being reduced as a result.
  • a reduced volume flow of the coolant can thus lead to a reduced delivery rate for a working machine provided for pumping the coolant (pump with the preferred use of a coolant or compressor with a likewise conceivable use of a coolant gas as coolant), which has a positive effect on both the costs and that Weight of the working machine and thus of such a working machine comprehensive internal combustion engine can affect.
  • the relatively low coolant volume flow that can be achieved according to the invention can also have a positive effect on the weight and also the dimensions of a cylinder head housing according to the invention. This applies not only because of a correspondingly reduced weight of the coolant, which is particularly relevant when a coolant is used, but also because of the improved compared to a conventional cylinder head housing whose cooling jacket is not divided into a large number of relatively small-sized cooling channels according to the invention Structural strength/stiffness, which arises as a result of the overall smaller cooling channel volume and the stabilizing "partitions" that are formed between the individual cooling channels.
  • An internal combustion engine according to the invention is characterized in that it comprises a cylinder head housing according to the invention.
  • the cylinder head housing is part of a cylinder head of the internal combustion engine, with corresponding functional components (fuel injectors, spark plugs and exhaust valves, furthermore intake valves and possibly one or more camshafts and other functional components) then being accommodated at least in the receiving openings formed by the cylinder head housing.
  • corresponding functional components fuel injectors, spark plugs and exhaust valves, furthermore intake valves and possibly one or more camshafts and other functional components
  • Due to the configuration of an internal combustion engine according to the invention as a reciprocating piston internal combustion engine it also comprises at least one cylinder housing with the cylinders formed therein and a piston arranged movably in each of the cylinders.
  • a reverse flow direction is also possible.
  • the flow cross sections of the cooling channels are designed as small as possible.
  • the mean flow cross-section (i.e. averaged over their longitudinal courses) of (all) roof net ducts (each) is smaller than, in particular less than half as large as the mean flow cross-section of both the roof distribution duct and the injector cooling ducts as well as the roof collecting ducts.
  • the smallest flow cross section of (all) roof net ducts is (in each case) smaller than the smallest flow cross section of both the roof distribution duct, the injector cooling ducts and the roof collection ducts.
  • the mean flow cross section (i.e. averaged over their longitudinal courses) of the manifold network ducts is smaller than the mean flow cross section of both the manifold distribution duct and the manifold collection duct and/or the smallest flow cross section of the manifold mesh ducts is smaller than the smallest flow area of both the manifold runner duct and the manifold plenum.
  • the (smallest) flow cross section of the cooling ducts and in particular that of the roof mesh ducts and/or the manifold mesh ducts is ⁇ 1 mm 2 .
  • This can particularly preferably be between 2 mm 2 and 100 mm 2 , in particular between 4 mm 2 and 25 mm 2 .
  • a cylinder head housing according to the invention can advantageously be produced by means of an additive manufacturing process or by casting using a lost (i.e. not reusable) core that forms at least the cooling ducts, because these manufacturing processes are advantageous enable the integration of cavities that are completely closed at least in sections and therefore not accessible from the outside and of relatively small dimensions in a cylinder head housing to be produced.
  • a soluble and in particular water-soluble base material for example a salt
  • the basic material can be flushed out essentially completely, at least from the cavities provided as cooling channels. This is particularly true when compared to a non-soluble base material such as sand, which is regularly used for casting metal structures and which can be rinsed out, but does not dissolve in the rinsing liquid.
  • a casting core according to the invention which is provided for use in a method according to the invention for producing a cylinder housing according to the invention, comprises casting core sections which are designed as a negative mold of the cooling channels of a cylinder housing according to the invention.
  • Such a casting core according to the invention can advantageously be produced by means of casting, for which purpose use of a sand mold can advantageously be provided. This applies in particular if the use of a soluble base material and in particular a salt as base material is provided for the design of the casting core.
  • Structural measures can be provided to stabilize a casting core according to the invention, which can be characterized by a relatively large number of casting core sections that are relatively small in cross section and at the same time long and therefore have a relatively sensitive structure.
  • a support structure e.g., made of metal wires, can be integrated into the casting core, with this support structure being able to remain in a cylinder head housing formed using such a casting core, i.e. being integrated into it.
  • a cylinder head housing according to the invention can be optimized by various measures with regard to achieving the most advantageous possible cooling effect, which is achieved in particular by the most advantageous possible arrangement or the most advantageous possible course of the cooling channels.
  • the roof mesh ducts coming out of the individual injector cooling ducts are divided into one or more around the longitudinal axis of the respective Injector cooling duct pass over at least partially circumferential roof ring ducts, which open into the roof collecting ducts.
  • the manifold network ducts can be at least partially fluidly connected to one or more manifold annular ducts that at least partially and preferably completely encircle one or more, preferably all, of the exhaust gas ducts, which in turn are fluidly connected to the manifold collection duct.
  • the manifold annular ducts can be arranged as close as possible to the transitions between the cylinders and the exhaust gas ducts and consequently in the vicinity of valve seats provided for the exhaust valves, as a result of which advantageous cooling for these valve seats and the exhaust valves interacting with them can be realized in particular.
  • the manifold distribution duct and the manifold collecting duct are arranged on different sides with respect to a row formed by the exhaust gas ducts. In this way, in particular, the most advantageous possible cooling can be realized for the section of a cylinder head housing according to the invention that integrates the exhaust gas ducts.
  • a longitudinal axial end of the roof distribution duct merges into a roof inflow or outflow duct and/or a longitudinal axial end of the roof collecting ducts merges into a roof outflow or inflow duct.
  • This can result in an advantageous position of the roof inflow channel/channels and/or the roof outflow channel/channels, the connection between the remaining (roof) cooling channels of the cylinder head housing and other cooling channels and/or coolant lines
  • Internal combustion engine according to the invention and / or an internal combustion engine according to the invention can be achieved.
  • a manifold inflow duct merges into the manifold distribution duct in a section of the manifold distribution duct adjacent to the exhaust gas outlet duct and/or a manifold in a section of the manifold collecting duct adjacent to the exhaust gas outlet duct -Outflow duct exits from the elbow-collecting duct.
  • a manifold inflow duct merges into the manifold distribution duct in a section of the manifold distribution duct adjacent to the exhaust gas outlet duct and/or a manifold in a section of the manifold collecting duct adjacent to the exhaust gas outlet duct -Outflow duct exits from the elbow-collecting duct.
  • a further improvement of a cylinder head housing according to the invention with regard to the cooling effect that can be achieved for this can be realized by means of an exhaust gas outlet cooling channel which (directly) connects the manifold distribution channel and the manifold collecting channel and preferably completely encircles the exhaust gas outlet channel.
  • the roof distribution duct and/or the roof collection ducts and/or the manifold distribution duct and/or the manifold collection duct (each) is/are guided along the entire row of exhaust gas ducts/receiving openings, which in turn can have an advantageous effect in terms of achieving the best possible cooling effect for the cylinder head housing or for the cylinder head of an internal combustion engine according to the invention.
  • the invention also relates to a motor vehicle, in particular a wheel-based motor vehicle (preferably a car or truck), with an internal combustion engine according to the invention.
  • the internal combustion engine can be provided in particular for the (direct or indirect) provision of the drive power for the motor vehicle.
  • the 1 shows a motor vehicle according to the invention with an internal combustion engine 10, which is shown in FIGS 2 and 3 is shown in more detail.
  • the internal combustion engine 10 includes an internal combustion engine 12 which is supercharged by means of a compressor and which, during operation, can provide the drive power for driving the motor vehicle.
  • the compressor is part of an exhaust gas turbocharger (not visible).
  • the internal combustion engine 12 is in the present embodiment according to 3 designed as a four-cylinder (in-line) reciprocating engine and can be operated, for example, on the Otto or diesel principle.
  • cylinders 20 are formed in a cylinder crankcase 18, in which pistons 22 are arranged so as to be movable along the longitudinal axis.
  • a movement of the pistons 22 brought about by combustion processes is transmitted via connecting rods 24 to a crankshaft 26 rotatably mounted in the cylinder crankcase 18 .
  • This rotation of the crankshaft 26 can be driven wheels of a motor vehicle according to 1 be transmitted.
  • the internal combustion engine 12 or the internal combustion engine 10 comprising it can thus be used to generate the driving power for the motor vehicle.
  • a rotation of the crankshaft 26 is also transmitted by means of a timing drive 28, for example in the form of a toothed belt or chain drive, to a first camshaft 32 rotatably mounted in a cylinder head housing 30 of the internal combustion engine 12.
  • a rotational movement of the first camshaft 32 is transmitted to a second camshaft (not visible) by means of a gear mechanism 36 (with a gear ratio of one), for example.
  • the second camshaft can be an intake camshaft of the internal combustion engine 12, by means of which the intake valves (two per cylinder 20) are actuated are, controlled via the fresh gas in combustion chambers that are delimited by the cylinders 20, the pistons 22 and the cylinder head housing 30 can be introduced.
  • the first camshaft 32 can be an exhaust camshaft, by means of which exhaust valves 34 (two per cylinder 20) are actuated, via which exhaust gas, which was generated during combustion of fuel-fresh gas mixtures in the combustion chambers, is discharged in a controlled manner can be.
  • Fuel is supplied to fuel injectors 38 of the internal combustion engine 12 from a fuel tank (not shown) of the internal combustion engine 10 by means of a fuel pump.
  • the fuel injectors 38 By means of the fuel injectors 38, the fuel is metered into the combustion chambers under relatively high pressure and at predetermined times.
  • the fuel injectors 38 assigned to the individual combustion chambers can be arranged approximately centrally between the respectively associated gas exchange valves (inlet valves and outlet valves 34).
  • a spark plug to be arranged at this point.
  • the cylinder head housing 30 has accommodating openings (not shown in detail) for accommodating the fuel injectors 38 and/or the spark plugs and for accommodating the gas exchange valves.
  • Internal combustion engine 10 also includes a cooling system with at least two cooling circuits, the cooling system being responsible for cooling individual components of internal combustion engine 10, including internal combustion engine 12, an engine oil cooler (not shown) and an intercooler 14, and possibly also other components of the internal combustion engine 10 Motor vehicle, such as a transmission oil cooler (not shown) is used.
  • a cooling liquid which absorbs heat energy from the components to be cooled circulates in the cooling system. This thermal energy is cooled again in a main cooler 16 and, if necessary, temporarily in a heating heat exchanger (not shown) by heat transfer to ambient air, so that it can be recirculated to the components to be cooled.
  • heat is transferred from the cooling liquid to the ambient air exclusively with the aim of cooling the cooling liquid.
  • a heat transfer in the heating coil would, however, primarily with the aim of Tempering of ambient air, which is then to be supplied to an interior of the motor vehicle, take place.
  • both the cylinder crankcase 18 and the cylinder head housing 30 each form a cooling duct system 42 through which the coolant can be guided.
  • These two cooling channel systems 42 can according to the 3 be connected in series, so that the coolant pump 40 (cf. 2 )
  • the coolant conveyed by the internal combustion engine first flows through the cooling channel system 42 of the cylinder head housing 30 before it flows over into the cooling channel system 42 of the cylinder crankcase 18 .
  • the cylinder head housing 30 forms two fresh-gas ducts 44 for each of the combustion chambers or cylinders 20 of the cylinder crankcase 18, the openings of which into the combustion chambers can be closed or opened as required by means of an inlet valve in each case, the two fresh-gas ducts 44 assigned to each combustion chamber still being integral in an initial section, ie as a single channel.
  • These integrally formed initial sections directly adjoin an intake manifold, which represents a section of a fresh-gas line of the internal combustion engine.
  • the cylinder head housing 30 also forms two exhaust gas ducts 46 for each of the combustion chambers, it being possible for the transitions of the exhaust gas ducts 46 into the combustion chambers to be closed or opened as required by means of an outlet valve 34 in each case.
  • the exhaust gas ducts 46 routed separately in a first section merge into a collecting section 48 running approximately in the longitudinal direction of the cylinder head housing 30 , from which an exhaust gas outlet duct 50 branches off approximately centrally with respect to the longitudinal direction of the cylinder head housing 30 .
  • the cooling duct system 42 of the cylinder head housing 30 includes a roof distributor duct 52, which is offset somewhat from the center, above the combustion chambers and is arranged to run in the longitudinal direction of the cylinder head housing 30.
  • a roof distributor duct 52 which is offset somewhat from the center, above the combustion chambers and is arranged to run in the longitudinal direction of the cylinder head housing 30.
  • One (longitudinally axial) end of the roof distribution duct 52 merges into a roof inflow duct 54 via the roof distribution duct 52 the coolant can be supplied.
  • the other (longitudinally axial) end of the roof distribution channel 52 is closed or it ends as a "dead end" within the cylinder head housing 30.
  • a plurality of roof net ducts 58 extend in different radial directions with respect to the longitudinal axes of the injector receiving openings and also along these longitudinal axes (in the direction of increasing proximity to the combustion chambers), which in terms of their flow cross sections are of comparatively small dimensions and which in each case, ie for all of the roof network ducts 58 emanating from one of the injector cooling ducts 56, merge into a roof annular duct 60 running around the entire circumference around the respective injector receiving opening.
  • the four roof annular ducts 60 in turn merge into three roof header ducts 62, two of which are arranged on one side and the third on the other side with respect to the row defined by the injector receiving openings and which also extend along the longitudinal direction of the cylinder head housing 30 and thus extend approximately parallel to the roof plenum 52.
  • the coolant contained therein can be discharged via one of the (longitudinally axial) ends of the roof collecting channels 62, which in each case merges into a roof outflow channel 74.
  • the two roof collecting ducts 62 arranged on the same side with respect to the row defined by the injector receiving openings merge into a common roof outflow duct 74 .
  • Those longitudinal axial ends of the roof collecting ducts 62 that do not merge into a roof outflow duct 74 in turn end in the cylinder head housing 30.
  • the cooling duct system 42 of the cylinder head housing 30 also includes a manifold distribution duct 64 with a relatively large surface area, which extends along the row of exhaust valve receiving openings and therefore primarily in the longitudinal direction of the cylinder head housing 30, with a manifold annular duct 80 each separate exhaust gas duct 46, with the manifold annular ducts 80 being arranged as close as possible to the ends of the exhaust gas ducts 46 that are located proximally with respect to the cylinder 20 and thereby running around the entire circumference of the respective exhaust gas ducts 46 (cf. also 7 ).
  • the manifold annular ducts 80 of the two exhaust gas ducts 46 each assigned to one cylinder 20 merge into one another in the region of a respective circumferential section.
  • a manifold inflow duct 70 opens into the manifold distribution duct 64 approximately in the middle and thus in a section adjoining the exhaust gas outlet duct 50 .
  • Coolant can be supplied to the manifold distribution duct 64 via the manifold inflow duct 70 .
  • This cooling liquid then distributes in the manifold runner passage 64 and then overflows into the plurality of manifold mesh passages 66 .
  • Coolant that has flowed through the manifold network ducts 66 collects in the manifold collection duct 68 and can flow from it via a manifold outflow duct 72, which also exits approximately centrally and thus in a section adjoining the exhaust gas outlet duct 50 from the manifold collection duct 68 be taken away.
  • the cooling duct system 42 of the cylinder head housing 30 also includes an annular exhaust gas outlet cooling duct 78, which in the area of the manifold inflow duct 70 and the manifold outflow duct 72 connects the manifold distribution duct 64 and the manifold collecting duct 68 to one another and in the process runs in a ring around the exhaust gas outlet duct 50.
  • the design of the roof cooling ducts (52, 54, 56, 58, 60, 62 and 74) on the one hand and the manifold cooling ducts (64, 66, 68, 70, 72, 78 and 80) on the other hand, each with an inflow duct (54; 70) and in each case at least one outflow channel (74; 72) allows these parallel in a cooling circuit of a cooling system of an internal combustion engine according to, for example 2 to be integrated so that cooling liquid that flows through this cooling circuit as part of a circulation cycle either through the roof cooling ducts (52, 54, 56, 58, 60, 62 and 74) or the manifold cooling ducts (64, 66, 68, 70 , 72, 78 and 80).
  • roof cooling channels 52, 54, 56, 58, 60, 62 and 74
  • manifold cooling channels 64, 66, 68, 70, 72, 78 and 80
  • the roof cooling channels 52, 54, 56, 58, 60, 62 and 74
  • manifold cooling channels 64, 66, 68, 70, 72, 78 and 80
  • the 6 and 7 show two casting cores 76, which are part of a method for manufacturing a cylinder head housing 30 according to the 4 and 5 can be produced by casting from, for example, a light metal alloy.
  • Two separate casting cores 76 are shown, which, however, can also be connected to one another or formed in one piece.
  • the casting cores can also be connected or formed in one piece with other casting cores that are used to form the remaining openings and cavities (in particular injector receiving openings, outlet valve receiving openings, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft ein Zylinderkopfgehäuse für einen Verbrennungsmotor, ein Verfahren zur Herstellung eines solchen Zylinderkopfgehäuses sowie einen Gießkern zur Verwendung in einem solchen Verfahren. Die Erfindung betrifft weiterhin einen Verbrennungsmotor mit einem solchen Zylinderkopfgehäuse sowie ein Kraftfahrzeug mit einem solchen Verbrennungsmotor.
  • Brennkraftmaschinen werden zumeist mittels einer Kühlflüssigkeit gekühlt, die, gefördert durch mindestens eine Kühlmittelpumpe, in einem Kühlsystem der Brennkraftmaschine zirkuliert. Das Kühlsystem umfasst dabei Kühlkanäle, die von einem Zylinder(kurbel)gehäuse sowie einem Zylinderkopfgehäuse eines Verbrennungsmotors der Brennkraftmaschine ausgebildet sind. Durch die zirkulierende Kühlflüssigkeit kann Wärmeenergie von dem Verbrennungsmotor und auch anderen Komponenten der Brennkraftmaschine zu mindestens einem Umgebungswärmetauscher abgeführt werden, in dem die Wärmeenergie dann an die Umgebungsluft abgegeben wird.
  • Die DE 10 2007 031 350 A1 offenbart ein mehrteiliges Zylinderkopfgehäuse für einen mehrzylindrigen Verbrennungsmotor einer Brennkraftmaschine, wobei das Zylinderkopfgehäuse für jeden der Zylinder des Verbrennungsmotors eine Aufnahmeöffnung für eine Zündkerze sowie insgesamt vier Aufnahmeöffnungen für jeweils zwei Einlass- und Auslassventile ausbildet. Weiterhin bildet das Zylinderkopfgehäuse Kühlkanäle, die für eine Durchströmung mittels einer Kühlflüssigkeit vorgesehen sind, aus, wobei die Kühlkanäle zwei Verteilerkanäle umfassen, die beidseitig der Reihe der den einzelnen Zylindern zugeordneten Aufnahmeöffnungen angeordnet sind und die sich in Längsrichtung des Zylinderkopfgehäuses erstrecken. Von diesen Verteilerkanälen erstreckt sich jeweils ein Kühlkanal, von denen einer ringförmig um die dazugehörige Zündkerzen-Aufnahmeöffnung geführt ist. Ein solches Zylinderkopfgehäuse ist hinsichtlich der mittels einer Durchströmung der Kühlkanäle erzielbaren Kühlwirkung verbesserungsfähig.
  • Aus der DE 10 2010 036 392 A1 ist ein Zylinderkopfgehäuse mit integrierten Kühlkanälen bekannt, wobei die Kühlkanäle einen Kühlmantel ausbilden, der Aufnahmeöffnungen für Zündkerzen sowie Gaswechselventile, die einzelnen Zylindern eines das Zylinderkopfgehäuse umfassenden Verbrennungsmotors zugeordnet sind, weitgehend vollständig umgibt. Ein dazu vergleichbares Zylinderkopfgehäuse ist weiterhin aus der EP 1 972 772 A2 bekannt. Ein solches Zylinderkopfgehäuse kann sich durch eine vergleichsweise gute Kühlwirkung mittels eines den Kühlmantel durchströmenden Kühlmittels auszeichnen, ist jedoch nur aufwändig herstellbar und/oder weist eine durch das vergleichsweise große Volumen des Kühlmantels erheblich beeinträchtigte strukturelle Festigkeit auf.
  • Zylinderkopfgehäuse mit darin ausgebildeten Kühlkanälen in unterschiedlichen Ausgestaltungsformen sind zudem in der DE 10 2009 019 327 A1 , der JP 2003-035197 A , der CN 105 822 451 A , der JP 2002-256966 A und der US 8 939 116 B2 offenbart.
  • Der Erfindung lag die Aufgabe zugrunde, ein Kühlkanäle integrierendes Zylinderkopfgehäuse für einen Verbrennungsmotor hinsichtlich einer möglichst vorteilhaften Kühlwirkung bei möglichst kompakten Abmessungen zu optimieren.
  • Diese Aufgabe wird mittels eines Zylinderkopfgehäuses gemäß dem Patentanspruch 1 gelöst. Ein Verfahren zur Herstellung eines solchen Zylinderkopfgehäuses ist Gegenstand des Patentanspruchs 11 und ein Gießkern zur Verwendung in einem solchen Verfahren ist Gegenstand des Patentanspruchs 13. Vorteilhafte Ausgestaltungsformen des erfindungsgemäßen Zylinderkopfgehäuses und des erfindungsgemäßen Gießkerns sowie bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens sind Gegenstände der weiteren Patentansprüche und/oder ergeben sich aus der nachfolgenden Beschreibung der Erfindung.
  • Erfindungsgemäß ist ein vorzugsweise einstückig ausgebildetes Zylinderkopfgehäuse für einen (Hubkolben-)Verbrennungsmotor vorgesehen, wobei der Verbrennungsmotor mindestens zwei in Reihe angeordnete Zylinder ausbildet. Das Zylinderkopfgehäuse umfasst für jeden der Zylinder Aufnahmeöffnungen, die zumindest für die Aufnahme jeweils eines Auslassventils, nachfolgend abgekürzt als Auslassventil-Aufnahmeöffnung bezeichnet, vorgesehen sind. Vorzugsweise können auch Aufnahmeöffnungen für jeweils einen Kraftstoffinjektor oder eine Zündkerze, die den einzelnen Zylindern des Verbrennungsmotors zugeordnet sind, vorgesehen sein. Diese werden nachfolgend abgekürzt als Injektor-Aufnahmeöffnung bezeichnet. Das Zylinderkopfgehäuse umfasst weiterhin von den Auslassventil-Aufnahmeöffnungen ausgehende (und in das Zylinderkopfgehäuse integrierte) Abgaskanäle, die in einem Abgasauslasskanal zusammengeführt sind, sowie (integrierte) Kühlkanäle, die für eine Durchströmung mittels eines Kühlmittels vorgesehen sind. Gekennzeichnet ist ein solches Zylinderkopfgehäuse erfindungsgemäß dadurch, dass die Kühlkanäle einen sich entlang der Reihe der Zylinder erstreckenden Dach-Verteilerkanal umfassen, der mit jeweils einem für eine Anordnung (vorzugsweise zentral) oberhalb jedes der mindestens zwei Zylinder vorgesehenen, vorzugsweise ringförmigen (und insbesondere jeweils eine Injektor-Aufnahmeöffnung ringförmig umgebenden) Injektor-Kühlkanal fluidleitend verbunden ist, wobei die Injektor-Kühlkanäle jeweils mit einer Mehrzahl von sich in unterschiedlichen radialen Richtungen bezüglich einer Längsachse der jeweiligen Injektor-Kühlkanäle (wobei diese Längsachse vorzugsweise der Längsachse der jeweiligen Injektor-Aufnahmeöffnung und/oder des dazugehörigen Zylinders des Verbrennungsmotors entspricht oder zu dieser/diesen zumindest parallel verläuft) erstreckenden Dach-Netzkanälen fluidleitend verbunden sind, die direkt oder indirekt mit mindestens zwei sich entlang der Reihe der Zylinder erstreckenden Dach-Sammelkanälen fluidleitend verbunden sind, die auf unterschiedlichen Seiten bezüglich der durch die Injektor-Kühlkanäle definierten Reihe angeordnet sind. Die Dach-Netzkanäle können sich vorzugsweise auch entlang der Längsachse des jeweiligen Injektor-Kühlkanals erstrecken. Ergänzend oder alternativ ist erfindungsgemäß vorgesehen, dass die Kühlkanäle einen Krümmer-Verteilerkanal umfassen, der sich entlang der Reihe der Auslassventil-Aufnahmeöffnungen der mindestens zwei Zylinder erstreckt, wobei der Krümmer-Verteilerkanal mit einer Mehrzahl von entlang der (aller) Abgaskanäle verlaufenden Krümmer-Netzkanäle fluidleitend verbunden ist, die direkt oder indirekt mit einem Krümmer-Sammelkanal fluidleitend verbunden sind, der sich entlang der Reihe der Auslassventil-Aufnahmeöffnungen der mindestens zwei Zylinder erstreckt.
  • Ein erfindungsgemäßes Zylinderkopfgehäuse zeichnet sich demnach unter anderem durch eine relativ große Anzahl an relativ klein dimensionierten Kühlkanälen (insbesondere den Dach- und Krümmer-Netzkanälen) aus, wodurch die (Wand-)Fläche, die mit einem zur Durchströmung der Kühlkanäle vorgesehenen Kühlmittel in Kontakt kommt, im Vergleich zu konventionellen Zylinderkopfgehäusen deutlich erhöht werden kann. Dadurch kann ein entsprechend hoher Wärmeübergang von dem Zylinderkopfgehäuse auf das Kühlmittel erreicht werden. Weiterhin wird dadurch ermöglicht, einen insgesamt verringerten Volumenstrom des Kühlmittels durch die Kühlkanäle zirkulieren zu lassen, ohne dass dadurch die Kühlleistung reduziert würde. Ein verringerter Volumenstrom des Kühlmittels kann so zu einer verringerten Förderleistung für eine zur Förderung des Kühlmittels vorgesehene Arbeitsmaschine (Pumpe bei der bevorzugten Verwendung einer Kühlflüssigkeit oder Verdichter bei einer ebenfalls denkbaren Verwendung eines Kühlgases als Kühlmittel) führen, was sich positiv auf sowohl die Kosten als auch das Gewicht der Arbeitsmaschine und damit eines eine solche Arbeitsmaschine umfassenden Verbrennungsmotors auswirken kann. Gleiches gilt für eine einen solchen Verbrennungsmotor umfassende Brennkraftmaschine. Sofern, wie üblich, bei einem solchen Verbrennungsmotor beziehungsweise bei einer solchen Brennkraftmaschine die zur Förderung des Kühlmittels vorgesehene Arbeitsmaschine durch den Verbrennungsmotor direkt angetrieben wird, kann die erfindungsgemäß erzielbare verringerte Förderleistung zu einer Reduzierung des Kraftstoffverbrauchs des Verbrennungsmotors führen. Der erfindungsgemäß erzielbare relativ geringe Volumenstrom des Kühlmittels kann sich zudem positiv auf das Gewicht und auch die Abmessungen eines erfindungsgemäßen Zylinderkopfgehäuses auswirken. Dies gilt nicht nur wegen eines entsprechend verringerten Eigengewichts des Kühlmittels, was insbesondere bei der bevorzugten Verwendung einer Kühlflüssigkeit relevant ist, sondern auch wegen der im Vergleich zu einem konventionellen Zylinderkopfgehäuse, dessen Kühlmantel nicht erfindungsgemäß in eine Vielzahl von relativ klein dimensionierten Kühlkanälen unterteilten ist, verbesserten strukturellen Festigkeit/Steifigkeit, die sich infolge des insgesamt kleineren Kühlkanalvolumens sowie der stabilisierend wirkenden "Trennwände", die zwischen den einzelnen Kühlkanälen ausgebildet sind, einstellt.
  • Ein erfindungsgemäßer Verbrennungsmotor ist dadurch gekennzeichnet, dass dieser ein erfindungsgemäßes Zylinderkopfgehäuse umfasst. Das Zylinderkopfgehäuse ist dabei Bestandteil eines Zylinderkopfs des Verbrennungsmotors, wobei dann zumindest in den von dem Zylinderkopfgehäuse ausgebildeten Aufnahmeöffnungen entsprechende Funktionskomponenten (Kraftstoffinjektoren, Zündkerzen und Auslassventile, weiterhin Einlassventile und gegebenenfalls eine oder mehrere Nockenwellen sowie andere Funktionskomponenten) aufgenommen sind. Aufgrund der Ausgestaltung eines erfindungsgemäßen Verbrennungsmotors als Hubkolben-Verbrennungsmotor umfasst dieser weiterhin noch zumindest ein Zylindergehäuse mit den darin ausgebildeten Zylindern und jeweils einem beweglich in den Zylindern angeordneten Kolben.
  • Vorzugsweise kann vorgesehen sein, dass ein erfindungsgemäßes Zylinderkopfgehäuse derart in ein Kühlsystem eines erfindungsgemäßen Verbrennungsmotors integriert wird, dass ein das Kühlsystem durchströmendes Kühlmittel zuerst den Dach-Verteilerkanal und erst später die Dach-Sammelkanäle durchströmt. Möglichst ist aber auch eine umgekehrte Durchströmungsrichtung. Gleiches gilt für die Durchströmung des Krümmer-Verteilerkanals im Vergleich zu dem Krümmer-Sammelkanal. Vorteilhaft kann sein, wenn die unter Berücksichtigung einer vorgesehenen Betriebsausrichtung eines erfindungsgemäßen Zylinderkopfs beziehungsweise eines diesen umfassenden Verbrennungsmotors tiefer gelegenen Kühlkanäle vor den höher gelegenen Kühlkanälen durchströmt werden, um ein Abführen von Gasblasen in einer als Kühlmittel genutzten Kühlflüssigkeit zu verbessern.
  • Um den durch diese Ausgestaltung eines erfindungsgemäßen Zylindergehäuses erzielbaren Vorteil möglichst optimal auszunutzen sollte vorzugsweise vorgesehen sein, dass die Strömungsquerschnitte der Kühlkanäle möglichst klein ausgebildet sind. Insbesondere kann dabei vorgesehen sein, dass der mittlere (d.h. über deren Längsverläufe gemittelte) Strömungsquerschnitt der (aller) Dach-Netzkanäle (jeweils) kleiner als, insbesondere weniger als halb so groß wie der mittlere Strömungsquerschnitt sowohl des Dach-Verteilerkanals, der Injektor-Kühlkanäle als auch der Dach-Sammelkanäle ist. Auch kann vorgesehen sein, dass der kleinste Strömungsquerschnitt der (aller) Dach-Netzkanäle (jeweils) kleiner als der kleinste Strömungsquerschnitt sowohl des Dach-Verteilerkanals, der Injektor-Kühlkanäle als auch der Dach-Sammelkanäle ist. Hinsichtlich der Krümmer-Netzkanäle kann in entsprechender Weise vorgesehen sein, dass der mittlere (d.h. über deren Längsverläufe gemittelte) Strömungsquerschnitt der Krümmer-Netzkanäle kleiner als der mittlere Strömungsquerschnitt sowohl des Krümmer-Verteilerkanals als auch des Krümmer-Sammelkanals ist und/oder der kleinste Strömungsquerschnitt der Krümmer-Netzkanäle kleiner als der kleinste Strömungsquerschnitt sowohl des Krümmer-Verteilerkanals als auch des Krümmer-Sammelkanals ist.
  • Eine zu kleine Dimensionierung der Strömungsquerschnitte der Kühlkanäle sollte gleichzeitig jedoch vermieden werden, weil sich dies hinsichtlich einer Erhöhung des Strömungswiderstands für das Kühlmittel negativ auswirken kann, wodurch zumindest der erzielbare Vorteil einer vergleichsweise geringen Förderleistung für das Kühlmittel kompensiert oder überkompensiert werden könnte. Vorzugsweise sollte daher vorgesehen sein, dass der (kleinste) Strömungsquerschnitt der Kühlkanäle und insbesondere derjenige der Dach-Netzkanäle und/oder der Krümmer-Netzkanäle ≥ 1 mm2 beträgt. Besonders bevorzugt kann dieser zwischen 2 mm2 und 100 mm2, insbesondere zwischen 4 mm2 und 25 mm2, betragen.
  • Eine Herstellung eines erfindungsgemäßen Zylinderkopfgehäuses, zumindest jedoch des die Kühlkanäle umfassenden Abschnitts davon, kann in vorteilhafter Weise mittels eines generativen Fertigungsverfahrens oder durch Gießen unter Verwendung eines zumindest die Kühlkanäle ausbildenden, verlorenen (d.h. nicht mehrfach nutzbaren) Kerns erfolgen, weil diese Fertigungsverfahren in vorteilhafter Weise die Integration von zumindest abschnittsweise vollumfänglich geschlossenen und damit nicht von außen zugänglichen sowie von relativ klein dimensionierten Hohlräumen in einem herzustellenden Zylinderkopfgehäuse ermöglichen.
  • Bei einer solchen Herstellung eines erfindungsgemäßen Zylinderkopfgehäuses oder zumindest des die Kühlkanäle umfassenden Abschnitts davon mittels Gießens unter Verwendung eines verlorenen Kerns kann vorzugsweise vorgesehen sein, dass für den verlorenen Kern ein lösliches und insbesondere wasserlösliches Grundmaterial, beispielsweise ein Salz, verwendet wird, weil dadurch auf relativ einfache Weise ein im Wesentlichen vollständiges Ausspülen des Grundmaterials nach der Herstellung des Zylinderkopfgehäuses zumindest aus den als Kühlkanäle vorgesehenen Hohlräumen ermöglicht wird. Dies gilt insbesondere im Vergleich zu einem nicht-löslichen Grundmaterial, wie beispielsweise Sand, der für ein Gießen von Metallstrukturen regelmäßig verwendet wird und der zwar ausspülbar ist, sich dabei aber nicht in der Spülflüssigkeit auflöst.
  • Ein erfindungsgemäßer Gießkern, der zur Verwendung in einem erfindungsgemäßen Verfahren zur Herstellung eines erfindungsgemäßen Zylindergehäuses vorgesehen ist, umfasst Gießkernabschnitte, die als Negativform der Kühlkanäle eines erfindungsgemäßen Zylindergehäuses ausgebildet sind. Eine Herstellung eines solchen erfindungsgemäßen Gießkerns kann in vorteilhafter Weise mittels Gießens erfolgen, wobei hierfür in vorteilhafter Weise eine Verwendung einer Sandform vorgesehen sein kann. Dies gilt insbesondere, sofern für die Ausgestaltung des Gießkerns eine Verwendung eines löslichen Grundmaterials und insbesondere eines Salzes als Grundmaterial vorgesehen ist.
  • Zur Stabilisierung eines erfindungsgemäßen Gießkerns, der durch relativ viele und im Querschnitt relativ klein sowie gleichzeitig lang dimensionierte Gießkernabschnitte und somit durch eine relativ empfindliche Struktur gekennzeichnet sein kann, können strukturelle Maßnahmen vorgesehen sein. Beispielsweise kann eine Stützstruktur, z.B. aus Metalldrähten, in den Gießkern integriert sein, wobei diese Stützstruktur in einem unter Verwendung eines solchen Gießkerns ausgebildeten Zylinderkopfgehäuse verbleiben kann, d.h. in dieses integriert wird.
  • Ein erfindungsgemäßes Zylinderkopfgehäuse lässt sich hinsichtlich der Erzielung einer möglichst vorteilhaften Kühlwirkung, die insbesondere durch eine möglichst vorteilhafte Anordnung beziehungsweise einen möglichst vorteilhaften Verlauf der Kühlkanäle erreicht wird, durch verschiedene Maßnahmen optimieren.
  • Hierzu kann insbesondere vorgesehen sein, dass die aus den einzelnen Injektor-Kühlkanälen abgehenden Dach-Netzkanäle in einen oder mehrere, um die Längsachse der jeweiligen Injektor-Kühlkanals zumindest teilweise umlaufende Dach-Ringkanäle übergehen, die in die Dach-Sammelkanäle münden. Dadurch kann insbesondere eine möglichst vorteilhafte Kühlung für die von dem Zylinderkopfgehäuse begrenzten Brennraumdächer eines erfindungsgemäßen Verbrennungsmotors erreicht werden.
  • Auch kann vorgesehen sein, dass die Krümmer-Netzkanäle zumindest teilweise mit einem oder mehreren um einen oder mehrere, vorzugsweise um alle der Abgaskanäle zumindest teilweise und vorzugsweise vollständig umlaufende Krümmer-Ringkanäle fluidleitend verbunden sind, die wiederum mit dem Krümmer-Sammelkanal fluidleitend verbunden sind. Dabei können die Krümmer-Ringkanäle insbesondere möglichst nah an den Übergängen zwischen den Zylindern und den Abgaskanälen und folglich in der Nähe von für die Auslassventile vorgesehenen Ventilsitzen angeordnet sein, wodurch insbesondere eine vorteilhafte Kühlung für diese Ventilsitze und die damit zusammenwirkenden Auslassventile realisiert werden kann.
  • Weiterhin kann vorgesehen sein, dass der Krümmer-Verteilerkanal und der Krümmer-Sammelkanal auf unterschiedlichen Seiten bezüglich einer durch die Abgaskanäle ausgebildeten Reihe angeordnet sind. Hierdurch kann insbesondere eine möglichst vorteilhafte Kühlung für den die Abgaskanäle integrierenden Abschnitt eines erfindungsgemäßen Zylinderkopfgehäuses realisiert werden.
  • Vorteilhafterweise kann auch vorgesehen sein, dass ein längsaxiales Ende des Dach-Verteilerkanals in einen Dach-Zu- oder Abströmkanal übergeht und/oder jeweils ein längsaxiales Ende der Dach-Sammelkanäle in einen Dach-Ab- oder Zuströmkanal übergeht. Dadurch kann sich eine vorteilhafte Lage des/der Dach-Zuströmkanals/-kanäle und/oder des/der Dach-Abströmkanals/-kanäle, der/die der Verbindung der übrigen (Dach-)Kühlkanäle des Zylinderkopfgehäuses mit anderen Kühlkanälen und/oder Kühlmittelleitungen eines erfindungsgemäßen Verbrennungsmotors und/oder einer erfindungsgemäßen Brennkraftmaschine dienen können, erreicht werden.
  • Demselben Zweck kann dienen, wenn, wie dies vorzugsweise vorgesehen ist, in einem an den Abgasauslasskanal angrenzenden Abschnitt des Krümmer-Verteilerkanals ein Krümmer-Zuströmkanal in den Krümmer-Verteilerkanal übergeht und/oder in einem an den Abgasauslasskanal angrenzenden Abschnitt des Krümmer-Sammelkanals ein Krümmer-Abströmkanal aus dem Krümmer-Sammelkanal abgeht. Sofern sowohl für einen Krümmer-Zuströmkanal als auch für einen Krümmer-Abströmkanal eine solche Integration in das Zylinderkopfgehäuse vorgesehen ist, kann weiterhin bevorzugt vorgesehen sein, dass diese bezüglich des Abgasauslasskanals auf unterschiedlichen Seiten und insbesondere radial (bezüglich einer Längsachse des Abgasauslasskanals) gegenüberliegend angeordnet sind.
  • Eine weitere Verbesserung eines erfindungsgemäßen Zylinderkopfgehäuses hinsichtlich der für dieses erzielbaren Kühlwirkung kann mittels eines den Krümmer-Verteilerkanal und den Krümmer-Sammelkanal (direkt) verbindenden und um den Abgasauslasskanal vorzugsweise vollständig umlaufenden Abgasauslasskühlkanals realisiert werden.
  • Weiterhin kann vorgesehen sein, dass der Dach-Verteilerkanal und/oder die Dach-Sammelkanäle und/oder der Krümmer-Verteilerkanal und/oder der Krümmer-Sammelkanal (jeweils) entlang der gesamten Reihe der Abgaskanäle/Aufnahmeöffnungen geführt ist/sind, was sich wiederum vorteilhaft hinsichtlich der Erzielung einer möglichst optimalen Kühlwirkung für das Zylinderkopfgehäuse beziehungsweise für den Zylinderkopf eines erfindungsgemäßen Verbrennungsmotors auswirken kann..
  • Die Erfindung betrifft auch ein Kraftfahrzeug, insbesondere ein radbasiertes Kraftfahrzeug (vorzugsweise PKW oder LKW), mit einem erfindungsgemäßen Verbrennungsmotor. Dabei kann der Verbrennungsmotor insbesondere zur (direkten oder indirekten) Bereitstellung der Antriebsleistung für das Kraftfahrzeug vorgesehen sein.
  • Die unbestimmten Artikel ("ein", "eine", "einer" und "eines"), insbesondere in den Patentansprüchen und in der die Patentansprüche allgemein erläuternden Beschreibung, sind als solche und nicht als Zahlwörter zu verstehen. Entsprechend damit konkretisierte Komponenten sind somit so zu verstehen, dass diese mindestens einmal vorhanden sind und mehrfach vorhanden sein können.
  • Die vorliegende Erfindung wird nachfolgend anhand von in den Zeichnungen dargestellten Ausgestaltungsbeispielen näher erläutert. In den Zeichnungen zeigt, teilweise in vereinfachter Darstellung:
  • Fig. 1:
    ein erfindungsgemäßes Kraftfahrzeug;
    Fig. 2:
    eine erfindungsgemäße Brennkraftmaschine;
    Fig. 3:
    den Verbrennungsmotor der Brennkraftmaschine gemäß der Fig. 2 in vereinfachter Darstellung;
    Fig. 4:
    ein erfindungsgemäßes Zylinderkopfgehäuse für beispielsweise einen Verbrennungsmotor gemäß der Fig. 3 in einer ersten Ansicht;
    Fig. 5:
    das Zylinderkopfgehäuse gemäß der Fig. 4 in einer zweiten Ansicht;
    Fig. 6:
    einen zur Ausbildung von Dach-Kühlkanälen des Zylinderkopfgehäuses gemäß den Fig. 5 und 6 vorgesehenen Gießkern und
    Fig. 7:
    einen zur Ausbildung von Krümmer-Kühlkanälen des Zylinderkopfgehäuses gemäß den Fig. 5 und 6 vorgesehenen Gießkern.
  • Die Fig. 1 zeigt ein erfindungsgemäßes Kraftfahrzeug mit einer Brennkraftmaschine 10, die in den Fig. 2 und 3 detaillierter dargestellt ist.
  • Die Brennkraftmaschine 10 umfasst einen mittels eines Verdichters aufgeladenen Verbrennungsmotor 12, der im Betrieb die Antriebsleistung für den Fahrbetrieb des Kraftfahrzeugs zur Verfügung stellen kann. Der Verdichter ist dabei Teil eines Abgasturboladers (nicht sichtbar). Der Verbrennungsmotor 12 ist im vorliegenden Ausführungsbeispiel gemäß der Fig. 3 als vierzylindriger (Reihen-)Hubkolbenmotor ausgebildet und kann beispielsweise nach dem Otto- oder Diesel-Prinzip betrieben werden. Dazu sind in einem Zylinderkurbelgehäuse 18 Zylinder 20 ausgebildet, in denen Kolben 22 längsaxial beweglich angeordnet sind. Eine durch Verbrennungsprozesse bewirkte Bewegung der Kolben 22 wird über Pleuel 24 auf eine in dem Zylinderkurbelgehäuse 18 drehbar gelagerte Kurbelwelle 26 übertragen. Diese Rotation der Kurbelwelle 26 kann auf angetriebene Räder eines Kraftfahrzeugs gemäß der Fig. 1 übertragen werden. Der Verbrennungsmotor 12 beziehungsweise die diesen umfassende Brennkraftmaschine 10 kann somit zur Erzeugung der Fahrantriebsleistung für das Kraftfahrzeug dienen.
  • Eine Rotation der Kurbelwelle 26 wird zudem mittels eines Steuertriebs 28, beispielsweise in Form eines Zahnriemen- oder Kettentriebs, auf eine in einem Zylinderkopfgehäuse 30 des Verbrennungsmotors 12 drehbar gelagerte erste Nockenwelle 32 übertragen. Mittels beispielsweise eines Zahnradgetriebes 36 (mit einer Übersetzung von eins) wird eine Drehbewegung der ersten Nockenwelle 32 auf eine zweite Nockenwelle (nicht sichtbar) übertragen. Bei der zweiten Nockenwelle kann es sich um eine Einlassnockenwelle des Verbrennungsmotors 12 handeln, mittels der Einlassventile (jeweils zwei je Zylinder 20) betätigt werden, über die Frischgas in Brennräume, die von den Zylindern 20, den Kolben 22 sowie dem Zylinderkopfgehäuse 30 begrenzt sind, gesteuert eingebracht werden kann. Dabei wird dieses Frischgas mit direkt in die Brennräume eingespritztem Kraftstoff verbrannt, um die durch die Rotation der Kurbelwelle 26 geführte Bewegung der Kolben 22 innerhalb der Zylinder 20 zu bewirken. Bei der ersten Nockenwelle 32 kann es sich dagegen um eine Auslassnockenwelle handeln, mittels der Auslassventile 34 (jeweils zwei je Zylinder 20) betätigt werden, über die Abgas, das bei einer Verbrennung von Kraftstoff-Frischgas-Gemischen in den Brennräumen erzeugt wurde, gesteuert abgeführt werden kann.
  • Mittels einer Kraftstoffpumpe wird Kraftstoffinjektoren 38 des Verbrennungsmotors 12 Kraftstoff aus einem Kraftstofftank (nicht dargestellt) der Brennkraftmaschine 10 zugeführt. Mittels der Kraftstoffinjektoren 38 wird der Kraftstoff unter relativ hohem Druck und zu vorgegebenen Zeitpunkten dosiert in die Brennräume eingebracht. Bei einer Ausgestaltung des Verbrennungsmotors 12 als Dieselmotor können die den einzelnen Brennräumen zugeordneten Kraftstoffinjektoren 38 in etwa zentral zwischen den jeweils dazugehörigen Gaswechselventilen (Einlassventile und Auslassventile 34) angeordnet sein. Bei einer Ausgestaltung des Verbrennungsmotors 12 als Ottomotor kann dagegen vorgesehen sein, dass an dieser Stelle eine Zündkerze angeordnet ist. In diesem Fall und bei einer direkt einspritzenden Ausgestaltung des Ottomotors kann dann für eine Integration von Kraftstoffinjektoren eine alternative Anordnung bezüglich der Brennräume gewählt sein. Zur Aufnahme der Kraftstoffinjektoren 38 und/oder der Zündkerzen sowie zur Aufnahme der Gaswechselventile weist das Zylinderkopfgehäuse 30 Aufnahmeöffnungen (nicht im Detail dargestellt) auf.
  • Die Brennkraftmaschine 10 umfasst weiterhin ein Kühlsystem mit mindestens zwei Kühlkreisen, wobei das Kühlsystem der Kühlung einzelner Komponenten der Brennkraftmaschine 10, unter anderem des Verbrennungsmotors 12, eines Motorölkühlers (nicht dargestellt) und eines Ladeluftkühlers 14, und gegebenenfalls auch weiterer Komponenten des die Brennkraftmaschine 10 integrierenden Kraftfahrzeugs, z.B. eines Getriebeölkühlers (nicht dargestellt), dient. In dem Kühlsystem zirkuliert infolge eines Betriebs der Kraftstoffpumpe eine Kühlflüssigkeit, die Wärmeenergie von den zu kühlenden Komponenten aufnimmt. Diese Wärmeenergie wird in einem Hauptkühler 16 sowie gegebenenfalls zeitweise in einem Heizungswärmetauscher (nicht dargestellt) durch einen Wärmeübergang auf Umgebungsluft wieder abgekühlt, so dass diese wieder zu den zu kühlenden Komponenten rezirkuliert werden kann. In dem Hauptkühler 16 erfolgt ein Wärmeübergang von der Kühlflüssigkeit auf die Umgebungsluft ausschließlich mit dem Ziel der Kühlung der Kühlflüssigkeit. Ein Wärmeübergang in dem Heizungswärmetauscher würde dagegen primär mit dem Ziel der Temperierung von Umgebungsluft, die anschließend einem Innenraum des Kraftfahrzeugs zugeführt werden soll, erfolgen.
  • Zur Kühlung des Verbrennungsmotors 12 bildet sowohl das Zylinderkurbelgehäuse 18 als auch das Zylinderkopfgehäuse 30 jeweils ein Kühlkanalsystem 42 aus, durch das die Kühlflüssigkeit geführt werden kann. Diese beiden Kühlkanalsysteme 42 können gemäß der Fig. 3 in Serie verschaltet sein, so dass die von einer Kühlmittelpumpe 40 (vgl. Fig. 2) der Brennkraftmaschine geförderte Kühlflüssigkeit zunächst das Kühlkanalsystem 42 des Zylinderkopfgehäuses 30 durchströmt, bevor diese in das Kühlkanalsystem 42 des Zylinderkurbelgehäuses 18 überströmt.
  • Die konkrete Ausgestaltung des in einem (erfindungsgemäßen) Zylinderkopfgehäuse 30 eines Verbrennungsmotors 12 gemäß den Fig. 2 und 3 ausgebildeten Kühlkanalsystems 42 ist in den Fig. 4 und 5 dargestellt. Dabei ist das Zylinderkopfgehäuse 30 selbst jeweils lediglich stark vereinfacht dargestellt, während die für das Verständnis der Erfindung relevanten Hohlräume, die von dem Zylinderkopfgehäuse 30 ausgebildet sind, im Detail dargestellt sind.
  • Demnach bildet das Zylinderkopfgehäuse 30 für jeden der Brennräume beziehungsweise Zylinder 20 des Zylinderkurbelgehäuses 18 zwei Frischgaskanäle 44, deren Mündungen in die Brennräume bedarfsweise mittels jeweils eines Einlassventils verschlossen oder freigegeben werden können, wobei die jeweils zwei einem Brennraum zugeordneten Frischgaskanäle 44 in einem Anfangsabschnitt noch integral, d.h. als ein einzelner Kanal, ausgebildet sind. Diese integral ausgebildeten Anfangsabschnitte schließen sich unmittelbar an ein Saugrohr, das einen Abschnitt eines Frischgasstrangs der Brennkraftmaschine darstellt, an.
  • Das Zylinderkopfgehäuse 30 bildet weiterhin für jeden der Brennräume zwei Abgaskanäle 46 aus, wobei die Übergänge der Abgaskanäle 46 in die Brennräume bedarfsweise mittels jeweils eines Auslassventils 34 verschlossen oder freigegeben werden können. Die in einem ersten Abschnitt separat geführten Abgaskanäle 46 gehen einen in etwa in Längsrichtung des Zylinderkopfgehäuses 30 verlaufenden Sammelabschnitt 48 über, von dem in etwa mittig bezüglich der Längsrichtung des Zylinderkopfgehäuses 30 ein Abgasauslasskanal 50 abgeht.
  • Das Kühlkanalsystem 42 des Zylinderkopfgehäuses 30 umfasst einen Dach-Verteilerkanal 52, der, etwas aus dem Zentrum versetzt, oberhalb der Brennräume und in Längsrichtung des Zylinderkopfgehäuses 30 verlaufend angeordnet ist. Dabei geht ein (längsaxiales) Ende des Dach-Verteilerkanals 52 in einen Dach-Zuströmkanal 54 über, über den dem Dach-Verteilerkanal 52 die Kühlflüssigkeit zugeführt werden kann. Das andere (längsaxiale) Ende des Dach-Verteilerkanals 52 ist dagegen geschlossen ausgebildet beziehungsweise dieses endet als "Sackgasse" innerhalb des Zylinderkopfgehäuses 30.
  • Von dem Dach-Verteilerkanal 52 gehen vier Injektor-Kühlkanäle 56 ab, von denen jeder eine der Injektor-Aufnahmeöffnungen, d.h. eine Aufnahmeöffnung, in der entweder ein Kraftstoffinjektor 38 oder eine Zündkerze angeordnet ist, ringförmig umgibt.
  • Aus jedem der Injektor-Kühlkanäle 56 gehen jeweils eine Mehrzahl von sich in unterschiedlichen radialen Richtungen bezüglich der Längsachsen der Injektor-Aufnahmeöffnungen und auch entlang dieser Längsachsen (in Richtung einer zunehmenden Annäherung an die Brennräume) erstreckenden Dach-Netzkanäle 58 ab, die hinsichtlich ihrer Strömungsquerschnitte vergleichsweise klein dimensioniert sind und die jeweils, d.h. für sämtliche der von einem der Injektor-Kühlkanäle 56 abgehenden Dach-Netzkanäle 58, in einen vollumfänglich ringförmig um die jeweilige Injektor-Aufnahmeöffnung umlaufenden Dach-Ringkanal 60 übergehen.
  • Die vier Dach-Ringkanäle 60 wiederum gehen in drei Dach-Sammelkanäle 62 über, von denen zwei auf einer und der dritte auf der anderen Seite bezüglich der durch die Injektor-Aufnahmeöffnungen definierten Reihe angeordnet sind und die sich ebenfalls entlang der Längsrichtung des Zylinderkopfgehäuses 30 und damit in etwa parallel zu dem Dach-Verteilerkanal 52 erstrecken. Über jeweils eines der (längsaxialen) Enden der Dach-Sammelkanäle 62, das jeweils in einen Dach-Abströmkanal 74 übergeht, kann die darin befindliche Kühlflüssigkeit abgeführt werden. Die zwei auf derselben Seite bezüglich der durch die Injektor-Aufnahmeöffnungen definierten Reihe angeordneten Dach-Sammelkanäle 62 gehen dabei in einen gemeinsamen Dach-Abströmkanal 74 über. Diejenigen längsaxialen Enden der Dach-Sammelkanäle 62, die nicht in einen Dach-Abströmkanal 74 übergehen, enden wiederum in dem Zylinderkopfgehäuse 30.
  • Das Kühlkanalsystem 42 des Zylinderkopfgehäuses 30 umfasst weiterhin einen relativ großflächig ausgebildeten Krümmer-Verteilerkanal 64, der sich entlang der Reihe der Auslassventil-Aufnahmeöffnungen und demnach primär in der Längsrichtung des Zylinderkopfgehäuses 30 erstreckt, wobei aus dem Krümmer-Verteilerkanal 64 jeweils ein Krümmer-Ringkanal 80 je separatem Abgaskanal 46 abgeht, wobei die Krümmer-Ringkanäle 80 möglichst nah an den bezüglich der Zylinder 20 proximal gelegenen Enden der Abgaskanäle 46 angeordnet sind und dabei um die jeweiligen Abgaskanäle 46 vollumfänglich umlaufen (vgl. auch Fig. 7). Die Krümmer-Ringkanäle 80 der zwei jeweils einem Zylinder 20 zugeordneten Abgaskanäle 46 gehen dabei im Bereich jeweils eines Umfangsabschnitts ineinander über. Von jedem der Krümmer-Ringkanäle 80 geht eine Mehrzahl von entlang der separat geführten Abgaskanäle 46 verlaufenden Krümmer-Netzkanälen 66 ab, die ebenfalls vergleichsweise klein dimensioniert sind und die direkt in einen Krümmer-Sammelkanal 68 übergehen, der sich ebenfalls entlang der Reihe der Auslassventil-Aufnahmeöffnungen und folglich primär in der Längsrichtung des Zylinderkopfgehäuses 30 erstreckt. Weiterhin sind zusätzliche Krümmer-Netzkanäle 66 vorgesehen, die, mit einem bogenförmigen Verlauf, den Krümmer-Verteilerkanal 64 mit dem Krümmer-Sammelkanal 68 direkt verbinden und dabei auf der von den Auslassventil-Aufnahmeöffnungen abgekehrten Seite des Sammelabschnitts 48 um den Sammelabschnitt 48 der Abgaskanäle 46 teilweise umlaufen.
  • In etwa mittig und damit in einem an den Abgasauslasskanal 50 angrenzenden Abschnitt mündet ein Krümmer-Zuströmkanal 70 in den Krümmer-Verteilerkanal 64. Über den Krümmer-Zuströmkanal 70 kann dem Krümmer-Verteilerkanal 64 Kühlflüssigkeit zugeführt werden. Diese Kühlflüssigkeit verteilt sich dann in dem Krümmer-Verteilerkanal 64 und strömt anschließend in die Vielzahl von Krümmer-Netzkanälen 66 über. Kühlflüssigkeit, die die Krümmer-Netzkanäle 66 durchströmt hat, sammelt sich in dem Krümmer-Sammelkanal 68 und kann von diesem über einen ebenfalls in etwa mittig und damit in einem an den Abgasauslasskanal 50 angrenzenden Abschnitt aus dem Krümmer-Sammelkanal 68 abgehenden Krümmer-Abströmkanal 72 abgeführt werden.
  • Das Kühlkanalsystem 42 des Zylinderkopfgehäuses 30 umfasst weiterhin einen ringförmigen Abgasauslasskühlkanal 78, der im Bereich des Krümmer-Zuströmkanals 70 und des Krümmer-Abströmkanals 72 den Krümmer-Verteilerkanal 64 und den Krümmer-Sammelkanal 68 miteinander verbindet und dabei um den Abgasauslasskanal 50 ringförmig umläuft.
  • Die Ausgestaltung der Dach-Kühlkanäle (52, 54, 56, 58, 60, 62 und 74) einerseits und der Krümmer-Kühlkanäle (64, 66, 68, 70, 72, 78 und 80) andererseits mit jeweils einem Zuströmkanal (54; 70) und jeweils mindestens einem Abströmkanal (74; 72) ermöglicht, diese parallel in einen Kühlkreis eines Kühlsystems einer Brennkraftmaschine gemäß beispielsweise der Fig. 2 zu integrieren, so dass Kühlflüssigkeit, die im Rahmen eines Kreislaufzyklus diesen Kühlkreis durchströmt, entweder durch die Dach-Kühlkanäle (52, 54, 56, 58, 60, 62 und 74) oder die Krümmer-Kühlkanäle (64, 66, 68, 70, 72, 78 und 80) geführt wird. Alternativ besteht jedoch auch die Möglichkeit, die Dach-Kühlkanäle (52, 54, 56, 58, 60, 62 und 74) und die Krümmer-Kühlkanäle (64, 66, 68, 70, 72, 78 und 80) in Reihe in den Kühlkreis zu integrieren, so dass die Kühlflüssigkeit zunächst die Dach-Kühlkanäle (52, 54, 56, 58, 60, 62 und 74) oder die Krümmer-Kühlkanäle (64, 66, 68, 70, 72, 78 und 80) durchströmt und erst anschließend durch die jeweils anderen Kühlkanäle (52 - 74, 78, 80) geführt wird.
  • Die Fig. 6 und 7 zeigen zwei Gießkerne 76, die im Rahmen eines Verfahrens zur Herstellung eines Zylinderkopfgehäuses 30 gemäß den Fig. 4 und 5 mittels Gießens aus beispielsweise einer Leichtmetalllegierung hergestellt werden können. Dabei sind zwei separate Gießkerne 76 dargestellt, die jedoch auch miteinander verbunden beziehungsweise einstückig ausgebildet sein können. Insbesondere können die Gießkerne auch verbunden oder einstückig mit weiteren Gießkernen, die zur Ausbildung der übrigen Öffnung und Hohlräume (insbesondere Injektor-Aufnahmeöffnungen, Auslassventil-Aufnahmeöffnungen, etc.) dienen, ausgebildet sein. In den Fig. 6 und 7 sind diejenigen Gießkernabschnitte, die bei der Herstellung eines entsprechenden Zylinderkopfgehäuses 30 zur Ausbildung der einzelnen Kühlkanäle (52 - 74, 78, 80) führen, mit denselben Bezugszeichen, die für diese Kühlkanäle (52 - 74, 78, 80) genutzt werden, jedoch jeweils ergänzt durch den Buchstaben a, gekennzeichnet.
  • BEZUGSZEICHENLISTE
  • 10
    Brennkraftmaschine
    12
    Verbrennungsmotor
    14
    Ladeluftkühler
    16
    Hauptkühler
    18
    Zylinderkurbelgehäuse
    20
    Zylinder
    22
    Kolben
    24
    Pleuel
    26
    Kurbelwelle
    28
    Steuertrieb
    30
    Zylinderkopfgehäuse
    32
    erste Nockenwelle
    34
    Auslassventil
    36
    Zahnradgetriebe
    38
    Kraftstoffinjektor
    40
    Kühlmittelpumpe
    42
    Kühlkanalsystem
    44
    Frischgaskanal
    46
    Abgaskanal
    48
    Sammelabschnitt der Abgaskanäle
    50
    Abgasauslasskanal
    52
    Dach-Verteilerkanal
    52a
    Gießkernabschnitt zur Ausbildung des Dach-Verteilerkanals
    54
    Dach-Zuströmkanal
    54a
    Gießkernabschnitt zur Ausbildung des Dach-Zuströmkanals
    56
    Injektor-Kühlkanal
    56a
    Gießkernabschnitt zur Ausbildung eines Injektor-Kühlkanals
    58
    Dach-Netzkanal
    58a
    Gießkernabschnitt zur Ausbildung eines Dach-Netzkanals
    60
    Dach-Ringkanal
    60a
    Gießkernabschnitt zur Ausbildung eines Dach-Ringkanal
    62
    Dach-Sammelkanal
    62a
    Gießkernabschnitt zur Ausbildung eines Dach-Sammelkanals
    64
    Krümmer-Verteilerkanal
    64a
    Gießkernabschnitt zur Ausbildung des Krümmer-Verteilerkanals
    66
    Krümmer-Netzkanal
    66a
    Gießkernabschnitt zur Ausbildung eines Krümmer-Netzkanals
    68
    Krümmer-Sammelkanal
    68a
    Gießkernabschnitt zur Ausbildung des Krümmer-Sammelkanals
    70
    Krümmer-Zuströmkanal
    70a
    Gießkernabschnitt zur Ausbildung des Krümmer-Zuströmkanals
    72
    Krümmer-Abströmkanal
    72a
    Gießkernabschnitt zur Ausbildung des Krümmer-Abströmkanals
    74
    Dach-Abströmkanal
    74a
    Gießkernabschnitt zur Ausbildung eines Dach-Abströmkanals
    76
    Gießkern
    78
    Abgasauslasskühlkanal
    78a
    Gießkernabschnitt zur Ausbildung des Abgasauslasskühlkanals
    80
    Krümmer-Ringkanal
    80a
    Gießkernabschnitt zur Ausbildung eines Krümmer-Ringkanals

Claims (13)

  1. Zylinderkopfgehäuse (30) für einen Verbrennungsmotor (12), der mindestens zwei in Reihe angeordnete Zylinder (20) ausbildet, mit Aufnahmeöffnungen für jeweils ein Auslassventil (34), die den einzelnen Zylindern (20) des Verbrennungsmotors (12) zugeordnet sind, mit sich von diesen Auslassventil-Aufnahmeöffnungen erstreckenden Abgaskanälen (46), die in einen Abgasauslasskanal (50) zusammengeführt sind, und mit Kühlkanälen (52 - 74, 78, 80), dadurch gekennzeichnet, dass die Kühlkanäle (52 - 74, 78, 80)
    - einen sich entlang der Reihe der Zylinder (20) erstreckenden Dach-Verteilerkanal (52) umfassen, der mit jeweils einem für eine Anordnung oberhalb jedes der mindestens zwei Zylinder (20) vorgesehenen Injektor-Kühlkanal (56) verbunden ist, wobei die Injektor-Kühlkanäle (56) jeweils mit einer Mehrzahl von sich in unterschiedlichen radialen Richtungen bezüglich einer Längsachse des jeweiligen Injektor-Kühlkanals (56) erstreckenden Dach-Netzkanälen (58) verbunden sind, die direkt oder indirekt mit mindestens zwei sich entlang der Reihe der Zylinder (20) erstreckenden Dach-Sammelkanälen (62) verbunden sind, die auf unterschiedlichen Seiten bezüglich der durch die Injektor-Kühlkanäle (56) definierten Reihe angeordnet sind und/oder
    - einen Krümmer-Verteilerkanal (64) umfassen, der sich entlang der Reihe der Auslassventil-Aufnahmeöffnungen der mindestens zwei Zylinder (20) erstreckt, wobei der Krümmer-Verteilerkanal (64) direkt oder indirekt mit einer Mehrzahl von entlang der Abgaskanäle (46) verlaufenden Krümmer-Netzkanälen (66) verbunden ist, die direkt oder indirekt mit einem Krümmer-Sammelkanal (68) verbunden sind, der sich entlang der Reihe der Auslassventil-Aufnahmeöffnungen der mindestens zwei Zylinder (20) erstreckt.
  2. Zylinderkopfgehäuse (30) gemäß Anspruch 1, gekennzeichnet durch Aufnahmeöffnungen für jeweils einen Kraftstoffinjektor (38) oder eine Zündkerze, die den einzelnen Zylindern (20) des Verbrennungsmotors (12) zugeordnet sind, wobei die Injektor-Kühlkanäle (56) diese Injektor-Aufnahmeöffnungen ringförmig umgeben.
  3. Zylinderkopfgehäuse (30) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass
    - der mittlere Strömungsquerschnitt der Dach-Netzkanäle (58) kleiner als der mittlere Strömungsquerschnitt sowohl des Dach-Verteilerkanals (52), der Injektor-Kühlkanäle (56) als auch der Dach-Sammelkanäle (62) ist und/oder der kleinste Strömungsquerschnitt der Dach-Netzkanäle (58) kleiner als der kleinste Strömungsquerschnitt sowohl des Dach-Verteilerkanals (52), der Injektor-Kühlkanäle (56) als auch der Dach-Sammelkanäle (62) ist und/oder
    - der mittlere Strömungsquerschnitt der Krümmer-Netzkanäle (66) kleiner als der mittlere Strömungsquerschnitt sowohl des Krümmer-Verteilerkanals (64) als auch des Krümmer-Sammelkanals (68) ist und/oder kleinste Strömungsquerschnitt der Krümmer-Netzkanäle (66) kleiner als der kleinste Strömungsquerschnitt sowohl des Krümmer-Verteilerkanals (64) als auch des Krümmer-Sammelkanals (68) ist.
  4. Zylinderkopfgehäuse (30) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aus den einzelnen Injektor-Kühlkanälen (56) abgehenden Dach-Netzkanäle (58) in einen oder mehrere um die Längsachse des jeweiligen Injektor-Kühlkanals (56) zumindest teilweise umlaufende Dach-Ringkanäle (60) übergehen, die in die Dach-Sammelkanäle (62) münden.
  5. Zylinderkopfgehäuse (30) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Krümmer-Netzkanäle (66) zumindest teilweise mit einem oder mehreren um einen oder mehrere der Abgaskanäle (46) zumindest teilweise umlaufenden Krümmer-Ringkanälen (80) verbunden sind, die mit dem Krümmer-Verteilerkanal (64) verbunden sind.
  6. Zylinderkopfgehäuse (30) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Krümmer-Verteilerkanal (64) und der Krümmer-Sammelkanal (68) auf unterschiedlichen Seiten bezüglich einer durch die Abgaskanäle (46) ausgebildeten Reihe angeordnet sind.
  7. Zylinderkopfgehäuse (30) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein längsaxiales Ende des Dach-Verteilerkanals (52) in einen Dach-Zu- oder Abströmkanal (54) übergeht und/oder jeweils ein längsaxiales Ende der Dach-Sammelkanäle (62) in einen Dach-Ab- oder Zuströmkanal (74) übergeht.
  8. Zylinderkopfgehäuse (30) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem an den Abgasauslasskanal (50) angrenzenden Abschnitt des Krümmer-Verteilerkanals (64) ein Krümmer-Zuströmkanal (70) in den Krümmer-Verteilerkanal (64) übergeht und/oder ein Krümmer-Abströmkanal (72) aus dem Krümmer-Sammelkanal (68) abgeht.
  9. Zylinderkopfgehäuse (30) gemäß einem der vorhergehenden Ansprüche, gekennzeichnet durch einen den Krümmer-Verteilerkanal (64) und den Krümmer-Sammelkanal (68) verbindenden und um den Abgasauslasskanal (50) umlaufenden Abgasauslasskühlkanal (78).
  10. Zylinderkopfgehäuse (30) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Dach-Verteilerkanal (52) und/oder die Dach-Sammelkanäle (62) und/oder der Krümmer-Verteilerkanal (64) und/oder der Krümmer-Sammelkanal (68) entlang der gesamten Reihe der Abgaskanäle (46) geführt ist/sind.
  11. Verfahren zur Herstellung eines Zylinderkopfgehäuses (30) gemäß einem der vorhergehenden Ansprüche, gekennzeichnet durch die Ausbildung mittels eines generativen Fertigungsverfahrens oder durch Gießen unter Verwendung eines zumindest die Kühlkanäle ausbildenden, verlorenen Gießkerns (76).
  12. Verfahren gemäß Anspruch 11, gekennzeichnet durch die Verwendung eines löslichen Grundmaterials für den Gießkern (76).
  13. Gießkern (76) zur Verwendung in einem Verfahren gemäß Anspruch 11 oder 12, gekennzeichnet durch Gießkernabschnitte (52a - 74a, 78a), die als Negativform der Kühlkanäle (52 - 74, 78) eines Zylindergehäuses (30) gemäß einem der Ansprüche 1 bis 8 ausgebildet sind.
EP18717361.2A 2017-04-28 2018-04-12 Zylinderkopfgehäuse, verfahren zur herstellung eines zylinderkopfgehäuses und giesskern Active EP3615783B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017109185.8A DE102017109185A1 (de) 2017-04-28 2017-04-28 Zylinderkopfgehäuse sowie Verfahren zur Herstellung eines Zylinderkopfgehäuses und Gießkern
PCT/EP2018/059387 WO2018197228A1 (de) 2017-04-28 2018-04-12 ZYLINDERKOPFGEHÄUSE, VERFAHREN ZUR HERSTELLUNG EINES ZYLINDERKOPFGEHÄUSES UND GIEßKERN

Publications (2)

Publication Number Publication Date
EP3615783A1 EP3615783A1 (de) 2020-03-04
EP3615783B1 true EP3615783B1 (de) 2022-01-12

Family

ID=61966014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18717361.2A Active EP3615783B1 (de) 2017-04-28 2018-04-12 Zylinderkopfgehäuse, verfahren zur herstellung eines zylinderkopfgehäuses und giesskern

Country Status (5)

Country Link
US (1) US11078865B2 (de)
EP (1) EP3615783B1 (de)
CN (1) CN110582630B (de)
DE (1) DE102017109185A1 (de)
WO (1) WO2018197228A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120046B4 (de) * 2018-08-17 2024-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Zylinderkopf für einen Verbrennungsmotor
WO2022061379A1 (en) * 2020-09-28 2022-03-31 Innio Jenbacher Gmbh & Co Og Cylinder head for an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939116B2 (en) * 2011-01-27 2015-01-27 Avl List Gmbh Liquid-cooled internal combustion engine

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682994B1 (fr) * 1991-10-25 1993-12-10 Renault Regie Nale Usines Circuit de refroidissement par liquide pour moteur a combustion interne.
JP2753788B2 (ja) * 1993-01-22 1998-05-20 株式会社クボタ 水冷式多気筒ディーゼルエンジンのシリンダヘッド
DE19812831A1 (de) * 1998-03-24 1999-09-30 Volkswagen Ag Brennkraftmaschine mit Fluidkühlsystem
DE19835563A1 (de) * 1998-08-06 2000-02-10 Volkswagen Ag Viertakt-Brennkraftmaschine mit Direkteinspritzung
JP2002256966A (ja) * 2001-03-06 2002-09-11 Toyota Motor Corp シリンダヘッドの冷却構造
JP2003035197A (ja) * 2001-05-17 2003-02-07 Toyota Motor Corp シリンダヘッド、及びその中子構造、並びに冷却通路の形成方法
AT6654U1 (de) * 2002-10-31 2004-01-26 Avl List Gmbh Zylinderkopf für eine flüssigkeitsgekühlte mehrzylinder-brennkraftmaschine
WO2005042955A2 (de) * 2003-11-03 2005-05-12 Avl List Gmbh Brennkraftmaschine
US7234422B2 (en) * 2005-09-13 2007-06-26 Gm Global Technology Operations, Inc. Engine cooling method and apparatus
DE102005050510A1 (de) * 2005-10-21 2007-04-26 Bayerische Motoren Werke Ag Zylinderkopf für eine wassergekühlte Brennkraftmaschine
DE102007012907A1 (de) 2007-03-19 2008-09-25 Bayerische Motoren Werke Aktiengesellschaft Zylinderkopf für eine flüssigkeitsgekühlte Brennkraftmaschine
DE102007030482B4 (de) * 2007-06-30 2018-12-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlkanäle im Zylinderkopf einer Brennkraftmaschine
DE102007031350B4 (de) 2007-07-05 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Flüssigkeitsgekühlter Zylinderkopf mit zwei Kühlmittelkanälen
DE102007062347B4 (de) * 2007-12-22 2024-02-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlanordnung für einen Zylinderkopf einer Brennkraftmaschine
DE102009019327A1 (de) * 2009-04-30 2010-11-04 Fev Motorentechnik Gmbh Zylinderkopf, Verfahren zur Kühlung eines Zylinderkopfes und Gießform zur Herstellung eines Zylinderkopfes
DE102010036392B4 (de) 2010-07-14 2021-10-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Flüssigkeitsgekühlter Zylinderkopf für eine Brennkraftmaschine
JP2013221459A (ja) * 2012-04-17 2013-10-28 Nissan Motor Co Ltd 内燃機関の周辺構造
JP5711715B2 (ja) * 2012-10-19 2015-05-07 本田技研工業株式会社 シリンダヘッドの冷却液通路構造
EP3040547B1 (de) 2015-01-02 2020-12-23 AVL Hungary LTD. Kühlungsstruktur für einen zylinderkopf eines verbrennungsmotors
JP6341100B2 (ja) 2015-01-15 2018-06-13 トヨタ自動車株式会社 シリンダヘッド
AT517127B1 (de) * 2015-05-07 2019-12-15 Avl List Gmbh Zylinderkopf für eine brennkraftmaschine
US10113502B2 (en) * 2015-09-08 2018-10-30 Ford Global Technologies, Llc Cylinder head for an internal combustion engine
CN105822451B (zh) * 2016-05-18 2018-03-06 中国北方发动机研究所(天津) 一种带有冷却水套结构的柴油机气缸盖

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939116B2 (en) * 2011-01-27 2015-01-27 Avl List Gmbh Liquid-cooled internal combustion engine

Also Published As

Publication number Publication date
CN110582630A (zh) 2019-12-17
WO2018197228A1 (de) 2018-11-01
CN110582630B (zh) 2022-02-25
DE102017109185A1 (de) 2018-10-31
US20200056563A1 (en) 2020-02-20
US11078865B2 (en) 2021-08-03
EP3615783A1 (de) 2020-03-04

Similar Documents

Publication Publication Date Title
DE102007012089B4 (de) Zylinderkopf mit integriertem abgestimmtem Auslasskrümmer
DE102004050923B4 (de) Zylinderkopf mit intergriertem Auslasskrümmer
EP2003320B1 (de) Zylinderkopf für eine Brennkraftmaschine
EP2172635B1 (de) Zylinderkopf für eine Brennkraftmaschine mit zwei integrierten Abgaskrümmern und Verfahren zum Betreiben einer Brennkraftmaschine mit einem derartigen Zylinderkopf
EP3339617B1 (de) Zylindergehäuse, verfahren zur herstellung eines zylindergehäuses und giesskern
DE102008035957B4 (de) Zylinderkopf für eine Brennkraftmaschine
DE102017202154A1 (de) Aufgeladene flüssigkeitsgekühlte Brennkraftmaschine
DE102007062347B4 (de) Kühlanordnung für einen Zylinderkopf einer Brennkraftmaschine
EP3615783B1 (de) Zylinderkopfgehäuse, verfahren zur herstellung eines zylinderkopfgehäuses und giesskern
DE19961092B4 (de) Verbrennungsmotor mit Hochleistungs-Kühlsystem
EP2143898A1 (de) Anordnung mit Zylinderkopf und Zylinderblock
EP2077386B1 (de) Zylinderkopf mit im Zylinderkopf integriertem Abgaskrümmer
DE102005057760B4 (de) Kühlsystem für einen Motor
EP2077385B1 (de) Zylinderkopf für eine Brennkraftmaschine mit angrenzendem Bauteil
DE102014201339A1 (de) Zylinderkopf-Kühlstruktur für einen Verbrennungsmotor
DE102009019327A1 (de) Zylinderkopf, Verfahren zur Kühlung eines Zylinderkopfes und Gießform zur Herstellung eines Zylinderkopfes
DE102020000317A1 (de) Brennkraftmaschine mit ölgekühltem Kolben und Verfahren zur Herstellung eines zugehörigen Kolbens
DE102020000320B4 (de) Brennkraftmaschine mit Kolben umfassend eine Ölgalerie und Verfahren zur Herstellung eines zugehörigen Kolbens
DE102011015930A1 (de) Kühleinrichtung einer Verbrennungskraftmaschine
AT413860B (de) Zylinderkopf für eine flüssigkeitsgekühlte mehrzylinder-brennkraftmaschine
DE102018208891B4 (de) Direkteinspritzende Brennkraftmaschine mit zwei Ventilen je Zylinder
DE102020200039B4 (de) Brennkraftmaschine mit mindestens einem flüssigkeitsgekühlten Zylinderrohr
DE102019216820B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit mindestens einem Zylinderrohr
DE202017102039U1 (de) Flüssigkeitsgekühlte Brennkraftmaschine
DE102016125302B4 (de) Brennkraftmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210310

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018008504

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1462543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018008504

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20221013

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220412

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230430

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180412

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1462543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230412