EP3613508B1 - Verfahren zur ausschleusung schwer mahlbarer partikel aus einer spiralstrahlmühle - Google Patents

Verfahren zur ausschleusung schwer mahlbarer partikel aus einer spiralstrahlmühle Download PDF

Info

Publication number
EP3613508B1
EP3613508B1 EP19190424.2A EP19190424A EP3613508B1 EP 3613508 B1 EP3613508 B1 EP 3613508B1 EP 19190424 A EP19190424 A EP 19190424A EP 3613508 B1 EP3613508 B1 EP 3613508B1
Authority
EP
European Patent Office
Prior art keywords
grinding
discharge nozzle
process space
feed
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19190424.2A
Other languages
English (en)
French (fr)
Other versions
EP3613508A1 (de
Inventor
Hermann Sickel
Frank Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Trockenmahltechnik GmbH
Original Assignee
Netzsch Trockenmahltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netzsch Trockenmahltechnik GmbH filed Critical Netzsch Trockenmahltechnik GmbH
Priority to SI201930679T priority Critical patent/SI3613508T1/sl
Publication of EP3613508A1 publication Critical patent/EP3613508A1/de
Application granted granted Critical
Publication of EP3613508B1 publication Critical patent/EP3613508B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/061Jet mills of the cylindrical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/02Feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/16Separating or sorting of material, associated with crushing or disintegrating with separator defining termination of crushing or disintegrating zone, e.g. screen denying egress of oversize material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating

Definitions

  • the present invention relates to methods for removing particles that are difficult to grind from a spiral steel mill according to the features of claim 1.
  • jet mills such as those from WO9601694 or DE 44 31 534 A1 known. These jet mills are used to crush various materials. The particles to be comminuted are accelerated using gas jets in order to be comminuted by mutual impact. Furthermore, shear forces occur at the points where the particles are accelerated by the gas jets, which additionally contribute to the size reduction process.
  • feed material consists of different components, it may happen that only some of them can be ground using the steel mill.
  • the sufficiently comminuted particles leave the grinding chamber in which the sufficiently comminuted particles, also referred to as fines, pass through a classifying device, for example a classifier wheel, and then leave the jet mill via a fines outlet.
  • a classifying device for example a classifier wheel
  • Components that have other properties, such as ductile behavior or higher hardness can remain in the grinding chamber.
  • These difficult-to-grind components, or even coarse particles accumulate in the grinding chamber as the grinding process continues and thus reduce the volume of the grinding chamber that should actually be available for grinding, thereby significantly reducing the throughput of the jet mill.
  • the object of the present invention is to optimize the grinding process in such a way that residues which remain within the grinding chamber during a grinding process can be removed from it more quickly and efficiently than is the case in the prior art.
  • the invention relates to a method for grinding, separating and discharging difficult-to-grind components of a mixture of components with different grindability from a process space of a jet mill. Due to the different properties of the components contained in the good mixture, the sufficiently comminuted particles, also described as fines, leave the process room after classification via the fines outlet.
  • the classification is carried out, for example, using a classifier wheel.
  • the components that are difficult to grind, also described as coarse particles are unable to overcome the classifying device and are therefore retained in the process space.
  • the coarse particles are discharged using a fluid via at least one discharge nozzle. The opening of the discharge nozzle and the interruption of the feed of the regrind are carried out in a synchronized manner.
  • the fluid which removes the coarse particles from the process space is made available through the grinding nozzles protruding into the process space. During the grinding process, these nozzles provide the gas jets through which the particles of the feed material are comminuted. Due to the excess pressure or negative pressure that prevails in the process space, the coarse particles are discharged from the process space via the at least one discharge nozzle using the grinding gas.
  • the discharge nozzle is closed to the process space during the grinding process and is only opened manually or automatically during a coarse fraction discharge phase.
  • Another advantage of the method according to the invention is the manual or automatic interruption of the regrind feed. This prevents unground material from being fed into the grinding chamber via the ground material inlet during the emptying of the grinding chamber or during the discharge of the difficult-to-grind components from the grinding chamber.
  • the feed of regrind via the regrind feed into the process space is carried out using a dosing unit, for example via a rotary valve, or a dosing pump.
  • the discharge nozzle and the feed of the ground material can be closed from the process space using closure elements.
  • the closure elements can be designed, for example, as a flap, slide or rotary valve.
  • At least one operating parameter of the method is recorded via the at least one sensor.
  • Important operating parameters include, for example, the filling level of the mill, the amount and speed of the grinding material feed, and the amount, pressure and speed of the grinding fluid used, the speed of the classifier wheel and the power consumption of the motor that drives the classifier wheel, as well as the grinding material throughput.
  • the various parameters interact with each other, in particular the degree of filling of the mill and the feed of the milled material.
  • the filling level of the The mill is controlled via the power consumption of the classifying wheel. If ground material leaves the process space via the classifier wheel and the fine material outlet, there is less material to be ground in the process room, which means there are fewer collisions of particles of the material to be ground with the classifier wheel. As a result, the power required to maintain a constant speed of the classifier wheel decreases, and the power consumption of the motor that drives the classifier wheel decreases.
  • regrind is fed into the process room via the regrind feed until the current consumption of the motor that drives the classifier wheel is reached, due to the now increasing number of collisions with ground material has again reached a defined maximum value, for example 65% of the maximum power of the motor that drives the classifier wheel.
  • a defined maximum value for example 65% of the maximum power of the motor that drives the classifier wheel.
  • the limits for the power consumption of the motor that drives the classifier wheel can vary. For example, values for the minimum value between 30% and 80%, in particular between 40% and 60%, are possible.
  • the maximum value for the power consumption of the motor that drives the classifier wheel can be between 50% and 100%, in particular between 60% and 80%.
  • the process for feeding the regrind explained in the paragraph above is expressed as a constant interval for regrind that does not contain any components that are difficult or impossible to grind. This means that the intervals between the stop of the regrind feed and the start of the regrind feed, as well as the duration of the regrind feed, behave almost periodically. This is not the case for ground material with components that are difficult or impossible to grind.
  • the enrichment of the components of the ground material that are difficult or impossible to grind means that fewer particles leave the process area than usual. For this reason, the current consumption of the motor that drives the classifier wheel does not fall below the defined minimum value so quickly, which is accompanied by a delay in the feed of the regrind.
  • the components of the regrind that are difficult or impossible to grind and remain in the process space continue to put stress on the classifier wheel, but without passing through it.
  • the power consumption of the motor that drives the classifier wheel does not decrease as with normal regrind without components that are difficult or impossible to grind, and the intervals between stopping the grinding material feed do not decrease and start of the regrind feed increase.
  • the duration of the regrind feed is reduced because once the current consumption of the motor that drives the classifier wheel falls below the defined minimum value, the corresponding maximum value is reached more quickly because a higher number of particles remain in the process space.
  • This reduction in throughput can preferably be used as a control value for the discharge of the components that are difficult or impossible to grind from the mill.
  • the feed of the regrind is automatically stopped.
  • the opening and closing of the Discharge nozzle can be controlled.
  • the interruption or start of the regrind feed and the opening or closing of the discharge nozzle can also be coordinated with one another. For example, it is possible to control only the regrind feed via at least one operating parameter. If at least one operating parameter, e.g. the throughput or the interval duration of the material supply, leaves the value range defined for it, the grinding material feed is interrupted. Depending on this, the opening of the discharge nozzle can be triggered at the same time or at a different time.
  • the opening time of the discharge nozzle and the interruption of the feed of the material to be ground are set individually.
  • the opening time of the discharge nozzle is preferably 1 - 10 seconds.
  • the interruption of the feed of the ground material is preferably 1 - 10 seconds.
  • the opening of the discharge nozzle and the interruption of the regrind feed, as well as the closure of the discharge nozzle and the start of the regrind feed are carried out in a coordinated manner.
  • the feeding of the ground material is interrupted before the discharge nozzle is opened. In this way, feed material that has not yet been ground can be ground and the particles still in the process space that have been ground to the target size can be discharged.
  • some of the process steps described above have a defined duration.
  • the grinding and discharge of the portion of grindable portions of the ground material still in the process space takes between one second and five minutes, in particular between 1 and 60 seconds.
  • the opening time of the discharge nozzle is between one second and one minute, in particular between 1 and 10 seconds.
  • the time between these two process steps can be between 0.5 and 60 seconds, in particular between 0.5 and 5 seconds.
  • the process according to the invention is carried out by a spiral jet mill to act on material that can be partially comminuted and classified.
  • Such spiral steel mills have a process space that is surrounded by a housing. At least two grinding nozzles protrude into the process space; the grinding fluid is passed into the process space through these grinding nozzles during the grinding process.
  • the process space is rotationally symmetrical, flat and round, with a radial housing wall that is delimited by a circular surface at the top and bottom, with the height of the cylinder being smaller than the diameter.
  • the grinding nozzles are arranged tangentially on the housing wall. Furthermore, the grinding nozzles are arranged on the same level as the classifier wheel, which is located in the middle of the process space.
  • the classifier wheel is also rotationally symmetrical, flat and round, with radially extending slats, each of which is delimited at the top and bottom by a plate that forms a circular surface, whereby the height of the cylinder body is also smaller than the diameter.
  • the set pressure at which the grinding fluid is fed through the grinding nozzles into the process space varies between 0.1 and 40 bar(g).
  • Typical grinding fluids are air, nitrogen, water vapor and noble gases such as argon and helium.
  • the ground material introduced via a ground material inlet connected to the process space is captured by the grinding fluid jets, accelerated and comminuted by particle-particle collisions. It is therefore an autogenous grinding of the ground material.
  • the stressed particles are transported from the grinding fluid to the classifier wheel, which is driven by a motor, for example a frequency-controlled motor.
  • the desired target fineness of the fine material is preset via the speed of the classifier wheel. After passing the classifier wheel, the fine material is discharged from the machine via the fine material outlet. Particles that are too coarse or have not yet been ground sufficiently are rejected by the classifier wheel and thus find their way back into the product-laden grinding fluid jets for renewed stress. This creates a circular movement of the ground material in the process space.
  • a discharge nozzle connected to the process space is provided. This discharge nozzle can be closed manually or automatically from the process space and is closed during the grinding process.
  • the machine which acts on partially shredded and classifiable goods, has measuring instruments that record the operating parameters of the grinding process. Relevant operating parameters include, for example, the throughput of regrind per unit of time, the quantity and speed of the regrind feed, and the amount, pressure and speed of the grinding fluid used, the speed of the classifier wheel and the power consumption of the motor that drives the classifier wheel.
  • the machine also includes a device with which the dosage of the ground material into the process space can be recorded and controlled.
  • the method may include one or more features and/or properties of the previously described device.
  • the device can also alternatively or additionally have individual or multiple features and/or properties of the methods described.
  • Figure 1 shows a sectional view of a spiral jet mill (1), having a regrind feed (2) through which the regrind (10) is guided into the process space (3).
  • the dosing i.e. the feeding of the ground material (10), takes place via a dosing unit (not shown), for example a rotary valve or a pump device.
  • Grinding nozzles (4) which are positioned at a suitable distance from one another, protrude into the process space (3). This suitable distance varies depending on the number of grinding nozzles (4) and should be chosen so that the grinding nozzles (4) are evenly distributed over the circular path that describes the housing (5) which encloses the process space (3), in the example Figure 1
  • the grinding nozzles (4) are each arranged 90° offset and their respective longitudinal axes (41) close with an im
  • the tangent (13) created in the area of the respective grinding nozzle attachment in the housing (5) forms an angle alpha ( ⁇ ) which should be in the range of 10° and 60°.
  • the grinding nozzles (4) can also be arranged irregularly on the housing (5).
  • the grinding nozzles (4) supply the grinding fluid (6) to the process space (3).
  • This grinding fluid (6) is used to stress and shred the ground material (10) that is dispensed.
  • the parameters such as pressure, quantity, temperature and spray angle for the grinding fluid (6) must be adjusted.
  • gases come into consideration as grinding fluid (6), in particular protective gases such as argon and helium and nitrogen.
  • the fine material outlet (7) is located in the middle of the process space (3). This leads particles out of the process space (3) through the lid or bottom of the housing (5).
  • the particles that have achieved the necessary fineness through grinding in the process space (3), i.e. the ground portions of the ground material (11), are removed through the fine material outlet (7).
  • a classifier wheel (8) is positioned around the fine material outlet (7) so that only particles with the necessary fineness can leave the process space (3).
  • the classifier wheel (8) rotates and is operated at a variable speed. The necessary fineness for the ground portions of the ground material (11) can thus be set. If a particle that is too large wants to pass through the rotating classifier wheel (8), it is thrown back into the process space (3) by the safety wheel (8) and stressed again. If the particle is ground finely enough, i.e. it has a sufficiently small particle or grain size, it can leave the process space (3) through the fine material outlet (7) with the fluid flow of the ground parts of the ground material (11).
  • the regrind feed (2) is closed relative to the process space (3).
  • the discharge nozzle (9) opens. This is closed during the grinding process by a closure element (14), for example a flap, or a slide relative to the process space (3).
  • This closure element (14) can be positioned anywhere in the discharge nozzle (9), for example the closure element (14) can rest flush against the outer shell of the housing (5), or can be mounted inside the housing (5) and be flush with the process space (3). . Due to the overpressure or negative pressure of -500 mbar(g) to +600 mbar(g) prevailing in the process space (3), all particles located in the process space (3) are now flushed out of the process space (3) via the discharge nozzle (9).
  • the discharge nozzle (9 ) After a period of, for example, 1 to 60 seconds or a message from a sensor that monitors the degree of filling in the process space (3) and thus checks whether all parts of the ground material (12) that are difficult or impossible to grind have been discharged from the process space, the discharge nozzle (9 ), closed again by means of the closure element (14). The grinding material feed (2) is then opened or started again and the grinding process is continued.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Crushing And Grinding (AREA)

Description

  • Die vorliegende Erfindung betrifft Verfahren zur Ausschleusung schwer mahlbarer Partikel aus einer Spiralstahlmühle gemäß den Merkmalen des Anspruchs 1.
  • Stand der Technik
  • Aus dem Stand der Technik sind Strahlmühlen wie aus der WO9601694 oder DE 44 31 534 A1 bekannt. Diese Strahlmühlen werden zum Zerkleinern von verschiedenen Stoffen benutzt. Mittels Gasstrahlen werden die zu zerkleinernden Partikel beschleunigt, um durch gegenseitigen Stoß zerkleinert zu werden. Weiter treten an den Stellen an welchen die Teilchen durch die Gasstrahlen beschleunigt werden Scherkräfte auf, welche zusätzlich zum Zerkleinerungsprozess beitragen.
  • Bei Aufgabegut aus verschiedenen Komponenten kann es vorkommen, dass nur einige davon mittels der Stahlmühle vermahlen werden können. Die ausreichend zerkleinerten Partikel verlassen den Mahlraum in dem die ausreichend zerkleinerten Partikel, auch als Feingut bezeichnet, eine Klassiereinrichtung, beispielsweise ein Sichterrad passieren und anschließend über einen Feingutauslass die Strahlmühle verlassen. Komponenten die andere Eigenschaften, wie zum Beispiel duktiles Verhalten oder eine höhere Härte aufweisen, können im Mahlraum zurück bleiben. Diese schwer mahlbaren Bestandteile, oder auch Grobanteile reichern sich mit andauern des Mahlvorganges im Mahlraum an und verringern so das Volumen des Mahlraumes, der eigentlich zur Vermahlung zur Verfügung stehen sollte, dadurch sinkt die Durchsatzleistung der Strahlmühle erheblich.
  • Von Strahlmühlen aus dem Stand der Technik ist bekannt, das diese schwer mahlbaren Bestandteile durch eine Reduktion der Sichterdrehzahl aus der Mühle ausgeschleust werden. Nachteil bei der Reduktion der Sichterdrehzahl ist eine komplette Kontamination der Anlage mit groben Partikeln. Im Anschluss daran muss das Fließbett wieder neu befüllt werden, was zur Folge hat, dass es bis zur Erreichung des optimalen Füllstandes zur Verschiebungen in der Kornverteilung kommt und auch niedrige Durchsatzleistungen erreicht werden. Weiter muss die Anlage gespült werden, damit die groben Partikel aus der Anlage entfernt werden. Dieses Vorgehen ist sehr ineffizient und nimmt viel Zeit in Anspruch.
  • Die Aufgabe der vorliegenden Erfindung besteht darin den Mahlprozess dahingehend zu optimieren, dass Rückstände welche während eines Mahlvorganges innerhalb des Mahlraumes verbleiben schneller und effizienter aus diesem entfernt werden können, als das im Stand der Technik der Fall ist.
  • Die obigen Aufgaben werden durch das Verfahren nach Anspruch 1 gelöst. Weitere erfindungsgemäße Gestaltungen sind den jeweiligen Unteransprüchen zu entnehmen.
  • Die Erfindung betrifft ein Verfahren zum Vermahlen Trennen und Austragen von schwer mahlbaren Bestandteilen eines Gutgemisches aus Komponenten mit unterschiedlicher Mahlbarkeit aus einem Prozessraum einer Strahlmühle. Auf Grund der unterschiedlichen Eigenschaften der im Gutgemisch enthaltenen Komponenten kommt es dazu dass die ausreichend zerkleinerten Partikel, auch als Feingut beschrieben, den Prozessraum nach einer Klassierung über den Feingutauslass verlassen. Die Klassierung erfolgt beispielsweise mittels eines Sichterrades. Die schwer mahlbaren Bestandteile, auch als Grobanteile beschrieben sind nicht in der Lage die Klassiervorrichtung zu überwinden und werden deshalb im Prozessraum zurück gehalten. Um eine Anreicherung an Grobanteilen im Prozessraum zu vermeiden werden die Grobanteile mittels eines Fluides über mindestens einen Austragsstutzen ausgetragen. Dabei wird das Öffnen des Austragsstutzens und die Unterbrechung der Mahlgutaufgabe synchronisiert durchgeführt.
  • Das Fluid welches die Grobanteile aus dem Prozessraum austrägt wird durch die in den Prozessraum ragenden Mahldüsen zur Verfügung gestellt. Diese Düsen stellen während des Mahlvorganges die Gasstrahlen zur Verfügung, durch welche die Partikel des Aufgabegutes zerkleinert werden. Durch den Überdruck, oder Unterdruck der im Prozessraum herrscht werden die Grobanteile mittels des Mahlgases aus dem Prozessraum über den mindestens einen Austragsstutzen ausgetragen.
  • Um das Verfahren weiter zu optimieren ist der Austragsstutzen während des Mahlprozesses zum Prozessraum hin geschlossen und wird nur während einer Grobanteilaustragsphase manuell oder automatisch geöffnet.
  • Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist die manuelle oder automatische Unterbrechung der Mahlgutaufgabe. So wird verhindert, dass während der Entleerung des Mahlraumes, beziehungsweise während des Austrages der schwermahlbaren Bestandteile aus dem Mahlraum unvermahlenes Material über den Mahlguteinlass dem Mahlraum zugeführt wird. Die Zuführung von Mahlgut über die Mahlgutaufgabe in den Prozessraum erfolgt mittels einer Dosiereinheit, beispielsweise über eine Zellradschleuse, oder eine Dosierpumpe.
  • Der Austragsstutzen, sowie die Mahlgutaufgabe können mittels Verschlusselementen gegenüber dem Prozessraum verschlossen werden. Die Verschlusselemente können beispielsweise als Klappe, Schieber, oder Zellradschleuse ausgebildet sein.
  • Um die Unterbrechung der Mahlgutaufgabe besser regeln zu können, werden über den mindestens einen Sensor mindestens ein Betriebsparameter des Verfahrens erfasst. Wichtige Betriebsparameter sind beispielsweise der der Füllgrad der Mühle, Menge und Geschwindigkeit der Mahlgutaufgabe, und Menge, Druck und Geschwindigkeit des eingesetzten Mahlfluides, Drehzahl des Sichterrades und Stromaufnahme des Motor der das Sichterrad antreibt, sowie der Mahlgutdurchsatz.
  • Die verschiedenen Parameter haben eine Wechselwirkung aufeinander, insbesondere der Füllgrad der Mühle und die Mahlgutaufgabe. Der Füllgrad der Mühle wird über die Stromaufnahme des Sichterrades kontrolliert. Verlässt vermahlenes Mahlgut den Prozessraum über das Sichterrad und den Feingutaulass befindet sich weniger Mahlgut im Prozessraum, daher kommt es zu weniger Kollisionen von Partikeln des Mahlgutes mit dem Sichterrad. Infolge dessen sinkt die benötigte Leistung um eine konstante Drehzahl des Sichterrades aufrecht zu erhalten, die Stromaufnahme des Motors welcher das Sichterrad antreibt sinkt. Verlässt die Stromaufnahme einen definierten Minimalwert, fällt beispielsweise unter 60 % der Maximalleistung des Motors welcher das Sichterrad antreibt, wird über die Mahlgutaufgabe solange Mahlgut in den Prozessraum aufgegeben bis die Stromaufnahme des Motors welcher das Sichterrad antreibt, auf Grund der nun wieder steigenden Anzahl an Kollisionen mit Mahlgut wieder einen definierten Maximalwert, beispielsweise 65 % der Maximalleistung des Motors welcher das Sichterrad antreibt erreicht hat. Abhängig von dem aufgegebenen Mahlgut können die Grenzen für die Leistungsaufnahmen des Motors welcher das Sichterrad antreibt variieren. Möglich sind beispielsweise Werte für den Minimalwert zwischen 30 % und 80 %, insbesondere zwischen 40 % und 60 %. Der Maximalwert für die Leistungsaufnahme des Motors welcher das Sichterrad antreibt kann zwischen 50 % und 100 %, insbesondere zwischen 60 % und 80 % liegen.
  • Der im obigen Absatz erläuterte Prozess zur Mahlgutaufgabe drückt sich bei Mahlgut, welches keine schwer oder nicht mahlbaren Bestandteile aufweist als konstanter Intervall aus. Heißt die Abstände zwischen Stopp der Mahlgutaufgabe und Start der Mahlgutaufgabe, sowie die Dauer der Mahlgutaufgabe verhalten sich annährend periodisch. Bei Mahlgut mit schwer oder nicht mahlbaren Bestandteilen ist dies nicht der Fall.
  • Die Anreicherung der schwer oder nicht mahlbaren Bestandteilen des Mahlgutes führt dazu, dass weniger Partikel den Prozessraum verlassen als gewöhnlich. Aus diesem Grund sinkt auch die Stromaufnahme des Motors welcher das Sichterrad antreibt nicht so schnell unter den definierten Minimalwert, damit einher geht auch eine Verzögerung der Mahlgutaufgabe. Die im Prozessraum verbleibenden schwer oder nicht mahlbaren Bestandteilen des Mahlgutes beanspruchen weiterhin das Sichterrad, ohne dieses aber zu passieren, dadurch sinkt die Stromaufnahme des Motors welcher das Sichterrad antreibt nicht wie bei normalem Mahlgut ohne schwer oder nicht mahlbaren Bestandteile und die Abstände zwischen Stopp der Mahlgutaufgabe und Start der Mahlgutaufgabe vergrößern sich. Die Dauer der Mahlgutaufgabe dagegen verringert sich, da nach unterschreiten des definierten Minimalwertes für die Stromaufnahme des Motors welcher das Sichterrad antreibt, der entsprechende Maximalwert schneller erreicht wird, da eine höhere Anzahl von Partikeln im Prozessraum verblieben ist.
  • Durch das beschriebene verhalten von Mahlgut mit schwer oder nicht mahlbaren Bestandteilen lässt sich mit steigender Mahldauer eine signifikante Verringerung des Durchsatzes erkennen. Diese Verringerung des Durchsatzes kann bevorzugt als Steuerwert für die Austragung der schwer oder nicht mahlbaren Bestandteilen aus der Mühle verwendet werden.
  • Wird mindestens ein definierter Wertebereich des mindestens eines überwachten Betriebsparameters verlassen, beispielsweise des Durchsatzes, wird die Mahlgutaufgabe automatisch gestoppt. Analog zur Mahlgutaufgabe, also ebenfalls abhängig von den Betriebsparametern, kann die Öffnung und Schließung des Austragsstutzens gesteuert werden. Die Unterbrechung oder der Start der Mahlgutaufgabe und die Öffnung oder Schließung des Austragsstutzens kann ebenfalls aufeinander abgestimmt werden. Beispielsweise ist es möglich nur die Mahlgutaufgabe über mindestens einen Betriebsparameter zu steuern. Verlässt mindestens ein Betriebsparameter, z.B. die Durchsatzleistung, oder die Intervalldauer der Materialzufuhr den für ihn definierten Wertebereich, wird die Unterbrechung der Mahlgutaufgabe angestoßen. Abhängig davon kann die Öffnung des Austragsstutzens gleichzeitig oder zeitlich versetzt angestoßen werden. Das gleiche ist auch denkbar, wenn nur der Austragsstutzen über mindestens einen Betriebsparameter gesteuert wird und die Mahlgutaufgabe abhängig davon reagiert. Dadurch ist es möglich für das Mahlverfahren automatisiert stabile und an das entsprechende Mahlgut angepasste Bedingungen zu schaffen. Die entsprechenden Wertebereiche für die Betriebsparameter sind je nach Material und Mahlfluid zu wählen.
  • Je nach Mahlgut wird die Öffnungszeit des Austragsstutzens, sowie die Unterbrechung der Mahlgutaufgabe individuell eingestellt. Die Öffnungszeit des Austragsstutzens beträgt vorzugsweise 1 - 10 Sekunden. Die Unterbrechung der Mahlgutaufgabe beträgt vorzugweise 1 - 10 Sekunden.
  • In einer vorteilhaften Version des Verfahrens wird die Öffnung des Austragsstutzens und die Unterbrechung der Mahlgutaufgabe, sowie die Schließung des Austragsstutzens und der Start der Mahlgutaufgabe aufeinander abgestimmt durchgeführt. Um Verluste des Mahlgutes zu vermeiden ist es vorteilhaft, wenn vor der Öffnung des Austragsstutzens die Mahlgutaufgabe unterbrochen wird. So kann noch nicht vermahlenes Aufgabegut vermahlen werden und die noch im Prozessraum befindlichen, auf die Zielgröße vermahlenen Partikel können ausgetragen werden.
  • Ein Beispielhafter Ablauf des Verfahrens könnte also wie folgt beschrieben werden:
    1. 1. Durch Anreicherung von schwer oder nicht mahlbaren Anteile des Mahlgutes im Prozessraum verlässt mindestens ein Betriebsparameter einen definierten Wertebereich.
    2. 2. Unterbrechung der Mahlgutaufgabe.
    3. 3. Vermahlung und Austrag des noch im Prozessraum befindlichen Mahlgutes.
    4. 4. Öffnung des Austragsstutzens und Austrag der schwer oder nicht mahlbaren Anteile des Mahlgutes aus dem Prozessraum.
    5. 5. Schließung des Austragsstutzens.
    6. 6. Start der Mahlgutaufgabe und Weiterführung des Mahlprozesses.
  • Vorzugsweise haben einige der oben beschriebenen Verfahrensschritte eine definierte Dauer, Beispielsweise dauert die Vermahlung und der Austrag des noch im Prozessraum befindlichen Anteils von mahlbaren Anteilen des Mahlgutes zwischen einer Sekunde und fünf Minuten, insbesondere zwischen 1 und 60 Sekunden. Die Öffnungsdauer des Austragsstutzens beträgt zwischen einer Sekunde und einer Minute, insbesondere zwischen 1 und 10 Sekunden. Sobald der Austragsstutzen geschlossen ist kann mit der erneuten Mahlgutaufgabe begonnen werden. Die Zeit zwischen diesen beiden Verfahrensschritten kann zwischen 0,5 und 60 Sekunden, insbesondere zwischen 0,5 und 5 Sekunden liegen.
  • Das erfindungsgemäße Verfahren wird von einer Spiralstrahlmühle zur Einwirkung auf zum Teil zerkleinerbares und klassierbares Gut durchgeführt. Solche Spiralstahlmühlen weißen einen Prozessraum auf, der von einem Gehäuse umgeben ist. In den Prozessraum ragen mindestens zwei Mahldüsen, durch diese Mahldüsen wird während des Mahlprozesses das Mahlfluid in den Prozessraum geleitet.
  • Bei Spiralstrahlmühlen ist der Prozessraum rotationssymmetrisch flach und rund ausgebildet, mit einer radial verlaufenden Gehäusewand die von jeweils einer Kreisfläche oben und unten begrenzt wird, wobei die Höhe des Zylinders kleiner ist als der Durchmesser. Die Mahldüsen werden tangential an der Gehäusewand angeordnet. Weiter sind die Mahldüsen auf einer Ebene mit dem Sichterrad angeordnet, welches sich in der Mitte des Prozessraumes befindet. Das Sichterrad ist ebenfalls rotationssymmetrisch flach und rund ausgebildet, mit radial verlaufenden Lamellen die von jeweils einer Platte, die als Kreisfläche ausbildet ist oben und unten begrenzt werden, wobei auch hier die Höhe des Zylinderkörpers kleiner ist als der Durchmesser.
  • Je nach Mahlgut und Mahlfluid variiert der eingestellte Druck, mit welchem das Mahlfluid durch die Mahldüsen in den Prozessraum geleitet wird zwischen 0,1 und 40 bar(g). Typische Mahlfluide sind Luft, Stickstoff, Wasserdampf und Edelgase wie z.B. Argon und Helium.
  • Das über einen, mit dem Prozessraum in Verbindung stehenden Mahlguteinlass eingebrachte Mahlgut wird von den Mahlfluidstrahlen erfasst, beschleunigt und durch Teilchen-Teilchen-Stöße zerkleinert. Es handelt sich also um eine autogene Vermahlung des Mahlgutes. Vom Mahlfluid werden die beanspruchten Partikel zum Sichterrad transportiert, welches über einen, beispielsweise frequenzgeregelten Motor angetrieben wird. Die gewünschte Zielfeinheit des Feingutes wird über die Drehzahl des Sichterrades voreingestellt. Das Feingut wird nach passieren des Sichterrades über den Feingutauslass aus der Maschine ausgetragen. Zu grobe, bzw. noch nichts ausreichend vermahlene Partikel werden vom Sichterrad abgewiesen und gelangen so wieder in die produktbeladenen Mahlfluidstrahlen zur erneuten Beanspruchung. So entsteht eine kreisförmige Bewegung des Mahlgutes im Prozessraum.
  • Um die, sich im Prozessraum anreichernden Anteile der schwer zu mahlenden, oder nichtmahlbaren Bestandteile des Mahlgutes aus dem Prozessraum abzuführen ist ein mit dem Prozessraum in Verbindung stehender Austragsstutzen vorgesehen. Dieser Austragsstutzen ist manuell oder automatisiert gegenüber dem Prozessraum verschließbar und ist während des Mahlprozesses geschlossen.
  • Die Maschine zur Einwirkung auf zum Teil zerkleinerbares und klassierbares Gut, weißt Messinstrumente auf welche die Betriebsparameter des Mahlprozesses erfassen. Relevante Betriebsparameter sind beispielsweise der Durchsatz an Mahlgut pro Zeiteinheit, Menge und Geschwindigkeit der Mahlgutaufgabe, und Menge, Druck und Geschwindigkeit des eingesetzten Mahlfluides, Drehzahl des Sichterrades und Stromaufnahme des Motores welcher das Sichterrad antreibt. Weiter umfasst die Maschine eine Vorrichtung mit welcher die Dosierung des Mahlgutes in den Prozessraum erfasst und gesteuert werden kann.
  • Das Verfahren können alternativ oder zusätzlich zu den beschriebenen Merkmalen ein oder mehrere Merkmale und / oder Eigenschaften der zuvor beschriebenen Vorrichtung umfassen. Ebenfalls kann die Vorrichtung alternativ oder zusätzlich einzelne oder mehrere Merkmale und / oder Eigenschaften der beschriebenen Verfahrens aufweisen.
  • Es sei an dieser Stelle ausdrücklich erwähnt, dass alle Aspekte und Ausführungsvarianten, die im Zusammenhang mit dem Ausgangsgemisch und der Anlage zur Herstellung des Ausgangsgemisches erläutert wurden, gleichermaßen Teilaspekte des erfindungsgemäßen Verfahrens betreffen oder sein können. Wenn daher an einer Stelle bei der Beschreibung oder auch bei den Anspruchsdefinitionen zum Ausgangsgemisch und/oder zur Anlage von bestimmten Aspekten und/oder Zusammenhängen und/oder Wirkungen die Rede ist, so gilt dies gleichermaßen für das erfindungsgemäße Verfahren. In umgekehrter Weise gilt dasselbe, so dass auch alle Aspekte und Ausführungsvarianten, die im Zusammenhang mit dem erfindungsgemäßen Verfahren erläutert wurden, gleichermaßen Teilaspekte des Ausgangsgemisches und der Anlage betreffen oder sein können. Wenn daher an einer Stelle bei der Beschreibung oder auch bei den Anspruchsdefinitionen zum erfindungsgemäßen Verfahren von bestimmten Aspekten und/oder Zusammenhängen und/oder Wirkungen die Rede ist, so gilt dies gleichermaßen für das Ausgangsgemisch und die Anlage.
  • Figurenbeschreibung
  • Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander in den Figuren entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind.
  • Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die erfindungsgemäße Vorrichtung oder das erfindungsgemäße Verfahren ausgestaltet sein können und stellen keine abschließende Begrenzung dar.
  • Figur 1 zeigt eine Schnittdarstellung einer Spiralstrahlmühle (1), aufweisend eine Mahlgutaufgabe (2) durch welche das Mahlgut (10) in den Prozessraum (3) geführt wird. Die Dosierung, also die Aufgabe des Mahlgutes (10) erfolgt über eine Dosiereinheit (nicht dargestellt), beispielsweise eine Zellradschleuse, oder eine Pumpvorrichtung.
  • In den Prozessraum (3) ragen Mahldüsen (4), welche in geeigneten Abstand voneinander positioniert sind. Dieser geeignete Abstand variiert je nach Anzahl der Mahldüsen (4) und sollte so gewählt sein, dass sich die Mahldüsen (4) gleichmäßig auf der Kreisbahn, die das Gehäuse (5), welches den Prozessraum (3) umschließt beschreibt verteilen, im Beispiel der Figur 1 sind also die Mahldüsen (4) jeweils 90° versetzt angeordnet und ihre jeweilige Längsachse (41) schließen mit einer im Bereich der jeweiligen Mahldüsenbefestigung im Gehäuse (5) angelegten Tangente (13) einen Winkel Alpha (α) ein der im Bereich 10° und 60° liegen soll. Anwendungsbetreffend können die Mahldüsen (4) auch unregelmäßig am Gehäuse (5) angeordnet sein.
  • Die Mahldüsen (4) führen dem Prozessraum (3) das Mahlfluid (6) zu. Diese Mahlfluid (6) dient dazu das ausgegebene Mahlgut (10) zu beanspruchen und zu zerkleinern. Je nach Anwendung und aufgegebenen Mahlgut (10) sind die Parameter wie Beispielsweise Druck, Menge, Temperatur und Sprühwinkel für das Mahlfluid (6) anzupassen. Als Mahlfluid (6) kommen Beispielsweise Gase in Frage, insbesondere Schutzgase wie Argon und Helium und Stickstoff.
  • In der Mitte des Prozessraumes (3) befindet sich der Feingutauslass (7), dieser führt Partikel durch den Deckel oder den Boden des Gehäuses (5) aus dem Prozessraum (3). Durch den Feingutauslass (7) werden die Partikel abgeführt, welche die nötige Feinheit durch die Vermahlung im Prozessraum (3) erlangt haben, also die vermahlenen Anteile des Mahlgutes (11). Damit nur Partikel mit der nötigen Feinheit den Prozessraum (3) verlassen können ist um den Feingutauslass (7) ein Sichterrad (8) positioniert. Das Sichterrad (8) rotiert und wird mit einer variablen Drehzahl betrieben. Somit kann die nötige Feinheit für die vermahlenen Anteile des Mahlgutes (11) eingestellt werden. Will ein zu großer Partikel das rotierende Sichterrad (8) passieren, wird dieses vom Sicherrad (8) zurück in den Prozessraum (3) geschleudert und erneut beansprucht. Ist der Partikel fein genug vermahlen, weist er also eine ausreichend kleine Partikel-, bzw. Korngröße auf kann er mit dem Fluidstrom der vermahlenen Anteile des Mahlgutes (11) den Prozessraum (3) durch den Feingutaulass (7) verlassen.
  • Die schwer, oder nicht mahlbaren Anteile des Mahlgutes (12) verbleiben somit im Prozessraum (3) und reichern sich dort im Laufe des Mahlprozesses an. Um diese Partikel aus dem Prozessraum (3) abzuführen, wird die Mahlgutaufgabe (2) gegenüber dem Prozessraum (3) geschlossen. Zeitgleich, oder mit einem definierten zeitlichen Versatz öffnet sich der Austragsstutzen (9). Dieser ist während des Mahlprozesses durch ein Verschlusselement (14), beispielsweise eine Klappe, oder ein Schieber gegenüber dem Prozessraum (3) geschlossen. Dieses Verschlusselement (14) kann beliebig im Austragsstutzen (9) positioniert werden, beispielsweise kann das Verschlusselement (14) bündig an der Außenhülle des Gehäuses (5) anliegen, oder innerhalb des Gehäuses (5) angebracht sein und bündig zum Prozessraum (3) abschließen. Durch den im Prozessraum (3) herrschenden Überdruck oder Unterdruck von -500 mbar(g) bis +600 mbar(g) werden nun alle im Prozessraum (3) befindlichen Partikel über den Austragsstutzen (9) aus dem Prozessraum (3) gespült.
  • Nach einem Zeitraum von beispielsweise 1 bis 60 Sekunden oder einer Meldung eines Sensors der den Füllgrad im Prozessraum (3) überwacht und somit prüft ob alle schwer, oder nicht mahlbaren Anteile des Mahlgutes (12) aus dem Prozessraum ausgetragen wurden, wird der Austragsstutzen (9), mittels des Verschlusselementes (14) wieder geschlossen. Anschließend wird die Mahlgutaufgabe (2) wieder geöffnet, bzw. gestartet und der Mahlprozess wird fortgeführt.
  • Optional kann auch vorgesehen sein, die Mahlgutaufgabe (2) mit einem weiteren Verschlusselement (15), analog zu dem Verschlusselement (14) im Austragsstutzen (9) gegenüber dem Prozessraum (3) zu verschließen.
  • Bezugszeichenliste
  • 1
    Spiralstahlmühle
    2
    Mahlgutaufgabe
    3
    Prozessraum
    4
    Mahldüsen
    5
    Gehäuse
    6
    Mahlfluid
    7
    Feingutauslass
    8
    Sichterrad
    9
    Austragsstutzen
    10
    Mahlgut
    11
    Vermahlene Anteile des Mahlgutes
    12
    schwer oder nicht mahlbaren Anteile des Mahlgutes
    13
    Tangente
    14
    Verschlusselement
    41
    Längsachse der Mahldüsen

Claims (9)

  1. Verfahren zum Vermahlen, Trennen und Austragen von schwer mahlbaren Bestandteilen eines Gutgemisches aus Komponenten mit unterschiedlicher Mahlbarkeit aus einem Prozessraum einer Spiralstahlmühle aus welchem die leicht mahlbaren Bestandteile über einen Feingutauslass ausgetragen werden, und die schwer mahlbaren Bestandteile mittels eines Fluides über mindestens einen zusätzlichen Austragsstutzen aus dem Prozessraum ausgetragen werden, dadurch gekennzeichnet,
    dass das Öffnen des Austragsstutzens und die Unterbrechung der Mahlgutaufgabe synchronisiert durchgeführt wird.
  2. Verfahren nach Anspruch 1, wobei die schwer mahlbaren Bestandteile durch ein Mahlfluid aus dem Prozessraum ausgetragen werden.
  3. Verfahren nach Anspruch 1 oder 2, wobei der Austragsstutzen und/oder die Mahlgutaufgabe während des Mahlprozesses geschlossen wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Austragsstutzen automatisch geöffnet werden kann.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Mahlgutaufgabe automatisch unterbrochen werden kann.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei verschiedene Betriebsparameter des Verfahrens während des Mahlvorganges erfasst werden.
  7. Verfahren nach Anspruch 6, wobei die Mahlgutaufgabe unterbrochen wird, wenn ein definierter Wertebereich der erfassten Betriebsparameter verlassen wird.
  8. Verfahren nach Anspruch 6 oder 7, wobei der Austragsstutzen geöffnet wird, wenn ein definierter Wertebereich der erfassten Betriebsparameter verlassen wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Öffnungszeit des Austragsstutzens 1 - 10 Sekunden und/oder die Unterbrechung der Mahlgutaufgabe 1 - 10 Sekunden beträgt.
EP19190424.2A 2018-08-23 2019-08-07 Verfahren zur ausschleusung schwer mahlbarer partikel aus einer spiralstrahlmühle Active EP3613508B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201930679T SI3613508T1 (sl) 2018-08-23 2019-08-07 Postopek odstranjevanja slabo mlevnih delcev iz spiralnega mešalnika

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018120596.1A DE102018120596A1 (de) 2018-08-23 2018-08-23 Verfahren und Vorrichtung zur Ausschleusung schwer mahlbarer Partikel aus einer Spiralstrahlmühle

Publications (2)

Publication Number Publication Date
EP3613508A1 EP3613508A1 (de) 2020-02-26
EP3613508B1 true EP3613508B1 (de) 2023-09-27

Family

ID=67551233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19190424.2A Active EP3613508B1 (de) 2018-08-23 2019-08-07 Verfahren zur ausschleusung schwer mahlbarer partikel aus einer spiralstrahlmühle

Country Status (13)

Country Link
US (1) US11235337B2 (de)
EP (1) EP3613508B1 (de)
JP (1) JP6934491B2 (de)
KR (1) KR102277738B1 (de)
CN (1) CN110856830B (de)
DE (1) DE102018120596A1 (de)
DK (1) DK3613508T3 (de)
ES (1) ES2966925T3 (de)
FI (1) FI3613508T3 (de)
LT (1) LT3613508T (de)
PL (1) PL3613508T3 (de)
RU (1) RU2732837C1 (de)
SI (1) SI3613508T1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4088818A1 (de) 2021-05-14 2022-11-16 LANXESS Deutschland GmbH Spiralstrahlmühle und verfahren zum vermahlen von mahlgütern in einer spiralstrahlmühle

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3425638A (en) * 1965-10-04 1969-02-04 Grace W R & Co Fluid energy mill
US3602439A (en) * 1969-07-25 1971-08-31 Nippon Pneumatic Mfg Pneumatic mill for extra-fine powder
DE2063635C3 (de) * 1970-12-30 1980-01-03 Daikin Kogyo Co. Ltd., Tokio Verfahren zur Herstellung eines nicht faserigen ultrafeinen Polytetrafluoräthylen-Formpulvers
US3726484A (en) * 1971-10-15 1973-04-10 Du Pont Stepped fluid energy mill
US4502641A (en) * 1981-04-29 1985-03-05 E. I. Du Pont De Nemours And Company Fluid energy mill with differential pressure means
DE4431534B4 (de) * 1994-02-10 2006-12-28 Nied, Roland, Dr. Ing. Maschine zur Einwirkung auf zerkleinerbares und klassierbares Rohgut, sowie Verfahren zum Betrieb der Maschine
WO1996001694A1 (de) * 1994-07-11 1996-01-25 Pmt Gesteinsvermahlungstechnik Powder Maker Technologies Gmbh Spiralstrahlmühle
JPH0824702A (ja) * 1994-07-20 1996-01-30 Hosokawa Micron Corp 原液から微粉末を製造する方法及びその装置
JP3831102B2 (ja) * 1997-12-25 2006-10-11 日本ニューマチック工業株式会社 ジェット粉砕機
RU2199397C2 (ru) * 2000-11-16 2003-02-27 Белгородская государственная технологическая академия строительных материалов Устройство для вихревого измельчения материалов
JP4205888B2 (ja) * 2001-12-20 2009-01-07 ホソカワミクロン株式会社 粉体処理装置および粉体処理方法
KR20040073116A (ko) * 2003-02-13 2004-08-19 (주)디자인메카 복수개의 분쇄물 출구와 와류발생기를 갖는 유체에너지밀 분쇄장치 및 분쇄방법
JP4922760B2 (ja) * 2004-07-09 2012-04-25 サンレックス工業株式会社 ジェットミル
DE102006001937A1 (de) * 2006-01-14 2007-09-27 Lehigh Technologies, LLC, Naples Trennen von Mineralien
DE102006017472A1 (de) * 2006-04-13 2007-10-18 Nied, Roland, Dr. Ing. Verfahren zur Erzeugung feinster Partikel mittels einer Strahlmühle
WO2009008965A1 (en) * 2007-07-09 2009-01-15 Unimin Corporation Nepheline syenite powder with controlled particle size and novel method of making same
KR101063545B1 (ko) * 2008-11-11 2011-09-07 (주) 알앤에이 분급장치
CN102430380B (zh) * 2010-09-29 2014-08-06 张小丁 流体激波反应器
US9914132B2 (en) * 2011-09-15 2018-03-13 Michael J. Pilgrim Devices, systems, and methods for processing heterogeneous materials
US9931639B2 (en) * 2014-01-16 2018-04-03 Cold Jet, Llc Blast media fragmenter
CN107810065A (zh) * 2015-06-15 2018-03-16 耐驰干法研磨技术有限公司 用于粉碎碾磨材料的方法和用于实施这种方法的碾磨机
DE102015118858B3 (de) * 2015-11-04 2017-02-09 Netzsch-Feinmahltechnik Gmbh Zerkleinerungsvorrichtung und Verfahren zum Zerkleinern von Rohstoffen
CN205236215U (zh) * 2015-12-31 2016-05-18 江苏博迁新材料有限公司 一种高速导流气旋打散分级机
IT201600098452A1 (it) * 2016-09-30 2018-03-30 Micro Macinazione Sa Apparecchiatura per la micronizzazione di materiale polveroso con capacita’ di prevenire incrostazioni
CN106955774A (zh) * 2017-05-10 2017-07-18 成都赋阳技术开发有限公司 一种采用气流冲击方式进行分料的超微粉碎机
CN207169926U (zh) * 2017-08-04 2018-04-03 池州特乃博先进材料有限公司 一种流化床气流粉碎机

Also Published As

Publication number Publication date
US20200061631A1 (en) 2020-02-27
CN110856830A (zh) 2020-03-03
RU2732837C1 (ru) 2020-09-23
DK3613508T3 (da) 2023-12-18
KR102277738B1 (ko) 2021-07-16
US11235337B2 (en) 2022-02-01
SI3613508T1 (sl) 2024-03-29
KR20200023208A (ko) 2020-03-04
PL3613508T3 (pl) 2024-03-04
LT3613508T (lt) 2023-12-27
FI3613508T3 (fi) 2023-12-19
JP6934491B2 (ja) 2021-09-15
DE102018120596A1 (de) 2020-02-27
EP3613508A1 (de) 2020-02-26
JP2020028877A (ja) 2020-02-27
CN110856830B (zh) 2022-04-15
ES2966925T3 (es) 2024-04-25

Similar Documents

Publication Publication Date Title
EP2004329B1 (de) Verfahren zur erzeugung feinster partikel mittels einer strahlmühle
EP3291915B1 (de) Zerkleinerungsmaschine mit einem rotorsystem und verfahren zum zerkleinern von aufgabegut
DE3311433A1 (de) Klassieren von mahlgut von vertikalen rollenmuehlen
EP1977859A1 (de) Vorrichtung und Verfahren zur Oberflächenbearbeitung bzw. Oberflächenbehandlung mittels Trockeneisgranulat
DE102014117188B3 (de) Verfahren zum Regulieren der Förderleistung eines Rotors einer Trenneinrichtung einer Rührwerkskugelmühle und Rührwerkskugelmühle zum Zerkleinern von Mahlgut
EP3283204A1 (de) Vorrichtung und verfahren zum mischen, insbesondere zum dispergieren
DE102020100907A1 (de) Vorrichtung und verfahren zum verrunden von graphitflocken eines graphitmaterials
DE3140294C2 (de) Verfahren und Vorrichtung zum Trennen eines Gutgemisches in Komponenten unterschiedlicher Mahlbarkeit
EP1080786A1 (de) Verfahren zur Fliessbettstrahlmahlung, Vorrichtung zur Durchführung dieses Verfahrens und Anlage mit einer solchen Vorrichtung zur Durchführung dieses Verfahrens
EP3613508B1 (de) Verfahren zur ausschleusung schwer mahlbarer partikel aus einer spiralstrahlmühle
EP1237656A1 (de) Vorrichtung zum zerkleinern eines zerkleinerungsgutes
EP1640070B1 (de) Anlage und Verfahren zur Zerkleinerung von Mahlgut
EP0102645B1 (de) Mahlverfahren und Walzmühle zur Ausführung des Verfahrens
DE3138259C2 (de)
EP1448303B1 (de) Rohrmühle sowie verfahren zum zerkleinern von stückigem mahlgut
DE3730597C2 (de) Strahlmühle
EP3476486B1 (de) Vorrichtung und verfahren zum zerkleinern von schüttgutkörnern
DE4431534B4 (de) Maschine zur Einwirkung auf zerkleinerbares und klassierbares Rohgut, sowie Verfahren zum Betrieb der Maschine
DE1253562B (de) Prall- und Schaelmuehle mit mindestens zwei um eine lotrechte Achse umlaufenden Schleuderraedern
AT517282B1 (de) Mahlvorrichtung zum Mahlen von Mahlgut
AT338598B (de) Vorrichtung zum mahlen von beliebigem mahlgut
DE2153236A1 (de) Muehle
DE1288888B (de) Vorrichtung zum Mahlen von stueckigem Gut
DE1159744B (de) Strahlmuehle
DE2939809C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200826

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B02C 25/00 20060101ALI20230223BHEP

Ipc: B02C 19/06 20060101AFI20230223BHEP

INTG Intention to grant announced

Effective date: 20230320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009471

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20231214

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230927

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E023894

Country of ref document: EE

Effective date: 20231214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2966925

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927