EP3610048B1 - Aluminium-kupfer-lithium-legierungsprodukte mit niedriger dichte - Google Patents

Aluminium-kupfer-lithium-legierungsprodukte mit niedriger dichte Download PDF

Info

Publication number
EP3610048B1
EP3610048B1 EP18724942.0A EP18724942A EP3610048B1 EP 3610048 B1 EP3610048 B1 EP 3610048B1 EP 18724942 A EP18724942 A EP 18724942A EP 3610048 B1 EP3610048 B1 EP 3610048B1
Authority
EP
European Patent Office
Prior art keywords
product
casting
weight
less
unwrought
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18724942.0A
Other languages
English (en)
French (fr)
Other versions
EP3610048A1 (de
Inventor
Juliette CHEVY
Philippe Jarry
Soizic BLAIS
Alireza Arbab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP3610048A1 publication Critical patent/EP3610048A1/de
Application granted granted Critical
Publication of EP3610048B1 publication Critical patent/EP3610048B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc

Definitions

  • the invention generally relates to wrought products made of aluminum-copper-lithium alloys, and more particularly to such products in the form of profiles intended to produce stiffeners in aeronautical construction.
  • Aluminum alloys containing lithium are very attractive in this regard, because lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
  • their performance must reach that of commonly used alloys, particularly in terms of compromise between static mechanical strength properties (yield strength, breaking strength) and damage tolerance properties ( toughness, resistance to fatigue crack propagation), these properties being generally contradictory.
  • These alloys must also have sufficient corrosion resistance, be able to be shaped according to usual processes and have low residual stresses so that they can be fully machined.
  • the patent US 5,198,045 describes a family of Weldalite TM alloys comprising (in wt%) (2.4-3.5)Cu, (1.35-1.8)Li, (0.25-0.65)Mg, (0 .25-0.65)Ag, (0.08-0.25)Zr. Wrought products manufactured with these alloys combine a density of less than 2.64 g/cm 3 and an interesting compromise between mechanical resistance and toughness.
  • the patent US 7,229,509 describes a family of Weldalite TM alloys comprising (in wt%) (2.5-5.5)Cu, (0.1-2.5)Li, (0.2-1.0)Mg, (0) .2-0.8) Ag, (0.2-0.8) Mn, (up to 0.4) Zr or other elements such as Cr, Ti, Hf, Sc and V.
  • the examples shown have a compromise between mechanical resistance and toughness improved but their density is greater than 2.7 g/cm 3 .
  • the patent application WO2007/080267 describes a Weldalite TM alloy not containing zirconium intended for fuselage sheets comprising (in % by weight) (2.1-2.8) Cu, (1.1-1.7) Li, (0.2- 0.6) Mg, (0.1-0.8) Ag, (0.2-0.6) Mn.
  • alloy AA2196 comprising (in % by weight) (2.5-3.3) Cu, (1.4-2.1) Li, (0.25-0.8) Mg, (0 .25-0.6) Ag, (0.04-0.18) Zr and at most 0.35 Mn.
  • Yet another object of the invention is a process for manufacturing a wrought product comprising the casting of a raw form according to the process of the invention and steps of rolling or extrusion and/or forging, solution processing, quenching, stress relieving and optionally tempering.
  • Yet another object of the invention is a structural element incorporating at least one product obtained by the method of manufacturing a wrought product according to the invention or manufactured from an alloy product according to the invention.
  • alloys are expressed as a weight percentage based on the total weight of the alloy.
  • the designation of alloys is done in accordance with The Aluminum regulations. Association, known to those skilled in the art. Density depends on composition and is determined by calculation rather than a weight measurement method. Values are calculated in accordance with The Aluminum Association procedure, which is described on pages 2-12 and 2.13 of “Aluminum Standards and Data”. Definitions of metallurgical conditions are given in European standard EN 515 (2009).
  • the static mechanical characteristics in other words the breaking strength R m , the conventional yield strength at 0.2% elongation R p0.2 (“yield strength”) and l elongation at break A, are determined by a tensile test according to standard EN 10002-1 (2001), the sampling and direction of the test being defined by standard EN 485-1 (2016).
  • the stress intensity factor (K Q ) is determined according to ASTM E 399 (2012).
  • the ASTM E 399 (2012) standard gives paragraphs 9.1.3 and 9.1.4 criteria which allow us to determine whether K Q is a valid value of K 1C .
  • a K 1C value is always a K Q value, the converse not being true.
  • the criteria of paragraphs 9.1.3 and 9.1.4 of standard ASTM E399 (2012) are not always verified, however for a given specimen geometry, the values of K Q presented are always comparable to each other, the specimen geometry making it possible to obtain a valid value of K 1C not always being accessible given the constraints linked to the dimensions of the sheets or profiles.
  • the thickness of the profiles is defined according to standard EN 2066:2001: the cross section is divided into elementary rectangles of dimensions A and B; A always being the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle.
  • structural element or “structural element” of a mechanical construction a mechanical part for which the static and/or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or carried out.
  • these structural elements include in particular the elements which make up the fuselage (such as the fuselage skin), the fuselage stiffeners or stringers (stringers), the bulkheads (bulkheads), the fuselage frames.
  • fuselage (circumferential frames), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars (spars)) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as floor beams, seat tracks and doors.
  • the present inventors have found that, surprisingly, for certain AlCuLiMgMnZr alloys of particularly low density containing less than 0.1% by weight of silver and a joint addition of copper, lithium, magnesium and manganese, the specific choice of a particular zirconium content, depending on the lithium content, makes it possible to very significantly improve the robustness of the manufacturing process while maintaining for the product a satisfactory compromise between mechanical resistance and tolerance to damage.
  • robustness of the manufacturing process we mean here generating little scrap linked in particular to hot slot problems and allowing the use of a significant quantity of recycled alloy.
  • the copper content of the alloy according to the invention for which both the compromise of properties and the improvement of the feasibility of the process are obtained is 2.4 to 3.2% by weight.
  • the copper content is 2.5 to 3.0% by weight and preferably 2.6 to 2.9% by weight.
  • the copper content is 2.4 to 2.6% by weight.
  • the lithium content of the alloy according to the invention is such that it makes it possible to obtain a product having a particularly interesting density, in particular a density less than 2.63 g/cm 3 , more particularly less than 2.62 g /cm 3 and, more particularly, less than or equal to 2.61 g/cm 3 .
  • the lithium content of the alloy is thus greater than 1.6% by weight, preferably greater than 1.7% by weight and, even more preferably, greater than 1.9% by weight.
  • Such a lithium content induces a very high sensitivity to oxidation, hydrogenation and hot cracking, causing difficulties in casting the alloy and, consequently, requires very specific manufacturing processes.
  • Requirement WO2015/086921 describes in particular the fact that, lithium being particularly oxidizable, the casting of aluminum-copper-lithium alloys generates more fatigue crack initiation sites than for type 2XXX alloys without lithium.
  • problems of hot splitting or cracking in the core of the raw form during casting are also generally observed.
  • the problem of hot cracking can be remedied by strongly refining the alloy during casting. It is in fact known that the risk of hot cracking is higher as the casting grain is coarser. A reduction in grain size as well as a change in grain shape can be achieved by adding large amounts of grain refiner during casting. Typical grain refiners are Al3%Ti0.15%C, Al1%Ti0.15%C, Al3%Ti1%B and Al5%Ti1%B in wire form usually added in-line. The addition of these agents induces the dispersion of fine boride or carbide particles in the liquid metal which will serve as grain nucleation sites during solidification.
  • grain refining agents comprising titanium as well as that of remelting of alloys also containing titanium rapidly induces, as the alloy production cycles progress, an increase in the content of total titanium of the alloy, which degrades the damage tolerance properties of the wrought product and thus limits the possible contribution of recycled metal in the load.
  • an AlCuLiMgMnZr alloy according to the invention having in particular particular Li and Zr contents, made it possible to improve the robustness of the manufacturing process and to limit or even to eliminate the supply of grain refining agents.
  • the lithium content of the alloy according to the invention is thus greater than 1.6% by weight, preferably greater than 1.7% by weight and, even more preferably, greater than 1.9% by weight.
  • the Li content of the alloy is 1.7 to 2.3% by weight or another 2.0 to 2.2% by weight.
  • the high lithium content in particular exacerbates the sensitivity to oxidation of the liquid metal bath and promotes core cracking problems during casting, which requires reducing the casting speed.
  • the zirconium content is 0.13 to 0.16% by weight; and more preferably from 0.14 to 0.15% by weight.
  • the present inventors believe that the alloy composition according to the precisely selected invention allows the formation of cubic crystalline phases Al 3 Zr and Al 3 (Zr, Li) which are structurally similar to the phase metastable Al 3 Li which is known to precipitate by demixing of the solid solution during tempering after solution and quenching but which is not supposed to form from the liquid, the known stable form being the tetragonal variety.
  • the formation of such phases thanks to the specifically selected composition of the alloy could be the origin of grain nucleation sites during the solidification of the as-cast form, thus allowing the formation of an extremely fine granular structure in the presence of a conventional quantity of grain refining agent or making it possible to limit, possibly eliminate, the supply of grain refining agent during casting.
  • the zirconium content of the alloy according to the invention is advantageously such that Zr ⁇ -0.06*Li + 0.242, preferably such that Zr ⁇ -0.06*Li + 0.2575.
  • the Li and Zr contents of the alloy according to the invention are such that Zr*Li ⁇ 0.235, preferably Zr*Li ⁇ 0.242, more preferably Zr*Li ⁇ 0.275.
  • the magnesium content is 0.3 to 0.9% by weight and, preferably, 0.5 to 0.7% by weight.
  • the manganese content is 0.2 to 0.6% by weight, preferably 0.3 to 0.6% by weight and, even more preferably 0.4 to 0.5% by weight. Manganese in particular makes it possible to achieve a satisfactory compromise of properties for the wrought product.
  • the silver content is less than 0.15% by weight, preferably less than 0.1% by weight and, more preferably still less than 0.05% by weight.
  • the present inventors have found that the advantageous compromise between mechanical strength and damage tolerance known for alloys typically containing about 0.3% by weight of silver can be obtained for alloys containing essentially no silver with the selection composition carried out.
  • the zinc content is less than 1.0% by weight, preferably less than 0.9% by weight. According to a first particular embodiment, the zinc content is between 0.1 and 0.5% by weight and preferably between 0.2 and 0.4% by weight. According to a second particular embodiment, the zinc content is less than 0.05% by weight.
  • the alloy also contains at least one element capable of contributing to grain size control selected from Ti, Cr, Sc, Hf and V, the amount of the element, if chosen, being 0.01 to 0 .15% by weight, preferably 0.01 to 0.05% for Ti, from 0.01 to 0.15% by weight, preferably 0.02 to 0.1% by weight for Sc, from 0.01 to 0 .3% by weight and preferably from 0.02 to 0.1% by weight for Cr and V and from 0.01 to 0.5% by weight for Hf.
  • titanium is chosen in the aforementioned contents and even more advantageously in a content ranging from 0.01 to 0.03% by weight.
  • the unavoidable impurities include iron and silicon, these impurities have a total content of less than 0.20% by weight and preferably respectively a content of less than 0.08% by weight and 0.06% by weight for iron and silicon.
  • silicon; the other elements are impurities which preferably have a content of less than 0.05% by weight each and 0.15% by weight in total.
  • the process for manufacturing raw casting products according to the invention comprises stages of preparation, casting and solidification of the raw form. These steps are followed, for the production of the wrought products according to the invention, by the steps of rolling or extrusion and/or forging, solution processing, quenching, stress relief and optionally tempering.
  • the grain size of the AlCuLiMgMnZr alloy according to the invention in the as-cast state, obtained by one of the processes according to the invention is less than 110 ⁇ m, preferably less than or equal to 105 ⁇ m and , more preferably even less than 100 ⁇ m for raw casting shapes with a thickness or diameter greater than 150 mm, preferably greater than 250 mm and even more preferably greater than 300 mm.
  • the grain size of the AlCuLiMgMnZr alloy according to the invention in the as-cast state, obtained by one of the processes according to the invention is less than or equal to 95 ⁇ m, preferably less than 90 ⁇ m for as-cast forms with a thickness or diameter greater than 150 mm, preferably greater than 250 mm and even more preferably greater than 300 mm.
  • an object of the invention is a structural element incorporating at least one product according to the invention or a product manufactured using a process according to the invention.
  • a structural element incorporating at least one product according to the invention or manufactured from such a product is advantageous, in particular for aeronautical construction.
  • the products according to the invention are particularly advantageous for the production of structural elements such as fuselage or wing stiffeners, floor beams and seat rails.
  • Table 1 Composition in % by weight and density of AlCuLiMgMnZr alloys Alloy Cu Li Mg Zn Ag Mn Zr Ti Density (g/cm 3 ) AA2196 2.5-3.3 1.4-2.1 0.25-0.8 ⁇ 0.35 0.25-0.6 ⁇ 0.35 0.04-0.18 ⁇ 0.1 2.63 68 3.00 1.67 0.35 0.52 0.02 0.06 0.143 0.040 2.63 69 3.00 1.66 0.33 0.52 0.05 0.31 0.144 0.041 2.63 70 2.55 1.78 0.62 0.52 0.02 0.32 0.146 0.040 2.62 71 2.56 2.00 0.61 0.51 0.02 0.33 0.147 0.038 2.60 72 2.45 1.91 0.63 0.82 0.06 0.32 0.145 0.038 2.61 73 2.52 2.16 0.59 0.60 0.01 0.08 0.124 0.041 2.59 76 2.49 1.93 0.57 0.049 0.03 0.32 0.140 0.038 2.60 Fe + Si ⁇ 0.2% by weight, other elements ⁇ 0.05% by weight each and
  • AA2196 alloy billets (alloys 2 and 5) whose composition is given in Table 3 below, were homogenized for 8 hours at 500 °C then 24 hours at 527 °C (alloy 2) or 8 hours at 520 °C (alloy 5). Billets of alloy 76 from Example 1 were homogenized for 10 hours at 534°C.
  • the billets were then reheated to 450 °C +/- 40 °C then hot-spun to obtain W profiles according to the Figure 3 for alloy 2 and Z according to Figure 4 for alloys 5 and 76.
  • the profiles thus obtained were put in solution at 524 °C, quenched and tensile with a permanent elongation of between 2 and 5%. Tempering was carried out for 48 hours at 152°C.
  • Table 3 Composition in % by weight and density of AA2196 alloy Alloy If Fe Cu Mn Mg Zn Ti Zr Li Ag Density (g/cm 3 ) 2 0.04 0.05 2.83 0.33 0.36 0.02 0.02 0.11 1.59 0.38 2.64 5 0.03 0.04 2.90 0.31 0.40 0.01 0.03 0.1 1.67 0.38 2.64 Other elements ⁇ 0.05% by weight each and ⁇ 0.15% in total
  • Samples taken at the end of the profile were tested to determine their static mechanical properties as well as their toughness (K q ).
  • the location of the samples is indicated in dotted lines on the figures 3 And 4 .
  • the test pieces used for measuring the static properties were 10 mm in diameter and taken in such a way that the direction of the axis of the test piece corresponds to the spinning direction (direction L).
  • Table 4 Yield strength Rp0.2 (L) in MPa and toughness Kq (LT) in MPaVm Alloy Rp0.2(L) Kq (LT) 2 522 37.6 5 536 38.2 76 512 43.4
  • the composition of the liquid metal is that of the solidified alloys, the subsequent solidification being carried out without the conventional addition of refining agent so as to highlight the contribution intrinsic to the composition of the alloy to the law of germination.
  • the grain sizes obtained are different from those obtained in vertical casting in the presence of refining agent, but the possibility of self-inoculation of the alloy in a certain composition range can be demonstrated by this test which thus makes it possible to specify the position of the boundary of the domain of interest in the Zr vs Li plane.
  • the cooling rate is 3.5K.s -1 .
  • the pawn which has the shape of a section of cone 65mm high and whose circular bases have respective radii of 25mm and 65mm, is demolded and cut along its axis.
  • the grain measurement is carried out 38 mm from the small face.
  • the upper part of the pawn thus cut out was polished then underwent anodic oxidation before being observed under polarized light.
  • the grain size was measured on this upper part thus prepared by an intercept method according to the ASTM El12 standard.
  • Table 5 Composition in % by weight and density of the AlCuLiMgMnZr alloy used Alloy If Fe Cu Mn Mg Ti Li Zr Grain size (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) ( ⁇ m) 1 0.02 0.037 3.22 0.31 0.37 0.03 1.80 0.101 823 2 0.02 0.039 3.25 0.31 0.36 0.03 1.91 0.101 1017 3 0.02 0.039 3.31 0.31 0.38 0.03 2.07 0.101 913 4 0.02 0.038 3.26 0.31 0.37 0.03 1.83 0.115 927 5 0.02 0.038 3.25 0.31 0.37 0.03 1.93 0.120 799 6 0.02 0.039 3.31 0.31 0.36 0.03 2.07 0.116 698 8 0.02 0.040 3.3 0.31 0.50 0.03 2.08 0.122 490 10 0.02 0.039 3.21 0.31 0.33 0.03 1.79

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Extrusion Of Metal (AREA)
  • Conductive Materials (AREA)

Claims (13)

  1. Legierungsprodukt auf Aluminiumbasis, umfassend in Gew.-%,
    Cu: 2,4-3,2; vorzugsweise 2,5-3,0;
    Li: 1,6-2,3; vorzugsweise 1,7-2,2;
    Mg: 0,3-0,9; vorzugsweise 0,5-0,7;
    Mn: 0,2-0,6; vorzugsweise 0,3-0,6;
    Zr: 0,13 - 0,16; vorzugsweise 0,13-0,15; und
    derart, dass Zr ≥ -0,06*Li + 0,242 oder Zr*Li ≥ 0,235 ist,
    Zn: <1,0 vorzugsweise <0,9;
    Ag: <0,15; vorzugsweise <0,1;
    Fe + Si ≤ 0,20;
    optional mindestens ein Element aus Ti, Sc, Cr, Hf und V, wobei der Gehalt des Elements, falls es ausgewählt wird, wie folgt ist:
    Ti: 0,01 - 0,15; vorzugsweise 0,01 - 0,05;
    Sc: 0,01 - 0,15; vorzugsweise 0,02 - 0,1;
    Cr: 0,01 - 0,3; vorzugsweise 0,02 - 0,1;
    Hf: 0,01 - 0,5;
    V: 0,01 - 0,3; vorzugsweise 0,02-0,1;
    sonstige Elemente jeweils ≤ 0,05 und insgesamt ≤ 0,15, Rest Aluminium.
  2. Produkt nach Anspruch 1, wobei der Gehalt an Lithium 2,0 bis 2,2 Gew.-% beträgt.
  3. Produkt nach einem der Ansprüche 1 bis 2, wobei der Gehalt an Mangan 0,4 bis 0,5 Gew.-% beträgt.
  4. Produkt nach einem der Ansprüche 1 bis 3, wobei der Gehalt an Zirkonium 0,14 bis 0,15 Gew.-% beträgt.
  5. Produkt nach einem der Ansprüche 1 bis 4, wobei der Gehalt an Zirkonium derart ist, dass Zr ≥ -0,06*Li + 0,2575 ist, oder die Gehalte an Zirkonium und Lithium derart sind, dass Zr*Li ≥ 0,275 ist.
  6. Produkt nach einem der Ansprüche 1 bis 5, wobei der Gehalt an Titan zwischen 0,01 und 0,03 Gew.-% liegt.
  7. Verfahren zur Herstellung eines Gussrohprodukts aus Aluminiumlegierung nach einem der Ansprüche 1 bis 6, umfassend die Schritte:
    a) Ausarbeiten eines Bades aus flüssigem Metall;
    b) Gießen eine Rohform aus dem Bad aus flüssigem Metall;
    c) Erstarren der Rohform in einen Knüppel, eine Walzplatte oder einen Gussrohling;
    dadurch gekennzeichnet, dass der Guss ohne Zugeben von Kornverfeiner oder durch Beigeben eines Verfeiners durchgeführt wird, welcher (i) Ti und (ii) B oder C umfasst, und derart, dass der Gehalt an vom Verfeiner stammendem B geringer als 45 ppm, vorzugsweise geringer als 20 ppm, und noch bevorzugter geringer als 10 ppm und jener von C geringer als 6 ppm, vorzugsweise geringer als 3 ppm, und noch bevorzugter geringer als 2 ppm ist.
  8. Verfahren zur Herstellung eines Gussrohprodukts aus Aluminiumlegierung nach einem der Ansprüche 1 bis 6, umfassend die Schritte:
    a) Ausarbeiten eines Bades aus flüssigem Metall;
    b) Gießen einer Rohform aus dem Bad aus flüssigem Metall;
    c) Erstarren der Rohform in einen Knüppel, eine Walzplatte oder einen Gussrohling;
    dadurch gekennzeichnet, dass der Guss für eine Rohgussform mit einer Dicke E oder einem Durchmesser D größer als 150 mm mit einer Gussgeschwindigkeit v, in mm/min durchgeführt wird, größer als:
    - 30 für eine Rohgussform in der Art einer Platte,
    - 9000/D für eine Rohgussform in der Art eines Knüppels.
  9. Gussrohprodukt mit einer Dicke oder einem Durchmesser größer als 150 mm, vorzugsweise größer als 250 mm und noch bevorzugter größer als 300 mm, das durch das Verfahren nach Anspruch 7 oder Anspruch 8 erhalten wird, dadurch gekennzeichnet, dass seine Korngröße kleiner als 110 µm, vorzugsweise kleiner oder gleich 105 µm, und noch bevorzugter kleiner als 90 µm ist.
  10. Verfahren zur Herstellung eines Knetprodukts, umfassend die Schritte zum Herstellen eines Gussrohprodukts nach Anspruch 7 und 8, und Schritte zum Walzen oder Extrudieren und/oder Schmieden, Lösungsglühen, Härten, Spannungsarmglühen, und optional Anlassen.
  11. Verfahren zur Herstellung nach Anspruch 10, umfassend das Gießen eines Knüppels und die Schritte:
    a) Homogenisieren des Knüppels;
    b) Extrudieren des Knüppels in ein stranggepresstes Produkt;
    c) Lösungsglühen und Abschrecken des stranggepressten Produkts;
    d) kontrolliertes Ziehen des stranggepressten Produkts mit einer dauerhaften Verformung von 1 bis 15 %, vorzugsweise mindestens 2 %;
    e) Anlassen des stranggepressten Produkts durch Erhitzen auf 140 bis 170 °C, 5 bis 70 Stunden lang.
  12. Strukturelement, das mindestens ein Produkt einbezieht, das durch das Verfahren nach Anspruch 11 erhalten wird, oder aus einem Produkt nach einem der Ansprüche 1 bis 6 hergestellt wird.
  13. Strukturelement nach Anspruch 12, dadurch gekennzeichnet, dass es zur Herstellung von Druck- oder Saugseitenelementen eines Flügels eines Flugzeugs, vorzugsweise Versteifungen, Längsträger und Rippen, oder von Rumpfelementen, wie Versteifungen oder Rahmen, oder Innenstrukturelementen, wie Bodenträgern oder Sitzschienen verwendet wird.
EP18724942.0A 2017-04-10 2018-04-09 Aluminium-kupfer-lithium-legierungsprodukte mit niedriger dichte Active EP3610048B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753135A FR3065012B1 (fr) 2017-04-10 2017-04-10 Produits en alliage aluminium-cuivre-lithium a faible densite
PCT/FR2018/050887 WO2018189472A1 (fr) 2017-04-10 2018-04-09 Produits en alliage aluminium-cuivre-lithium a faible densite

Publications (2)

Publication Number Publication Date
EP3610048A1 EP3610048A1 (de) 2020-02-19
EP3610048B1 true EP3610048B1 (de) 2024-03-27

Family

ID=59325429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18724942.0A Active EP3610048B1 (de) 2017-04-10 2018-04-09 Aluminium-kupfer-lithium-legierungsprodukte mit niedriger dichte

Country Status (7)

Country Link
US (2) US11667997B2 (de)
EP (1) EP3610048B1 (de)
CN (1) CN110546288A (de)
BR (1) BR112019021001A2 (de)
CA (1) CA3058096A1 (de)
FR (1) FR3065012B1 (de)
WO (1) WO2018189472A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249665A (zh) * 2021-07-02 2021-08-13 中国航发北京航空材料研究院 一种铝合金构件的成形方法
US11981476B2 (en) 2021-08-10 2024-05-14 Ardagh Metal Packaging Usa Corp. Can ends having re-closable pour openings

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2561261B1 (fr) * 1984-03-15 1992-07-24 Cegedur Alliages a base d'al contenant du lithium, du cuivre et du magnesium
US5137686A (en) * 1988-01-28 1992-08-11 Aluminum Company Of America Aluminum-lithium alloys
FR2583776B1 (fr) * 1985-06-25 1987-07-31 Cegedur Produits a base d'al contenant du lithium utilisables a l'etat recristallise et un procede d'obtention
CA1321126C (en) * 1986-11-04 1993-08-10 Alex Cho Method for producing unrecrystallized aluminium-lithium product with improved strength and fracture toughness
US5032359A (en) * 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5066342A (en) * 1988-01-28 1991-11-19 Aluminum Company Of America Aluminum-lithium alloys and method of making the same
US5198045A (en) 1991-05-14 1993-03-30 Reynolds Metals Company Low density high strength al-li alloy
RU2163940C1 (ru) * 1999-08-09 2001-03-10 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Сплав на основе алюминия и изделие, выполненное из него
DE04753337T1 (de) 2003-05-28 2007-11-08 Alcan Rolled Products Ravenswood LLC, Ravenswood Neue al-cu-li-mg-ag-mn-zr-legierung für bauanwendungen, die hohe festigkeit und hohe bruchzähigkeit erfordern
FR2894985B1 (fr) 2005-12-20 2008-01-18 Alcan Rhenalu Sa Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion
RU2327758C2 (ru) * 2006-05-02 2008-06-27 Открытое акционерное общество "Каменск-Уральский металлургический завод" Сплав на основе алюминия и изделия из него
FR2938553B1 (fr) 2008-11-14 2010-12-31 Alcan Rhenalu Produits en alliage aluminium-cuivre-lithium
CN102021457B (zh) * 2010-10-27 2012-06-27 中国航空工业集团公司北京航空材料研究院 一种高强韧铝锂合金及其制备方法
CN101967589B (zh) * 2010-10-27 2013-02-20 中国航空工业集团公司北京航空材料研究院 一种中强高韧铝锂合金及其制备方法
FR2981365B1 (fr) * 2011-10-14 2018-01-12 Constellium Issoire Procede de transformation ameliore de toles en alliage al-cu-li
FR3014904B1 (fr) * 2013-12-13 2016-05-06 Constellium France Produits files pour planchers d'avion en alliage cuivre lithium
FR3014905B1 (fr) * 2013-12-13 2015-12-11 Constellium France Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees
CN106521270B (zh) * 2016-12-07 2018-08-03 中国航空工业集团公司北京航空材料研究院 一种改善铝锂合金耐腐蚀性能的热处理工艺

Also Published As

Publication number Publication date
WO2018189472A1 (fr) 2018-10-18
US20230227954A1 (en) 2023-07-20
FR3065012A1 (fr) 2018-10-12
CA3058096A1 (fr) 2018-10-18
US20200032378A1 (en) 2020-01-30
CN110546288A (zh) 2019-12-06
US11667997B2 (en) 2023-06-06
BR112019021001A2 (pt) 2020-05-05
FR3065012B1 (fr) 2022-03-18
EP3610048A1 (de) 2020-02-19

Similar Documents

Publication Publication Date Title
CA2821663C (fr) Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
EP1492895B1 (de) Produkte aus al-zn-mg-cu-legierung
EP2449142B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserten mechanische beständigkeit und zähigkeit
EP1809779B1 (de) Produkte aus hochfester aluminiumlegierung und herstellungsverfahren dafür
FR2907796A1 (fr) Produits en alliage d&#39;aluminium de la serie aa7000 et leur procede de fabrication
EP3384061B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter mechanischer festigkeit und erhöhter zähigkeit
FR2907467A1 (fr) Procede de fabrication de produits en alliage d&#39;aluminium de la serie aa2000 et produits fabriques selon ce procede
EP3201370B1 (de) Knetprodukt aus einer aluminium magnesium lithium legierung
EP3526358B1 (de) Dünne bleche aus aluminium-magnesium-scandium-legierung für anwendungen in der luft- und raumfahrt
EP1544315A1 (de) Knetprodukt und Strukturbauteil für Flugzeug aus Al-Zn-Cu-Mg-Legierung
EP3411508B1 (de) Dicke bleche aus al- cu - li legierung mit verbesserten ermüdungseigenschaften
EP3610048B1 (de) Aluminium-kupfer-lithium-legierungsprodukte mit niedriger dichte
EP3788178B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter kompressionsfestigkeit und erhöhter beständigkeit
EP3610047B1 (de) Aluminium-kupfer-lithium-legierungsprodukte
WO2019211546A1 (fr) Procede de fabrication d&#39;un alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
FR3026411A1 (fr) Procede de fabrication de produits en alliage aluminium magnesium lithium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018067128

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH