EP3583310B1 - Kraftstoffinjektor - Google Patents

Kraftstoffinjektor Download PDF

Info

Publication number
EP3583310B1
EP3583310B1 EP18700107.8A EP18700107A EP3583310B1 EP 3583310 B1 EP3583310 B1 EP 3583310B1 EP 18700107 A EP18700107 A EP 18700107A EP 3583310 B1 EP3583310 B1 EP 3583310B1
Authority
EP
European Patent Office
Prior art keywords
cooling
fuel injector
cooling assembly
nozzle
flow channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18700107.8A
Other languages
English (en)
French (fr)
Other versions
EP3583310A1 (de
Inventor
Armin HOFSTAEDTER
Franz Guggenbichler
Markus SCHWARZENBERGER
Sven Pasedach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3583310A1 publication Critical patent/EP3583310A1/de
Application granted granted Critical
Publication of EP3583310B1 publication Critical patent/EP3583310B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/043Injectors with heating, cooling, or thermally-insulating means with cooling means other than air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/803Fuel injection apparatus manufacture, repair or assembly using clamp elements and fastening means; e.g. bolts or screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/85Mounting of fuel injection apparatus
    • F02M2200/855Mounting of fuel injection apparatus using clamp elements or fastening means, e.g. bolts or screws

Definitions

  • the invention relates to a fuel injector according to the preamble of claim 1.
  • a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine is from EP 1 781 931 B1 famous.
  • the known fuel injector includes an injector body and a nozzle body. The injector body and the nozzle body are clamped together by a nozzle clamping nut.
  • a pressure chamber is formed in the nozzle body and can be supplied with pressurized fuel via an inlet bore.
  • a longitudinally movable nozzle needle which opens or closes at least one injection opening is arranged in a longitudinally movable manner in the pressure chamber.
  • the known fuel injector has cooling channels or flow channels formed in the nozzle body. These cooling ducts serve to cool the nozzle body and nozzle needle, especially in the areas facing the combustion chamber.
  • a fuel injector which has a cooling arrangement, by means of which an annular chamber surrounding the end section is defined, a coolant inlet and a coolant outlet being guided to the annular chamber, ie for a coolant to flow through the same.
  • the formation of the cooling channels in the nozzle body leads to a reduction in the strength of the nozzle body and thus in its service life. Furthermore, it is not possible to simply convert existing fuel injectors to designs with cooling channels without active cooling.
  • the cooling channels or flow channels of the fuel injector according to the invention for injecting fuel into the combustion chamber of an internal combustion engine do not reduce the strength of the nozzle body.
  • active cooling can easily be retrofitted to conventional fuel injectors.
  • the cooling of the nozzle body is very effective, since the effective cooling surface is comparatively large. A quantity of cooling independent of the quantity of fuel injected can also be used.
  • the fuel injector has a nozzle body.
  • a pressure chamber is formed in the nozzle body and can be supplied with pressurized fuel via an inlet bore.
  • a longitudinally movable nozzle needle which opens or closes at least one injection opening is arranged in the pressure chamber.
  • a cooling group is arranged at least partially surrounding the nozzle body. The cooling group comprises a cooling ring, which delimits a multiplicity, preferably more than 20, through which flow channels can flow for cooling the nozzle body.
  • the cooling group includes the nozzle body in the radial direction at its end close to the combustion chamber. A weakening of the nozzle body by cooling channels in the nozzle body is therefore no longer necessary.
  • a longitudinal channel and a distributor groove are formed in the cooling group.
  • the distributor groove runs close to the combustion chamber over almost the entire circumference of the cooling group.
  • the longitudinal channel is used to supply the distributor groove with coolant.
  • the coolant can be both fuel and an engine oil of the internal combustion engine, and also a coolant of the internal combustion engine and a separate coolant of the fuel injector.
  • the coolant is routed through the longitudinal channel to the distributor groove and thus to the top of the cooling group. This is where the most effective area of the cooling group is located, as it is the hottest area of the nozzle body.
  • the flow channels branch off from the distributor groove and run in a direction away from the combustion chamber.
  • the individual flow channels are preferably arranged parallel to one another.
  • the flow channels are also arranged parallel to the longitudinal channel but have the opposite direction of flow.
  • a collector groove into which the flow channels open is formed in the cooling group. As a result, the flow channels are reunited so that it is possible to direct the coolant out of the cooling group through only one outlet channel.
  • the collector groove is preferably arranged at the end of the cooling ring opposite the distributor groove.
  • the nozzle body is clamped to the fuel injector by means of a nozzle clamping nut.
  • Supply channels for supplying and discharging the coolant into and out of the cooling group are formed in the nozzle clamping nut.
  • a first feed passage is hydraulically connected to the longitudinal passage and a second feed passage is hydraulically connected to the plenum groove.
  • the coolant supply is also separated from the nozzle body, so that its strength is not weakened.
  • the nozzle clamping nut combines several functions, namely cooling and clamping.
  • the nozzle clamping nut braces the nozzle body with others Components of the fuel injector, for example with an injector body, optionally with the interposition of other components.
  • the distributor groove is delimited in the circumferential direction by a longitudinal web arranged on the cooling group.
  • the longitudinal web can be formed on the cooling ring. This avoids a disadvantageous accumulation or dead volume in the coolant flow.
  • the coolant is preferably distributed evenly in both directions of the distributor groove, for example in both circumferential directions over approximately 170° each.
  • the flow channels run parallel in an axial direction of the cooling group. As a result, all flow channels flow through in the same direction and with almost the same amounts of coolant. Pressure losses in the flow channels are thus minimized.
  • the flow channels run in a meandering manner, ie in turns.
  • the pressure loss through the flow channels increases as a result, but the higher flow speed increases the heat transfer into the flow channels.
  • the cooling group includes a heat sink on which an inner transfer surface is formed.
  • the transfer surface cooperates with an outer surface of the nozzle body.
  • the transfer surface contacts the nozzle body over a large area to ensure good heat conduction.
  • the longitudinal channel is formed between the cooling ring and the heat sink.
  • the longitudinal channel can be manufactured easily, with the wall thicknesses of the cooling ring and cooling body being able to be minimized.
  • the cooling group includes a cooling sleeve that seals the cooling group to the environment in a media-tight manner.
  • the cooling sleeve is included preferably arranged radially surrounding the cooling ring and ideally also has an end face to the combustion chamber.
  • the flow channels are advantageously formed between the cooling ring and the cooling sleeve. As a result, almost any geometry of the flow channels can be manufactured. Furthermore, the wall thicknesses of the cooling ring and cooling sleeve can be minimized in this way.
  • the cooling group is made in one piece.
  • the cooling group can be manufactured using rapid prototyping or 3D printing processes. This design minimizes the number of parts and has very good sealing of the flow channels.
  • a fuel injector 1 for injecting fuel into the combustion chamber of an internal combustion engine is shown in longitudinal section, as is known from the prior art.
  • the known fuel injector 1 comprises an injector body 2, a valve body 3, an intermediate plate 4 and a nozzle body 5. All of these components are held together by a nozzle clamping nut 6.
  • the nozzle body 5 contains a nozzle needle 7 which is arranged in a pressure chamber 8 formed in the nozzle body 5 so that it can be displaced longitudinally. When the nozzle needle 7 opens, fuel is injected into the combustion chamber of the internal combustion engine via a plurality of injection openings 9 formed in the nozzle body 5 .
  • a collar on which a compression spring 10 is supported can be seen on the nozzle needle 7 .
  • the other end of the compression spring 10 is supported on a control sleeve 11 which in turn bears against the underside of the intermediate plate 4 .
  • the control sleeve 11 defines a control chamber 12 with the upper end face of the nozzle needle 7 opposite the injection openings 9 and with the underside of the intermediate plate 4. The pressure prevailing in the control chamber 12 is decisive for controlling the longitudinal movement of the nozzle needle 7.
  • An inlet bore 13 is formed in the fuel injector 1 .
  • the fuel pressure becomes effective on the one hand in the pressure chamber 8 via the inlet bore 13 , where it exerts a force in the opening direction of the nozzle needle 7 via a pressure shoulder of the nozzle needle 7 .
  • this fuel pressure acts via an inlet throttle 15 formed in the control sleeve 11 in the control chamber 12 and, supported by the force of the compression spring 10, holds the nozzle needle 7 in its closed position.
  • a magnet armature 17 and a valve needle 18 connected to the magnet armature 17 are lifted off a valve seat 19 formed on the valve body 3 .
  • the fuel from the control chamber 12 can flow out through a discharge throttle 20 formed in the intermediate plate 4 via the valve seat 19 into a discharge channel 21 .
  • the drop in hydraulic force on the upper end face of the nozzle needle 7 caused in this way causes the nozzle needle 7 to open.
  • the fuel from the pressure chamber 8 thus reaches the combustion chamber through the injection openings 9 .
  • cooling channels 30 are formed in the valve body 3, intermediate plate 4 and nozzle body 5 of the known fuel injector 1. In this way, the tip of the nozzle needle 7 and the nozzle body 5 in particular can be cooled.
  • the cooling channels 30 are partially in the inlet bore 13. However, this is only due to the sectional view; in the embodiments, the cooling channels 30 are separated from the inlet bore 13.
  • cooling channels 30 of the known fuel injector 1 reduce the strength of the nozzle body 5, so that the cooling channels 30 are formed outside of the nozzle body 5 according to the invention. Furthermore, these cooling channels 30 have a comparatively small total cooling surface.
  • Fig.2 shows a section through a fuel injector 1 according to the invention in the area of the nozzle body 5, only the essential areas being shown.
  • a cooling group 100 is arranged adjacent to the nozzle clamping nut 6 towards the combustion chamber.
  • the cooling group 100 surrounds the nozzle body 5 at least partially.
  • the nozzle needle 7 arranged to be longitudinally movable in the nozzle body 5 is shown in FIG Fig.2 not to be seen.
  • the injector body 2, the valve body 3 and the intermediate plate 4 are shown only schematically as a black box.
  • a first supply channel 30a is used for supply and a second supply channel 30b is used for discharge.
  • the coolant can be either a special coolant or the fuel of the internal combustion engine or an engine oil for the internal combustion engine.
  • the cooling group 100 comprises a cooling body 102, a cooling ring 101 and a cooling sleeve 103.
  • the cooling body 102 is axially connected to the nozzle clamping nut 6 and is thus hydraulically connected to the two supply channels 30. At its inner diameter, the cooling body 102 is in contact with the nozzle body 5 in order to obtain good heat conduction.
  • the cooling ring 101 surrounds the part of the cooling body 102 close to the combustion chamber and has a multiplicity of cooling ducts or flow ducts.
  • the cooling sleeve 103 seals the cooling group 100 or the cooling ring 101 from the environment, so that no coolant leakage can escape. Accordingly, the cooling sleeve 103 is arranged so as to radially surround the cooling ring 101 .
  • the cooling group 100 is connected to the nozzle clamping nut 6 and/or to the nozzle body 5 by means of various fixing elements 104, 105.
  • various variants and connection techniques are possible.
  • Fig.3 shows a section through an embodiment of the cooling group 100 according to the invention.
  • the heatsink 102 further includes a central duct region 102b and a cooling region 102c, which is the region of the heatsink 102 closest to the combustion chamber.
  • the flange area 102a has the comparatively largest diameter and the cooling area 102c has the comparatively smallest diameter of the cooling body 102.
  • a transfer surface 102d is formed on the inside of the cooling body 102, which cooperates with the nozzle body 5 and for heat conduction, above all in the radial direction from the nozzle body 5 is designed for cooling ring 101.
  • the transfer surface 102d can be used as in Fig.3 only run over a circumference of the cooling group 100 near the combustion chamber, as well as over the entire length of the cooling group 100.
  • the cooling ring 101 adjoins the line area 102b in the axial direction and surrounds the cooling area 102c in the radial direction.
  • An inlet channel 31 is formed in the heat sink 102 and opens into a longitudinal channel 111 delimited by the cooling ring 101, the longitudinal channel 111 preferably being delimited by the cooling ring 101 and the cooling area 102c.
  • the inlet channel 31 penetrates the flange area 102a and the line area 102b.
  • the longitudinal channel 111 opens into a distributor groove 112 formed between the cooling ring 101 and the cooling sleeve 103.
  • the distributor groove 112 represents the area of the cooling channels that is closest to the combustion chamber.
  • the distributor groove 112 distributes the coolant over almost the entire circumference of the cooling group 100.
  • the detailed flow of the coolant through the cooling ring 101 is later in the Fig.4 described in more detail.
  • the coolant After flowing through the cooling ring 101, the coolant reaches a collector groove 113 formed between the line region 102b and the cooling ring 101.
  • An outlet channel 32 formed in the cooling body 102 branches off from the collector groove 113, from which the coolant from the cooling group 100 flows back into the nozzle clamping nut 6 is guided.
  • a separating web 116 is formed in the longitudinal direction on the cooling ring 101 and delimits the distributor groove 112 in the circumferential direction.
  • the separating web 116 is preferably arranged diametrically opposite the longitudinal channel 111 .
  • the distributor groove 112 branches off from the longitudinal channel 111 in both circumferential directions up to approximately 170° in each case.
  • Fig.4 shows a preferred embodiment of the cooling ring 101 according to the invention in a perspective view, viewed from the area of the combustion chamber.
  • the cooling ring 101 has an inner wall 110 which is pressed onto the cooling area 102c of the cooling body 102 .
  • the inner wall 110 is only interrupted by the longitudinal channel 111 so that it is delimited by the cooling area 102c and the cooling ring 101 .
  • the cooling ring 101 has a multiplicity of longitudinal webs 115 in the axial direction and a multiplicity of cooling ducts or flow ducts 200 between these.
  • the flow ducts 200 run in the axial direction from the distributor groove 112 at the end of the cooling ring 101 on the combustion chamber side to the collector groove 113 at the end of the cooling ring 101 adjoining the line region 102b Longitudinal bar 115 and the separating bar 116.
  • the coolant flow path through the refrigeration group 100 is as follows:
  • the coolant flows, for example coming from the supply channel 30 of the nozzle clamping nut 6, into the input channel 31 and from there further via the longitudinal channel 111 into the distributor groove 112, which is arranged at the tip of the fuel injector 1 adjacent to the combustion chamber.
  • the distributor groove 112 branches into a first distributor groove 112a and a second distributor groove 112b, both of which lead away from the longitudinal channel 111 in mutually opposite circumferential directions.
  • the longitudinal web 116 diametrically opposite the longitudinal channel 111, prevents the two distributor grooves 112a, 112b from coming together again.
  • a large number of flow channels 200 lead upwards from the two distributor grooves 112a, 112b, ie in the axial direction away from the combustion chamber.
  • the plurality of flow channels 200 reunite in the collector groove 113, which can run over the entire circumference of the cooling group 100.
  • the outlet channel 32 leads away from the collector groove 113 and directs the coolant back out of the cooling group 100 , for example back into the nozzle clamping nut 6 .
  • the present design of the fuel injector 1 thus uses a cooling group 100 with a cooling ring 101 for cooling the nozzle body 5, which has a very large effective cooling surface and thus significantly improves the heat flow from the nozzle body 5 into the coolant.
  • the cooling group 100 consists of a cooling body 102, which rests with its transfer surface 102d on the outer circumference of the nozzle body 5, a cooling ring 101, which provides a large cooling surface for heat exchange via the large number of flow channels 200, and a cooling sleeve 103, which media-tight sealing to the outside.
  • the flow channels 200 of the cooling ring 101 are flowed through in parallel, but depending on the design, a sequential flow through is also possible, for example by the flow channels 200 being lined up in a winding pattern.
  • the flow channels 200 can also have a meandering shape, for example.
  • the number of parts of the cooling group 100 can be reduced in developments of the invention by integrating the geometry of the cooling ring 101 in the cooling sleeve 103 or cooling body 102 .
  • the complexity of the flow channels 200 can be adjusted.
  • Even a one-piece cooling group 100 is possible using the 3D printing method as the manufacturing method for the cooling group 100 .
  • the flow can also take place in parallel or sequentially. The configuration of the flow channel geometry can thus be selected in almost any way.
  • the cooling group 100 with the flow channels 200 formed therein is also suitable as a retrofit kit for existing fuel injectors 1 without active cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft einen Kraftstoffinjektor nach dem Oberbegriff des Anspruchs 1.
  • Ein Kraftstoffinjektor zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine ist aus der EP 1 781 931 B1 bekannt. Der bekannte Kraftstoffinjektor umfasst einen Injektorkörper und einen Düsenkörper. Der Injektorkörper und der Düsenkörper sind durch eine Düsenspannmutter miteinander verspannt. In dem Düsenkörper ist ein Druckraum ausgebildet, der über eine Zulaufbohrung mit unter Druck stehendem Kraftstoff versorgbar ist. Eine zumindest eine Einspritzöffnung freigebende oder verschließende längsbewegliche Düsennadel ist in dem Druckraum längsbeweglich angeordnet. Weiterhin weist der bekannte Kraftstoffinjektor in dem Düsenkörper ausgebildete Kühlkanäle bzw. Strömungskanäle auf. Diese Kühlkanäle dienen der Kühlung von Düsenkörper und Düsennadel, speziell in den dem Brennraum zugewandten Bereichen.
  • Aus DE102013006420 A1 ist ein Kraftstoffinjektor bekannt der eine Kühlanordnung aufweist, mittels welcher eine den Endabschnitt umgebende Ringkammer definiert ist, wobei ein Kühlmitteleinlass und ein Kühlmittelauslass an die Ringkammer geführt sind, i.e. zur Durchströmung derselben mittels eines Kühlmittels.
  • Die Ausbildung der Kühlkanäle in dem Düsenkörper führt zu einer Reduzierung der Festigkeit des Düsenkörpers und damit seiner Lebensdauer. Weiterhin ist es nicht möglich, bestehende Kraftstoffinjektoren ohne Aktivkühlung einfach auf Ausführungen mit Kühlkanälen umzurüsten.
  • Weiterhin gibt es, insbesondere bei der Verwendung von mehreren Kraftstoffinjektoren für einen Brennraum, Betriebspunkte, bei denen nur eine vergleichsweise geringe Kraftstoffmenge eingespritzt wird und demzufolge auch nur eine geringe Eigenkühlung durch die eingespritzte Kraftstoffmenge erfolgt. Dies gilt beispielsweise auch für sogenannte Dual Fuel Motoren, bei denen nur eine geringe Kraftstoffmenge, beispielsweise Diesel, eingespritzt wird, um eine initiale Zündung des Hauptkraftstoffs Gas einzuleiten.
  • Offenbarung der Erfindung
  • Demgegenüber vermindern die Kühlkanäle bzw. Strömungskanäle des erfindungsgemäßen Kraftstoffinjektors zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine die Festigkeit des Düsenkörpers nicht. Außerdem kann bei herkömmlichen Kraftstoffinjektoren eine Aktivkühlung leicht nachgerüstet werden. Weiterhin ist die Kühlung des Düsenkörpers sehr effektiv ausgeführt, da die wirksame Kühlfläche vergleichsweise groß ist. Es kann auch eine Kühlmenge unabhängig von der eingespritzten Kraftstoffmenge verwendet werden.
  • Dazu weist der Kraftstoffinjektor einen Düsenkörper auf. In dem Düsenkörper ist ein Druckraum ausgebildet, der über eine Zulaufbohrung mit unter Druck stehendem Kraftstoff versorgbar ist. Eine zumindest eine Einspritzöffnung freigebende oder verschließende längsbewegliche Düsennadel ist in dem Druckraum angeordnet. Eine Kühlgruppe ist den Düsenkörper zumindest teilweise umgebend angeordnet. Die Kühlgruppe umfasst einen Kühlring, welcher eine Vielzahl, vorzugsweise mehr als 20, durchströmbarer Strömungskanäle zur Kühlung des Düsenkörpers begrenzt.
  • Aufgrund der Vielzahl der Strömungskanäle ist die wirksame gesamte Kühlfläche der Kühlgruppe vergleichsweise groß, so dass eine sehr effektive Kühlgruppe geschaffen wird. Die Kühlgruppe umfasst den Düsenkörper in radialer Richtung an seinem brennraumnahen Ende. Eine Schwächung des Düsenkörpers durch Kühlkanäle in dem Düsenkörper ist somit nicht mehr erforderlich.
  • Weiterhin besteht die Möglichkeit, herkömmliche Kraftstoffinjektoren ohne Aktivkühlung mit einer entsprechenden Kühlgruppe nachzurüsten, so dass auch eine Aktivkühlung nachgerüstet wird. Das weitere Design des Kraftstoffinjektors muss dabei nicht bzw. nicht wesentlich geändert werden.
  • Dabei sind in der Kühlgruppe ein Längskanal und eine Verteilernut ausgebildet. Die Verteilernut verläuft brennraumnah über nahezu den gesamten Umfang der Kühlgruppe. Der Längskanal dient der Versorgung der Verteilernut mit Kühlmittel. Das Kühlmittel kann dabei sowohl Kraftstoff, als auch ein Motoröl der Brennkraftmaschine, als auch ein Kühlmittel der Brennkraftmaschine als auch ein separates Kühlmittel des Kraftstoffinjektors sein. Das Kühlmittel wird beim Eintritt in die Kühlgruppe durch den Längskanal bis in die Verteilernut und damit bis in die Spitze der Kühlgruppe geleitet. Dort befindet sich der wirksamste Bereich der Kühlgruppe, da es der heißeste Bereich des Düsenkörpers ist.
  • Erfindungsgemäß zweigen die Strömungskanäle von der Verteilernut ab und verlaufen in einer sich vom Brennraum entfernenden Richtung. Vorzugsweise sind dabei die einzelnen Strömungskanäle parallel zueinander angeordnet. Vorteilhafterweise sind die Strömungskanäle auch parallel zum Längskanal angeordnet weisen aber die entgegengesetzte Strömungsrichtung auf. Dadurch ist die gesamte Strömungsgeometrie so ausgebildet, dass die Druckverluste minimiert sind und alle Strömungskanäle in gleicher Richtung und nahezu mit den gleichen Kühlmittelmengen durchströmt werden. Gleichzeitig wirkt so die große wirksame Kühlfläche der Kühlgruppe schon brennraumnah im heißesten Bereich des Düsenkörpers.
  • In der Kühlgruppe ist eine Sammlernut ausgebildet, in die die Strömungskanäle münden. Dadurch werden die Strömungskanäle wieder vereinigt, so dass es möglich ist das Kühlmittel durch nur einen Auslasskanal aus der Kühlgruppe herauszuleiten. Vorzugsweise ist die Sammlernut dabei an dem der Verteilernut entgegengesetzten Ende des Kühlrings angeordnet.
  • Der Düsenkörper ist mittels einer Düsenspannmutter an dem Kraftstoffinjektor verspannt. In der Düsenspannmutter sind Versorgungskanäle zur Zu- und Abfuhr des Kühlmittels in die und aus der Kühlgruppe ausgebildet. Ein erster Versorgungskanal ist hydraulisch mit dem Längskanal verbunden, und ein zweiter Versorgungskanal ist hydraulisch mit der Sammlernut verbunden. Somit ist auch die Kühlmittelzufuhr von dem Düsenkörper getrennt, so dass dieser in seiner Festigkeit nicht geschwächt wird. Gleichzeitig vereinigt die Düsenspannmutter mehrere Funktionen, nämlich zur Kühlung und zur Verspannung. Die Düsenspannmutter verspannt den Düsenkörper mit weiteren Bauteilen des Kraftstoffinjektors, beispielsweise mit einem Injektorkörper, gegebenenfalls unter Zwischenlage weiterer Bauteile.
  • In vorteilhaften Ausbildungen ist die Verteilernut in Umfangsrichtung durch einen an der Kühlgruppe angeordneten Längssteg begrenzt. Der Längssteg kann dabei an dem Kühlring ausgebildet sein. Dadurch wird ein nachteiliges Stau- bzw. Totvolumen in der Kühlmittelströmung vermieden. Vorzugsweise verteilt sich das Kühlmittel vom Längskanal kommend in beide Richtungen der Verteilernut gleichmäßig, beispielsweise in beide Umfangsrichtungen über etwa jeweils 170°.
  • In vorteilhaften Ausführungen verlaufen die Strömungskanäle parallel in einer axialen Richtung der Kühlgruppe. Dadurch werden alle Strömungskanäle in gleicher Richtung und nahezu mit den gleichen Kühlmittelmengen durchströmt. Druckverluste in den Strömungskanälen sind damit minimiert.
  • In einer anderen vorteilhaften Ausführung verlaufen die Strömungskanäle mäanderförmig, also in Windungen. Der Druckverlust durch die Strömungskanäle steigt dadurch zwar an, aber die höhere Strömungsgeschwindigkeit steigert den Wärmeübergang in die Strömungskanäle.
  • In vorteilhaften Weiterbildungen umfasst die Kühlgruppe einen Kühlkörper, an dem eine innere Übertragungsfläche ausgebildet ist. Die Übertragungsfläche wirkt mit einer Außenfläche des Düsenkörpers zusammen. Idealerweise kontaktiert die Übertragungsfläche den Düsenkörper großflächig um eine gute Wärmeleitung zu gewährleisten.
  • Vorteilhafterweise ist der Längskanal dabei zwischen dem Kühlring und dem Kühlkörper ausgebildet. Dadurch kann der Längskanal einfach gefertigt werden, wobei die Wandstärken von Kühlring und Kühlkörper minimiert werden können.
  • In vorteilhaften Ausführungen umfasst die Kühlgruppe eine Kühlhülse, die die Kühlgruppe zur Umgebung mediendicht verschließt. Die Kühlhülse ist dabei vorzugsweise den Kühlring radial umgebend angeordnet und weist idealerweise noch eine Stirnfläche zum Brennraum auf.
  • Vorteilhafterweise sind die Strömungskanäle dabei zwischen dem Kühlring und der Kühlhülse ausgebildet. Dadurch kann nahezu eine beliebige Geometrie der Strömungskanäle gefertigt werden. Weiterhin können so die Wandstärken von Kühlring und Kühlhülse minimiert werden.
  • In vorteilhaften Ausführungen ist die Kühlgruppe einteilig ausgeführt. Die Kühlgruppe kann dazu mittels Rapid Prototyping oder 3D-Druckverfahren gefertigt werden. Diese Ausführung minimiert die Teileanzahl und weist eine sehr gute Abdichtung der Strömungskanäle auf.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.
  • Diese zeigen in:
  • Fig. 1
    einen Längsschnitt durch einen Kraftstoffinjektor gemäß dem Stand der Technik,
    Fig. 2
    schematisch einen Schnitt eines erfindungsgemäßen Kraftstoffinjektors, wobei nur die wesentlichen Bereiche dargestellt sind,
    Fig. 3
    einen Schnitt durch eine erfindungsgemäße Kühlgruppe, wobei nur die wesentlichen Bereiche dargestellt sind,
    Fig. 4
    eine Ausführung eines erfindungsgemäßen Kühlrings in einer perspektivischen Ansicht, wobei nur die wesentlichen Bereiche dargestellt sind.
  • Gleiche Elemente bzw. Elemente mit gleicher Funktion sind in den Figuren mit den gleichen Bezugsziffern versehen.
  • In der Fig.1 ist ein Kraftstoffinjektor 1 zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine im Längsschnitt dargestellt, wie er aus dem Stand der Technik bekannt ist.
  • Der bekannte Kraftstoffinjektor 1 umfasst einen Injektorkörper 2, einen Ventilkörper 3, eine Zwischenplatte 4 und einen Düsenkörper 5. Alle diese Bauteile werden durch eine Düsenspannmutter 6 zusammengehalten. Der Düsenkörper 5 enthält hierbei eine Düsennadel 7, welche in einem im Düsenkörper 5 ausgebildeten Druckraum 8 längsverschiebbar angeordnet ist. Bei einer Öffnungsbewegung der Düsennadel 7 wird Kraftstoff über mehrere im Düsenkörper 5 ausgebildete Einspritzöffnungen 9 in den Brennraum der Brennkraftmaschine eingespritzt.
  • An der Düsennadel 7 ist ein Bund ersichtlich, an welchem eine Druckfeder 10 abgestützt ist. Das andere Ende der Druckfeder 10 ist an einer Steuerhülse 11 abgestützt, welche selbst wiederum an der Unterseite der Zwischenplatte 4 anliegt. Die Steuerhülse 11 definiert mit der oberen, den Einspritzöffnungen 9 gegenüberliegenden Stirnfläche der Düsennadel 7 und mit der Unterseite der Zwischenplatte 4 einen Steuerraum 12. Der im Steuerraum 12 herrschende Druck ist für die Steuerung der Längsbewegung der Düsennadel 7 maßgeblich.
  • Im Kraftstoffinjektor 1 ist eine Zulaufbohrung 13 ausgebildet. Über die Zulaufbohrung 13 wird der Kraftstoffdruck einerseits im Druckraum 8 wirksam, wo er über eine Druckschulter der Düsennadel 7 eine Kraft in Öffnungsrichtung der Düsennadel 7 ausübt. Andererseits wirkt dieser Kraftstoffdruck über eine in der Steuerhülse 11 ausgebildete Zulaufdrossel 15 im Steuerraum 12 und hält, unterstützt von der Kraft der Druckfeder 10, die Düsennadel 7 in ihrer Schließstellung.
  • Wenn in der Folge ein Elektromagnet 16 angesteuert wird, wird ein Magnetanker 17 sowie eine mit dem Magnetanker 17 verbundene Ventilnadel 18 von einem an dem Ventilkörper 3 ausgebildeten Ventilsitz 19 abgehoben. Der Kraftstoff aus dem Steuerraum 12 kann auf diese Weise durch eine in der Zwischenplatte 4 ausgebildete Ablaufdrossel 20 über den Ventilsitz 19 in einen Ablaufkanal 21 abströmen. Das auf diese Weise bewirkte Absinken der hydraulischen Kraft auf die obere Stirnfläche der Düsennadel 7 führt zu einem Öffnen der Düsennadel 7.
  • Der Kraftstoff aus dem Druckraum 8 gelangt so durch die Einspritzöffnungen 9 in den Brennraum.
  • Sobald der Elektromagnet 16 abgeschaltet wird, wird der Magnetanker 17 durch die Kraft einer weiteren Druckfeder 22 in Richtung des Ventilsitzes 19 gedrückt, so dass die Ventilnadel 18 an den Ventilsitz 19 gepresst wird. Auf diese Weise wird der Ablaufweg des Kraftstoffs über die Ablaufdrossel 20 und den Ventilsitz 19 gesperrt. Über die Zulaufdrossel 15 wird im Steuerraum 12 wieder Kraftstoffdruck aufgebaut, wodurch die hydraulische Schließkraft erhöht wird. Dadurch wird die Düsennadel 7 in Richtung der Einspritzöffnungen 9 verschoben und verschließt diese. Der Einspritzvorgang ist dann beendet.
  • Um die Bauteile im Bereich des Brennraums zu kühlen, sind Kühlkanäle 30 in Ventilkörper 3, Zwischenplatte 4 und Düsenkörper 5 des bekannten Kraftstoffinjektors 1 ausgebildet. So können speziell die Spitze der Düsennadel 7 und der Düsenkörper 5 gekühlt werden. In der Schnittdarstellung der Fig.1 liegen die Kühlkanäle 30 teilweise in der Zulaufbohrung 13. Dies ist jedoch lediglich der Schnittdarstellung geschuldet, in den Ausführungen sind die Kühlkanäle 30 von der Zulaufbohrung 13 getrennt.
  • Die Kühlkanäle 30 des bekannten Kraftstoffinjektors 1 verringern jedoch die Festigkeit des Düsenkörpers 5, so dass erfindungsgemäß die Kühlkanäle 30 außerhalb des Düsenkörpers 5 ausgebildet werden. Weiterhin weisen diese Kühlkanäle 30 eine vergleichsweise geringe Gesamtkühlfläche auf.
  • Fig.2 zeigt im Schnitt einen erfindungsgemäßen Kraftstoffinjektor 1 im Bereich des Düsenkörpers 5, wobei nur die wesentlichen Bereiche dargestellt sind. Eine Kühlgruppe 100 ist zur Düsenspannmutter 6 benachbart in Richtung des Brennraums angeordnet. Die Kühlgruppe 100 umgibt dabei den Düsenkörper 5 zumindest teilweise. Die im Düsenkörper 5 längsbeweglich angeordnete Düsennadel 7 ist in der Darstellung der Fig.2 nicht zu sehen. Weiterhin sind auch der Injektorkörper 2, der Ventilkörper 3 und die Zwischenplatte 4 nur schematisch als Black Box dargestellt.
  • In der Düsenspannmutter 6 sind zwei Versorgungskanäle 30 ausgebildet, die der Zufuhr bzw. Abfuhr des Kühlmittels in die Kühlgruppe 100 bzw. aus der Kühlgruppe 100 dienen: ein erster Versorgungskanal 30a dient der Zufuhr und eine zweiter Versorgungskanal 30b dient der Abfuhr. Das Kühlmittel kann dabei sowohl ein spezielles Kühlmittel als auch der Kraftstoff der Brennkraftmaschine als auch ein Motoröl für die Brennkraftmaschine sein.
  • Die Kühlgruppe 100 umfasst einen Kühlkörper 102, einen Kühlring 101 und eine Kühlhülse 103. Der Kühlkörper 102 schließt sich axial an die Düsenspannmutter 6 an und ist somit hydraulisch an die beiden Versorgungskanäle 30 angebunden. An seinem inneren Durchmesser steht der Kühlkörper 102 in Kontakt zu dem Düsenkörper 5, um eine gute Wärmeleitung zu erhalten. Der Kühlring 101 umgibt den brennraumnahen Teil des Kühlkörpers 102 und weist eine Vielzahl von Kühlkanälen bzw. Strömungskanälen auf. Die Kühlhülse 103 dichtet die Kühlgruppe 100 bzw. den Kühlring 101 zur Umgebung ab, so dass keine Kühlmittelleckage austreten kann. Demzufolge ist die Kühlhülse 103 den Kühlring 101 radial umgebend angeordnet.
  • Die Kühlgruppe 100 ist mittels diverser Fixierelemente 104, 105 an die Düsenspannmutter 6 und/oder an den Düsenkörper 5 angebunden. Dabei sind diverse Varianten und Verbindungstechniken möglich.
  • Fig.3 zeigt einen Schnitt durch eine Ausführungsform der erfindungsgemäßen Kühlgruppe 100. Der Kühlkörper 102 weist einen Flanschbereich 102a auf, welcher axial an die Düsenspannmutter 6 grenzt. Der Kühlkörper 102 weist weiterhin einen mittleren Leitungsbereich 102b auf und einen Kühlbereich 102c, welcher der dem Brennraum am nahesten gelegene Bereich des Kühlkörpers 102 ist. Der Flanschbereich 102a hat dabei den vergleichsweise größten Durchmesser und der Kühlbereich 102c den vergleichsweise kleinsten Durchmesser des Kühlkörpers 102. An der Innenseite des Kühlkörpers 102 ist eine Übertragungsfläche 102d ausgebildet, welche mit dem Düsenkörper 5 zusammenwirkt und für eine Wärmeleitung vor allem in radialer Richtung vom Düsenkörper 5 zum Kühlring 101 gestaltet ist. Die Übertragungsfläche 102d kann dabei wie in Fig.3 gezeigt nur über einen brennraumnahen Umfang der Kühlgruppe 100 verlaufen, als auch über die gesamte Länge der Kühlgruppe 100.
  • Der Kühlring 101 schließt sich in axialer Richtung an den Leitungsbereich 102b an und umgibt den Kühlbereich 102c in radialer Richtung. Ein Eingangskanal 31 ist in dem Kühlkörper 102 ausgebildet und mündet in einen von dem Kühlring 101 begrenzten Längskanal 111, wobei der Längskanal 111 vorzugsweise von Kühlring 101 und Kühlbereich 102c begrenzt wird. Der Eingangskanal 31 durchdringt dabei den Flanschbereich 102a und den Leitungsbereich 102b. Der Längskanal 111 mündet in eine zwischen dem Kühlring 101 und der Kühlhülse 103 ausgebildete Verteilernut 112. Die Verteilernut 112 stellt dabei den dem Brennraum am nahesten gelegenen Bereich der Kühlkanäle dar. Die Verteilernut 112 verteilt das Kühlmittel über nahezu den gesamten Umfang der Kühlgruppe 100.
  • Die detaillierte Strömungsführung des Kühlmittels durch den Kühlring 101 wird später in der Fig.4 genauer beschrieben. Nach dem Durchströmen des Kühlrings 101 gelangt das Kühlmittel in eine zwischen dem Leitungsbereich 102b und dem Kühlring 101 ausgebildete Sammlernut 113. Von der Sammlernut 113 zweigt ein in dem Kühlkörper 102 ausgeprägter Auslasskanal 32 ab, von welchem das Kühlmittel aus der Kühlgruppe 100 heraus wieder zurück in die Düsenspannmutter 6 geführt wird.
  • An dem Kühlring 101 ist in länglicher Richtung ein Trennsteg 116 ausgebildet, welcher die Verteilernut 112 in Umfangsrichtung begrenzt. Vorzugsweise ist der Trennsteg 116 dabei diametral gegenüberliegend zum Längskanal 111 angeordnet. Durch diese Anordnung zweigt die Verteilernut 112 von dem Längskanal 111 aus in beide Umfangsrichtungen bis etwa jeweils 170° ab.
  • Fig.4 zeigt eine bevorzugte Ausführung des erfindungsgemäßen Kühlrings 101 in einer perspektivischen Ansicht, aus dem Bereich des Brennraums betrachtet. Der Kühlring 101 weist eine Innenwand 110 auf, welche auf den Kühlbereich 102c des Kühlkörpers 102 gepresst ist. Dabei ist die Innenwand 110 lediglich durch den Längskanal 111 unterbrochen, so dass dieser von dem Kühlbereich 102c und dem Kühlring 101 begrenzt ist.
  • Der Kühlring 101 weist in axialer Richtung eine Vielzahl von Längsstegen 115 auf und zwischen diesen eine Vielzahl von Kühlkanälen bzw. Strömungskanälen 200. Die Strömungskanäle 200 verlaufen in axialer Richtung von der Verteilernut 112 am brennraumseitigen Ende des Kühlrings 101 zur Sammlernut 113 am sich dem Leitungsbereich 102b anschließenden Ende des Kühlrings 101. Ein Strömungskanal 200 ist demzufolge in radialer Richtung von der Innenwand 110 und der Kühlhülse 103 begrenzt, und in Umfangsrichtung von zwei Längsstegen 115 bzw. von einem Längssteg 115 und dem Trennsteg 116.
  • Der Strömungsweg des Kühlmittels durch die Kühlgruppe 100 ist der folgende:
    Das Kühlmittel strömt, beispielsweise aus dem Versorgungskanal 30 der Düsenspannmutter 6 kommend, in den Eingangskanal 31 und von dort weiter über den Längskanal 111 in die Verteilernut 112, welche an der Spitze des Kraftstoffinjektors 1 den Brennraum benachbart angeordnet ist. Die Verteilernut 112 zweigt sich vom Längskanal 111 kommend in eine erste Verteilernut 112a und eine zweite Verteilernut 112b auf, welche beide in zueinander entgegengesetzter Umfangsrichtung vom Längskanal 111 wegführen. Der Längssteg 116 verhindert diametral zum Längskanal 111 gegenüberliegend ein Wiederzusammenführen der beiden Verteilernuten 112a, 112b. Stattdessen führen von den beiden Verteilernuten 112a, 112b eine Vielzahl von Strömungskanälen 200 nach oben, also in axialer Richtung vom Brennraum weg. Die Vielzahl der Strömungskanäle 200 vereinigen sich wieder in der Sammlernut 113, welche über den gesamten Umfang der Kühlgruppe 100 verlaufen kann. Von der Sammlernut 113 führt der Auslasskanal 32 ab, welcher das Kühlmittel wieder aus der Kühlgruppe 100, beispielsweise zurück in die Düsenspannmutter 6, herausleitet.
  • Die vorliegende Konstruktion des Kraftstoffinjektors 1 setzt somit zur Kühlung des Düsenkörpers 5 eine Kühlgruppe 100 mit einem Kühlring 101 ein, der eine sehr große wirksame Kühlfläche aufweist und damit den Wärmestrom vom Düsenkörper 5 in das Kühlmittel deutlich verbessert. Die Kühlgruppe 100 besteht aus einem Kühlkörper 102, der mit seiner Übertragungsfläche 102d am Außenumfang des Düsenkörpers 5 anliegt, einem Kühlring 101, der über die Vielzahl von Strömungskanälen 200 eine große Kühlfläche für den Wärmeaustausch zur Verfügung stellt, und aus einer Kühlhülse 103, die die mediendichte Abdichtung nach außen übernimmt.
  • In der gezeigten Lösung der Fig.4 werden die Strömungskanäle 200 des Kühlrings 101 parallel durchströmt, je nach Gestaltung ist aber auch eine sequentielle Durchströmung möglich, beispielsweise indem die Strömungskanäle 200 windungsförmig aneinandergereiht sind. Die Strömungskanäle 200 können dazu beispielsweise auch eine Mäanderform aufweisen.
  • Zur Vereinfachung des Aufbaus des Kraftstoffinjektors kann in Weiterbildungen der Erfindung die Anzahl der Teile der Kühlgruppe 100 reduziert werden, indem die Geometrie des Kühlrings 101 in Kühlhülse 103 oder Kühlkörper 102 integriert wird. Je nach erforderlicher Kühlwirkung kann dabei die Komplexität der Strömungskanäle 200 angepasst werden. Sogar eine einstückige Kühlgruppe 100 ist bei Verwendung des 3D-Druckverfahrens als Fertigungsverfahren für die Kühlgruppe 100 möglich. Die Durchströmung kann auch bei diesen Varianten parallel oder sequentiell erfolgen. Die Ausgestaltung der Strömungskanal-Geometrie ist damit nahezu beliebig wählbar.
  • Die Kühlgruppe 100 mit den darin ausgebildeten Strömungskanälen 200 eignet sich weiterhin auch als Nachrüstsatz für bestehende Kraftstoffinjektoren 1 ohne Aktivkühlung.

Claims (9)

  1. Kraftstoffinjektor (1) zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine, wobei der Kraftstoffinjektor (1) einen Düsenkörper (5) umfasst, wobei in dem Düsenkörper (5) ein Druckraum (8) ausgebildet ist, der über eine Zulaufbohrung (13) mit unter Druck stehendem Kraftstoff versorgbar ist, wobei eine zumindest eine Einspritzöffnung (9) freigebende oder verschließende längsbewegliche Düsennadel (7) in dem Druckraum (8) angeordnet ist und wobei eine Kühlgruppe (100) den Düsenkörper (5) zumindest teilweise umgebend angeordnet ist, wobei die Kühlgruppe (100) einen Kühlring (101) umfasst, welcher eine Vielzahl, vorzugsweise mehr als 20, durchströmbarer Strömungskanäle (200) zur Kühlung des Düsenkörpers (5) begrenzt,
    dadurch gekennzeichnet,
    dass in der Kühlgruppe (100) ein Längskanal (111) und eine Verteilernut (112) ausgebildet sind, wobei die Verteilernut (112) brennraumnah über nahezu den gesamten Umfang der Kühlgruppe (110) verläuft und der Längskanal (111) der Versorgung der Verteilernut (112) mit Kühlmittel dient, und die Strömungskanäle (200) von der Verteilernut (112) abzweigen und in einer sich vom Brennraum entfernenden Richtung verlaufen, wobei in der Kühlgruppe (100) eine Sammlernut (113) ausgebildet ist, in die die Strömungskanäle (200) münden, und der Düsenkörper (5) mittels einer Düsenspannmutter (6) an dem Kraftstoffinjektor (1) verspannt ist und in der Düsenspannmutter (6) Versorgungskanäle (30) zur Zu- und Abfuhr des Kühlmittels in die und aus der Kühlgruppe (100) ausgebildet sind, wobei ein erster Versorgungskanal (30a) hydraulisch mit dem Längskanal (111) verbunden ist und wobei ein zweiter Versorgungskanal (30b) hydraulisch mit der Sammlernut (113) verbunden ist.
  2. Kraftstoffinjektor (1) nach Anspruch 2,
    dadurch gekennzeichnet,
    dass die Verteilernut (112) in Umfangsrichtung durch einen an der Kühlgruppe (100) angeordneten Trennsteg (116) begrenzt ist.
  3. Kraftstoffinjektor (1) nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass die Strömungskanäle (200) parallel in einer axialen Richtung der Kühlgruppe (100) verlaufen.
  4. Kraftstoffinjektor (1) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Strömungskanäle (200) mäanderförmig verlaufen.
  5. Kraftstoffinjektor (1) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die Kühlgruppe (100) einen Kühlkörper (102) umfasst, an dem eine innere Übertragungsfläche (102d) ausgebildet ist, die mit einer Außenfläche des Düsenkörpers (5) zusammenwirkt.
  6. Kraftstoffinjektor (1) nach Anspruch 5,
    dadurch gekennzeichnet,
    dass der Längskanal (111) zwischen dem Kühlring (101) und dem Kühlkörper (102) ausgebildet ist.
  7. Kraftstoffinjektor (1) nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Kühlgruppe (100) eine Kühlhülse (103) umfasst, die die Kühlgruppe (100) zur Umgebung mediendicht verschließt.
  8. Kraftstoffinjektor (1) nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die Strömungskanäle (200) zwischen dem Kühlring (101) und der Kühlhülse (103) ausgebildet sind.
  9. Kraftstoffinjektor (1) nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass die Kühlgruppe (100) mittels einem 3D-Druckverfahren einstückig ausgebildet ist.
EP18700107.8A 2017-02-20 2018-01-08 Kraftstoffinjektor Active EP3583310B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017202686.3A DE102017202686A1 (de) 2017-02-20 2017-02-20 Kraftstoffinjektor
PCT/EP2018/050315 WO2018149555A1 (de) 2017-02-20 2018-01-08 Kraftstoffinjektor

Publications (2)

Publication Number Publication Date
EP3583310A1 EP3583310A1 (de) 2019-12-25
EP3583310B1 true EP3583310B1 (de) 2022-03-09

Family

ID=60937774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700107.8A Active EP3583310B1 (de) 2017-02-20 2018-01-08 Kraftstoffinjektor

Country Status (6)

Country Link
EP (1) EP3583310B1 (de)
JP (1) JP6802931B2 (de)
KR (1) KR102399897B1 (de)
CN (1) CN110325728B (de)
DE (1) DE102017202686A1 (de)
WO (1) WO2018149555A1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS253452B1 (en) * 1985-05-21 1987-11-12 Vladek Lacina Cooled injection nozzle for engines with direct fuel injection
AT500773B8 (de) 2004-08-24 2007-02-15 Bosch Gmbh Robert Einspritzdüse für brennkraftmaschinen
US9581120B2 (en) * 2011-11-01 2017-02-28 Cummins Inc. Fuel injector with injection control valve cartridge
AT512422B1 (de) * 2012-02-07 2016-01-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102013006420B4 (de) * 2013-04-15 2014-11-06 L'orange Gmbh Kraftstoffinjektor
AT517054B1 (de) * 2015-04-14 2017-02-15 Ge Jenbacher Gmbh & Co Og Anordnung aus einem Zylinderkopf und einem Kraftstoffinjektor

Also Published As

Publication number Publication date
CN110325728A (zh) 2019-10-11
JP6802931B2 (ja) 2020-12-23
DE102017202686A1 (de) 2018-08-23
WO2018149555A1 (de) 2018-08-23
KR20190116443A (ko) 2019-10-14
KR102399897B1 (ko) 2022-05-20
CN110325728B (zh) 2021-11-05
EP3583310A1 (de) 2019-12-25
JP2020507033A (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
EP0898650B1 (de) Kraftstoffeinspritzeinrichtung für brennkraftmaschinen
EP1303697B1 (de) Brennstoffeinspritzventil
EP2307698B1 (de) Kraftstoffinjektor
WO2006012658A1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102013006420B4 (de) Kraftstoffinjektor
EP3535486B1 (de) Brennstoffeinspritzventil zum einspritzen eines gasförmigen und/oder flüssigen brennstoffs
WO2001066932A1 (de) Einspritzdüse
EP3475555B1 (de) Düsenkörper für einen kraftstoffinjektor
WO2017029076A1 (de) Kraftstoffinjektor
EP3445967B1 (de) Kraftstoffinjektor
DE10034446A1 (de) Brennstoffeinspritzventil
EP3583310B1 (de) Kraftstoffinjektor
EP1355057B1 (de) Vorrichtung zur Rückführung des Abgases einer Brennkraftmaschine
EP2511514B1 (de) Brennstoffeinspritzventil
EP2119903B1 (de) Kraftstoff-Injektor sowie Brennkraftmaschine
DE4444363A1 (de) Mehrstrahl-Kraftstoffeinspritzdüse
WO2013117979A1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
CH693962A5 (de) Kraftstoffinjektor fuer eine Brennkraftmaschine.
DE102006036782B4 (de) Injektor
DE102014009484A1 (de) Stelleinrichtung zum variablen Einstellen wenigstens eines Verdichtungsverhältnisses eines Zylinders einer Hubkolbenmaschine
EP2726728B1 (de) Kraftstoffinjektor
DE102008061400A1 (de) Kraftstoff-Einspritzventil für eine Brennkraftmaschine
DE102015011027A1 (de) Dual-Fuel-Kraftstoffinjektor
DE102005005713A1 (de) Düsenbaugruppe und Einspritzventil
DE102016101922B3 (de) Kraftstoff-Einspritzinjektor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211007

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1474339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009015

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220709

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009015

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

26N No opposition filed

Effective date: 20221212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1474339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240322

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240131

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309