EP3580106B1 - Kopfmodul für schienenfahrzeug - Google Patents

Kopfmodul für schienenfahrzeug Download PDF

Info

Publication number
EP3580106B1
EP3580106B1 EP18704489.6A EP18704489A EP3580106B1 EP 3580106 B1 EP3580106 B1 EP 3580106B1 EP 18704489 A EP18704489 A EP 18704489A EP 3580106 B1 EP3580106 B1 EP 3580106B1
Authority
EP
European Patent Office
Prior art keywords
head module
crash
coach
underframe
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18704489.6A
Other languages
English (en)
French (fr)
Other versions
EP3580106A1 (de
Inventor
Sansan DING
Xiangang Song
Yuanmu ZHONG
Lu JIN
Bingsong WANG
Qinfeng Wang
Werner Hufenbach
Andreas Ulbricht
Hengkui LI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Qingdao Sifang Co Ltd
CG Rail GmbH
Original Assignee
CRRC Qingdao Sifang Co Ltd
CG Rail GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Qingdao Sifang Co Ltd, CG Rail GmbH filed Critical CRRC Qingdao Sifang Co Ltd
Publication of EP3580106A1 publication Critical patent/EP3580106A1/de
Application granted granted Critical
Publication of EP3580106B1 publication Critical patent/EP3580106B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/06End walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D15/00Other railway vehicles, e.g. scaffold cars; Adaptations of vehicles for use on railways
    • B61D15/06Buffer cars; Arrangements or construction of railway vehicles for protecting them in case of collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/005Construction details of vehicle bodies with bodies characterised by use of plastics materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/043Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures connections between superstructure sub-units
    • B61D17/045The sub-units being construction modules

Definitions

  • the subject matter of the present invention is a construction for a head module for a rail vehicle which is suitable for reducing and distributing the loads occurring in the event of a crash.
  • the head module is a head module for local trains, especially subways.
  • the head module is often integrated into the car.
  • the head module is also referred to below as a cabin, although it does not necessarily form its own compartment.
  • Known constructions provide for prefabricated modules to be placed on the substructure that runs through the entire car without interruption.
  • the frame of the windshield has a deformation element which can absorb energy and reduce it through its deformation.
  • the front pane should move out of the frame without the formation of fragments.
  • This is realized in the DE 10 2014 204 761 A1 by providing predetermined breaking points in the frame of the windshield or in its vicinity.
  • the predetermined breaking points are generated by the geometric design, the dimensioning of the deformation element or its material.
  • the deformation element is intended to run partially or completely around the windshield.
  • the frame can also be formed by the vehicle shell itself.
  • the DE 60 2004009942 T2 deals with an impact energy absorption system for a light rail system.
  • the crash system described is mainly arranged in the lower area of the vehicle; in addition, the passenger compartment is surrounded by a protective cage.
  • Subject of WO 2015/011193 A1 is an energy dissipation device for rail vehicles.
  • the purpose of this device is to absorb part of the impact energy in the event of a crash and convert it into material deformation.
  • a three-dimensional body made of FRP is used for this.
  • This has layers with unidirectionally aligned fibers and layers with non-directional (random fibers) arranged fibers.
  • the energy consumption is realized in particular in that a counter-element strikes the energy-absorbing element in the longitudinal direction and in the process destroys the layer or layers with tangled fibers, in particular frays them.
  • the arrangement of the fibers without a preferred direction ensures that the impact energy is converted when the fibers break and does not lead to delamination of different fiber layers.
  • a self-supporting vehicle head which is primarily composed of fiber composite material.
  • the vehicle head has structural elements that are used to consume energy in the event of a crash, as well as other structural elements that have no special function of reducing energy.
  • the energy-consuming structural elements should also consist of fiber composite material.
  • a number of energy-degrading structural elements contribute one after the other to the energy consumption or transmits corresponding forces.
  • the vehicle head has a central buffer coupling which, due to its design, lies in front of the front of the vehicle head panel. Therefore, the central buffer coupling is immediately followed by an energy-absorbing element that is intended to absorb impacts exerted on the central buffer coupling.
  • two lateral energy-absorbing elements are arranged in parallel, which are intended to act as protection against climbing.
  • the parapet has at least one, preferably two energy-absorbing elements below the front window. From the parapet on each side of the head section, two strings lead to the transfer of energy into the substructure of the car section.
  • two energy-absorbing elements are positioned in front of the two A-pillars in the direction of movement.
  • the A-pillars are designed to guide kinetic energy into the roof structure and to reduce any remaining impact energy in a controlled manner in the event of a crash. This is necessary because conventional car part constructions do not have longitudinal members in the roof area that could absorb part of the impact energy.
  • the disadvantage here is that a force exerted on the parapet in connection with the two lateral strands for energy transmission can lead to a leverage effect on the roof structure, which sets it in motion, essentially perpendicular to the direction of movement of the vehicle. This can at least reduce the ability of the roof structure to absorb remaining impact energy. There is thus a disadvantageous coupling of security systems.
  • the DE 60 2005 004 131 T2 describes a frame for a vehicle head in which several compliant regions are distributed.
  • the document does not show a self-supporting vehicle head.
  • the frame is designed in such a way that the most extensive possible energy consumption takes place in its flexible regions.
  • the roof and floor parts of the frame are therefore not primarily designed to direct forces into the subsequent car body.
  • a head module for a rail vehicle which can be releasably attached to the end face of a subsequent wagon part without an additional stand.
  • the WO 2008/034745 A1 describes a safety cell with a geometry to increase the protection of a vehicle driver.
  • the solutions mentioned are suitable for trains that can be exposed to a large number of different opponents in a collision.
  • the applied solutions are correspondingly complex.
  • the object is therefore to propose a system of protective devices for a head module that is particularly suitable for subways and similar applications that operate on separate route networks and can essentially only be exposed to similarly structured collision opponents.
  • no continuous substructure that extends from the carriage part into the head module should be necessary.
  • the head module In order to fulfill this task, the head module must be able to be placed in front of the corresponding car parts. For this purpose, the design features of these car parts must be taken into account.
  • a head module for a rail vehicle according to claim 1.
  • the side members are preferably made of fiber composite material. All interface components have corresponding fastening options for the corresponding components of the cabin. These are preferably releasable fastenings, very particularly preferably screw connections.
  • the head module according to the invention has three systems that convert the impact energy through irreversible deformation in the event of a crash. These systems are built largely independently of one another and can thus work advantageously one after the other or at the same time, without the crash-related destruction of one system being able to impair the effectiveness of the other.
  • the systems are essentially made of fiber composite material.
  • the three crash systems thus introduce the remaining impact forces into different components of the following part of the car, which in turn optionally have energy-absorbing elements.
  • the driver's cab is preferably designed as a two-shell construction.
  • the outer shell is connected to the three systems that convert the impact energy into deformation in the event of a crash.
  • the inner shell lines the actual interior space that can be used by humans.
  • Both shells are designed as fiber composite structures that do not make any significant contribution to crash resistance.
  • the outer shell ensures the necessary rigidity of the construction by being implemented as a multi-layer fiber composite structure, optionally with cores located between the fiber layers.
  • Laid, wound or braided fiber structures can be used in the fiber layers.
  • UD fiber strands (unidirectional fiber strands) are also possible to improve rigidity. It is advantageous that the A-pillars of the outer cabin do not have any special reinforcements for power transmission in the event of a crash.
  • the A-pillars of the outer cabin are preferably designed for the passage of electrical lines.
  • the outer cabin shell is preferably constructed from fiber layers, which are then impregnated with a matrix material and consolidated. It is also possible to build it up from fiber layers already soaked with matrix material.
  • the outer and inner shells are preferably connected in the area of the front and side windows. Here the two shells are screwed, glued or otherwise connected in a combination of different processes.
  • the front pane is preferably glued into the outer shell.
  • predetermined breaking points are provided which ensure that the windshield is released from the frame in the event of a crash and that no or only a few fragments get into the interior.
  • the front pane has its own frame with which it is fastened in the outer shell.
  • predetermined breaking points are preferred.
  • the ring anchor has a U-shape, in which the two ends of the ring anchor are attached to the upper longitudinal beams of the following carriage part.
  • the face of the ring anchor (corresponds to the lower curvature of the U-shape) is arranged on the inside of the upper face of the outer car shell.
  • the ring anchor is preferably designed as a fiber composite component.
  • UD fiber layers are used for the ring anchor, which run over the entire length of the ring anchor, from one fastening point on an upper longitudinal member of the following carriage part to the other fastening point on the other upper longitudinal member of the following carriage part. These UD fiber layers can be used alternately with fiber layers that can have different fiber orientations.
  • Layers of semi-finished fiber products such as woven fabrics or scrims are preferred.
  • fiber layers with different orientations or fabrics or braids are used to fix the UD fibers in their position before consolidation.
  • the ring anchor is preferably manufactured together with the outer car shell.
  • a ring anchor molded part that already has the fiber reinforcement structure of the ring anchor is inserted into the mold in which the outer cabin shell is manufactured. Then the fiber layers of the ring anchor and the outer cabin shell are soaked together with matrix material and this is then consolidated (the matrix material cures).
  • Another preferred embodiment provides for the outer car shell and the ring anchor to be manufactured as independent components and the consolidated ring anchor to be introduced into the consolidated outer car shell and to be fixed there, preferably glued.
  • the parapet reinforcement is also designed as a fiber-reinforced component. It is arranged below the windshield and above the crash box of the head module. It extends over the entire width of the front of the cabin below the window and above the crash box of the lower crash transmission element.
  • the parapet reinforcement can be interrupted in the middle or made with a smaller material thickness.
  • inclined UD belts run from the side ends of the parapet reinforcement, which lead part of the crash energy into the lower longitudinal members of the car part. Both the parapet reinforcement and the UD belts are made of fiber-reinforced material. Analogous to the procedure for the ring anchor, they are inserted and consolidated as prefabricated components during the production of the inner car shell.
  • the parapet reinforcement is fully integrated into the inner shell. Since, contrary to the solution from the WO 2010/029188 A1
  • the A-pillar of the present construction does not play a special role in the event of a crash and, in particular, is not reinforced, an impact on the parapet reinforcement cannot negatively affect the ring anchor in the roof area, as the A-pillar cannot transmit any major forces in this direction.
  • the head module has a flat nose. Force components in the vertical direction that cause climbing are effectively avoided. This approach is advantageous because only identical train units can meet.
  • a plate made of fiber-reinforced plastic is arranged below the parapet reinforcement and above the central buffer coupling. This extends essentially over the entire width of the front of the cabin. Narrower versions are possible as an option. In the central part of the plate this is thickened at the point in front of the crash box. Together with the crash box and the lower crash transmission element, the plate forms a safety system, that transfers the forces still occurring behind the crash box into the underframe support of the following car.
  • the crash box has a structure known from the prior art.
  • it preferably consists of metal foam, which is compressed while absorbing energy in the event of a crash.
  • the lower crash transmission element is curved in such a way that it runs under the cabin floor in the area of the inner shell and only rises to its level in the interface area to the underframe support in order to enable assembly. This is also done here preferably with detachable metallic connections, preferably screw connections.
  • the crash pass-through element is constructed to be angled twice. It runs from the crash box, which is arranged below the parapet and above the central buffer coupling, at an angle downwards to below the bottom of the inner shell. There there is a change of direction in the horizontal direction almost to the end of the bottom of the inner shell. Here it rises diagonally up to the connection interface to the underframe support.
  • the included angles between the horizontal and the angled parts of the crash transmission element are preferably in the range between 30 ° and 60 °.
  • the lower crash transmission element is preferably made of fiber composite material. It has a downwardly open U-shaped (or right-angled, downwardly open) cross section. This ensures a particularly high level of rigidity even in the event of a crash.
  • the central buffer coupling is arranged on the lower crash transmission element after the first bend (after the part which leads from the crash box to the horizontal part of the lower crash transmission element). This is preferably done using a metallic assembly element that is attached to the downwardly pointing legs of the U-shaped cross section, preferably by means of a bolt or screw connection. The central buffer coupling is attached to the mounting element.
  • the central buffer coupling is designed to be telescopic. It can be moved from a rest position, in which it is housed behind a flap in the front of the head section, into a working position in which further pulling parts can be connected.
  • the central buffer coupling also has a Energy-absorbing element according to the state of the art. This energy-absorbing element converts part of the impact energy in the event of a crash into deformation work if the collision occurs while the central buffer coupling is in the working position.
  • Fiber composite materials are the preferred materials for the cabin shells and the three systems in the event of a crash. Fastening elements etc. can advantageously be made of metal.
  • the fiber composite materials are preferably plastics reinforced with carbon fibers, glass fibers or basalt fibers, preferably resins, particularly preferably epoxy resins or phenolic resin systems.
  • the construction of the cabin and the design of the systems are preferably carried out using computer-aided simulation processes, which allow the design to be carried out in accordance with the applicable regulations.
  • the simulation methods and computer-aided design tools are known to those skilled in the art.
  • Fig. 1 shows schematically a side view of the cabin according to the invention without the outer shell.
  • the central buffer coupling has also been omitted for reasons of clarity.
  • the inner shell 701 is made in two parts. The division takes place in a horizontal plane above the parapet reinforcement 711.
  • the upper part of the inner shell 701 has the opening 704 for the front pane and the side panes 703.
  • the window openings are separated from one another by the A-pillar 705.
  • the ring anchor 720 is shown above the upper part of the inner shell. This is detachably fastened to the upper longitudinal members of the following carriage part (not shown) via the fastening device 721.
  • the ring anchor 720 is permanently connected to the outer shell (not shown here).
  • the parapet reinforcement 711 and the UD straps 710 are integrated, which transfer the force from the parapet reinforcement 711 to the entry points 712 in the lower longitudinal members of the following car part.
  • the lower crash transmission element 730 runs below the lower part of the inner shell.
  • the plate 734 is shown on the front side of the cabin. This is followed by the crash box 733. In the event of a crash, the impact occurs on the plate 734, which transfers the force to the crash box 733 and largely dissipates it there. Remaining impact energy is passed on to the lower crash transmission element 730, where it is transferred at the fastening point 732 to the underframe support of the following car part.
  • the openings 731 for fastening the central buffer coupling can be seen in the horizontal part of the lower crash transmission element 730.
  • Fig. 2 shows schematically the front view of the cabin without the outer shell. Opposite the side view Fig. 1
  • the cover flap of the central buffer coupling is provided with the reference numeral 706, which is inserted into a corresponding opening in the outer shell.
  • Fig. 3 shows schematically the rear view of the inner shell of the cabin. This is the side with which the cabin is mounted on the following part of the car.
  • the assembly is preferably carried out on the two upper longitudinal members of the following carriage part by means of the fastening elements 721 of the upper ring anchor, by means of the fastening elements at the entry points 712 of the UD belts from the parapet reinforcement and by means of the fastening device 712 (only one shown, a second is symmetrical on the on the right side) of the lower crash element on the underframe support.
  • Fig. 4 shows the outer shell 702 schematically in a three-dimensional view. In particular, it can be seen how the upper ring anchor 720 with its fastening elements 721 fits into the outer shell 702. The opening for the cover flap 706 of the central buffer coupling is also shown.
  • Fig. 5 shows schematically how the inner shell 701 is fitted into the outer shell and, by way of example, how the internal fittings 707 can be arranged.
  • Fig. 6 shows schematically the crash transmission element 730 in a side view.
  • the crash transmission element has a descending area 7301 in which it runs from the crash box (not shown) to the horizontal part 7302. With the rising part 7303, the crash transmission element runs from the horizontal part to the connection point to the central buffer coupling (not shown).
  • FIG. 12 schematically shows the crash transmission element 730 from FIG Fig. 6 in a 3D view.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Transportation (AREA)
  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Description

  • Gegenstand der vorliegenden Erfindung ist eine Konstruktion für ein Kopfmodul für ein Schienenfahrzeug, das geeignet ist, im Crash-Fall die auftretenden Lasten abzubauen und zu verteilen.
  • Insbesondere handelt es sich um ein Kopfmodul für Nahverkehrszüge, insbesondere U-Bahnen. Bei derartigen Zügen ist das Kopfmodul häufig in den Wagen integriert. Das Kopfmodul wird im Weiteren auch als Kabine bezeichnet, wobei es nicht zwangsweise ein eigenes Abteil bildet.
  • Im Interesse der Material- und Energieeffizienz hat sich in den letzten Jahren der Einsatz leichter Materialien und der Prinzipien des Leichtbaus im Schienenfahrzeugbau immer weiter durchgesetzt. Insbesondere die Verwendung von Faserverbundmaterialien nimmt immer mehr zu. Auch für die Gestaltung der Kopfmodule von Schienenfahrzeugen trifft dies zu.
  • Bekannte Konstruktionen sehen hier vor, vorgefertigte Module auf die Unterkonstruktion, die den gesamten Wagen ohne Unterbrechung durchzieht, aufzusetzen.
  • So ist Gegenstand der DE 197 25 905 ein Verbindungsverfahren eines vorgefertigten Kopfmoduls aus faserverstärktem Kunststoff (FKV) mit dem Untergestell und dem Wagenkastenmodul. Die Seitenwände des Kopfmoduls sind vorzugsweise als Sandwichstruktur aus FKV mit einem zwischenliegenden Kernmaterial gefertigt. Zum Einsatz kommen hier spezielle Verstärkungsprofile in den Fügebereichen des Kopfmoduls, die die Kraftübertragung zwischen Untergestell bzw. Wagenmodul und den FKV-Wänden des Kopfmoduls verbessern. Eine spezielle Gestaltung der Faserführung der FKV-Verstärkung ist nicht vorgesehen. Die Verstärkungsprofile sind in den Kern der FKV-Wände des Kopfmoduls integriert und wirken als Widerlager für die Bolzenverbindung zwischen FKV-Wänden des Kopfmoduls und Untergestell bzw. Wagenkastenmodul. Nachteilig ist hierbei, dass die Verstärkungsfasermaterial zwischen dem Verstärkungsprofil und dem Untergestell einer Druckbelastung ausgesetzt ist und so die Gefahr einer kriechbedingten Schädigung des FKV-Materials in diesem Bereich besteht.
  • In der DE 10 2014 204 761 A1 wird das Problem der Crashsicherheit, insbesondere der Frontscheibe, bei den Schienenfahrzeugköpfen behandelt. Es ist vorgesehen, dass der Rahmen der Frontscheibe ein Verformungselement aufweist, das Energie aufnehmen und durch seine Verformung abbauen kann. Dabei soll sich die Frontscheibe möglichst ohne Entstehung von Bruchstücken aus dem Rahmen bewegen. Realisiert wird dies in der DE 10 2014 204 761 A1 indem Sollbruchstellen im Rahmen der Frontscheibe oder in dessen Nähe vorgesehen sind. Die Sollbruchstellen werden durch die geometrische Ausführung, die Dimensionierung des Verformungselementes oder dessen Material erzeugt. Das Verformungselement soll in einer Ausführungsform teilweise oder vollständig um die Frontscheibe herum verlaufen. Der Rahmen kann auch von der Fahrzeughülle selbst gebildet werden.
  • Die DE 60 2004009942 T2 behandelt ein Aufprallenergie-Absorptionssystem für eine Stadtbahn. Das beschriebene Crashsystem ist vorwiegend im unteren Bereich des Fahrzeugs angeordnet; außerdem ist der Fahrgastraum mit einem Schutzkäfig umgeben.
  • Gegenstand der WO 2015/011193 A1 ist eine Energieverzehrvorrichtung für Schienenfahrzeuge. Zweck dieser Vorrichtung ist es, im Crash-Falle einen Teil der Stoßenergie aufzunehmen und in Materialverformung umzuwandeln. Dazu wird ein dreidimensional geformter Körper aus FKV genutzt. Dieser weist Schichten mit unidirektional ausgerichteten Fasern und Schichten mit ungerichtet (Wirrfasern) angeordneten Fasern auf. Der Energieverzehr wird insbesondere dadurch realisiert, dass ein Gegenelement in Längsrichtung auf das Energieverzehrelement trifft und dabei die Lage bzw. die Lagen mit Wirrfasern zerstört, insbesondere zerfasert. Die Anordnung der Fasern ohne Vorzugsrichtung gewährleistet dabei, dass die Stoßenergie beim Bruch der Fasern umgesetzt wird und nicht zu einer Delaminierung verschiedener Faserschichten führt.
  • In der WO 2010/029188 A1 wird ein selbstragender Fahrzeugkopf offenbart, der vorrangig aus Faserverbundmaterial aufgebaut ist. Der Fahrzeugkopf weist Strukturelemente auf, die dem Energieverzehr im Crashfalle dienen sowie sonstige Strukturelemente, die keine spezielle Funktion zum Energieabbau haben. Insbesondere sollen auch die energieverzehrenden Strukturelemente aus Faserverbundwerkstoff bestehen. Weiterhin ist vorgesehen, dass eine Reihe von energieabbauenden Strukturelementen nacheinander zum Energieverzehr beiträgt bzw. entsprechende Kräfte überträgt. Der Fahrzeugkopf weist eine Mittelpufferkupplung auf, die bauartbedingt vor der Front der Verkleidung des Fahrzeugkopfes liegt. Daher ist der Mittelpufferkupplung unmittelbar ein Energieverzehrelement nachgeordnet, dass auf die Mittelpufferkupplung ausgeübte Stöße absorbieren soll. Darüber hinaus sind parallel dazu zwei seitliche Energieverzehrelemente angeordnet, die als Aufkletterschutz wirken sollen. Des Weiteren weist die Brüstung unterhalb des Frontfensters mindestens ein, bevorzugt zwei Energieverzehrelemente auf. Von der Brüstung führen auf jeder Seite des Kopfteils zwei Stränge zur Energieübertragung in die Unterkonstruktion des Wagenteils. Darüber hinaus sind den beiden A-Säulen in Bewegungsrichtung zwei Energieverzehrelemente vorgelagert. Die A-Säulen sind dazu ausgestaltet, Bewegungsenergie in die Dachstruktur zu leiten und eventuell noch verbliebene Stoßenergie im Crash-Fall kontrolliert abzubauen. Dies ist notwendig, da konventionelle Wagenteilkonstruktionen keine im Dachbereich angeordneten Längsträger aufweisen, die Teile der Stoßenergie aufnehmen könnten. Nachteilig ist hierbei, dass eine auf die Brüstung ausgeübte Kraft in Verbindung mit den zwei seitlichen Strängen zur Energieübertragung zu einer Hebelwirkung auf die Dachkonstruktion führen kann, die diese in eine Bewegung, im Wesentlichen senkrecht zur Bewegungsrichtung des Fahrzeugs, versetzt. Dies kann die Fähigkeit der Dachkonstruktion, verbliebene Stoßenergie aufzunehmen zumindest reduzieren. Es liegt somit eine nachteilige Kopplung von Sicherheitssystemen vor.
  • Die DE 60 2005 004 131 T2 beschreibt einen Rahmen für einen Fahrzeugkopf, in den mehrere nachgiebige Regionen verteilt sind. Die Druckschrift zeigt keinen selbsttragenden Fahrzeugkopf. Der Rahmen ist so ausgelegt, dass in dessen nachgiebigen Regionen ein möglichst umfassender Energieverzehr stattfindet. Die Dach- und Bodenteile des Rahmens sind daher nicht vorrangig dazu ausgebildet, Kräfte in den nachfolgenden Wagenkasten zu leiten.
  • Aus der DE 698 18 357 T2 ist ein Kopfmodul für ein Schienenfahrzeug bekannt, das ohne zusätzliches Untergestellt an der Stirnfläche eines nachfolgenden Wagenteils lösbar befestigt werden kann.
  • Die WO 2008/034745 A1 beschreibt eine Sicherheitszelle mit einer Geometrie zur Erhöhung des Schutzes von einem Fahrzeugführer.
  • Die genannten Lösungen sind für Züge geeignet, die einer Vielzahl unterschiedlicher Kollisionsgegner ausgesetzt sein können. Dementsprechend komplex sind die angewandten Lösungen. Es stellt sich somit die Aufgabe, ein System von Schutzvorrichtungen für ein Kopfmodul vorzuschlagen, das insbesondere für U-Bahnen und ähnliche Anwendungen, die auf getrennten Streckennetzen operieren und im Wesentlichen nur gleichartig aufgebauten Kollisionsgegner ausgesetzt sein können, geeignet sind. Insbesondere soll keine durchgehende Unterkonstruktion, die vom Wagenteil in das Kopfmodul reicht, notwendig sein.
  • Um diese Aufgabe zu erfüllen muss das Kopfmodul geeignet sein, den entsprechenden Wagenteilen voran gestellt werden zu können. Dazu sind die konstruktiven Merkmale dieser Wagenteile zu berücksichtigen.
  • Die Aufgabe wird erfindungsgemäß gelöst durch ein Kopfmodul für ein Schienenfahrzeug nach Anspruch 1.
  • Im vorliegenden Fall stellt sich die Unteraufgabe, das erfindungsgemäße Kopfmodul an ein Wagenteil montieren zu können, das sich durch entsprechende Schnittstellenbauteile auszeichnet. Dies sind insbesondere:
    • zwei Längsträger des Untergestells, die sich an den Unterkanten des Wagenteils in Längsrichtung erstrecken und deren Stirnflächen zur Montage des Kopfmoduls geeignet sind,
    • eine Untergestellstütze zur Fahrerkabine, die zwischen den beiden Längsträgern des Untergestells verläuft und in den Hauptquerträger mündet, der in dem Drehgestell des Wagenteils lagert. Der Hauptquerträger ist in den beiden Längsträgern des Untergestells widergelagert. Die Untergestellstütze zur Fahrerkabine und der Hauptquerträger sind vorzugsweise aus Stahl gefertigt.
    • zwei Längsträger des Wagendaches, die sich an den Oberkanten des Wagenteils in Längsrichtung erstrecken und deren Stirnflächen zur Montage des Kopfmoduls geeignet sind.
  • Die Längsträger sind vorzugsweise aus Faserverbundwerkstoff gefertigt. Alle Schnittstellenbauteile weisen entsprechende Befestigungsmöglichkeiten für die korrespondierenden Bauteile der Kabine auf. Bevorzugt sind dies lösbare Befestigungen, ganz besonders bevorzugt Schraubverbindungen.
  • Das erfindungsgemäße Kopfmodul weist drei Systeme auf, die im Crash-Falle die Stoßenergie durch irreversible Verformung umwandeln. Diese Systeme sind weitgehend unabhängig voneinander aufgebaut und können so vorteilhaft nacheinander oder zeitgleich wirken, ohne dass die Crash-bedingte Zerstörung eines Systems das andere in seiner Wirksamkeit beeinträchtigen könnte. Die Systeme sind im Wesentlichen aus Faserverbundmaterial gefertigt.
  • Bei den drei Systemen handelt es sich um:
    1. 1. eine als Ringanker ausgeführte Versteifung im Dachbereich der Kabine, die Kräfte in die oberen Längsträger des nachfolgenden Wagenteils leitet,
    2. 2. eine Brüstungsverstärkung, die über seitlich der Kabine verlaufende UD-Gurte Stoßkräfte in die unteren Längsträger des nachfolgenden Wagenteils leitet (bei UD-Gurten handelt es sich um besonders mit unidirektional, in Richtung der Belastung verlaufenden Fasern verstärkte Bauteile oder verstärkte Bereiche in Bauteilen),
    3. 3. ein unteres Crash-Durchleitungselement, das mit einer Crash-Box ausgestattet ist und darüber hinaus die verbliebene Stoßenergie in die Untergestellstütze leitet.
  • Die drei Crash-Systeme leiten somit die verbliebenen Stoßkräfte in unterschiedliche Bauteile des nachfolgenden Wagenteils ein, die optional ihrerseits Energieverzehrelemente aufweisen.
  • Die Fahrerkabine ist vorzugsweise als zweischalige Konstruktion ausgebildet. Die äußere Schale ist mit den drei Systemen, die im Crash-Falle die Stoßenergie in Verformung umwandeln, verbunden. Die innere Schale kleidet den eigentlichen, von Menschen nutzbaren, Innenraum aus. Beide Schalen sind als Faserverbundstrukturen ausgebildet, die keine wesentlichen Beiträge zur Crash-Resistenz liefern. Die äußere Schale gewährleistet die notwendige Steifigkeit der Konstruktion, indem sie als mehrlagige Faserverbundstruktur, optional mit zwischen den Faserschichten liegenden Kernen, realisiert ist. In den Faserschichten können gelegte, gewickelte oder geflochtene Fasergebilde eingesetzt werden. Zur Verbesserung der Steifigkeit sind auch UD-Faserstränge (unidirektionale Faserstränge) möglich. Vorteilhaft ist, dass die A-Säulen der äußeren Kabine keine speziellen Verstärkungen für die Kraftübertragung im Crash-Falle aufweisen. Dies verhindert, dass im Crash-Fall eine nachteilige Kraftübertragung auf den Ringanker erfolgt bzw. diese zumindest begrenzt wird. Bevorzugt sind die A-Säulen der äußeren Kabine zur Durchführung elektrischer Leitungen ausgestaltet. Die äußere Kabinenschale wird vorzugsweise aus Fasergelegen aufgebaut, die anschließend mit einem Matrixwerkstoff getränkt und konsolidiert werden. Auch der Aufbau aus bereits mit Matrixwerkstoff getränkten Fasergelegen ist möglich. Eine Verbindung der äußeren mit der inneren Schale erfolgt bevorzugt im Bereich der Front- und Seitenscheibe. Hier sind die beiden Schalen miteinander verschraubt, verklebt oder in sonstiger Weise auch in Kombination von verschiedenen Verfahren verbunden. Die Frontscheibe ist vorzugsweise in der äußeren Schale eingeklebt. Vorzugsweise sind Sollbruchstellen vorgesehen, die gewährleisten, dass die Frontscheibe im Crash-Falle sich aus dem Rahmen löst und keine bzw. nur wenige Bruchstücke in den Innenraum gelangen. In einer weiteren bevorzugten Ausführungsform weist die Frontscheibe einen eigenen Rahmen auf, mit dem sie in der äußeren Schale befestigt ist. Auch hier sind Sollbruchstellen bevorzugt.
  • Der Ringanker weist eine U-Form auf, bei der die beiden Enden des Ringankers an den oberen Längsträgern des nachfolgenden Wagenteils befestigt sind. Die Stirnfläche des Ringankers (entspricht der unteren Krümmung der U-Form) ist an der Innenseite der oberen Stirnseite der äußeren Kabinenschale angeordnet. Der Ringanker ist bevorzugt als Faserverbundbauteil ausgeführt. Dabei werden für den Ringanker UD-Faserlagen, die über die gesamte Länge des Ringankers, von einem Befestigungspunkt an einem oberen Längsträger des nachfolgenden Wagenteils zum anderen Befestigungspunkt an dem anderen oberen Längsträger des nachfolgenden Wagenteils verlaufen, genutzt. Diese UD-Faserlagen können alternierend mit Faserlagen eingesetzt werden, die abweichende Faserorientierungen aufweisen können. Bevorzugt sind Lagen aus Faserhalbzeugen wie Geweben oder Gelegen. Insbesondere werden Faserlagen mit abweichenden Orientierungen bzw. Gewebe oder Geflechte genutzt, um die UD-Fasern vor dem Konsolidieren in ihrer Lage zu fixieren. Vorzugsweise wird der Ringanker gemeinsam mit der äußeren Kabinenschale gefertigt. Dabei wird ein Ringanker-Formteil, dass bereits die Faserverstärkungsstruktur des Ringankers aufweist, in die Form eingelegt, in der die äußere Kabinenschale gefertigt wird. Anschließend werden die Faserlagen des Ringankers und der äußeren Kabinenschale gemeinsam mit Matrixmaterial getränkt und dieses anschließend konsolidiert (das Matrixmaterial ausgehärtet). Es ist auch möglich, das Ringanker-Formteil bereits mit Matrixmaterial zu tränken und anschließend in die Form einzulegen bzw. auf eine Trägerkonstruktion aufzulegen, auf die dann die weiteren Faserlagen der äußeren Schale, ebenfalls als vorgetränkte Faserlagen (bspw. als Prepregs) aufgelegt werden. Auch hier wird anschließend konsolidiert.
  • Eine weitere bevorzugte Ausführungsform sieht vor, die äußere Kabinenschale und den Ringanker als unabhängige Bauteile zu fertigen und den konsolidierten Ringanker in die konsolidierte äußere Kabinenschale einzubringen und dort zu fixieren, vorzugsweise einzukleben.
  • Die Brüstungsverstärkung ist ebenfalls als faserverstärktes Bauteil ausgeführt. Sie ist unterhalb der Frontscheibe und oberhalb der Crash-Box des Kopfmoduls angeordnet. Sie zieht sich über die gesamte Breite der Front der Kabine unterhalb des Fensters und oberhalb der Crash-Box des unteren Crash-Durchleitungselementes. Optional kann die Brüstungsverstärkung mittig unterbrochen oder in geringerer Materialstärke ausgeführt sein. Seitlich verlaufen in der äußeren Schale der Kabine von den seitlichen Enden der Brüstungsverstärkung schräge UD-Gurte, die einen Teil der Crash-Energie in die unteren Längsträger des Wagenteils einleiten. Sowohl die Brüstungsverstärkung als auch die UD-Gurte sind aus faserverstärktem Material aufgebaut. Sie werden analog zur Vorgehensweise beim Ringanker als vorgefertigte Bauteile bei der Fertigung der inneren Kabinenschale mit eingelegt und konsolidiert. Auf diese Weise ist die Brüstungsverstärkung vollständig in die innere Schale integriert. Da entgegen der Lösung aus der WO 2010/029188 A1 die A-Säule der vorliegenden Konstruktion keine besondere Rolle im Crash-Fall spielt und insbesondere nicht verstärkt ist, kann ein Aufprall auf die Brüstungsverstärkung den Ringanker im Dachbereich nicht negativ beeinflussen, da die A-Säule keine größeren Kräfte in diese Richtung übertragen kann.
  • Das Kopfmodul weist eine flache Nase ("flat nose") auf. Kraftkomponenten in vertikaler Richtung, die ein Aufklettern verursachen, werden dadurch wirksam vermieden. Dieser Ansatz ist vorteilhaft da sich ausschließlich identische Zugeinheiten treffen können. Unterhalb der Brüstungsverstärkung und oberhalb der Mittelpufferkupplung ist eine Platte aus faserverstärktem Kunststoff angeordnet. Diese reicht im Wesentlichen über die gesamte Breite der Front der Kabine. Optional sind schmalere Ausführungen möglich. Im zentralen Teil der Platte ist diese an der Stelle verdickt, die vor der Crash-Box liegt. Die Platte bildet gemeinsam mit der Crash-Box und dem unteren Crash-Durchleitungselement ein Sicherheitssystem, das die hinter der Crash-Box noch auftretenden Kräfte in die Untergestellstütze des nachfolgenden Wagens ableitet. Im Kollisionsfall wird der verdickte Teil aus der Platte herausgebrochen (verzehrt dabei einen Teil der Energie) und die weitere Bewegung wird von der Crash-Box aufgenommen, die diese in Verformungsenergie umwandelt. Die Crash-Box weist einen aus dem Stand der Technik bekannten Aufbau auf. Insbesondere besteht sie vorzugsweise aus Metallschaum, der beim Crash unter Energieaufnahme zusammengedrückt wird.
  • Das untere Crash-Durchleitungselement ist derart gekrümmt, dass es im Bereich der inneren Schale unter dem Kabinenboden verläuft und erst im Schnittstellenbereich zur Untergestellstütze auf deren Niveau ansteigt, um die Montage zu ermöglichen. Diese erfolgt auch hier bevorzugt mit lösbaren metallischen Verbindungen, vorzugsweise Schraubverbindungen. In einer besonders bevorzugten Ausführungsform ist das Crash-Durchleitungselement zweifach abgewinkelt aufgebaut. Es verläuft von der Crash-Box, die unterhalb der Brüstung und oberhalb der Mittelpufferkupplung angeordnet ist, schräg nach unten bis unterhalb des Bodens der inneren Schale. Dort erfolgt eine Richtungsänderung in die Horizontale bis annähernd zum Ende des Bodens der inneren Schale. Hier steigt es schräg bis zur Verbindungsschnittstelle zur Untergestellstütze an. Die eingeschlossenen Winkel zwischen der Horizontalen und den abgewinkelten Teilen des Crash-Durchleitungselements liegen vorzugsweise im Bereich zwischen 30° und 60°. Das untere Crash-Durchleitungselement ist bevorzugt aus Faserverbundmaterial gefertigt. Es weist einen nach unten geöffneten U-förmigen (bzw. rechtwinklig, nach unten offenen) Querschnitt auf. Dies gewährleistet eine besonders hohe Steifigkeit auch im Crash-Fall. An dem unteren Crash-Durchleitungselement ist nach der ersten Krümmung (nach dem Teil, der von der Crash-Box zum horizontalen Teil des unteren Crash-Durchleitungselements führt) die Mittelpufferkupplung angeordnet. Dies erfolgt vorzugsweise über ein metallisches Montageelement, dass an den nach unten weisenden Schenkeln des U-förmige Querschnitts, vorzugsweise mittels Bolzen- oder Schraubverbindung, befestigt ist. An dem Montageelement ist die Mittelpufferkupplung befestigt.
  • Die Mittelpufferkupplung ist teleskopierbar aufgebaut. Sie kann aus einer Ruhelage, in der Sie hinter einer Klappe in der Frontseite des Kopfteils untergebracht ist, in eine Arbeitslage bewegt werden, in der das Ankoppeln weiterer Zugteile möglich ist. Die Mittelpufferkupplung weist darüber hinaus ein Energieverzehrelement nach dem Stand der Technik auf. Dieses Energieverzehrelement wandelt einen Teil der Stoßenergie im Crash-Falle in Verformungsarbeit um, wenn der Zusammenstoß erfolgt, während die Mittelpufferkupplung sich in Arbeitslage befindet.
  • Als bevorzugte Materialien kommen für die Kabinenschalen und die drei Systeme für den Crash-Fall Faserverbundwerkstoffe zum Einsatz. Befestigungselemente etc. können vorteilhaft aus Metall gefertigt sein. Bevorzugt handelt es sich bei den Faserverbundwerkstoffen um mit Kohlefasern, Glasfasern oder Basaltfasern verstärkte Kunststoffe, bevorzugt Harze, besonders bevorzugt Epoxidharze oder phenolische Harzsysteme.
  • Die Konstruktion der Kabine und die Auslegung der Systeme erfolgen bevorzugt mit computergestützten Simulationsverfahren, die es gestatten, die Auslegung entsprechend den gültigen Vorschriften vorzunehmen. Die Simulationsverfahren und computergestützten Gestaltungswerkzeuge sind dem Fachmann bekannt.
  • Die folgenden Figuren erläutern eine bevorzugte Ausführungsform des erfindungsgemäß gestalteten Kopfmoduls für ein Schienenfahrzeug.
  • Fig. 1 zeigt schematisch eine Seitenansicht der erfindungsgemäßen Kabine ohne die äußere Schale. Auch die Mittelpufferkupplung wurde aus Übersichtlichkeitsgründen weggelassen. Die innere Schale 701 ist zweiteilig ausgeführt. Die Teilung erfolgt in horizontaler Ebene oberhalb der Brüstungsverstärkung 711. Der obere Teil der inneren Schale 701 weist die Öffnung 704 für die Frontscheibe und die Seitenscheiben 703 auf. Die Fensteröffnungen sind durch die A-Säule 705 voneinander getrennt. Oberhalb des oberen Teils der inneren Schale ist der Ringanker 720 dargestellt. Dieser wird über die Befestigungsvorrichtung 721 lösbar an den oberen Längsträgern des nachfolgenden Wagenteils (nicht dargestellt) befestigt. In bevorzugten Ausführungsformen ist der Ringanker 720 unlösbar mit der äußeren Schale (hier nicht dargestellt) verbunden.
  • In den unteren Teil der inneren Schale sind die Brüstungsverstärkung 711 und die UD-Gurte 710 integriert, die die Kraft von der Brüstungsverstärkung 711 auf die Einleitpunkte 712 in die unteren Längsträger des nachfolgenden Wagenteils übertragen.
  • Unterhalb des unteren Teils der inneren Schale verläuft das untere Crash-Durchleitungselement 730. An der Frontseite der Kabine ist die Platte 734 dargestellt. Dieser nachgeordnet ist die Crash-Box 733. Im Crash-Falle erfolgt der Aufprall auf der Platte 734, die die Kraft an die Crash-Box 733 weitergibt und dort weitestgehend abbaut. Verbliebene Stoßenergie wird in das untere Crash-Durchleitungselement 730 weitergeleitet und dort am Befestigungspunkt 732 in die Untergestellstütze des nachfolgenden Wagenteils übergeben. Im horizontalen Teil des unteren Crash-Durchleitungselementes 730 sind die Öffnungen 731 zur Befestigung der Mittelpufferkupplung erkennbar.
  • Fig. 2 zeigt schematisch die Frontansicht der Kabine ohne die äußere Schale. Gegenüber der Seitenansicht aus Fig. 1 ist zusätzlich die Abdeckklappe der Mittelpufferkupplung mit dem Bezugszeichen 706 versehen, die sich in eine korrespondierende Öffnung der äußeren Schale einfügt.
  • Fig. 3 zeigt schematisch die Rückansicht der inneren Schale der Kabine. Es handelt sich um die Seite, mit der die Kabine am nachfolgenden Wagenteil montiert ist. Die Montage erfolgt bevorzugt an den beiden oberen Längsträgern des nachfolgenden Wagenteils mittels der Befestigungselemente 721 des oberen Ringankers, mittels der Befestigungselemente an den Einleitpunkten 712 der UD-Gurte von der Brüstungsverstärkung und mittels der Befestigungsvorrichtung 712 (nur eine dargestellt, eine zweite ist symmetrisch auf der rechten Seite angeordnet) des unteren Crash-Elements an der Untergestellstütze.
  • Fig. 4 zeigt schematisch in einer dreidimensionalen Ansicht die äußere Schale 702. Insbesondere ist zu erkennen, wie sich der obere Ringanker 720 mit seinen Befestigungselementen 721 in die äußere Schale 702 einfügt. Auch die Öffnung für die Abdeckklappe 706 der Mittelpufferkupplung ist dargestellt.
  • Fig. 5 zeigt schematisch, wie die innere Schale 701 in die äußere Schale eingepasst ist und beispielhaft, wie die Inneneinbauten 707 angeordnet sein können.
  • Fig. 6 zeigt schematisch das Crash-Durchleitungselement 730 in einer seitlichen Ansicht. Das Crash-Durchleitungselement weist einen absteigenden Bereich 7301 auf, in dem es von der Crash-Box (nicht dargestellt) zum horizontalen Teil 7302 verläuft. Mit dem ansteigenden Teil 7303 verläuft das Crash-Durchleitungselement vom horizontalen Teil zum Anbindungspunkt an die Mittelpufferkupplung (nicht dargestellt).
  • Fig. 7 zeigt schematisch das Crash-Durchleitungselement 730 aus Fig. 6 in einer 3D-Ansicht.
  • Bezugszeichenliste
  • 701
    innere Schale
    702
    äußere Schale
    703
    Seitenfensteröffnung
    704
    Frontfensteröffnung
    705
    A-Säule
    706
    Abdeckklappe der Mittelpufferkupplung
    707
    Inneneinbauten
    710
    UD-Gurt der Brüstungsverstärkung
    711
    Brüstungsverstärkung
    712
    Einleitpunkt der Kräfte von der Brüstungsverstärkung in den unteren Längsträger des nachfolgenden Wagens
    720
    Ringanker
    721
    Befestigungsvorrichtung des Ringankers an den oberen Längsträger des nachfolgenden Wagens
    730
    unteres Crash-Durchleitungselement
    7301
    Abschnitt des Crash-Durchleitungselement von der Crash-Box zum horizontalen Teil
    7302
    horizontaler Teil
    7303
    Abschnitt des Crash-Durchleitungselement vom horizontalen Teil zum Befestigungselement an der Untergestellstütze
    731
    Bohrungen zur Befestigung der Mittelpufferkupplung
    732
    Befestigungsvorrichtung des unteren Crash-Durchleitungselements an der Untergestellstütze
    733
    Crash-Box
    734
    Platte

Claims (8)

  1. Kopfmodul für ein Schienenfahrzeug, das geeignet ist, ohne zusätzliches Untergestell an der Stirnfläche eines nachfolgenden Wagenteils des Schienenfahrzeugs lösbar befestigt zu werden, wobei die Stirnfläche des Wagenteils die folgenden Montageschnittstellen aufweist:
    - zwei Längsträger des Untergestells, die sich an den Unterkanten des Wagenteils in Längsrichtung erstrecken und deren Stirnflächen zur Montage des Kopfmoduls geeignet sind,
    - eine Untergestellstütze, die zwischen den beiden Längsträgern des Untergestells verläuft und in einen Hauptquerträger mündet, der in einem Drehgestell des Wagenteils lagert, wobei die Stirnfläche der Untergestellstütze zur Montage des Kopfmoduls geeignet ist,
    - zwei Längsträger eines Wagendaches des Wagenteils, die sich an den Oberkanten des Wagenteils in Längsrichtung erstrecken und deren Stirnflächen zur Montage des Kopfmoduls geeignet sind,
    und das Kopfmodul aus einer inneren Schale (701) und einer äußeren Schale (702) aufgebaut ist und die folgenden drei Systeme aufweist, die weitgehend unabhängig voneinander im Crash-Falle nacheinander oder zeitgleich die Stoßenergie in Verformung umwandeln:
    - eine als Ringanker (720) ausgeführte Versteifung in einem Dachbereich einer Kabine, die Kräfte in die oberen Längsträger des nachfolgenden Wagenteils leitet,
    - eine Brüstungsverstärkung (711), die über seitlich der Kabine des Kopfmoduls verlaufende UD-Gurte (710) Stoßkräfte in die unteren Längsträger des nachfolgenden Wagenteils leitet,
    - ein unteres Crash-Durchleitungselement (730), das mit einer Crash-Box (733) ausgestattet ist und darüber hinaus die verbliebene Stoßenergie in die Untergestellstütze leitet,
    wobei das untere Crash-Durchleitungselement (730) einen nach unten geöffneten U-förmigen Querschnitt aufweist.
  2. Kopfmodul nach Anspruch 1, dadurch gekennzeichnet, dass die äußere Schale (702) einteilig und die innere Schale (701) mehrteilig ausgeführt ist.
  3. Kopfmodul nach Anspruch 1, dadurch gekennzeichnet, dass die innere Schale (701), die äußere Schale (702), der Ringanker (720), die Brüstungsverstärkung (711) und die UD-Gurte (710) sowie das untere Crash-Durchleitungselement (730) aus Faserverbundwerkstoff hergestellt sind.
  4. Kopfmodul nach Anspruch 1, dadurch gekennzeichnet, dass der Ringanker (720) an seinen Enden metallische Befestigungsvorrichtungen (721) zur Fixierung an den oberen Längsträger des nachfolgenden Wagens aufweist.
  5. Kopfmodul nach Anspruch 1, dadurch gekennzeichnet, dass der Ringanker (720) im oberen Teil der äußeren Schale (702), oberhalb der inneren Schale (701) angeordnet ist
  6. Kopfmodul nach Anspruch 1, dadurch gekennzeichnet, dass die UD-Gurte (710) in einen unteren Teil der inneren Schale (701) integriert sind.
  7. Kopfmodul nach Anspruch 1, dadurch gekennzeichnet, dass in Bewegungsrichtung des Kopfmoduls vor der Crash-Box (733) des unteren Crash-Durchleitungselements (730) eine Platte (734) aus Kohlefaser-Verbundwerkstoff angeordnet ist, die im Crash-Fall einen Teil der Stoßenergie aufnimmt.
  8. Kopfmodul nach Anspruch 1, dadurch gekennzeichnet, dass das untere Crash-Durchleitungselement (730) von der Crash-Box (735) absteigend in Richtung eines unterhalb eines Kabinenbodens verlaufenden horizontalen Teil und hinter dem horizontalen Teil aufsteigend zu einer Befestigungsvorrichtung des unteren Crash-Durchleitungselements (730) an der Untergestellstütze verläuft.
EP18704489.6A 2017-02-09 2018-02-02 Kopfmodul für schienenfahrzeug Active EP3580106B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017102567.7A DE102017102567A1 (de) 2017-02-09 2017-02-09 Kopfmodul für Schienenfahrzeug
PCT/EP2018/052643 WO2018146014A1 (de) 2017-02-09 2018-02-02 Kopfmodul für schienenfahrzeug

Publications (2)

Publication Number Publication Date
EP3580106A1 EP3580106A1 (de) 2019-12-18
EP3580106B1 true EP3580106B1 (de) 2021-05-26

Family

ID=61192902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18704489.6A Active EP3580106B1 (de) 2017-02-09 2018-02-02 Kopfmodul für schienenfahrzeug

Country Status (7)

Country Link
US (1) US11352027B2 (de)
EP (1) EP3580106B1 (de)
JP (1) JP6982102B2 (de)
CN (1) CN110291000B (de)
DE (1) DE102017102567A1 (de)
ES (1) ES2876163T3 (de)
WO (1) WO2018146014A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112298227B (zh) * 2020-11-05 2022-02-15 中车青岛四方机车车辆股份有限公司 模块化的司机室结构及轨道车辆

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698840B1 (fr) * 1992-12-08 1995-02-24 Dietrich & Cie De Véhicule ferroviaire à cabine de conduite comportant une structure absorbeuse d'énergie.
DE19725905A1 (de) 1997-06-13 1998-12-17 Abb Daimler Benz Transp Schienenfahrzeug mit einem Kopfmodul aus einem Faserverbundwerkstoff
FR2765543B1 (fr) * 1997-07-02 2005-01-07 Alstom Ddf Vehicule ferroviaire comportant au moins un module d'extremite interchangeable
CA2539383A1 (en) 2003-09-19 2005-03-31 Siemens Transportation Systems, Inc. Integrated impact protecting system
GB2411630A (en) 2004-03-01 2005-09-07 Bombardier Transp Gmbh Vehicle cabin frame with yieldable regions
DE102006044397A1 (de) * 2006-09-18 2008-03-27 Bombardier Transportation Gmbh Kopfmodul für ein Schienenfahrzeug
AT505870A1 (de) * 2007-09-20 2009-04-15 Siemens Transportation Systems Crash-modul fur ein schienenfahrzeug
WO2009072843A2 (en) 2007-12-06 2009-06-11 Korea Railroad Research Institute Tube-buffer for railway vehicles
BRPI0917647A2 (pt) * 2008-09-15 2015-11-17 Voith Patent Gmbh módulo para ser instalado na extremidade dianteira de um veículo de trilhos, em especial um veículo ferroviário.
WO2013111315A1 (ja) * 2012-01-27 2013-08-01 日本車輌製造株式会社 鉄道車両
JP5838909B2 (ja) * 2012-05-17 2016-01-06 トヨタ紡織株式会社 車両用シートのシートバックフレームの締結構造
WO2015011193A1 (de) 2013-07-24 2015-01-29 Voith Patent Gmbh Energieverzehrvorrichtung
DE102014204761A1 (de) 2014-03-14 2015-09-17 Voith Patent Gmbh Fahrzeugkopf für ein spurgebundenes Fahrzeug, insbesondere Schienenfahrzeug mit einer verstärkten Rahmenstruktur für die Frontscheibe sowie Frontscheibe für den Fahrzeugkopf
DE102014218413A1 (de) * 2014-09-15 2016-03-17 Voith Patent Gmbh Fahrzeugkopf zur Befestigung an der Stirnseite eines spurgebundenen Fahrzeuges, insbesondere eines Schienenfahrzeuges
JP6468070B2 (ja) * 2015-05-22 2019-02-13 トヨタ紡織株式会社 乗物用シート
CN106347387B (zh) 2016-10-09 2019-02-26 中车株洲电力机车有限公司 一种轨道车辆头车结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2020506849A (ja) 2020-03-05
US11352027B2 (en) 2022-06-07
US20200010098A1 (en) 2020-01-09
EP3580106A1 (de) 2019-12-18
CN110291000B (zh) 2020-10-02
ES2876163T3 (es) 2021-11-12
WO2018146014A1 (de) 2018-08-16
JP6982102B2 (ja) 2021-12-17
DE102017102567A1 (de) 2018-08-09
CN110291000A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
DE102009045202B4 (de) Modularer Wagenkasten
EP2534025B1 (de) Crashmodul für ein schienenfahrzeug
EP2334533A1 (de) Fahrzeugkopf zur befestigung an der stirnseite eines spurgebundenen fahrzeuges, insbesondere eines schienenfahrzeuges
WO2015091240A1 (de) Karosseriestruktur in knotenbauweise
EP2794386B1 (de) Aufbau für einen kraftwagen, insbesondere einen personenkraftwagen, sowie verfahren zum herstellen eines solchen aufbaus
DE19717473A1 (de) Energieabsorberelement
EP3580108A1 (de) Wagenkasten für ein schienenfahrzeug
EP3580110B1 (de) Querträger zur drehzapfenaufnahme mit lastverteilungselement
DE102012213019B4 (de) Zugkopfteil
EP3580107B1 (de) Crash-system für schienenfahrzeug
EP3580106B1 (de) Kopfmodul für schienenfahrzeug
EP2585359B1 (de) Karosserie für ein kraftfahrzeug mit einem bodem, der ein quererstreckendes strangpress profil aufweist
DE102010001231B4 (de) Struktureinrichtung für ein Fahrzeug
DE102013007263A1 (de) Schutzeinrichtung für eine Vorbaustruktur eines Kraftwagensrohbaus
EP2048077A2 (de) Auftriebsklappenträgersystem
DE102015016186A1 (de) Kraftfahrzeugkarosserie mit zugstabiler Faserverstärkung
DE102017102566B4 (de) Verfahren zur Verbindung eines Verbindungsstückes mit einem U-förmigen Ringanker für ein Kopfmodul für Schienenfahrzeuge
EP2239128A1 (de) Fahrzeugteil mit Strukturverstärkungsteil
EP3580052B1 (de) Verbindungselement zur anbindung eines bauteils an eine faserverbundstruktur
EP2753534A2 (de) Mehrteilige rückwandstruktur
DE102014218450A1 (de) Fahrzeugkopf zur Befestigung an der Stirnseite eines spurgebundenen Fahrzeuges, insbesondere eines Schienenfahrzeuges
DE102014218413A1 (de) Fahrzeugkopf zur Befestigung an der Stirnseite eines spurgebundenen Fahrzeuges, insbesondere eines Schienenfahrzeuges
EP3415397B1 (de) Schienenfahrzeug mit sicherheitsfahrerkabine
EP2895370B1 (de) Schienenfahrzeug mit crashausrüstung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1395944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005429

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210526

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2876163

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005429

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1395944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240319

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210526

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 7

Ref country code: GB

Payment date: 20240118

Year of fee payment: 7

Ref country code: CH

Payment date: 20240301

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240229

Year of fee payment: 7

Ref country code: FR

Payment date: 20240116

Year of fee payment: 7