WO2015011193A1 - Energieverzehrvorrichtung - Google Patents

Energieverzehrvorrichtung Download PDF

Info

Publication number
WO2015011193A1
WO2015011193A1 PCT/EP2014/065828 EP2014065828W WO2015011193A1 WO 2015011193 A1 WO2015011193 A1 WO 2015011193A1 EP 2014065828 W EP2014065828 W EP 2014065828W WO 2015011193 A1 WO2015011193 A1 WO 2015011193A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
energy dissipation
layers
layer
energy
Prior art date
Application number
PCT/EP2014/065828
Other languages
English (en)
French (fr)
Inventor
Sascha Ende
Mathias ROMUND
Original Assignee
Voith Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent Gmbh filed Critical Voith Patent Gmbh
Priority to EP14742506.0A priority Critical patent/EP3025068B1/de
Priority to PL14742506T priority patent/PL3025068T3/pl
Publication of WO2015011193A1 publication Critical patent/WO2015011193A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/124Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by their special construction from fibre-reinforced plastics

Definitions

  • the invention relates to an energy dissipation device, in detail with the features of the preamble of claim 1.
  • Energy dissipation devices in particular energy dissipation elements of energy dissipation devices that consist partially or wholly of fiber composite structures, are previously known in a variety of prior art designs.
  • fiber composite structures are already known in a variety of designs from the prior art for different applications.
  • An essential area of application are energy-absorbing structures arranged in or on vehicles which are suitable for reducing part of the impact energy introduced into them by non-ductile destruction.
  • the document WO 2010/029188 discloses embodiments of vehicle head structures for rail vehicles, formed from first, a supporting function acquiring structural elements and second structural elements with energy consumption, wherein the structural elements are primarily formed of a fiber composite material.
  • the object of the second energy-consuming structural elements is to at least partially absorb and dissipate the impact energy generated in a crash due to an impact force transmission and introduced into the vehicle head in order not to affect the self-supporting structure formed from the first structural elements.
  • the second structural elements are designed such that at least partially dissipate the introduced impact energy by non-ductile destruction of the fiber composite material of the second structural elements.
  • an energy dissipation device in the form of a shock absorber is previously known from EP 2 295 305 B1, comprising an energy dissipation element and a counter element interacting with the energy dissipation element, wherein the counter element and the energy dissipation element are consumed with simultaneous consumption when a critical impact force introduced into the energy dissipation device is exceeded at least a portion of the impact energy introduced into the energy dissipation device relative to each other to move towards each other, wherein the energy dissipation element comprises at least one energy dissipation of fiber composite, which is at least partially non-ductile defibered during the movement of the counter element relative to the energy dissipation element, and the counter element as a his the energy dissipation element facing end face open hollow body is formed such that the ents in the movement of the counter element relative to the energy dissipation element fractional fractions of the energy dissipation region formed from fiber composite material are at least partially accommodated in the interior of
  • the strength and the response of the energy dissipation device can be adjusted by the proportion of fibers laid in Stoßkraftschreibtragungsraum.
  • Fiber composite structures which were developed for the dynamic energy consumption, have so far the problem a constant strength level with a
  • Deviation of + -5% after the system has settled in the working area The reason for this is the fracture behavior of the fiber composite material, on which the material thickness has a decisive influence.
  • the invention is therefore based on the object of developing a fiber-reinforced plastic for use in energy-absorbing devices and an energy dissipation device such that they are suitable to ensure a maximum but defined energy consumption by non-ductile defibration at a large material cross-section.
  • rail-bound vehicle comprising at least one
  • Energy absorbing element in the form of a in a longitudinal direction
  • the energy absorbing element is designed such that when exceeding one in the longitudinal direction of the
  • Energy consumption element initiated critical impact force and at least a part of the transmission of the impact force on the
  • Energy consumption element accumulating impact energy dissipate by non-ductile defibration, wherein the energy-absorbing element at least partially from an energy-consuming fiber composite structure with at least one, unidirectional oriented fiber fiber layer comprising embedded filaments and embedded in matrix material, is characterized in that the energy dissipation fiber composite structure of at least a first, the at least one fiber layer or multiple fiber layers of unidirectionally oriented continuous fibers and matrix material comprising fiber material layer and at least a second, one or more fiber layers oriented multi-directionally Long fiber and matrix material having fiber material layer is formed, wherein the first and second fiber material layers are interconnected, in particular are connected over the entire surface, and wherein the continuous fibers are aligned parallel or at an angle of ⁇ 2.5 ° to the longitudinal direction of the energy absorbing element.
  • a fiber which is thin relative to its length i. understood with a very small cross section executed flexible structure, which is suitable to absorb only tensile forces in the longitudinal direction.
  • the inventors have recognized that the breaking and defibering behavior of continuous fiber structures for energy wastage during impact loading can be significantly improved by providing intermediate second fiber material layers containing random fibers and the spread of interlaminar fractures can be reduced.
  • the solution according to the invention offers due to the proposed layer structure of alternately arranged fiber material layers of continuous fibers and because of their disorderly arrangement also called tangled long fibers, the advantage of delamination, ie separation of the layers in the boundary between to prevent or at least reduce the individual different Fasermate al harshen. Consisting of an energy-dissipated fiber composite, the component consistently disintegrates into small fragments, absorbing + 5% energy at a horizontal force level.
  • the fracture behavior of the special layer structure can be described as a mixture of intermediate fiber fracture and fiber breakage.
  • a single fiber material layer may in particular consist of at least one or more fiber layers which are embedded in a matrix material.
  • the matrix material may vary between the individual fiber layers of a fiber material layer or be the same for all fiber layers of a fiber material layer. That the composition and physical and chemical properties of the matrix material are the same.
  • a single fiber layer is characterized by a plurality of fibers whose arrangement determines the type of fiber layer, the individual fibers being characterized by predefined physical and / or chemical properties.
  • a long fiber according to the invention is understood to mean a fiber having a length in the range of> 1 mm to 120 mm inclusive, preferably> 10 mm to 120 mm.
  • An endless fiber is characterized by a length> 120mm.
  • the percentage of unidirectionally oriented continuous fibers in the first fiber layer from the combination of a first, the at least one fiber layer or multiple fiber layers of unidirectionally oriented continuous fibers and matrix material comprising fiber material layer and at least a second, one or more fiber layers multidirectionally oriented long fibers and Matrix material having fiber material in the range of 50-80%.
  • the individual fiber layer of the first fiber material layer has 33% +/- 8% fibers. Of the percentage of fibers one with the first fiber material layer
  • connected second fiber material layer is then between 20% -50%.
  • the fibers are again equally well embedded in the resin matrix after a brief breakthrough and again require the same force to break again.
  • the behavior continues until the end of the consumption path until the energy-consuming fiber composite structure and thus the energy dissipation device, in particular the crash absorber has been completely consumed or the energy introduced is no longer sufficient to break the fibers, so the vehicle stops.
  • the material is so stiff and the rate of breakage per fiber break is so low that the spent fiber material is present as crumb / dust.
  • first and / or second fiber material layers are provided, which are arranged alternately, wherein the continuous fibers within a single first fiber material layer and / or the individual first fiber material layers parallel to each other or at an angle of up to ⁇ 2.5 ° are arranged differently from the parallel position.
  • first and two second fiber material layer or two second and a first fiber material layer arranged therebetween must be provided.
  • First and second fiber layers are preferably simply sewn or stiffened, thereby forming first and second fiber layers in the thickness direction
  • the energy absorption capacity can be set as a function of at least one of the following parameters:
  • the structure can be adapted specifically to the requirements of the application.
  • a single fiber layer of a first fiber material layer is formed by a fiber layer from the group mentioned below:
  • the web is formed of unidirectional first continuous fibers oriented in the direction of force application or at + -2.5 ° thereto and at an angle of ⁇ 45 ° to ⁇ 135 ° to these aligned second continuous fibers.
  • the continuous filaments circulating around the geometry increase energy absorption because the fibers form an enclosed ring around the geometry. This effect produces a uniformly distributed forces over the geometry cross section at the fracture edge.
  • the individual fiber layer of a second fiber material layer is then preferably formed by a fiber layer from the group mentioned below:
  • the long fibers and continuous fibers of two adjacently arranged fiber layers of the second and first fiber material layers are sewn or compressed together. This measure serves on the one hand to increase the strength and on the other hand to improve the fiberizing behavior.
  • a single continuous fiber of a fiber layer of a first fibrous material layer is formed by a fiber selected from the following group:
  • a single long fiber of a fiber layer of a second fiber material layer is formed by a fiber selected from the following group:
  • the individual fiber layer of the first and / or second fiber material layer is embedded in a matrix material selected from the following group:
  • the formulation of the synthetic resin matrix is characterized by an elongation at break of less than 6% and an E-modulus of more than 3000 MPa.
  • Fiber material from long fiber sections can be used in a variety of grammages.
  • Long fiber sections made in mat / nonwoven form may be characterized by a length of 1mm to 120mm, preferably 10mm to 120mm and are not carded in advance.
  • the long fibers of a fiber layer of a second fiber material layer within a single fiber layer or between the fiber layers of one or more such second fibers Fasernatenal harshen at least with regard to a parameter selected from the following group be carried out differently:
  • the fiber layers of a second fiber material layer or the fiber layers of a plurality of second fiber material layers can be embodied differently with respect to at least one parameter, selected from the following group:
  • the design makes it possible to influence the fiberizing behavior with force transmission over larger areas.
  • the single second fiber material layer is designed such that upon initiation of a force exceeding a predefined magnitude, the energy dissipation Fiber composite structure at an angle of up to 60 °, preferably 45 ° ⁇ 15 ° with respect to the force introduction direction is fiberized.
  • the choice of the angle makes it possible to adjust the force at the beginning of the break.
  • the energy dissipation fiber composite structure is carried out in a shock protection for a particular rail-bound vehicle, since with the described arrangement large forces in the smallest areas are locally degradable.
  • the energy dissipation element is at least partially, preferably completely formed from a previously described energy dissipation fiber composite structure.
  • the energy dissipation element is at least partially, preferably completely embodied as a profile element whose wall is formed by the energy dissipation fiber composite structure. This allows components with low weight and material requirements with a large power absorption capacity.
  • Energy-absorbing devices in particular for use in vehicles, comprise at least one energy-absorbing element in the form of a three-dimensional body extending in a longitudinal direction which coincides with the force introduction direction in installation position, the energy dissipation element being designed in such a way when a critical impact force introduced into an end face of the energy dissipation element is exceeded to address and reduce at least a portion of the incident energy in the transmission of the impact force on the energy dissipation element by non-ductile defibration.
  • this energy dissipation element is at least partially, preferably formed entirely from an energy dissipation fiber composite structure according to the aforementioned embodiments.
  • the energy absorbing device When the energy absorbing device is designed as an energy absorber or shock absorber, it comprises a counterelement interacting with the energy dissipation element so that the counter element and the energy dissipation element are relatively strong, with simultaneous consumption of at least some of the impact energy introduced into the energy dissipation device when a critical force introduced into the energy dissipation device is exceeded to move towards each other, wherein the energy dissipation element has at least one energy dissipation region of fiber composite, which is at least partially non-ductile shredded during movement of the counter element relative to the energy absorbing element, wherein the counter element is formed as an open at its the energy dissipation element end face open hollow body such that during the movement of the counter-element relative to the energy-absorbing element resulting fractions of the Faserverbundtechnikst Off formed energy consumption area are at least partially accommodated in the interior of the hollow body.
  • the counter element is embodied as a piston and at least the region of the energy absorbing element facing the counterelement is telescopically received by the energy dissipation element such that the end face of the region of the counterelement facing the energy dissipation element is connected to a counterpart Stop the energy consumption area abuts the energy absorbing element.
  • a particular embodiment of such an energy absorbing element for use in rail vehicles provides a pipe diameter of 150-350mm with a wall thickness of 10-40mm before to realize force levels of 200-2500 KN per energy-absorbing element.
  • the fiber layers of the first fiber material layer are preferably of a fabric and the fiber layers of the second fiber material layer of a Mat / made of a fleece. In the overall structure, the proportion of first fiber material layers is selected in the range of 33% to 50%, while the proportion of second fiber material layers is in the range of 67% to 50%.
  • the advantage of this fiber arrangement is the comparatively uniform distribution of the forces through the random fiber.
  • a particularly advantageous method for producing sees the use of combination mats of at least one, a fiber layer of the first fiber material layer forming fabric and at least one, a fiber layer of the second fiber material layer forming nonwoven. This can be wound dry on a core or pre-impregnated subjected to the winding process.
  • FIG. 1 shows a schematic simplified representation in an axial section of an example of an alternating arrangement of first and second fiber material layers of reinforcing fibers and matrix material;
  • FIG. 2 a shows a top view of an embodiment of a first fiber material layer;
  • FIG. 2b shows a plan view of an embodiment of a second embodiment
  • Figure 3a shows an embodiment of an endless fiber
  • Figure 3b shows a bundling of continuous fibers in a roving
  • Figure 4a shows in a view from above an embodiment of a fiber layer of continuous fibers in the form of a fabric
  • FIG. 4b shows a top view of an embodiment of a fiber layer
  • FIG. 5a shows an embodiment of an alternating arrangement of first and second fiber material layers with a multilayer construction of the first one
  • Figure 5b shows an embodiment of an alternating arrangement of first and second Fasermate al harshen with multilayer structure of the second
  • FIG. 5c shows an embodiment of an alternating arrangement of first and second fiber material layers with a multilayer construction of the first and second
  • FIG. 6a to 6c illustrate different basic geometry for components
  • FIG. 7a shows a perspective view of an energy dissipation device
  • FIG. 7b shows an axial section according to FIG. 7a
  • FIG. 8 shows by way of example the defibering behavior of FIG. 7a and FIG.
  • FIGS. 9a to 9c illustrate process sequences for producing a
  • FIGS. 10a to 10c show, by way of example, an excerpt from FIG
  • FIG. 7a shows, by way of example, an energy dissipation device 19 designed according to the invention in perspective view.
  • FIG. 7b shows a sectional view.
  • the energy dissipation device 19 is designed in particular in the form of a shock absorber, for example in the form of a crash buffer, comprising at least one energy dissipation element 20 in the form of a three-dimensional body extending in a longitudinal direction, wherein the energy dissipation element 20 is designed in such a way when exceeding one with main direction component in the longitudinal direction of the energy dissipation element 20 to address initiated critical impact force and at least reduce part of the incident in the transmission of the impact force on the energy dissipation element 20 impact energy by non-ductile defibration, wherein the energy dissipation element consists at least partially of an energy dissipation fiber composite structure 1.
  • This energy dissipation fiber composite structure 1 is made of at least a first, the at least one fiber layer or more Fiber layers 7.1, 7.2 of unidirectionally oriented continuous fibers 4 and Mathxmaterial 6 having Fasermate al harsh 2 and at least one second, one or more fiber layers 8, 8.1, 8.2, 8.3 multidirectionally oriented long fibers 5 and matrix material 9 having fiber material layer 3 is formed, wherein first and second fiber material layers , 3 are connected to each other, wherein the continuous fibers are aligned parallel or at an angle of ⁇ 2.5 ° to the longitudinal direction of the energy absorbing element.
  • the structure of the energy dissipation fiber composite structure 1 is described in FIGS. 1 to 6.
  • FIG. 1 shows, in a schematized and highly simplified representation, the basic structure of an energy-dissipating fiber composite structure 1 designed in accordance with the invention and constructed in a multilayer structure and describing a three-dimensional structure in an axial section through it.
  • the axial section is characterized by a sectional plane which can be described by the extension in the longitudinal direction and a vertical to this.
  • a coordinate system is created.
  • the X-direction describes the extension of the energy dissipation fiber composite structure 1 in the direction of stress to tensile and compressive, which coincides in the illustrated case with the longitudinal direction.
  • the Y direction describes the extent transverse to the direction of stress and the Z direction the extension in the height direction.
  • the energy dissipation fiber composite structure 1 can be present as a solid element in a different geometric configuration, for example a plate-shaped element or at least part of a profile element of the most varied design. In the latter case, this forms, for example, parts of the wall 23 of the profile element forming three-dimensional structure. Subsequent embodiments are therefore independent of the three-dimensional structure formed by the energy-consumption fiber composite structure 1, but particularly advantageous in wall areas of Profilelennenten. 1 shows a detail of a wall region of a tubular element 22.
  • the energy dissipation fiber composite structure 1 is constructed as a multilayer system comprising at least one or more first fiber material layers 2 and at least one or more second fiber material layers 3, which are arranged alternately, ie alternately and interconnected are. In each case at least one first and at least two second fiber material layers 2, 3 are provided or at least two first and at least one second fiber material layer 2, 3. Preferably, as shown in Figure 1, a plurality of such first fiber material layers 2 and second fiber material layers 3 are provided.
  • the individual first fiber material layer 2 comprises one or more fiber layers 7 of unidirectionally oriented continuous fibers 4, which are embedded in at least one matrix material 6. Possible exemplary embodiments of the continuous fibers 4 as monofilaments or combined into a bundle are shown in FIGS. 3a and 3b.
  • the alignment of the continuous fibers 4 in the energy-dissipated fiber composite structure 1 takes place as a function of a force acting on them in the functional position of the energy-consuming fiber composite structure 1 and degradable therein by non-ductile defibration, in particular compressive force.
  • the distances a between two adjacently arranged continuous fibers 4 transversely to the fiber orientation can be the same or vary within a fiber layer 7.
  • the single second fiber material layer 3 has one or more fiber layers 8 of multidirectional, ie aligned spatially in two or three directions arranged long fibers 5.
  • a fiber layer 8 is reproduced by way of example in a view from above in FIG. 2b.
  • the long fibers 5 are characterized by a length in the range of 1 mm to 120 mnn inclusive, preferably Imm to 50mnn. These can be processed as individual monofilaments, into fiber bundles or yarns.
  • the fiber layer 8 is characterized by no preferred orientation of the long fibers 5, which is why these fibers are also referred to as random fibers.
  • the long fibers 5 are likewise embedded in a Mathx material 9, which corresponds to the matrix material 6 of the first fiber material layer 2 as a function of the production method for producing the energy dissipation fiber composite structure 1.
  • a defibration of the energy-consuming fiber composite structure 1 is achieved under the action of force in the alignment direction of the continuous fibers 4, which is characterized by the fiber breakage and intermediate fiber breakage of the long fibers 5 and continuous fibers 4, since in particular the long fiber arrangement delaminates the individual layers largely prevented.
  • the continuous fibers 4 acting as reinforcing fibers of the first fiber material layer 2 and long fibers 5 of the second fiber material layer 3 are formed by inorganic fibers.
  • the fiber layer 7 is formed from continuous fibers in the form of glass fibers, carbon fibers or basalt fibers.
  • the fiber layers 8 of the second fiber material layers 3 that are responsible for the fiberization of the long fibers 5 of the second fiber material layers 3 can be formed from glass fibers or basalt fibers.
  • Thermoplastic materials are used as the matrix material 6 or 9 for the individual fiber layers 7, 8. These each comprise at least one element from the following group
  • matrix materials in the form of synthetic resins in particular aldehyde-based phenols or polyadditives in the form of, for example, epichlorohydrin with diols, polyol or dicarboxylic acid are used.
  • the formulation of the matrix is such that it has an elongation at break of less than 6% and with an E-modulus of more than 3000 MPa in order to ensure the desired energy consumption.
  • the properties of the fiber layer 7 are characterized in particular by the arrangement of the continuous fibers 4 relative to one another, in particular their arrangement density transversely to the direction of force action, the geometry and dimensioning, and the fiber material properties.
  • the properties of the fiber layer 8 can be set as a function of material-specific parameters, the parameters characterizing the geometry and / or dimensioning of characteristic parameters and / or physical and / or chemical properties of descriptive parameters.
  • FIG. 2 a shows, by way of example, in a view of a fiber layer 7 of a first fiber material layer 2, the unidirectional orientation of the continuous fibers 4 parallel to the direction of force introduction in the functional position.
  • the continuous fibers 4 are viewed uniformly in the direction of extension of the fiber layer 7 in the width direction, ie, arranged at the same distance a from each other.
  • the individual endless fiber 4 is preferably free of a change in cross section in the longitudinal direction in the longitudinal direction, ie the cross section of the continuous fibers 4 is preferably constant, with respect to the geometry, ie cross-sectional shape no restrictions exist.
  • endless fiber structures with a circular cross section will be used.
  • Figure 2a shows a particularly advantageous embodiment of a fiber layer 7, which ensures the same properties with respect to the fracture mechanics transverse to the direction of force introduction.
  • the continuous fibers 4 of a fiber layer 7 differ from at least one or more parameters from the following group:
  • FIG. 2b shows, in a view from above onto a fiber layer 8, the arrangement and alignment of the long fibers 5 in a fiber layer 8 of the fiber material layer 3.
  • the arrangement of the long fibers 5 takes place free from the formation of a preferred direction within the fiber layer 8.
  • the long fibers 5 be made the same in terms of essential characteristics.
  • the individual long fibers 5 of a fiber layer 8 differ from at least one or more parameters from the following group:
  • FIGS. 3a and 3b illustrate, by way of example, possible fiber layer designs for continuous fibers 4. According to FIG. 3a, these are preferably present as monofilaments. These are characterized by a much larger dimension I in the longitudinal direction than in the width direction.
  • FIG. 3b shows, by way of example, endless fibers 4 as part of so-called rovings 10.
  • a single roving 10 is formed by a bundle, strand or multifilament yarn of endless fibers 4 arranged substantially parallel to one another. The fixation in the fiber material layer 2 via matrix material 6.
  • the individual roving 10 is characterized by an extension I in the longitudinal direction and elliptical or polygonal cross-sections.
  • FIG. 4a shows an example of an advantageous embodiment of a fiber layer 7 as a fabric 1 1, which is formed from warp yarns 12 and weft yarns 13.
  • FIG. 4b shows by way of example the construction as a braid 14.
  • FIGS. 5a to 5c illustrate, by way of example, possible fiber material layer arrangements and designs which may influence the properties and fracture mechanics.
  • FIG. 5a shows, by way of example, an embodiment of a first variant for forming first and second fiber material layers 2, 3.
  • the fiber layers 7.1 and 7.2 are designed differently.
  • the fiber material layer 2.1 is formed in a single layer and comprises a fiber layer 7.
  • the fiber material layers 3 are preferably designed as single layers and constructed substantially the same.
  • the fiber layers 7.1 and 7.2 of the fiber material layer 2.1 are composed of continuous fibers 4 and matrix material 6, wherein the fiber layers 7.1 and 7.2 are constructed differently. These differ at least with regard to one of the following parameters:
  • FIG. 5b illustrates a design with a multilayer construction of the fiber material layers 3 comprising two fiber layers 8.1, 8.2 and preferably single-layer fiber material layers 2.
  • the latter consist of the fiber layers 7.
  • the fiber layers 8.1 and 8.2 differ from one another with regard to at least one of the following variables: a physical or chemical one Property of the fibers, type of fiber, type of material, dimensioning, fineness, geometry, thickness of the fiber layer and / or in their arrangement, in particular distance from each other.
  • FIG. 5 c shows a combination of possibilities according to FIGS.
  • the force introduction direction is shown in functional position.
  • the direction coincides with the orientation of the filaments 4, but at least the orientation of the main component of force coincides with the orientation of the filaments.
  • FIGS. 6 a to 6 c further illustrate, by way of example, possible basic geometry shapes for components of energy-consuming fiber composite structures 1.
  • Figure 6a shows an embodiment as a plate 16
  • Figure 6b is an embodiment as a solid cylinder 17
  • Figure 6c as a shell-shaped textile fabric 18.
  • a particularly advantageous application are wall areas arbitrarily shaped profile elements, preferably in the form of tubular elements.
  • FIG. 7a shows a particularly advantageous application of an energy dissipation fiber composite structure 1 in an energy dissipation device 19.
  • This comprises an energy dissipation element 20, which is formed integrally from fiber composite material, in particular energy dissipation fiber composite structure 1, and a counter element 21 with a front side 25 movable relative thereto which the force can be introduced.
  • the energy dissipation element 20 is designed as a hollow body extending in a longitudinal direction L, in particular a tubular element 22.
  • the energy dissipation fiber composite structure 1 here forms a wall 23 forming the lateral surface of the hollow body.
  • the energy dissipation element 20 is designed to respond when a critical impact force introduced into an end face of the energy dissipation element 20 is exceeded and at least part of the critical force transmitted via the energy dissipation element 20 to reduce accumulated impact energy by non-ductile defibration.
  • the energy dissipation fiber composite structure 1 arranged and aligned for wall construction of the hollow cylindrical element such that the continuous fibers 4 of the fiber material layers 2 are aligned in the longitudinal direction of the hollow cylindrical element, so that their position coincides with the direction of action of the introduced forces.
  • FIGS. 7a and 7b show an example of an advantageous embodiment of an energy dissipation device 19.
  • the energy dissipation element 20 has an energy dissipation region 29 and a guide region 30.
  • an edge is provided here, which forms a stop 27 against which the opposing element 21 designed as a piston abuts. It is conceivable here that the end face of the energy-consuming element 20 facing region 24 of the piston formed as a counter element 21 abuts against the stop 27 of the energy dissipation region 29 directly.
  • a conical ring 28 is provided on the end face of the counterelement 21 in the form of a piston so that this conical ring 28 abuts against the stop 27 of the energy dissipation region 29.
  • the conical ring 28 is firmly connected to the end face of the counter element 21.
  • the guide region 30 of the energy dissipation element 20 is formed in the illustrated embodiment of the energy dissipation device 19 as a guide tube whose inner diameter is greater than the outer diameter of the formed as a piston counter-element 21. In this way, the region of the counter element 21 facing the energy dissipation element 20 can be received telescopically by the energy dissipation element.
  • the stop 27 can also be realized differently, for example via a cone, and thus a fusion of 27 + 28 is conceivable.
  • FIG. 8 shows, by way of example, the deformation behavior of the energy dissipation element 20 in the form of a tubular element 22, the wall 23 of which is formed of energy-consuming fiber composite structure 1, upon initiation of an impact force F.
  • the defibration behavior due to the tangled fiber layers is illustrated at an angle of up to 30 ° force path.
  • a particular embodiment of such an energy dissipation element 19 for use in rail vehicles provides a pipe diameter of 150-350 mm with a wall thickness of 10-40 mm in order to realize force levels of 200-2500 KN per energy dissipation element.
  • FIGS. 9a to 9c illustrate possible methods for producing an energy dissipation fiber composite structure 1, in particular for forming an energy dissipation element 20 in the form of a tubular element 22 by winding.
  • the production processes can vary depending on the semifinished fiber products provided.
  • the individual semi-finished fiber products each contain at least one or more fiber layers.
  • the semifinished fiber products can each be present for the individual fiber material layers as separate semi-finished fiber products, which are brought to one another in the manufacturing process in the desired arrangement, or the individual fiber layers of different fiber material layers contained semifinished fiber can already be prefabricated to combined semifinished fiber products.
  • the methods differ with regard to the type and time of introduction of the matrix material. However, all methods are characterized by the provision of the fiber layers - method steps VA or VA2 - and the introduction of matrix material - method steps VD, VF and the curing - VE -.
  • FIG. 9a illustrates, by way of example, a method in which the semi-finished fiber products 31, 32 containing fiber layers are draped or wound dry, and only then be fixed by introducing and curing matrix material in their position to each other.
  • a first method exemplified in FIG. 9a can be described by the following steps:
  • the method step VA includes the provision of the semifinished fiber products 31, 32 in the form of continuous fibers 4 containing, undrinked fiber semifinished products 31 and long fibers 5 further semi-finished fiber 32 containing the continuous fibers 4 semi-finished fiber 31 are provided in a particularly advantageous embodiment in the form of rovings or fabrics.
  • the long fibers 5 containing semi-finished fiber 32 are preferably in the form of mats, fleeces or mats before.
  • the semi-finished fiber products 31, 32 are arranged overlapping each other in an aligned manner.
  • the individual semifinished fiber products 31, 32 can be connected to one another at the facing sides, for example by sewing or embroidering the adjacent fiber layers of the individual semi-finished fiber products 31, 32.
  • Such an arrangement of semi-finished fiber products can be wound as a combination unit in the process step VC around a core become.
  • the method step VD involves the introduction of the matrix material, in which case all the fiber layers 7 and 8 of the later fiber material layers 2, 3 are impregnated with the same matrix material.
  • the introduction of the matrix material is carried out either by injection or infusion.
  • the area, in particular the structure draped around the core in the dry state, is enclosed in a gas-tight manner and the matrix material, in particular the plastic, is introduced into the fiber layers and between them by injection VD1 or infusion VD2.
  • a resin impregnation process In the process section VE, curing takes place, wherein this process can be influenced by additional measures, such as heating or cooling.
  • Figures 9b and 9c illustrate embodiments for wet winding. Some process steps take place in analogy to those described in FIG. 9a, which is why they are designated by the same reference numeral. Reference is made to the explanations in Figure 9a to these.
  • semifinished fiber products 31 and 32 in method step VA these being provided either as separate semifinished fiber products for the individual fiber layers of the different layers and are arranged in their position relative to each other in the process step VB, not shown, in order to be traded together.
  • the individual semi-finished fiber products are arranged one above the other.
  • a semi-finished fiber in the form of a combination unit in particular combination mat from the fiber layers forming the different fiber material layers. The structure thus formed is soaked in a process step VF prior to winding, in particular passed through a bath of matrix material and wound in this wet state on a core in step VC.
  • the winding process is followed by the process step of hardening and solidifying VE.
  • Figure 9c illustrates a method which already pre-saturated semi-finished fiber products 31, 32 used in VA2.
  • a semi-finished fiber product a combination mat made of a fabric of continuous fibers and a scrim of long fibers is pre-soaked with matrix material and wound as a semifinished product around a core in step VC. The curing takes place in step VE.
  • FIG. 10a shows, by way of example, the arrangement of the fiber material layers 2, 3 forming fiber layers and containing them later
  • Semi-finished fiber products 31 and 32 in the embodiment forming a combined semifinished fiber structure in a cutout when winding around a core 36.
  • Both semifinished fiber products 31, 32 are arranged relative to one another such that they abut one another over the entire surface, if possible. These are wound around the core 36.
  • FIG. 10b illustrates the conditions for an injection or infusion process by way of example for dry-laid semi-finished fiber products 31, 32.
  • a connection 34 can be seen, which can be coupled to a device for producing negative pressure in order to seal off the dry-drape arrangement in a gas-tight manner.
  • the forming vacuum bag is designated 33.
  • the matrix material in the form of a resin / hardener mixture is pressed into the layer structure, for example with the aid of a pump.
  • the resin flow front is designated 35.
  • heating / heating occurs when slightly exothermic resin systems are used, while cooling is applied to highly exothermic resin systems.
  • corresponding heating and / or cooling devices 37 are assigned to the inner and / or outer circumference of the wall, as shown in Figure 10c.
  • a combination semi-finished product is used from several fiber layers in the form of a combination mat in a particularly advantageous embodiment.
  • This consists of at least two fiber layers, a fabric forming a fiber layer 7 and a, a fiber layer 8 forming fleece.
  • the fabric consists of a 0 90 ° glass fabric, ie unidirectionally oriented continuous fibers in the form of glass fibers.
  • the fiber layer 8 is formed by a glass-fiber non-woven mat.
  • the Fiber layers arranged one above the other and preferably connected to each other over the entire surface, wherein the connection can be made by sewing or versticken.
  • the grammage of this total fiber semifinished product structure is preferably selected in the range between 300 g / m 2 and 900 g / m 2 with a weight distribution of 50/50 between 0 90 ° glass fiber fabric and glass fiber nonwoven. Other advantageous divisions would be 1/3 0 90 ° glass fiber fabric to 2/3 glass fiber nonwoven.
  • the incorporation of the resin matrix may be in accordance with one of the methods described in Figures 9a to 9c, but is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Vibration Dampers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Die Erfindung betrifft eine Energieverzehrvorrichtung mit einem Energieverzehrelement, welches zumindest teilweise aus einer Energieverzehr-Faserverbundstruktur besteht. Es ist dabei vorgesehen, dass die Energieverzehr-Faserverbundstruktur (1) aus zumindest einer ersten, die zumindest eine Faserlage (7) oder mehrere Faserlagen aus unidirektional ausgerichteten Endlosfasern (4) und Matrixmaterial (6) aufweisenden Fasermaterialschicht (2) und zumindest einer zweiten, eine oder mehrere Faserlagen (8) multidirektional ausgerichteter Langfasern (5) und Matrixmaterial (9) aufweisenden Fasermaterialschicht (3) ausgebildet ist, wobei erste und zweite Fasermaterialschichten (2, 3) miteinander verbunden sind.

Description

Energieverzehrvorrichtung
Die Erfindung betrifft eine Energieverzehrvorrichtung, im Einzelnen mit den Merkmalen aus dem Oberbegriff von Anspruch 1 . Energieverzehrvorrichtungen, insbesondere Energieverzehrelemente von Energieverzehrvorrichtungen, die teilweise oder vollständig aus Faserverbundstrukturen bestehen, sind in einer Vielzahl von Ausführungen aus dem Stand der Technik vorbekannt. Auch Faserverbundstrukturen sind in einer Vielzahl von Ausführungen aus dem Stand der Technik für unterschiedliche Einsatzzwecke vorbekannt. Ein wesentlicher Anwendungsbereich sind Energieverzehrstrukturen, angeordnet in oder an Fahrzeugen, welche geeignet sind, einen Teil von in diese eingeleiteter Stoßenergie durch nicht duktile Zerstörung abzubauen. So offenbart beispielsweise die Druckschrift WO 2010/029188 Ausführungen von Fahrzeugkopfstrukturen für schienengebundene Fahrzeuge, gebildet aus ersten, eine Tragfunktion übernehmenden Strukturelementen und zweiten Strukturelementen mit Energieverzehr, wobei die Strukturelemente vorrangig aus einem Faserverbundwerkstoff ausgebildet sind. Die Aufgabe der zweiten Strukturelemente mit Energieverzehr besteht darin, die in einem Crashfall aufgrund einer Stoßkraftübertragung anfallende und in den Fahrzeugkopf eingeleitete Stoßenergie zumindest teilweise zu absorbieren und abzubauen, um die aus den ersten Strukturelementen ausgebildete selbsttragende Struktur nicht in Mitleidenschaft zu ziehen. Dazu sind die zweiten Strukturelemente derart ausgelegt, die eingeleitete Stoßenergie zumindest teilweise durch nicht-duktile Zerstörung des Faserverbundwerkstoffes der zweiten Strukturelemente abzubauen. Eine Ausführung einer Energieverzehrvorrichtung in Form einer Stoßsicherung ist aus der EP 2 295 305 B1 vorbekannt, umfassend ein Energieverzehrelement und ein derart mit dem Energieverzehrelement zusammenwirkendes Gegenelement, wobei sich bei Überschreiten einer kritischen, in die Energieverzehrvorrichtung eingeleiteten Stoßkraft das Gegenelement und das Energieverzehrelement unter gleichzeitigem Verzehr von zumindest einem Teil der in die Energieverzehrvorrichtung eingeleiteten Stoßenergie relativ zueinander aufeinander zu bewegen, wobei das Energieverzehrelement mindestens einen Energieverzehrbereich aus Faserverbundwerkstoff aufweist, welcher bei der Bewegung des Gegenelementes relativ zu dem Energieverzehrelement zumindest teilweise nicht-duktil zerfasert wird, und das Gegenelement als ein an seiner dem Energieverzehrelement zugewandten Stirnseite offener Hohlkörper ausgebildet ist derart, dass die bei der Bewegung des Gegenelementes relativ zu dem Energieverzehrelement entstehenden Bruchteile des aus Faserverbundwerkstoff gebildeten Energieverzehrbereiches zumindest teilweise im Inneren des Hohlkörpers aufnehmbar sind. D.h., dass zumindest ein Teil der in die Energieverzehrvorrichtung eingeleiteten Stoßenergie dadurch abgebaut wird, dass der Energieverzehrbereich des Energieverzehrelementes nicht derart plastisch verformt wird, wie es bei herkömmlichen Energieverzehrvorrichtungen der Fall ist, sondern zumindest teilweise in Einzelteile zerlegt wird. Dabei kann die Festigkeit und das Ansprechverhalten der Energieverzehrvorrichtung durch den Anteil der in Stoßkraftübertragungsrichtung verlegten Fasern eingestellt werden.
Faserverbundstrukturen, die für den dynamischen Energieverzehr entwickelt wurden, haben bisher das Problem ein konstantes Kraftniveau mit einer
Abweichung von +-5% nach dem Einschwingen des Systems im Arbeitsbereich zu erreichen. Ursache hierfür ist das Bruchverhalten des Faserverbundmaterials, auf welches die Materialstärke einen entscheidenden Einfluss hat. Allgemein wird für den Aufbau von Faserverbundstrukturen beispielhaft auf nachfolgende Druckschriften verwiesen: DE 103 51 181 A1 , DE 195 34 627 A1 , DE 10 2009 016 213 A1 , DE 10 2012 219 749 A1 , DE 698 14 129 T2, EP 2 361 752, WO 2013/132 095 A1 .
Gerade für den Einsatz in schienengebundenen Fahrzeugen ist es jedoch aufgrund der möglichen auftretenden Stoßbelastungen erforderlich, sehr hohe Kräfte bei gleichzeitig geringem Gewicht und Bauraumbedarf der dazu
vorgesehenen Vorrichtung abbauen zu können, wobei der erforderliche
Materialeinsatz so ökonomisch wie möglich zu gestalten ist.
Der Erfindung liegt daher die Aufgabe zugrunde, einen faserverstärkten Kunststoff für den Einsatz in Energieverzehrvorrichtungen und eine Energieverzehrvorrichtung derart weiterzuentwickeln, dass diese geeignet sind, bei großem Materialquerschnitt auch einen maximalen aber definierten Energieverzehr durch nicht duktile Zerfaserung zu gewährleisten.
Die erfindungsgemäße Lösung ist durch die Merkmale der Ansprüche 1 und 15. charakterisiert. Vorteilhafte Ausbildungen sind in den Unteransprüchen
wiedergegeben.
Eine erfindungsgemäß ausgebildete Energieverzehrvorrichtung eines
schienengebundenen Fahrzeuges, umfassend zumindest ein
Energieverzehrelement in Gestalt eines sich in einer Längsrichtung
erstreckenden dreidimensionalen Körpers, wobei das Energieverzehrelement derart ausgelegt ist, bei Überschreiten einer in Längsrichtung des
Energieverzehrelementes eingeleiteten kritischen Stoßkraft anzusprechen und zumindest einen Teil der bei der Übertragung der Stoßkraft über das
Energieverzehrelement anfallenden Stoßenergie durch nicht duktile Zerfaserung abzubauen, wobei das Energieverzehrelement zumindest teilweise aus einer Energieverzehr-Faserverbundstruktur mit zumindest einer, unidirektional ausgerichtete Endlosfasern aufweisenden und in Matrixmaterial eingebetteten Faserlage besteht, ist dadurch gekennzeichnet, dass die Energieverzehr- Faserverbundstruktur aus zumindest einer ersten, die zumindest eine Faserlage oder mehrere Faserlagen aus unidirektional ausgerichteten Endlosfasern und Matrixmaterial aufweisenden Fasermaterialschicht und zumindest einer zweiten, eine oder mehrere Faserlagen multidirektional ausgerichteter Langfasern und Matrixmaterial aufweisenden Fasermaterialschicht ausgebildet ist, wobei erste und zweite Fasermaterialschichten miteinander verbunden sind, insbesondere vollflächig verbunden sind, und wobei die Endlosfasern parallel oder in einem Winkel von ± 2,5° zur Längsrichtung des Energieverzehrelementes ausgerichtet sind.
Unter einer Faser wird dabei insbesondere ein im Verhältnis zu seiner Länge dünnes, d.h. mit sehr kleinem Querschnitt ausgeführtes flexibles Gebilde verstanden, welches geeignet ist, in Längsrichtung nur Zugkräfte aufzunehmen.
Mit dieser Anordnung können sehr große Kräfte in kleinsten Bereichen lokal abgebaut werden. Die alternierende Anordnung der Faserlagen aus Endlosfasern und Wirrfasern bedingt bei Überschreitung der kritischen Kräfte ein sehr gutes Absorptionsvermögen bei gleichzeitig sehr kleinem Brucheffekt auf die Gesamtgeometrie durch die einzelne Faser.
Die Erfinder haben erkannt, dass das Bruch- und das Zerfaserungsverhalten von Strukturen aus Endlosfasern zum Energieverzehr bei Stoßbelastung erheblich durch das Vorsehen von zwischengeordneten zweiten, Wirrfasern enthaltenden Fasermaterialschichten verbessert werden kann und die Ausbreitung interlaminarer Brüche reduziert werden kann. Die erfindungsgemäße Lösung bietet aufgrund des vorgesehenen Lagenaufbaus aus wechselweise angeordneten Fasermaterialschichten aus Endlosfasern und aufgrund ihrer ungeordneten Anordnung auch als Wirrfasern bezeichneten Langfasern, den Vorteil, ein Delaminieren, d.h. Trennen der Schichten im Grenzbereich zwischen den einzelnen unterschiedlichen Fasermate alschichten zu verhindern oder zumindest zu reduzieren. Das aus einem Energieverzehr-Faserverbundmaterial bestehende Bauteil zerfasert konstant in kleine Bruchstücke und absorbiert dadurch auf einem horizontalen Kraftniveau +-5% Energie. Das Bruchverhalten des speziellen Lagenaufbaues ist dabei als eine Mischung aus Zwischenfaserbruch und Faserbruch beschreibbar.
Eine einzelne Fasermaterialschicht kann insbesondere aus zumindest einer oder mehreren Faserlagen bestehen, die in ein Matrixmaterial eingebettet sind. Dabei kann das Matrixmaterial zwischen den einzelnen Faserlagen einer Fasermaterialschicht variieren oder aber für alle Faserlagen einer Fasermaterialschicht gleich sein. D.h. die Zusammensetzung sowie physikalischen und chemischen Eigenschaften des Matrixmaterials ist gleich. Eine einzelne Faserlage ist durch eine Vielzahl von Fasern charakterisiert, deren Anordnung die Art der Faserlage bestimmt, wobei die einzelnen Fasern durch vordefinierte physikalische und/oder chemische Eigenschaften charakterisiert sind. Unter einer Langfaser im Sinne der Erfindung wird eine Faser mit einer Länge im Bereich von > 1 mm bis einschließlich 120mm, vorzugsweise > 10mm bis 120mm verstanden. Eine Endlosfaser ist durch eine Länge > 120mm charakterisiert.
In einer besonders vorteilhaften Ausbildung beträgt der prozentuale Anteil unidirektional ausgerichteter Endlosfasern in der ersten Faserschicht aus der Verbindung einer ersten, die zumindest eine Faserlage oder mehrere Faserlagen aus unidirektional ausgerichteten Endlosfasern und Matrixmaterial aufweisenden Fasermaterialschicht und zumindest einer zweiten, eine oder mehrere Faserlagen multidirektional ausgerichteter Langfasern und Matrixmaterial aufweisenden Fasermaterialschicht im Bereich von 50-80%. Besonders bevorzugt weist die einzelne Faserlage der ersten Fasermaterialschicht 33% +/-8% Fasern auf. Der prozentuale Anteil der Fasern einer mit der ersten Fasermaterialschicht
verbundenen zweiten Fasermaterialschicht beträgt dann zwischen 20%-50%.
Der hohe Faseranteil, der sich prozentual in dem Gesamtlaminat aufgrund der Anteile Faser zu Harzmatrix ergibt führt dabei zu einem stetig fortschreitenden Faserbruch. Die Fasern sind nach kurzem Bruchfortschritt wieder gleichwertig gut in der Harzmatrix eigebettet und benötigen wiederum dieselbe Kraft zum erneuten Brechen. Das Verhalten setzt sich bis zum Ende des Verbrauchsweges fort, bis die Energieverzehr-Faserverbundstruktur und damit die Energieverzehrvorrichtung, insbesondere der Crashabsorber vollständig verbraucht wurde oder die eingebrachte Energie nicht mehr ausreicht die Fasern zu brechen, das Fahrzeug also stehenbleibt. Idealerweise ist das Material so steif und der Bruchfortschritt pro Faserbruch so gering, dass das verbrauchte Fasermaterial als Krümel/Staub vorliegt. In den meisten Fällen hat das verbrauchte Fasermaterial zwar keine Festigkeit und Steifigkeit mehr, die Faserschichten halten aber aufgrund der alternierenden Anordnung von Endlos- und Wirrfaserlagen noch durch einzelne Fasern zusammen, somit entstehen währen des Crashablaufes keine Projektile. In einer vorteilhaften Ausbildung ist eine Mehrzahl von ersten und/oder zweiten Fasermaterialschichten vorgesehen, welche alternierend angeordnet sind, wobei die Endlosfasern innerhalb einer einzelnen ersten Fasermaterialschicht und/oder der einzelnen ersten Fasermaterialschichten zueinander parallel oder in einem Winkel von bis zu ±2,5° von der parallelen Lage abweichend angeordnet sind. Zumindest sind jedoch eine erste und zwei zweite Fasermaterialschicht oder zwei zweite und eine dazwischen angeordnete erste Fasermaterialschicht vorzusehen. Erste und zweite Faserschichten sind vorzugsweise jeweils einfach vernäht oder verstickt, dadurch sind erste und zweite Faserschicht in Dickenrichtung
verbunden. In vorteilhafter Weiterbildung ist das Energieabsorptionsvermögen als Funktion zumindest eines der nachfolgenden Parameter einstellbar:
- bei plattenförmiger Ausbildung der Dicke der Energieverzehr- Faserverbundstruktur;
- bei Ausbildung als Profil der Wandstärke der Energieverzehr Faserverbundstruktur;
- der Dicke der einzelnen ersten und/oder zweiten Fasermaterialschichten;
- die Grammaturen der ersten und/oder zweiten Fasermaterialschicht;
- die Verteilung der Langfasern in der zweiten Fasermaterialschicht;
- die physikalischen Eigenschaften des Fasermaterials in den einzelnen Fasermaterialschichten;
- die physikalischen Eigenschaften (Gleiteigenschaften) des Matrixmaterials
- der Faservolumenanteil im Laminates (Anteil der Fasern im Laminat anhand der eingenommenen Volumen)
- der Fasermassenanteil des Laminates (Anteil der Fasern im Laminat anhand der verschiedenen Komponentengewichte).
Durch die konkrete Wahl der einzelnen Parameter kann die Struktur gezielt an die Anforderungen des Einsatzfalles angepasst werden.
Bezüglich der Ausbildung der einzelnen Fasermaterialschichten besteht eine Vielzahl von Möglichkeiten. Dabei wird vorzugsweise eine einzelne Faserlage einer ersten Fasermaterialschicht von einer Faserlage aus der nachfolgend genannten Gruppe gebildet:
- Gewebe
- Gelege
- Geflecht
- Roving ln besonders vorteilhafter Ausbildung werden aus Gründen einer guten Verarbeitbarkeit als Faserhalbzeuge in Form von Geweben oder Rovings zum Einsatz gelangen. Vorzugsweise wird das Gewebe von unidirektionalen ersten in Krafteinleitungsrichtung oder in einem Winkel von +-2,5° dazu ausgerichteten Endlosfasern und in einem Winkel von ±45° bis ±135° zu diesen ausgerichteten zweiten Endlosfasern gebildet. Die alternierend um die Geometrie umlaufenden Endlosfasern erhöhen zusätzlich die Energieabsorption, da die Fasern einen umschlossenen Ring um die Geometrie bilden. Dieser Effekt erzeugt an der Bruchkannte über den Geometriequerschnitt eine gleichmäßig verteilte Kräfte.
Die einzelne Faserlage einer zweiten Fasermaterialschicht ist dann vorzugsweise von einer Faserlage aus der nachfolgend genannten Gruppe gebildet:
- Vlies
- Matte
Besonders bevorzugt wird aus dieser Gruppe ein nicht kalandriertes Vlies zum Einsatz gelangen.
In einer vorteilhaften Weiterbildung sind die Langfasern und Endlosfasern zweier benachbart angeordneten Faserlagen der zweiten und ersten Fasermaterialschicht miteinander vernäht oder verstickt. Diese Maßnahme dient auf der einen Seite der Erhöhung der Festigkeit und auf der anderen Seite der Verbesserung des Zerfaserungsverhaltens.
Vorzugsweise ist eine einzelne Endlosfaser einer Faserlage einer ersten Fasermaterialschicht von einer Faser gebildet, ausgewählt aus der nachfolgenden Gruppe:
- Kohlefaser (Vorteil: hohes spezifisches Kraftniveau erreichbar)
- Basaltfaser (Vorteil: kostengünstig) - Glasfaser (bisher kostengünstigstes Laminat)
In Analogie wird eine einzelne Langfaser einer Faserlage einer zweiten Fasermaterialschicht von einer Faser gebildet, ausgewählt aus der nachfolgenden Gruppe:
- Basaltfaser
- Glasfaser (bisher kostengünstigstes Laminat)
Die einzelne Faserlage der ersten und/oder zweiten Fasermaterialschicht wird dabei in ein Matrixmaterial eingebettet, ausgewählt aus der nachfolgenden Gruppe:
- Polykondensat, insbesondere Phenol
- Polyadditive, insbesondere Epichlorhydrin, Polyol oder Dicarbonsäure
- Polymer
wobei die Faserlagen einer einzelnen Fasermaterialschicht in demselben
Matrixmaterial eingebettet sind.
Um den gewünschten Energieverzehr zu erzielen, ist die Formulierung der Kunstharzmatrix durch eine Bruchdehnung von unter 6% und einen E-Modul von über 3000 MPa charakterisiert.
Fasermaterial aus Langfaserabschnitten kann in unterschiedlichsten Grammaturen zum Einsatz gelangen. In Matte/Vlies-Form gebrachte Langfaserabschnitte können durch eine Länge von 1 mm bis 120mm, vorzugsweise 10mm bis 120mm charakterisiert sein und werden nicht vorher kardiert.
Um das Energieabsorptionsvermögen und das Zerfaserungsverhalten lokal in Kraftwirkungsrichtung beeinflussen zu können, können die Langfasern einer Faserlage einer zweiten Fasermaterialschicht innerhalb einer einzelnen Faserlage oder zwischen den Faserlagen einer oder mehrerer derartiger zweiter Fasernnatenalschichten zumindest hinsichtlich eines Parameters, gewählt aus der nachfolgenden Gruppe, unterschiedlich ausgeführt werden:
- einer materialspezifischen Kenngröße
- einer die Geometrie und/oder Dimensionierung charakterisierenden Kenngröße
- einer physikalische und/oder chemische Eigenschaften beschreibenden Kenngröße.
In einer weiteren vorteilhaften Ausbildung können die Faserlagen einer zweiten Fasermaterialschicht oder die Faserlagen mehrerer zweiter Fasermaterialschichten hinsichtlich zumindest eines Parameters, gewählt aus der nachfolgenden Gruppe, unterschiedlich ausgeführt werden:
- Verteilung der Langfasern in Längs-, Quer- und/oder Höhenrichtung der Faserlage
- Orientierung der Langfasern
Die Ausführung erlaubt es, das Zerfaserungsverhalten bei Krafteinleitung über größere Flächen zu beeinflussen.
Bezüglich der geometrischen Ausführung der Energieverzehr- Faserverbundstruktur besteht eine Mehrzahl von Möglichkeiten. Denkbar sind beispielsweise Ausführungen als ein Bauteil oder eine Kombination aus der nachfolgenden Gruppe:
- Platte
- Rohr
- Profilelement
- Hohlprofilelement
- Schalenelement
In einer besonders vorteilhaften Ausbildung ist die einzelne zweite Fasermaterialschicht derart ausgebildet, dass bei Einleitung einer, eine vordefinierte Größe überschreitenden Kraft, die Energieverzehr- Faserverbundstruktur in einem Winkel von bis zu 60°, vorzugsweise 45° ±15° gegenüber der Krafteinleitungsrichtung zerfasert wird. Über die Wahl des Winkels ist dabei eine Einstellung der Kraft zu Bruchbeginn möglich. In besonders vorteilhafter Anwendung erfolgt der Einsatz der Energieverzehr- Faserverbundstruktur in einer Stoßsicherung für ein insbesondere schienengebundenes Fahrzeug, da mit der beschriebenen Anordnung große Kräfte in kleinsten Bereichen lokal abbaubar sind. In der Energieverzehrvorrichtung ist das Energieverzehrelement zumindest teilweise, vorzugsweise vollständig aus einer vorbeschriebenen Energieverzehr- Faserverbundstruktur gebildet.
In vorteilhafter Weiterbildung ist das Energieverzehrelement zumindest teilweise, vorzugsweise vollständig als Profilelement ausgeführt, dessen Wandung von der Energieverzehr-Faserverbundstruktur gebildet wird. Dies erlaubt Bauteile mit geringem Gewicht und Materialbedarf bei gleichzeitig großem Kraftabsorptionsvermögen .
Energieverzehrvorrichtungen, insbesondere für den Einsatz in Fahrzeugen umfassen zumindest ein Energieverzehrelement in Gestalt eines sich in einer Längsrichtung, welche in Einbaulage mit der Krafteinleitungsrichtung zusammenfällt, erstreckenden dreidimensionalen Körpers, wobei das Energieverzehrelement derart ausgelegt ist, bei Überschreiten einer in eine Stirnseite des Energieverzehrelementes eingeleiteten kritischen Stoßkraft anzusprechen und zumindest einen Teil der bei der Übertragung der Stoßkraft über das Energieverzehrelement anfallenden Stoßenergie durch nicht duktile Zerfaserung abzubauen. Dabei ist dieses Energieverzehrelement zumindest teilweise, vorzugsweise vollständig aus einer Energieverzehr- Faserverbundstruktur gemäß der vorgenannten Ausführungen gebildet. Bei Ausbildung der Energieverzehrvorrichtung als Energieabsorber beziehungsweise Stoßsicherung, umfasst diese ein mit dem Energieverzehrelement derart zusammenwirkendes Gegenelement, dass sich bei Überschreiten einer kritischen, in die Energieverzehrvorrichtung eingeleiteten Stoßkraft das Gegenelement und das Energieverzehrelement unter gleichzeitigem Verzehr von zumindest einem Teil der in die Energieverzehrvorrichtung eingeleiteten Stoßenergie relativ zueinander aufeinander zu bewegen, wobei das Energieverzehrelement mindestens einen Energieverzehrbereich aus Faserverbundwerkstoff aufweist, welcher bei der Bewegung des Gegenelementes relativ zu dem Energieverzehrelement zumindest teilweise nicht-duktil zerfasert wird, wobei das Gegenelement als ein an seiner dem Energieverzehrelement zugewandten Stirnseite offener Hohlkörper ausgebildet ist derart, dass die bei der Bewegung des Gegenelementes relativ zu dem Energieverzehrelement entstehenden Bruchteile des aus Faserverbundwerkstoff gebildeten Energieverzehrbereiches zumindest teilweise im Inneren des Hohlkörpers aufnehmbar sind. Das Gegenelement ist in einer vorteilhaften Ausbildung als Kolben und zumindest der dem Gegenelement zugewandte Bereich des Energieverzehrelementes als Zylinder ausgebildet, wobei der dem Energieverzehrelement zugewandte Bereich des Gegenelementes von dem Energieverzehrelement teleskopartig aufgenommen ist derart, dass die Stirnseite des dem Energieverzehrelement zugewandten Bereiches des Gegenelementes an einen Anschlag des Energieverzehrbereiches am Energieverzehrelement anstößt. Eine besondere Ausgestaltung für ein derartiges Energieverzehrelement für den Einsatz in Schienenfahrzeugen sieht einen Rohrdurchmesser von 150-350mm mit einer Wandstärke von 10-40mm vor, um Kraftniveaus von 200-2500 KN pro Energieverzehrelement zu realisieren. Die Faserlagen der ersten Fasermaterialschicht werden vorzugsweise von einem Gewebe und die Faserlagen der zweiten Fasermaterialschicht von einer Matte/einem Vlies gebildet. Dabei wird in der Gesamtstruktur der Anteil erster Fasermaterialschichten im Bereich von 33% bis 50 % gewählt, während der Anteil zweiter Fasermaterialschichten im Bereich von 67% bis 50% liegt. Der Vorteil bei dieser Faseranordnung ist die vergleichsweise gleichmäßige Verteilung der Kräfte durch die Wirrfaser.
Ein besonders vorteilhaftes Verfahren zur Herstellung sieht die Verwendung von Kombimatten aus zumindest einem, eine Faserlage der ersten Fasermaterialschicht bildenden Gewebe und zumindest einem, eine Faserlage der zweiten Fasermaterialschicht bildenden Vlies. Dieses kann trocken auf einen Kern gewickelt werden oder vorgetränkt dem Wickelverfahren unterzogen werden.
Die erfindungsgemäße Lösung wird nachfolgend anhand von Figuren erläutert. Darin ist im Einzelnen folgendes dargestellt:
Figur 1 zeigt in schematisiert vereinfachter Darstellung in einem Axialschnitt beispielhaft eine alternierende Anordnung von ersten und zweiten Fasermaterialschichten aus Verstärkungsfasern und Matrixmanterial; Figur 2a zeigt in einer Draufsicht eine Ausführung einer ersten Fasermaterialschicht;
Figur 2b zeigt in einer Draufsicht eine Ausführung einer zweiten
Fasermaterialschicht;
Figur 3a zeigt eine Ausführung einer Endlosfaser;
Figur 3b zeigt eine Bündelung von Endlosfasern in einem Roving;
Figur 4a zeigt in einer Ansicht von oben eine Ausführung einer Faserlage aus Endlosfasern in Form eines Gewebes;
Figur 4b zeigt in einer Ansicht von oben eine Ausführung einer Faserlage aus
Endlosfasern in Form eines Geflechts;
Figur 5a zeigt eine Ausführung einer alternierende Anordnung von ersten und zweiten Fasermaterialschichten mit mehrlagigem Aufbau der ersten
Fasermaterialschichten; Figur 5b zeigt eine Ausführung einer alternierende Anordnung von ersten und zweiten Fasermate alschichten mit mehrlagigem Aufbau der zweiten
Fasermaterialschichten;
Figur 5c zeigt eine Ausführung einer alternierende Anordnung von ersten und zweiten Fasermaterialschichten mit mehrlagigem Aufbau erster und zweiter
Fasermaterialschichten;
Figuren 6a bis 6c verdeutlichen verschiedene Grundgeometrie für Bauteile aus
Energieverzehr-Faserverbundstrukturen;
Figur 7a zeigt in einer Perspektivansicht eine Energieverzehrvorrichtung;
Figur 7b zeigt einen Axialschnitt gemäß Figur 7a;
Figur 8 zeigt beispielhaft das Zerfaserungsverhalten des in den Figuren 7a und
7b dargestellten Energieverzehrelementes;
Figur 9a bis 9c verdeutlichen Verfahrensabläufe zur Herstellung einer
Energieverzehr-Faserverbundstruktur;
Figur 10a bis 10c zeigen beispielhaft anhand eines Ausschnittes aus einem
Energieverzehrelement Verfahrensabläufe gemäß Figur 9a.
Die Figur 7a zeigt beispielhaft eine erfindungsgemäß ausgeführte Energieverzehrvorrichtung 19 in Perspektivansicht. Figur 7b zeigt eine Schnittansicht. Die Energieverzehrvorrichtung 19 ist insbesondere in Form einer Stoßsicherung, beispielsweise in Form eines Crashpuffers ausgebildet, umfassend zumindest ein Energieverzehrelement 20 in Gestalt eines sich in einer Längsrichtung erstreckenden dreidimensionalen Körpers, wobei das Energieverzehrelement 20 derart ausgelegt ist, bei Überschreiten einer mit Hauptrichtungskomponente in Längsrichtung des Energieverzehrelementes 20 eingeleiteten kritischen Stoßkraft anzusprechen und zumindest einen Teil der bei der Übertragung der Stoßkraft über das Energieverzehrelement 20 anfallenden Stoßenergie durch nicht duktile Zerfaserung abzubauen, wobei das Energieverzehrelement zumindest teilweise aus einer Energieverzehr- Faserverbundstruktur 1 besteht. Diese Energieverzehr-Faserverbundstruktur 1 ist aus zumindest einer ersten, die zumindest eine Faserlage oder mehrere Faserlagen 7.1 , 7.2 aus unidirektional ausgerichteten Endlosfasern 4 und Mathxmaterial 6 aufweisenden Fasermate alschicht 2 und zumindest einer zweiten, eine oder mehrere Faserlagen 8, 8.1 , 8.2, 8.3 multidirektional ausgerichteter Langfasern 5 und Matrixmaterial 9 aufweisenden Fasermaterialschicht 3 ausgebildet, wobei erste und zweite Fasermaterialschichten 2, 3 miteinander verbunden sind, wobei die Endlosfasern parallel oder in einem Winkel von ± 2,5° zur Längsrichtung des Energieverzehrelementes ausgerichtet sind. Der Aufbau der Energieverzehr-Faserverbundstruktur 1 ist in den Figuren 1 bis 6 beschrieben.
Die Figur 1 zeigt in schematisiert stark vereinfachter Darstellung den Grundaufbau einer erfindungsgemäß ausgebildeten mehrschichtig aufgebauten und eine dreidimensionale Struktur beschreibenden Energieverzehr- Faserverbundstruktur 1 in einem Axialschnitt durch diese. Der Axialschnitt ist dabei durch eine Schnittebene charakterisiert, die durch die Erstreckung in Längsrichtung und eine Senkrechte zu dieser beschreibbar ist. Zur Verdeutlichung der einzelnen Richtungen ist ein Koordinatensystem angelegt. Die X-Richtung beschreibt die Erstreckung der Energieverzehr-Faserverbundstruktur 1 in Beanspruchungsrichtung auf Zug und Druck, die im dargestellten Fall mit der Längsrichtung zusammenfällt. Die Y-Richtung beschreibt die Erstreckung quer zur Beanspruchungsrichtung und die Z-Richtung die Erstreckung in Höhenrichtung. Die Energieverzehr-Faserverbundstruktur 1 kann als Vollelement in unterschiedlicher geometrischer Ausbildung, beispielsweise plattenförmiges Element oder zumindest Bestandteil eines Profilelementes unterschiedlichster Ausbildung vorliegen. Im letztgenannten Fall bildet dieses beispielsweise Teile der Wandung 23 der das Profilelement bildenden dreidimensionalen Struktur. Nachfolgende Ausführungen sind daher unabhängig von der von der Energieverzehr-Faserverbundstruktur 1 gebildeten dreidimensionalen Struktur, jedoch besonders vorteilhaft in Wandbereichen von Profilelennenten. Beispielhaft zeigt Figur 1 einen Ausschnitt aus einem Wandbereich eines rohrförmigen Elementes 22. Die Energieverzehr-Faserverbundstruktur 1 ist als Mehrschichtsystem aufgebaut, umfassend zumindest eine oder mehrere erste Fasermaterialschichten 2 und zumindest eine oder mehrere zweite Fasermaterialschichten 3, welche alternierend, d.h. wechselweise angeordnet und miteinander verbunden sind. Dabei sind jeweils zumindest eine erste und zumindest zwei zweite Fasermaterialschichten 2, 3 vorgesehen oder mindestens zwei erste und mindestens eine zweite Fasermaterialschicht 2, 3. Vorzugsweise sind, wie in der Figur 1 wiedergegeben, eine Mehrzahl derartiger erster Fasermaterialschichten 2 und zweiter Fasermaterialschichten 3 vorgesehen. Die einzelne erste Fasermaterialschicht 2 umfasst eine oder mehrere Faserlagen 7 unidirektional ausgerichteter Endlosfasern 4, die in zumindest ein Matrixmaterial 6 eingebettet sind. Mögliche beispielhafte Ausführungen der Endlosfasern 4 als Monofilamente oder zusammengefasst zu einem Bündel sind in den Figuren 3a und 3b wiedergegeben. Die Ausrichtung der Endlosfasern 4 in der Energieverzehr-Faserverbundstruktur 1 erfolgt in Abhängigkeit einer in Funktionslage der Energieverzehr-Faserverbundstruktur 1 auf diese wirkenden und in dieser durch nicht-duktile Zerfaserung abzubauenden Kraft, insbesondere Druckkraft. Die Längsachse einer einzelnen Endlosfaser 4 ist, wie in Figur 2a in einer Ansicht von oben auf eine Fasermaterialschicht 2 ersichtlich, parallel oder mit einem Winkel α von bis zu einschließlich ± 2,5° zur Kraftrichtung ausgerichtet. Die Abstände a zwischen zwei benachbart angeordneten Endlosfasern 4 quer zur Faserausrichtung können innerhalb einer Faserlage 7 gleich ausgeführt sein oder variieren. Die einzelne zweite Fasermaterialschicht 3 weist eine oder mehrere Faserlagen 8 von multidirektional, d.h. räumlich in zwei oder drei Richtungen ausgerichtet angeordneten Langfasern 5 auf. Eine derartige Faserlage 8 ist in einer Ansicht von oben in Figur 2b beispielhaft wiedergegeben. Die Langfasern 5 sind durch eine Länge im Bereich von I mm bis einschließlich 120mnn, vorzugsweise I mm bis 50mnn charakterisiert. Diese können als einzelne Monofasern, zu Faserbündeln oder Garnen verarbeitet vorliegen. Die Faserlage 8 ist durch keine bevorzugte Ausrichtung der Langfasern 5 charakterisiert, weshalb diese Fasern auch als Wirrfasern bezeichnet werden.
Die Langfasern 5 sind ebenfalls in ein Mathxmaterial 9 eingebettet, welches in Abhängigkeit des Fertigungsverfahrens zur Erstellung der Energieverzehr- Faserverbundstruktur 1 dem Matrixmaterial 6 der ersten Fasermaterialschicht 2 entspricht.
Durch die wechselweise Anordnung der ersten und zweiten Fasermaterialschichten 2, 3 wird unter Krafteinwirkung in Ausrichtungsrichtung der Endlosfasern 4 eine Zerfaserung der Energieverzehr-Faserverbundstruktur 1 erzielt, die durch den Faserbruch und Zwischenfaserbruch der Langfasern 5 und Endlosfasern 4 charakterisiert ist, da insbesondere die Langfaseranordnung ein Delaminieren der einzelnen Schichten weitestgehend verhindert.
Bezüglich der verwendeten Werkstoffe und Materialien für die einzelnen Faserarten- Endlosfasern 4 und Langfasern 5- besteht eine Mehrzahl von Möglichkeiten. In besonders vorteilhafter Ausführung werden die als Verstärkungsfasern fungierenden Endlosfasern 4 der ersten Fasermaterialschicht 2 und Langfasern 5 der zweiten Fasermaterialschicht 3 von anorganischen Fasern gebildet. Die Faserlage 7 wird aus Endlosfasern in Form von Glasfasern, Kohlefasern oder Basaltfasern gebildet. In Analogie können die für die Langfasern 5 der für die Zerfaserung verantwortlichen Faserlagen 8 der zweiten Fasermaterialschichten 3 von Glasfasern oder Basaltfasern gebildet werden. Als Matrixmaterial 6 beziehungsweise 9 für die einzelnen Faserlagen 7, 8 finden duroplastische Materialien Verwendung. Diese umfassen jeweils zumindest ein Element aus der nachfolgenden Gruppe
- ein Polykondensat
- ein Polyadditiv
- ein Polymer.
In besonders vorteilhafter Ausbildung werden Matrixmaterialien in Form von Kunstharzen, insbesondere Phenolen auf Aldehydbasis oder Polyadditiven in Form von beispielsweise Epichlorhydrin mit Diolen, Polyol oder Dicarbonsäure eingesetzt. Die Formulierung der Matrix erfolgt derart, dass diese eine Bruchdehnung von unter 6% und mit einem E-Modul von über 3000 MPa, um den gewünschten Energieverzehr zu gewährleisten. Die Eigenschaften der Faserlage 7 sind insbesondere durch die Anordnung der Endlosfasern 4 zueinander, insbesondere deren Anordnungsdichte quer zur Krafteinwirkungsrichtung, die Geometrie und Dimensionierung sowie die Fasermaterialeigenschaften charakterisiert. Die Eigenschaften der Faserlage 8 sind als Funktion materialspezifischer Kenngrößen, die Geometrie und/oder Dimensionierung charakterisierender Kenngrößen und/oder physikalischer und/oder chemischer Eigenschaften beschreibender Kenngrößen einstellbar. Die Figur 2a zeigt beispielhaft in einer Ansicht auf eine Faserlage 7 einer ersten Fasermaterialschicht 2 die unidirektionale Ausrichtung der Endlosfasern 4 parallel zur Krafteinleitungsrichtung in Funktionslage. Die Endlosfasern 4 sind in Erstreckungsrichtung der Faserlage 7 in Breitenrichtung betrachtet gleichmäßig, d.h. mit gleichem Abstand a zueinander angeordnet. Die einzelne Endlosfaser 4 ist vorzugsweise in Erstreckungsrichtung in Längsrichtung frei von einer Querschnittsänderung, d.h. der Querschnitt der Endlosfasern 4 ist vorzugsweise konstant, wobei bezüglich der Geometrie, d.h. Querschnittsform keine Restriktionen bestehen. Vorzugsweise werden jedoch Endlosfasergebilde mit kreisförmigem Querschnitt zum Einsatz gelangen. Figur 2a zeigt eine besonders vorteilhafte Ausbildung einer Faserlage 7, welche quer zur Krafteinleitungsrichtung gleiche Eigenschaften hinsichtlich der Bruchmechanik gewährleistet.
In einer alternativen Ausbildung besteht die Möglichkeit, dass sich die Endlosfasern 4 einer Faserlage 7 hinsichtlich zumindest eines oder mehrerer Parameter aus der nachfolgenden Gruppe unterscheiden:
- Geometrie, insbesondere Querschnittsgeometrie
- Dimensionierung
- Materialart
- Feinheit
Die Anordnung innerhalb der Faserlage 7 kann quer zur Krafteinwirkungsrichtung gleichmäßig oder aber ungleichmäßig erfolgen. Die als Verstärkungsfasern fungierenden Endlosfasern 4 sind in ein Matrixmaterial 6 eingebettet. Die Figur 2b zeigt in einer Ansicht von oben auf eine Faserlage 8 die Anordnung und Ausrichtung der Langfasern 5 in einer Faserlage 8 der Fasermaterialschicht 3. Die Anordnung der Langfasern 5 erfolgt frei von der Ausbildung einer Vorzugsrichtung innerhalb der Faserlage 8. Dabei können die Langfasern 5 hinsichtlich wesentlicher Kenngrößen gleich ausgeführt sein.
Auch hier besteht alternativ die Möglichkeit, dass sich die einzelnen Langfasern 5 einer Faserlage 8 hinsichtlich zumindest eines oder mehrerer Parameter aus der nachfolgenden Gruppe unterscheiden:
- Geometrie, insbesondere Querschnittsgeometrie
- Dimensionierung
- Materialart
- Feinheit Weiteren Einfluss hat die Orientierung und Faserdichte über die einzelnen Erstreckungsrichtungen der Faserlage 8.
Die Figuren 3a und 3b verdeutlichen beispielhaft mögliche Faserlagenausführungen für Endlosfasern 4. Gemäß Figur 3a liegen diese vorzugsweise als Monofilamente vor. Diese sind durch eine wesentlich größere Abmessung I in Längsrichtung als in Breitenrichtung charakterisiert.
Figur 3b zeigt beispielhaft Endlosfasern 4 als Bestandteil von sogenannten Rovings 10. Ein einzelner Roving 10 wird von einem Bündel, Strang oder Multifilamentgarn von im wesentlichen parallel zueinander angeordneter Endlosfasern 4 gebildet. Die Fixierung in der Fasermaterialschicht 2 erfolgt über Matrixmaterial 6. Der einzelne Roving 10 ist durch eine Erstreckung I in Längsrichtung und elliptische oder eckige Querschnitte charakterisiert.
Zu einem Roving 10 sind vorzugsweise Fasern gleicher Eigenschaften zusammengefasst. Denkbar sind jedoch auch Faserbündel aus Endlosfasern 4 unterschiedlicher Eigenschaften. Die einzelnen Faserlagen 7, 8 der Fasermaterialschichten 2, 3 können in unterschiedlichsten Formen vorliegen. Figur 4a zeigt beispielhaft eine vorteilhafte Ausbildung einer Faserlage 7 als Gewebe 1 1 , welches aus Kettfäden 12 und Schussfäden 13 gebildet wird. Die Figur 4b zeigt beispielhaft die Ausbildung als Geflecht 14.
Die Figuren 5a bis 5c verdeutlichen beispielhaft mögliche Fasermaterialschichtanordnungen und Ausführungen, welche die Eigenschaften und Bruchmechanik beeinflussen können. Figur 5a zeigt beispielhaft eine Ausbildung einer ersten Variante zur Ausbildung erster und zweiter Fasermaterialschichten 2, 3. Es sind drei erste Fasernnatenalschichten 2.2 und 2.1 vorgesehen, wobei die beiden Fasernnatenalschichten 2.1 aus jeweils zwei Faserlagen 7.1 und 7.2 bestehen, die miteinander verbunden sind. Die Faserlagen 7.1 und 7.2 sind unterschiedlich ausgeführt. Die Fasermaterialschicht 2.1 ist einlagig ausgebildet und umfasst eine Faserlage 7. Die Fasermaterialschichten 3 sind vorzugsweise einlagig ausgeführt und im Wesentlichen gleich aufgebaut.
Die Faserlagen 7.1 und 7.2 der Fasermaterialschicht 2.1 sind aus Endlosfasern 4 und Matrixmaterial 6 aufgebaut, wobei die Faserlagen 7.1 und 7.2 unterschiedlich aufgebaut sind. Diese unterscheiden sich zumindest hinsichtlich eines der nachfolgenden Parameter:
- eine Eigenschaft der Fasern betreffende
- Faserart
- Materialart
- Dimensionierung
- Feinheit
- Geometrie
- Dicke der Faserlage
und/oder in ihrer Anordnung, insbesondere Abstand zueinander.
Demgegenüber verdeutlicht Figur 5b eine Ausführung mit mehrlagigem Aufbau der Fasermaterialschichten 3 aus zwei Faserlagen 8.1 , 8.2 und vorzugsweise einlagigen Fasermaterialschichten 2. Letztere bestehen aus den Faserlagen 7. Die Faserlagen 8.1 und 8.2 unterscheiden sich hinsichtlich zumindest einer der nachfolgenden Größen voneinander: eine physikalische oder chemische Eigenschaft der Fasern, Faserart, Materialart, Dimensionierung, Feinheit, Geometrie, Dicke der Faserlage und/oder in ihrer Anordnung, insbesondere Abstand zueinander. Die Figur 5c zeigt eine Kombination aus Möglichkeiten gemäß den Figuren 5a und 5b, d.h. mit mehrlagigem Aufbau sowohl der ersten und zweiten Fasermaterialschichten 2, 3, wobei hier die zweiten Fasermate alschichten 3 beispielhaft durch drei Faserlagen 8.1 , 8.2, 8.3 und die Fasermate alschicht 2.1 durch zwei Faserlagen 7.1 , 7.2 und die Fasermaterialschicht 2.1 durch eine Faserlage 7 charakterisiert sind.
Bei allen Ausführungen ist die Krafteinleitungsrichtung in Funktionslage eingezeichnet. Die Richtung fällt mit der Ausrichtung der Endlosfasern 4 zusammen, zumindest jedoch die Ausrichtung der Hauptkraftkomponente fällt mit der Ausrichtung der Endlosfasern zusammen.
Die Figuren 6a bis 6c zeigen beispielhaft weiter mögliche Grundgeometrieformen für Bauteile aus Energieverzehr-Faserverbundstrukturen 1 . Figur 6a zeigt eine Ausbildung als Platte 16, Figur 6b eine Ausführung als Vollzylinder 17, Figur 6c als schalenförmiges textiles Flächengebilde 18. Eine besonders vorteilhafte Anwendung stellen jedoch Wandungsbereiche beliebig geformter Profilelemente, vorzugsweise in Form von rohrförmigen Elementen dar.
Die Figur 7a zeigt eine besonders vorteilhafte Anwendung einer Energieverzehr- Faserverbundstruktur 1 in einer Energieverzehrvorrichtung 19. Diese umfasst ein Energieverzehrelement 20, welches einstückig aus Faserverbundwerkstoff, insbesondere Energieverzehr-Faserverbundstruktur 1 ausgebildet ist und ein relativ zu dieser bewegbares Gegenelement 21 mit einer Stirnseite 25, über welche die Kraft einleitbar ist. Das Energieverzehrelement 20 ist als sich in einer Längsrichtung L erstreckender Hohlkörper, insbesondere rohrförmiges Element 22 ausgeführt. Die Energieverzehr-Faserverbundstruktur 1 bildet hier eine die Mantelfläche des Hohlkörpers bildende Wand 23. Das Energieverzehrelement 20 ist derart ausgelegt, bei Überschreiten einer in eine Stirnseite des Energieverzehrelementes 20 eingeleiteten kritischen Stoßkraft anzusprechen und zumindest einen Teil der bei der Übertragung der Stoßkraft über das Energieverzehrelement 20 anfallenden Stoßenergie durch nicht duktile Zerfaserung abzubauen. Dazu ist die Energieverzehr-Faserverbundstruktur 1 derart zum Wandungsaufbau des hohlzylindrischen Elementes angeordnet und ausgerichtet, dass die Endlosfasern 4 der Fasermaterialschichten 2 in Längsrichtung des hohlzylindrischen Elementes ausgerichtet sind, so dass deren Lage mit der Wirkrichtung der eingeleiteten Kräfte zusammenfällt.
Figuren 7a und 7b zeigen ein Beispiel einer vorteilhaften Ausbildung einer Energieverzehrvorrichtung 19. Im Einzelnen weist das Energieverzehrelement 20 einen Energieverzehrbereich 29 sowie einen Führungsbereich 30 auf. Am Übergang zwischen dem Energieverzehrbereich 29 und dem Führungsbereich 30 ist hier eine Kante vorgesehen, welche einen Anschlag 27 ausbildet, an den das als Kolben ausgebildete Gegenelement 21 anstößt. Denkbar hierbei ist es, dass die Stirnseite des dem Energieverzehrelement 20 zugewandten Bereiches 24 des als Kolben ausgebildeten Gegenelementes 21 an den Anschlag 27 des Energieverzehrbereiches 29 direkt anstößt. Bei der in Figur 7b dargestellten Ausführungsform der Energieverzehrvorrichtung 19 ist an der Stirnseite des als Kolben ausgebildeten Gegenelementes 21 ein Kegelring 28 vorgesehen, so dass dieser Kegelring 28 an den Anschlag 27 des Energieverzehrbereiches 29 anstößt. Der Kegelring 28 ist dabei fest mit der Stirnseite des Gegenelementes 21 verbunden. Der Führungsbereich 30 des Energieverzehrelementes 20 ist bei der dargestellten Ausführungsform der Energieverzehrvorrichtung 19 als Führungsrohr ausgebildet, dessen Innendurchmesser größer als der Außendurchmesser des als Kolben ausgebildeten Gegenelementes 21 ist. Auf diese Weise kann der dem Energieverzehrelement 20 zugewandte Bereich des Gegenelementes 21 teleskopartig von dem Energieverzehrelement aufgenommen werden. Der Anschlag 27 kann jedoch auch anders, beispielsweise über einen Konus realisiert werden und somit ist eine Verschmelzung von 27 + 28 denkbar.
Die Längsrichtung des Energieverzehrelementes fällt mit dessen Längsachse L zusammen. Figur 8 zeigt beispielhaft das Verformungsverhalten des Energieverzehrelementes 20 in Form eines rohrförmigen Elementes 22, dessen Wandung 23 aus Energieverzehr-Faserverbundstruktur 1 gebildet wird, bei Einleitung einer Stoßkraft F. Verdeutlicht ist das durch die Wirrfaserlagen bedingte Zerfaserungsverhalten in einem Winkel von bis zu 30° zum Kraftpfad.
Eine besondere Ausgestaltung für ein derartiges Energieverzehrelement 19 für den Einsatz in Schienenfahrzeugen sieht einen Rohrdurchmesser von 150- 350mm mit einer Wandstärke von 10-40 mm vor, um Kraftniveaus von 200-2500 KN pro Energieverzehrelement zu realisieren.
Die Figuren 9a bis 9c verdeutlichen mögliche Verfahren zur Herstellung einer Energieverzehr-Faserverbundstruktur 1 , insbesondere zur Ausbildung eines Energieverzehrelementes 20 in Form eines rohrförmigen Elementes 22 durch Wickeln. Die Herstellungsverfahren können dabei in Abhängigkeit der bereitgestellten Faserhalbzeuge variieren. Die einzelnen Faserhalbzeuge beinhalten jeweils zumindest eine oder mehrere Faserlagen. Die Faserhalbzeuge können dabei jeweils für die einzelnen Fasermaterialschichten als separate Faserhalbzeuge vorliegen, die im Fertigungsprozess zueinander in die gewünschte Anordnung verbracht werden, oder die einzelnen Faserlagen der unterschiedlichen Fasermaterialschichten enthaltenen Faserhalbzeuge können bereits zu kombinierten Faserhalbzeugen vorkonfektioniert bezogen werden. Ferner unterscheiden sich die Verfahren hinsichtlich der Art und des Zeitpunktes der Einbringung des Matrixmaterials. Alle Verfahren sind jedoch durch die Bereitstellung der Faserlagen - Verfahrensschritte VA oder VA2 - und dem Einbringen von Matrixmaterial - Verfahrensschritte VD, VF sowie dem Aushärten - VE - charakterisiert.
Grundlegend wird zwischen Trocken- und Nasswickelverfahren unterschieden. Figur 9a verdeutlicht beispielhaft ein Verfahren, bei welchem die Faserlagen enthaltenden Faserhalbzeuge 31 , 32 trocken drapiert bzw. gewickelt werden und erst anschließend durch Einbringen und Aushärten von Matrixnnaterial in ihrer Lage zueinander fixiert werden.
Ein in der Figur 9a beispielhaft wiedergegebenes erstes Verfahren kann durch nachfolgende Schritte beschrieben werden:
Der Verfahrensschritt VA beinhaltet die Bereitstellung der Faserhalbzeuge 31 , 32 in Form von Endlosfasern 4 enthaltenden, ungetränkten Faserhalbzeugen 31 und Langfasern 5 enthaltenden weiteren Faserhalbzeugen 32. Die Endlosfasern 4 enthaltenden Faserhalbzeuge 31 werden in besonders vorteilhafter Ausbildung in Form von Rovings oder Geweben bereitgestellt. Die Langfasern 5 enthaltenden Faserhalbzeuge 32 liegen vorzugsweise in Form von Gelegen, Vliesen oder Matten vor. Im Verfahrensschritt VB werden die Faserhalbzeuge 31 , 32 zueinander ausgerichtet überlappend angeordnet. In vorteilhafter Ausbildung können die einzelnen Faserhalbzeuge 31 , 32 an den zueinanderweisenden Seiten miteinander verbunden werden, beispielsweise durch Vernähen oder Versticken der einander benachbart angeordneten Faserlagen der einzelnen Faserhalbzeuge 31 , 32. Eine derartige Anordnung der Faserhalbzeuge kann als Kombieinheit im Verfahrensschritt VC um einen Kern gewickelt werden.
Der Verfahrensschritt VD beinhaltet das Einbringen des Matrixmaterials, wobei hier alle Faserlagen 7 und 8 der späteren Fasermaterialschichten 2, 3 mit dem gleichen Matrixmaterial getränkt werden. Das Einbringen des Matrixmaterials erfolgt entweder durch Injektion oder Infusion. Dazu wird der Bereich, insbesondere die im trockenen Zustand um den Kern drapierte Struktur gasdicht umschlossen und das Matrixmaterial, insbesondere der Kunststoff durch Injektion VD1 oder Infusion VD2 in die Faserlagen und zwischen diesen eingebracht. Denkbar ist auch ein Harztränkverfahren. Im Verfahrensschntt VE erfolgt ein Aushärten, wobei dieser Vorgang durch zusätzliche Maßnahmen, wie Heizung oder Kühlung beinflussbar ist.
Demgegenüber verdeutlichen die Figuren 9b und 9c Ausführungen zum Nasswickeln. Einige Verfahrensschritte erfolgen in Analogie zu denen in Figur 9a beschriebenen, weshalb diese mit gleicher Bezugsziffer benannt sind. Auf die Erläuterungen in Figur 9a zu diesen wird verwiesen.
Auch hier erfolgt Bereitstellung von Faserhalbzeugen 31 und 32 im Verfahrensschritt VA, wobei diese entweder als separate Faserhalbzeuge für die einzelnen Faserlagen der unterschiedlichen Schichten bereitgestellt werden und im nicht dargestellten Verfahrensschritt VB in ihrer Lage zueinander angeordnet werden, um gemeinsam gehändelt zu werden. Im Einzelnen werden die einzelnen Faserhalbzeuge übereinander angeordnet. Denkbar ist es auch, auf ein Faserhalbzeug in Form einer Kombieinheit, insbesondere Kombimatte aus den die unterschiedlichen Fasermaterialschichten bildenden Faserlagen zu nutzen. Die so gebildete Struktur wird in einem Verfahrensschritt VF vor dem Wickeln getränkt, insbesondere durch ein Bad aus Matrixmaterial geführt und in diesem nassen Zustand auf einen Kern im Verfahrensschritt VC gewickelt.
An den Wickelvorgang schließt sich der Verfahrensschritt des Aushärtens und Verfestigens VE an.
Demgegenüber verdeutlicht Figur 9c ein Verfahren, welches bereits vorgetränkte Faserhalbzeuge 31 , 32 in VA2 verwendet. Gemäß einer besonders vorteilhaften Ausführung wird als Faserhalbzeug eine Kombimatte aus einem Gewebe aus Endlosfasern und einem Gelege aus Langfasern vorgetränkt mit Matrixmaterial und als derart gebildetes Halbzeug um einen Kern in Schritt VC gewickelt. Das Aushärten erfolgt im Schritt VE. Die Figur 10a zeigt beispielhaft die Anordnung der die späteren Fasermaterialschichten 2, 3 bildenden und Faserlagen enthaltenden Faserhalbzeuge 31 und 32 in der eine kombinierte Faserhalbzeugstruktur bildenden Ausführung in einem Ausschnitt beim Wickeln um einen Kern 36. Beide Faserhalbzeuge 31 , 32 sind derart zueinander angeordnet, dass diese nach Möglichkeit vollflächig aneinander anliegen. Diese werden um den Kern 36 gewickelt.
Je nach Bereitstellung der Faserhalbzeuge 31 , 32 erfolgt die Einbettung in Matrixmaterial. Figur 10b stellt beispielhaft für trocken drapierte Faserhalbzeuge 31 , 32 die Gegebenheiten für einen Injektions- oder Infusionsprozess dar. Erkennbar ist ein Anschluss 34, der mit einer Einrichtung zur Unterdruckerzeugung koppelbar ist, um die trocken drapierte Anordnung gasdicht abzuschließen. Der sich ausbildende Vakuumsack ist mit 33 bezeichnet. Das Matrixmaterial in Form eines Harz-/Härtergemisches wird beispielsweise mit Hilfe einer Pumpe in den Lagenaufbau eingepresst. Die Harzfließfront ist mit 35 bezeichnet.
Der Prozess des Aushärtens kann durch zusätzliche Maßnahmen beschleunigt werden. So erfolgt beispielsweise eine Erwärmung/Aufheizung, wenn leicht exotherme Harzsysteme zum Einsatz gelangen, während eine Abkühlung bei stark exothermen Harzsystemen angewandt wird. Dazu sind entsprechende Heiz- und/oder Kühleinrichtungen 37 am Innen- und/oder Außenumfang der Wandung zugeordnet, wie in Figur 10c wiedergegeben.
Für die Herstellung von Energieverzehrelementen, wie beispielsweise dem Energieverzehrelement 19 aus den Figuren 7 und 8 wird in besonders vorteilhafter Ausbildung ein Kombihalbzeug aus mehreren Faserlagen in Form einer Kombimatte verwendet. Diese besteht aus zumindest zwei Faserlagen, einem eine Faserlage 7 bildenden Gewebe und einem, eine Faserlage 8 bildenden Vlies. Das Gewebe besteht aus einem 0 90° Glasgewebe, d.h. unidirektional ausgerichteten Endlosfasern in Form von Glasfasern. Die Faserlage 8 wird von einer Glas-Wirrfaser Vliesmatte gebildet. Dabei sind die Faserlagen übereinander angeordnet und miteinander vorzugsweise vollflächig verbunden, wobei die Verbindung durch vernähen oder versticken erfolgen kann. Die Grammatur dieser Gesamt-Faserhalbzeugstruktur wird vorzugsweise im Bereich zwischen 300g/m2 und 900g/m2 mit einer Gewichtsaufteilung von 50/50 zwischen 0 90° Glasfasergewebe und Glas-Wirrfaser Vlies gewählt. Andere vorteilhafte Aufteilungen wären 1/3 0 90° Glasfasergewebe zu 2/3 Glas-Wirrfaser Vlies.
Die Einbringung der Harzmatrix kann gemäß einem der in den Figuren 9a bis 9c beschriebenen Verfahren erfolgen, ist jedoch nicht auf diese beschränkt.
Bezugszeichenliste
I Energieverzehr-Faserverbundstruktur
2, 2.1 , 2.2 erste Fasermaterialschicht
3 zweite Fasermaterialschicht
4 Endlosfaser
5 Langfaser
6 Matrixmaterial
7, 7.1 , 7.2 Faserlage der ersten Fasermaterialschicht 8, 8.1 , 8.2, 8.3 Faserlage der ersten Fasermaterialschicht
9 Matrixmaterial
10 Roving
I I Gewebe
12 Kettfäden
13 Schußfäden
15 Bereich
16 Platte
17 Vollzylinder
18 schalenförmiges textiles Flächengebilde
19 Energieverzehrvorrichtung
20 Energieverzehrelement
21 Gegenelement
22 hohlzylindrisches Element; rohrförmiges Element
23 Wand, Wandung
24 Bereich
25 Stirnseite
27 Anschlag
28 Kegelring
29 Energieverzehrbereich
30 Führungsbereich 31 Faserhalbzeug
32 Faserhalbzeug
33 Vakuumsack
34 Anschluss
35 Harzfließfront
36 Kern
37 Heiz- und/oder Kühleinrichtung
L Längsachse
VA-VF Verfahrensschritte

Claims

Patentansprüche
Energieverzehrvorrichtung (19) eines schienengebundenen Fahrzeuges, umfassend zumindest ein Energieverzehreiement (20) in Gestalt eines sich in einer Längsrichtung erstreckenden dreidimensionalen Körpers, wobei das Energieverzehreiement (20) derart ausgelegt ist, bei Überschreiten einer mit Hauptrichtungskomponente in Längsrichtung des Energieverzehrelementes (20) eingeleiteten kritischen Stoßkraft anzusprechen und zumindest einen Teil der bei der Übertragung der Stoßkraft über das Energieverzehreiement (20) anfallenden Stoßenergie durch nicht duktile Zerfaserung abzubauen, wobei das Energieverzehreiement zumindest teilweise aus einer Energieverzehr-Faserverbundstruktur mit zumindest einer, unidirektional ausgerichtete Endlosfasern (4) aufweisenden und in Matrixmaterial (6) eingebetteten Faserlage (6) besteht,
dadurch gekennzeichnet,
dass die Energieverzehr-Faserverbundstruktur (1 ) aus zumindest einer ersten, die zumindest eine Faserlage (7) oder mehrere Faserlagen (7.1 , 7.2) aus unidirektional ausgerichteten Endlosfasern (4) und Matrixmaterial (6) aufweisenden Fasermaterialschicht (2) und zumindest einer zweiten, eine oder mehrere Faserlagen (8, 8.1 , 8.2, 8.3) multidirektional ausgerichteter Langfasern (5) und Matrixmaterial (9) aufweisenden Fasermaterialschicht (3) ausgebildet ist, wobei erste und zweite Fasermaterialschichten (2, 3) miteinander verbunden sind, wobei die Endlosfasern parallel oder in einem Winkel von ± 2,5° zur Längsrichtung des Energieverzehrelementes ausgerichtet sind. Energieverzehrvorrichtung (19) nach Anspruch 1 ,
dadurch gekennzeichnet,
dass der prozentuale Anteil unidirektional ausgerichteter Endlosfasern in der ersten Fasermatenalschicht aus der Verbindung einer ersten, die zumindest eine Faserlage (7) oder mehrere Faserlagen (7.1 , 7.2) aus unidirektional ausgerichteten Endlosfasern (4) und Matrixmaterial (6) aufweisenden Fasermaterialschicht (2) und zumindest einer zweiten, eine oder mehrere Faserlagen (8, 8.1 , 8.2, 8.3) multidirektional ausgerichteter Langfasern (5) und Matrixmaterial (9) aufweisenden Fasermaterialschicht (3) im Bereich von 50-80% liegt.
Energieverzehrvorrichtung (19) nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass diese ein mit dem Energieverzehrelement (20) derart zusammenwirkendes Gegenelement (21 ) umfasst, dass sich bei Überschreiten einer kritischen, in die Energieverzehrvorrichtung (19) eingeleiteten Stoßkraft das Gegenelement (21 ) und das Energieverzehrelement (20) unter gleichzeitigem Verzehr von zumindest einem Teil der in die Energieverzehrvorrichtung (19) eingeleiteten Stoßenergie relativ zueinander aufeinander zu bewegen, wobei das Gegenelement (21 ) als ein an seiner dem Energieverzehrelement (20) zugewandten Stirnseite offener Hohlkörper ausgebildet ist derart, dass die bei der Bewegung des Gegenelementes (21 ) relativ zu dem Energieverzehrelement (20) entstehenden Bruchteile des aus Energieverzehr-Faserverbundwerkstoff gebildeten Bereiches zumindest teilweise im Inneren des Hohlkörpers aufnehmbar sind.
Energieverzehrvorrichtung (19) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Gegenelement (20) als Kolben und zumindest der dem Gegenelement (20) zugewandte Bereich des Energieverzehrelementes (20) als Profilelement, insbesondere Zylinder ausgebildet ist, dessen Wandung (23) zumindest teilweise von der Energieverzehr-Faserverbundstruktur (1 ) gebildet ist.
und wobei der dem Energieverzehrelement (20) zugewandte Bereich des Gegenelementes (21 ) von dem Energieverzehrelement (20) teleskopartig aufgenommen ist derart, dass die Stirnseite des dem Energieverzehrelement (20) zugewandten Bereiches des Gegenelementes (21 ) an einem Anschlag (27) am Energieverzehrelement (20) anstößt.
Energieverzehrvorrichtung (19) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass eine einzelne Faserlage (7, 7.1 , 7.2) einer ersten Fasermaterialschicht (2, 2.1 , 2.2) von einer Faserlage aus der nachfolgend genannten Gruppe gebildet ist:
- Gewebe
- Gelege
- Geflecht
- Roving
und/oder
die einzelne Faserlage (8, 8.1 , 8.2, 8.3) einer zweiten Fasermaterialschicht (3) von einer Faserlage aus der nachfolgend genannten Gruppe gebildet ist:
- Gelege
- Multiaxialgelege
- Vlies
- Matte
Energieverzehrvorrichtung (19) nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass die Faserlagen der ersten Fasermatehalschicht der das Energieverzehrelement bildenden Energieverzehr-Faserverbundstruktur von einem Gewebe und die Faserlagen der zweiten Fasermaterialschicht von einem Vlies gebildet werden, wobei das Verhältnis des prozentualen Anteils Gewebe/Vlies an der Gesamtstruktur im Bereich von 33%/67% bis 50%/50% liegt.
Energieverzehrvorrichtung (19) nach Anspruch 5 oder 6,
dadurch gekennzeichnet,
dass das Gewebe von unidirektionalen ersten in Krafteinleitungsrichtung oder in einem Winkel von +-2,5° dazu ausgerichteten Endlosfasern und in einem Winkel von ±45° bis ±135° zu diesen ausgerichteten zweiten Endlosfasern gebildet wird.
Energieverzehrvorrichtung (19) nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass die einzelne zweite Fasermaterialschicht (3) derart ausgebildet ist, dass bei Einleitung einer, eine vordefinierte Größe überschreitenden Kraft, die Energieverzehr-Faserverbundstruktur (1 ) in einem Winkel von bis zu 60°, vorzugsweise 45° ±15° gegenüber der Krafteinleitungsrichtung zerfasert wird.
Energieverzehrvorrichtung (19) nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass das Energieabsorptionsvermögen als Funktion zumindest einer der nachfolgenden Größen einstellbar ist:
- bei Ausbildung des Energieverzehrelementes als Profil der Wandstärke der
Energieverzehr-Faserverbundstruktur (1 );
- der Dicke der einzelnen ersten und/oder zweiten Fasermaterialschichten
(2, 2.1 , 2.2, 3); - die Grammaturen der ersten und/oder zweiten Fasermatehalschicht (2, 2.1 , 2.2, 3);
- die Verteilung der Langfasern (5) in der zweiten Fasermatenalschicht (3);
- die physikalischen Eigenschaften des Fasermate als in den einzelnen Fasermaterialschichten (2, 2.1 , 2.2, 3).
- die physikalischen Eigenschaften (Gleiteigenschaften) des Mathxmaterials
- der Faservolumenanteil im Laminates
- der Fasermassenanteil des Laminates
10. Energieverzehrvorrichtung (19) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Langfasern (5) und Endlosfasern (4) zweier benachbart angeordneten Faserlagen (8, 8.1 , 8.2, 8.3, 7, 7.1 , 7.2) der zweiten und ersten Fasermaterialschicht (3, 2) miteinander vernäht oder verstickt sind.
1 1 . Energieverzehrvorrichtung (19) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass eine einzelne Endlosfaser (4) einer Faserlage (7, 7.1 , 7.2) einer ersten Fasermaterialschicht (2) von einer Faser gebildet ist, ausgewählt aus der nachfolgenden Gruppe:
- Kohlefaser
- Basaltfaser
- Glasfaser
und/oder
dass eine einzelne Langfaser (5) einer Faserlage (8, 8.1 , 8.2, 8.3) einer zweiten Fasermaterialschicht (3) von einer Faser gebildet ist, ausgewählt aus der nachfolgenden Gruppe:
- Basaltfaser
- Glasfaser
12. Energieverzehrvorrichtung (19) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die einzelne Faserlage (7, 7.1 , 7.2, 8, 8.1 , 8.2, 8.3) der ersten und/oder zweiten Fasermatehalschicht (2, 3) in ein Matrixmaterial (6, 9) eingebettet ist, ausgewählt aus der nachfolgenden Gruppe:
- Polykondensat, insbesondere Phenol
- Polyadditiv, insbesondere Epichlorhydrin, Polyol oder Dicarbonsäure
- Polymer
wobei die Faserlagen (7, 7.1 , 7.2, 8, 8.1 , 8.2, 8.3) einer einzelnen Fasermaterialschicht (2, 3) in gleiches oder unterschiedliches Matrixmaterial (6, 9) eingebettet sind.
13. Energieverzehrvorrichtung (19) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Formulierung des Matrixmaterials (6, 9) derart ausgeführt ist, dass dieses durch eine Bruchdehnung von unter 6% und einen E-Modul von über 3000 MPa charakterisiert ist.
14. Energieverzehrvorrichtung (19) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Langfasern (5) einer Faserlage (8, 8.1 , 8.2, 8.3) einer zweiten Fasermaterialschicht (3) innerhalb einer einzelnen Faserlage oder zwischen den Faserlagen einer oder mehrerer derartiger zweiter Fasermaterialschichten (3) zumindest hinsichtlich eines Parameters, gewählt aus der nachfolgenden Gruppe, unterschiedlich ausgeführt sind:
- einer materialspezifischen Kenngröße
- einer die Geometrie und/oder Dimensionierung charakterisierenden Kenngröße
- einer physikalische und/oder chemische Eigenschaften beschreibenden Kenngröße
und/oder dass die Faserlagen (7, 7.1 , 7.2) einer zweiten Fasermaterialschicht (3) oder die Faserlagen mehrerer zweiter Fasermaterialschichten (3) hinsichtlich zumindest hinsichtlich eines Parameters, gewählt aus der nachfolgenden Gruppe, unterschiedlich ausgeführt sind:
- Verteilung der Langfasern (5) in Längs-, Quer- und/oder Höhenrichtung der Faserlage
- Orientierung der Langfasern (5).
15. Verfahren zur Herstellung eines Energieverzehrelementes (20) in Form eines Profilelementes, insbesondere Rohres
gekennzeichnet durch folgende Verfahrensschritte:
a) Bereitstellung von die Faserlagen der unterschiedlichen Fasermaterialschichten enthaltenden Faserhalbzeugen:
b) Drapieren der Faserhalbzeuge
c) Tränken der Faserhalbzeuge mit Matrixmaterial
d) Aushärten der Matrix.
16. Verfahren nach Anspruch 15,
dadurch gekennzeichnet,
dass als Faserlagen enthaltendes Faserhalbzeug eine Gesamt- Faserhalbzeugstruktur aus einem Endlosfasern enthaltenden Gewebe und Langfasern enthaltenden Vliesmatte, die vollflächig aneinander anliegen und miteinander verbunden sind, eingesetzt wird und der Verfahrensschritt c) vor dem Verfahrensschritt b) ausgeführt wird.
PCT/EP2014/065828 2013-07-24 2014-07-23 Energieverzehrvorrichtung WO2015011193A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14742506.0A EP3025068B1 (de) 2013-07-24 2014-07-23 Energieverzehrvorrichtung
PL14742506T PL3025068T3 (pl) 2013-07-24 2014-07-23 Urządzenie absorbujące energię

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013214411.3 2013-07-24
DE102013214411 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015011193A1 true WO2015011193A1 (de) 2015-01-29

Family

ID=51224935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/065828 WO2015011193A1 (de) 2013-07-24 2014-07-23 Energieverzehrvorrichtung

Country Status (4)

Country Link
EP (1) EP3025068B1 (de)
DE (2) DE102014214402A1 (de)
PL (1) PL3025068T3 (de)
WO (1) WO2015011193A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108340937A (zh) * 2018-03-21 2018-07-31 深圳市乾行达科技有限公司 复合材料防爬吸能装置
DE102017102566A1 (de) 2017-02-09 2018-08-09 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Verfahren zur Verbindung eines Verbindungsstückes mit einem U-förmigen Ringanker für ein Kopfmodul für Schienenfahrzeuge
DE102017102567A1 (de) 2017-02-09 2018-08-09 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Kopfmodul für Schienenfahrzeug
DE102017102568A1 (de) 2017-02-09 2018-08-09 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Crash-System für Schienenfahrzeug

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949475A (zh) * 2015-08-18 2018-04-20 惠普发展公司,有限责任合伙企业 复合材料
US11383459B2 (en) 2016-03-30 2022-07-12 Kurimoto, Ltd. Fiber-reinforced resin hollow body and manufacturing method for same
DE102016111556A1 (de) * 2016-06-23 2017-12-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Schienenfahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749613A (en) * 1985-12-26 1988-06-07 Nippon Sheet Glass Co., Ltd. Composite fiber reinforced thermoplastic resin stampable sheet and bumper beam formed thereof
EP0719635A2 (de) * 1994-12-26 1996-07-03 Honda Giken Kogyo Kabushiki Kaisha Mehrschichtige Platte aus faserverstärktem Kunststoff, und stossdämpfende Struktur
US6601886B1 (en) * 2002-05-31 2003-08-05 Hexcel Corporation Energy absorbing composite tube
EP1731298A1 (de) * 2005-06-10 2006-12-13 Kabushiki Kaisha Toyota Jidoshokki Fasergewebe und Verbundmaterial
US20090277992A1 (en) * 2005-03-31 2009-11-12 The Boeing Company Composite leg for landing gear assembly
US20100040815A1 (en) * 2008-08-13 2010-02-18 The Penn State Research Foundation Energy Absorbing Stitch Ripping Composite Tubes Containing Collapsible Cells
EP2192322A1 (de) * 2007-10-09 2010-06-02 Mitsubishi Heavy Industries, Ltd. Stossdämpfungselement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534627A1 (de) 1995-09-18 1997-03-20 Richard Pott Mehrschichtiges Unidirektional-Gelege und Verfahren zur Herstellung desselben
US6096669A (en) 1997-10-28 2000-08-01 Gkn Westland Aerospace Inc. Unidirectional fiber-random mat preform
DE10351181A1 (de) 2003-11-03 2005-06-02 Dr.Ing.H.C. F. Porsche Ag Wand für einen Aufbau eines Kraftfahrzeugs
RU2520632C2 (ru) 2008-09-15 2014-06-27 Войс Патент Гмбх Лобовая часть транспортного средства для прикрепления к передней части рельсового транспортного средства, в частности, железнодорожного транспортного средства
DE102009016213A1 (de) 2009-04-03 2010-10-14 Volkswagen Ag Verfahen zur Herstellung eines mehrschichtigen Faser-Thermoplast-Schichtverbundwerkstoffes sowie damit hergestellter Schichtverbundwerkstoff und Verfahren zur Herstellung eines Bauteils aus dem Schichtverbundwerkstoff
ES2362167T5 (es) 2009-09-15 2017-09-06 Voith Patent Gmbh Dispositivo de absorción de energía, en particular en forma de una protección frente a impactos para un vehículo guiado por carriles
PT2361752E (pt) 2010-02-24 2015-08-26 Bard Holding Gmbh Componente de compósito fibroso e respectivo processo de fabricação
US9212437B2 (en) 2011-11-02 2015-12-15 GM Global Technology Operations LLC One-piece fiber reinforcement for a reinforced polymer combining aligned and random fiber layers
EP2636783A1 (de) 2012-03-09 2013-09-11 Quadrant Plastic Composites AG Flächiger Verbundwerkstoff

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749613A (en) * 1985-12-26 1988-06-07 Nippon Sheet Glass Co., Ltd. Composite fiber reinforced thermoplastic resin stampable sheet and bumper beam formed thereof
EP0719635A2 (de) * 1994-12-26 1996-07-03 Honda Giken Kogyo Kabushiki Kaisha Mehrschichtige Platte aus faserverstärktem Kunststoff, und stossdämpfende Struktur
US6601886B1 (en) * 2002-05-31 2003-08-05 Hexcel Corporation Energy absorbing composite tube
US20090277992A1 (en) * 2005-03-31 2009-11-12 The Boeing Company Composite leg for landing gear assembly
EP1731298A1 (de) * 2005-06-10 2006-12-13 Kabushiki Kaisha Toyota Jidoshokki Fasergewebe und Verbundmaterial
EP2192322A1 (de) * 2007-10-09 2010-06-02 Mitsubishi Heavy Industries, Ltd. Stossdämpfungselement
US20100040815A1 (en) * 2008-08-13 2010-02-18 The Penn State Research Foundation Energy Absorbing Stitch Ripping Composite Tubes Containing Collapsible Cells

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017102566A1 (de) 2017-02-09 2018-08-09 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Verfahren zur Verbindung eines Verbindungsstückes mit einem U-förmigen Ringanker für ein Kopfmodul für Schienenfahrzeuge
DE102017102567A1 (de) 2017-02-09 2018-08-09 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Kopfmodul für Schienenfahrzeug
DE102017102568A1 (de) 2017-02-09 2018-08-09 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Crash-System für Schienenfahrzeug
WO2018146082A1 (de) 2017-02-09 2018-08-16 Crrc Qingdao Sifang Co., Ltd. Crash-system für schienenfahrzeug
WO2018146014A1 (de) 2017-02-09 2018-08-16 Crrc Qingdao Sifang Co., Ltd. Kopfmodul für schienenfahrzeug
WO2018146040A1 (de) 2017-02-09 2018-08-16 Crrc Qingdao Sifang Co., Ltd. Verfahren zur verbindung eines verbindungsstückes mit einem u-förmigen ringanker für ein kopfmodul für schienenfahrzeuge
DE102017102566B4 (de) 2017-02-09 2019-07-11 CG Rail - Chinesisch-Deutsches Forschungs- und Entwicklungszentrum für Bahn- und Verkehrstechnik Dresden GmbH Verfahren zur Verbindung eines Verbindungsstückes mit einem U-förmigen Ringanker für ein Kopfmodul für Schienenfahrzeuge
US11318967B2 (en) 2017-02-09 2022-05-03 Crrc Qingdao Sifang Co., Ltd. Crash system for a rail vehicle
US11352027B2 (en) 2017-02-09 2022-06-07 Crrc Qingdao Sifang Co., Ltd. Head module for a rail vehicle
US11964443B2 (en) 2017-02-09 2024-04-23 Crrc Qingdao Sifang Co., Ltd. Method for connecting a connection piece to a u-shaped ring anchor for a head module for rail vehicles
CN108340937A (zh) * 2018-03-21 2018-07-31 深圳市乾行达科技有限公司 复合材料防爬吸能装置
CN108340937B (zh) * 2018-03-21 2023-06-09 深圳市乾行达科技有限公司 复合材料防爬吸能装置

Also Published As

Publication number Publication date
DE102014214402A1 (de) 2015-03-05
EP3025068B1 (de) 2019-01-16
DE102014214405A1 (de) 2015-01-29
PL3025068T3 (pl) 2019-07-31
EP3025068A1 (de) 2016-06-01

Similar Documents

Publication Publication Date Title
EP3025068B1 (de) Energieverzehrvorrichtung
EP1316409B1 (de) Faserverbund-Crashstruktur und Verwendungen einer solchen Crashstruktur
EP0222399B1 (de) Verstärkungsmaterial und Verfahren zu seiner Herstellung
EP2646226B1 (de) Unidirektionale faserbänder aufweisender faservorformling aus verstärkungsfaserbündeln und verbundwerkstoff-bauteil
EP2427323B1 (de) Verfahren zu herstellung eines faserverbundmaterials
EP2714974B1 (de) Mehrlagengewebe, seine verwendung sowie verfahren zur herstellung von compositen
DE102014015976A1 (de) Verbundkonstruktion für eine erhöhte Lebensdauer
WO2012059538A1 (de) Verstärkter vliesstoff
DE102008063545A1 (de) Multiaxialgelege
WO2013127460A1 (de) Gewebe zur verwendung in verbundwerkstoffen und verfahren zur herstellung des gewebes und eines verbundwerkstoffkörpers
EP3150363A2 (de) Verfahren zur herstellung eines verbundformteils, verbundformteil, sandwichbauteil und rotorblattelement und windenergieanlage
EP3023236A1 (de) Verfahren zur herstellung von faserverbundteilen und ein faserverbundteil
EP1372925B1 (de) Verstarkungsmaterial mit volumisierten fasern und verfahren zu dessen herstellung
EP2036701B1 (de) Schichtstruktur sowie Verfahren und Vorrichtung zur Herstellung einer Schichtstruktur
EP2842727B1 (de) Verfahren zur Herstellung eines faserverstärktes Verbundbauteils
WO2021063453A1 (de) Rohrförmiges bewehrungselement, verfahren zur herstellung eines bewehrungselements, globalbewehrung, verwendung eines bewehrungselements, betonbauteil und programmdatei
EP2465982B1 (de) Gewebe zur Verwendung in Verbundwerkstoffen und Verfahren zur Herstellung des Gewebes und eines Verbundwerkstoffkörpers
AT515022B1 (de) Kfz.-Innenverkleidungsteil
WO2019086348A1 (de) BAUTEIL ZUR ABSORPTION VON STOßENERGIE
EP3755833A1 (de) Fadenstruktur
WO2019219694A1 (de) Verfahren zur herstellung einer composite-feder, und selbige
WO2017032480A1 (de) Verfahren zur herstellung einer faserbandanordnung mit einer mehrzahl von weitgehend parallel zueinander angeordneten multifilamentgarnen
DE102013001144A1 (de) Heftnadel aus faserverstärktem Kunststoff für eine Verbindungsvorrichtung zum temporären Verbinden von wenigstens zwei vorzugsweise plattenartigen Teilen sowie Verfahren zur Herstellung der Heftnadel
DE4030815A1 (de) Faserverbundwerkstoff

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14742506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014742506

Country of ref document: EP