EP3575469B1 - Device and method for the manufacture of woven material from continuous filaments - Google Patents

Device and method for the manufacture of woven material from continuous filaments Download PDF

Info

Publication number
EP3575469B1
EP3575469B1 EP18174519.1A EP18174519A EP3575469B1 EP 3575469 B1 EP3575469 B1 EP 3575469B1 EP 18174519 A EP18174519 A EP 18174519A EP 3575469 B1 EP3575469 B1 EP 3575469B1
Authority
EP
European Patent Office
Prior art keywords
flow
air
air supply
cooling
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18174519.1A
Other languages
German (de)
French (fr)
Other versions
EP3575469A1 (en
Inventor
Michael Nitschke
Martin Neuenhofer
Hans-Georg Geus
Detlef Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Original Assignee
Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL18174519T priority Critical patent/PL3575469T3/en
Priority to SI201830136T priority patent/SI3575469T1/en
Priority to DK18174519.1T priority patent/DK3575469T3/en
Priority to ES18174519T priority patent/ES2826866T3/en
Priority to EP18174519.1A priority patent/EP3575469B1/en
Application filed by Reifenhaeuser GmbH and Co KG Maschinenenfabrik filed Critical Reifenhaeuser GmbH and Co KG Maschinenenfabrik
Priority to JP2019073332A priority patent/JP6923590B2/en
Priority to CA3041006A priority patent/CA3041006A1/en
Priority to AU2019202898A priority patent/AU2019202898B2/en
Priority to MYPI2019002376A priority patent/MY193430A/en
Priority to TNP/2019/000145A priority patent/TN2019000145A1/en
Priority to MX2019005391A priority patent/MX2019005391A/en
Priority to ARP190101221A priority patent/AR114882A1/en
Priority to CONC2019/0004698A priority patent/CO2019004698A1/en
Priority to CL2019001364A priority patent/CL2019001364A1/en
Priority to CN201910420986.0A priority patent/CN110541241B/en
Priority to IL266791A priority patent/IL266791B/en
Priority to BR102019010313A priority patent/BR102019010313A2/en
Priority to US16/423,049 priority patent/US11306421B2/en
Priority to PE2019001080A priority patent/PE20191833A1/en
Priority to KR1020190062166A priority patent/KR102264181B1/en
Priority to UAA201905805A priority patent/UA122635C2/en
Priority to RU2019116257A priority patent/RU2734852C1/en
Priority to MA45968A priority patent/MA45968B1/en
Priority to JOP/2019/0122A priority patent/JOP20190122B1/en
Publication of EP3575469A1 publication Critical patent/EP3575469A1/en
Application granted granted Critical
Publication of EP3575469B1 publication Critical patent/EP3575469B1/en
Priority to US17/694,867 priority patent/US11697897B2/en
Priority to US18/200,610 priority patent/US20230332342A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • D01D13/02Elements of machines in combination
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/736Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • D04H3/033Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random reorientation immediately after yarn or filament formation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • D04H3/077Stick, rod or solid cylinder shaped
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet

Definitions

  • the invention relates to a device for producing spunbonded nonwovens from continuous filaments, in particular from continuous filaments made of thermoplastic, wherein a spinnerette is provided for spinning the continuous filaments and a cooling chamber for cooling the spun filaments with cooling air is provided, one on opposite sides of the cooling chamber Air supply cabin is arranged, wherein cooling air can be introduced into the cooling chamber from the opposite air supply cabins and at least one supply line for the supply of cooling air is connected to each air supply cabin.
  • the invention further relates to a corresponding method for producing spunbonded nonwovens from continuous filaments.
  • - Spunbond means in the context of the invention in particular a spunbond nonwoven manufactured by the spunbond process.
  • Continuous filaments differ due to their almost endless length of staple fibers, which have significantly shorter lengths of z. B. 10 mm to 60 mm.
  • imperfections in the spunbonded fabrics can also result from so-called "hard pieces". These form as follows: Due to a loss of tension, a filament can relax, snap back and form a ball that creates the defect in the spunbonded surface. Such defects are usually smaller than 2 mm x 2 mm.
  • the invention is based on the technical problem of specifying a device of the type mentioned at the outset with which very homogeneous and uniform spunbonded nonwovens can be produced which are at least largely free of defects or defect-free, particularly at higher throughputs of more than 200 kg / h / m or at higher thread speeds.
  • the invention is further based on the technical problem of specifying a corresponding method for producing spunbonded nonwovens from continuous filaments.
  • the invention teaches a device for producing spunbonded nonwovens from continuous filaments, in particular from continuous filaments made of thermoplastic material, a spinnerette being provided for spinning the continuous filaments and a cooling chamber for cooling the spun filaments with cooling air, two of which are provided an air supply cabin is arranged on opposite sides of the cooling chamber and cooling air can be introduced into the cooling chamber from the opposite air supply cabins, wherein at least one supply line for supplying the cooling air with a cross-sectional area Q Z is connected to each air supply cabin, this cross-sectional area Q Z of the supply line increasing to a cross-sectional area Q L of the air supply cabin during the transition of the cooling air into the air supply cabin, the cross-sectional area Q L at least is twice as large, preferably at least three times as large as the cross-sectional area Q Z of the feed line, wherein at least one flow straightener arranged in front of the cooling chamber is preferably provided in each air supply cabin, at least one flat homogenizing element for homogenizing the cooling air flow introduced
  • the height H or the vertical height H of an air supply cabin is expediently 400 to 1500 mm, preferably 500 to 1200 mm and preferably 600 to 1000 mm.
  • a particularly preferred embodiment of the invention is characterized in that the height H or the vertical height H of the air supply cabin is between 700 and 900 mm.
  • an air supply cabin is divided over its height H into cabin sections, which will be explained further below and are arranged one above the other or vertically one above the other.
  • the features specified above and those listed below expediently apply preferred embodiments, in addition to the air supply cabin, preferably also for each cabin section.
  • the cooling air is supplied to the cooling chamber by sucking in the cooling air due to the filament movement or the downward filament flow and / or by actively blowing in or introducing cooling air, for example by means of at least one blower. If a blower is used to blow in cooling air, it is recommended that it be a controllable blower, with which in particular the volume flow of the introduced cooling air can be adjusted. According to one embodiment of the invention, cooling air is blown in or introduced with a plurality of fans.
  • the cross-sectional area Q Z of the supply line expediently expands to 3 to 15 times, preferably 4 to 15 times and preferably 5 to 15 times to the cross-sectional area Q L of the air supply cabin.
  • At least one homogenization element or that the homogenization elements are / are designed as perforated elements or perforated plates and / or as homogenizing sieves.
  • a perforated element or perforated plate designed as a homogenizing element is equipped with a plurality or a plurality of perforated openings. It is recommended that the hole openings each have an opening diameter d of 1 to 12 mm, expediently from 1 to 10 mm, preferably from 1.5 to 9 mm and preferably from 1.5 to 8 mm. If several opening diameters can be measured for a hole opening due to their geometric configuration, the invention here means the smallest opening diameter d of the hole opening.
  • the hole openings are one Homogenization element have different diameters, means opening diameter d or smallest opening diameter d expediently the average opening diameter d or the average smallest opening diameter d.
  • a homogenization element is designed as a homogenization screen, it has a plurality or a plurality of meshes. It is recommended that the homogenizing sieve have mesh sizes of 0.1 to 0.6 mm, preferably 0.1 to 0.5 mm, preferably 0.12 to 0.4 mm and very preferably 0.15 to 0.35 mm.
  • Mesh size here means the distance between two opposite wires of a mesh and in particular the smallest distance between two opposite wires of a mesh.
  • a homogenizing sieve preferably has a wire thickness or mean wire thickness of 0.05 to 0.4 mm, preferably 0.06 to 0.35 mm and very preferably a wire thickness of 0.07 to 0.3 mm.
  • a plurality of flat homogenization elements are arranged in an air supply cabin at a distance from the flow straightener of the air supply cabin, preferably in the flow direction of the cooling air one behind the other and spaced apart from one another in the air supply cabin.
  • the surfaces of the flat homogenization elements spaced apart from one another in an air supply cabin are expediently arranged parallel or essentially parallel to one another or at least approximately parallel to one another.
  • the surfaces of the flat Homogenization elements are arranged transversely to the direction of flow of the cooling air in the respective air supply cabin and, according to a preferred embodiment, are arranged perpendicularly or substantially perpendicularly to the direction of flow of the cooling air in the air supply cabin.
  • the at least one flat homogenization element arranged in an air supply cabin is arranged at a distance a 1 in the flow direction of the cooling air upstream of the flow straightener of the corresponding air supply cabin.
  • the distance a 1 is greater than 0 and preferably greater than 10 mm.
  • This distance a 1 is expediently at least 50 mm, preferably at least 80 mm and preferably at least 100 mm. If, according to a particularly recommended embodiment of the invention, a plurality of flat homogenization elements are arranged in an air supply cabin, the distance a 1 relates to the homogenization element arranged closest to the flow straightener.
  • the homogenization element with the distance a 1 in front of the flow straightener is a homogenization sieve, this homogenization sieve must be distinguished from any flow sieve of the flow straightener.
  • a flow strainer or flow strainers of the flow straightener will be discussed further below.
  • homogenization elements are arranged one behind the other in an air supply cabin.
  • the distance a x between two homogenization elements arranged one behind the other in an air supply cabin in the flow direction is expediently at least 40 mm, preferably at least 50 mm, preferably at least 80 mm and very preferably at least 100 mm.
  • flat homogenization elements are arranged transversely and, according to a recommended embodiment, perpendicularly or substantially perpendicularly to the flow direction of the cooling air.
  • the free open area of a flat homogenizing element - in particular a perforated element or perforated plate and / or a homogenizing sieve - is 1 to 40%, preferably 2 to 35% and preferably 2 to 30% of the total area of the flat homogenizing element.
  • the free open area of a flat homogenization element amounts to 2 to 25%, preferably 2 to 20% and in particular 2 to 18% of the total area of the flat homogenization element.
  • free open area means the area through which the cooling air can flow freely and thus is preferably not blocked by sheet metal elements, wire elements or similar components.
  • a highly recommended embodiment of the invention is characterized in that the free open area of the homogenization elements arranged one behind the other in an air supply cabin increases from homogenization element to homogenization element in the direction of the flow straightener or in the direction of the cooling chamber.
  • the homogenization element with the smallest distance from the flow straightener or the cooling chamber expediently has the largest free open area of all the homogenization elements.
  • the area of a homogenization element - in particular a perforated element or perforated plate and / or a homogenization screen - extends at least over the largest part of the cross-sectional area Q L of the associated air supply cabin or over the major part of the cross-sectional area of the associated cabin section Air supply cabin extends.
  • a proven embodiment of the invention is characterized in that the area of a homogenization element extends over the entire cross-sectional area or essentially over the entire cross-sectional area of the assigned air supply cabin or the assigned cabin section of the air supply cabin.
  • the cooling air flowing into the air supply cabin or into a cabin section of the air supply cabin is distributed over the width and height of the air supply cabin or cabin section, in particular is evenly distributed.
  • the cross-sectional area Q Z of a supply line widens in steps to the cross-sectional area Q L of the air supply cabin or to the cross-sectional area of a cabin section of the air supply cabin.
  • the cross-sectional area Q Z of a supply line continuously expands to the cross-sectional area Q L of the air supply cabin or to the cross-sectional area of a cabin section of the air supply cabin.
  • a step-like and / or continuous expansion of the cross-sectional area takes place along all four side walls defining the cross-section of a cuboid air supply cabin.
  • the cross-sectional area Q Z of a feed line is round and preferably circular in cross section.
  • the cross-section of the feed line can also be of a geometrical design, for example rectangular.
  • the invention is based on the knowledge that, due to the design of the air supply booths according to the invention, optimal cooling of the cooling air flows can be achieved and, in particular, good, homogeneous cooling air distribution can be achieved in a small space. So far the invention is further based on the knowledge that this homogenization of the cooling air flow according to the invention influences the spun filaments in a very advantageous manner with a view to solving the technical problem. Ultimately, filament deposits or fleece deposits of high quality are obtained and defects or defects in the fleece deposits can be avoided or at least largely minimized.
  • the invention is further based on the finding that the optimal equalization of the cooling air flow is achieved by the combination of the features according to the invention and above all by the combination of the homogenization elements arranged in the air supply cabin on the one hand and the cross-sectional enlargement according to the invention on the other.
  • the flow straighteners arranged in the air supply cabins contribute very effectively to the homogenization of the cooling air flow.
  • the homogenization elements according to the invention effect, as it were, a pre-alignment of the cooling air flow in front of the flow straightener, which obviously enables the flow straightener to be used even more effectively.
  • the inventive design of the cooling device with cooling chamber and air supply cabins realizes, as it were, a "fault-tolerant construction".
  • the homogenization elements arranged in the air supply cabins serve the purpose of pressure consumers, as it were.
  • blowing profiles or cooling air speed profiles can also be set.
  • blowing profiles or cooling air speed profiles can also be set.
  • "Bulky" and asymmetrical cooling air speed profiles are also possible.
  • the cooling air is pre-distributed when the cooling air is introduced into the air supply cabins, in particular in front of the homogenizing elements.
  • the homogenization elements or pressure consumers are supported upstream.
  • flow elements in the form of pointed wedge channels, gap channels with gap sheet covers, and outflow pyramids and the like can be used as pre-distribution elements.
  • the supply lines for the cooling air can also be designed segmented for this purpose.
  • blading of line sections can also be implemented. In principle, the blading can be continued in the air supply cabin, so that a segmentation of the air supply cabin then results in particular.
  • a preferred embodiment of the invention is characterized in that the cooling air volume flow supplied to an air supply cabin is divided into a plurality of partial volume flows. It is within the scope of the invention that these partial volume flows flow through separate partial supply lines and / or through the segments of a segmented supply line. Furthermore, it is within the scope of the invention that the air supply cabin is divided into cabin sections in accordance with the partial volume flows supplied, each cabin section advantageously being assigned to a partial volume flow. According to the recommended embodiment, the Cooling air volume flow divided into two to five, in particular in two to four and preferably in two to three partial volume flows. The air speed and / or the air temperature and / or the air humidity of each partial volume flow is expediently set separately and expediently adapted to the respective process requirements.
  • each partial volume flow of the cooling air is assigned a cabin section of the air supply cabin, which opens into a flow straightener.
  • a flow straightener or a continuous flow straightener extends over all cabin sections and thus expediently over the height or vertical height of the assigned air supply cabin.
  • At least one homogenization element is arranged in each cabin section of the air supply cabins.
  • the homogenization elements can extend continuously over the entire height of the air supply cabin, or separate homogenization elements can also be provided in the cabin sections. Otherwise, all the features described here apply to the homogenization elements also for the homogenization elements arranged in the individual cabin sections. Appropriately, a plurality of homogenizing elements arranged one behind the other in the flow direction of the cooling air are present in each cabin section.
  • a very recommended embodiment of the invention is characterized in that the air supply cabin or each of the two opposite Air supply cabins is divided into at least two, preferably two, cabin sections. Cooling air of different temperatures or air temperatures can preferably be supplied from these cabin sections. It is within the scope of the invention that at least a partial volume flow of cooling air can be supplied to each cabin section.
  • the air speed and / or the air volume flow at a certain height of the cooling chamber or the air supply cabins in the CD direction (transverse to the machine direction MD) over the entire width of the device evenly or essentially evenly or is almost uniform.
  • the cooling air speed and / or the cooling air volume flow is different over the height or the vertical height of the cooling chamber or the air supply cabins.
  • a flow straightener arranged in the air flow direction in front of the cooling chamber is provided in each air supply cabin.
  • a flow straightener has a plurality of flow channels oriented transversely, preferably perpendicularly or essentially perpendicularly to the direction of movement of the filaments or to the filament flow, the flow channels being delimited by channel walls.
  • the open area of a flow straightener is preferably more than 85% and preferably more than 90% of the total area or cross-sectional area of the flow straightener. It is recommended that the open area of a flow straightener is larger than 91%, preferably larger than 92% and particularly preferably larger than 92.5%.
  • the open area of the flow straightener relates in particular to the flow cross-section of the flow straightener which can be flowed through freely by the cooling air, and which therefore does not pass through Channel walls or the thickness of the channel walls and / or spacers arranged between the flow channels or the channel walls is blocked.
  • no flow screens arranged on the flow straightener and in particular arranged in front of or behind the flow straightener are included in the calculation of the open area. It is within the scope of the invention that these flow screens are disregarded when calculating the open area of the flow straightener.
  • the ratio of the length L of the flow channels of a flow straightener to the inner diameter D i of the flow channels L / D i is 1 to 15, preferably 1 to 10 and preferably 1.5 to 9.
  • the inner diameter for a flow channel of the flow straightener is from a channel wall measured from an opposite duct wall. If different internal diameters can be measured in a flow channel due to its cross section, internal diameter D i expediently means the smallest internal diameter D i of a flow channel. This term "smallest inside diameter D i " therefore refers to the smallest inside diameter measured in a flow channel if this flow channel has different inside diameters with regard to its cross section.
  • the smallest inside diameter Di is measured with a cross section in the form of a regular hexagon between two opposite sides and not between two opposite corners of the hexagon. If the smallest inside diameter varies in the flow channels, the smallest inside diameter D i means in particular the smallest inside diameter or average smallest inside diameter averaged with respect to the plurality of flow channels.
  • a preferred embodiment of the invention is characterized in that a flow straightener on its cooling air inflow side and / or on has at least one flow sieve on its cooling air outflow side.
  • the flow strainer or the surface of the flow strainer is expediently arranged transversely and preferably perpendicularly or essentially to the longitudinal direction of the flow channels of the flow straightener.
  • a flow straightener has such a flow sieve both on its cooling air inflow side and on its cooling air outflow side.
  • the flow screens are expediently arranged on the flow straightener directly and without any distance from the flow straightener.
  • a flow sieve preferably has a mesh size of 0.1 to 0.5 mm, advantageously 0.1 to 0.4 mm and preferably 0.15 to 0.34 mm.
  • Mesh size means the distance between two opposite wires of a mesh and in particular the smallest distance between two opposite wires of a mesh.
  • a flow sieve preferably has a wire thickness of 0.1 to 0.5 mm, preferably 0.1 to 0.4 mm and very preferably 0.15 to 0.34 mm.
  • a flow sieve of a flow straightener can be distinguished from a homogenization sieve arranged in the air supply cabin. According to the recommended embodiment, a flow straightener has at least one flow sieve, preferably two flow sieves, and in addition at least one homogenization element and very preferably a plurality of homogenization elements are provided in the associated air supply cabin.
  • the continuous filaments are spun by means of a spinnerette and fed to the cooling chamber for cooling the filaments with cooling air.
  • at least one spinning beam for spinning the filaments is arranged transversely to the machine direction (MD direction).
  • the spinning beam is perpendicular or essentially perpendicular to Machine direction oriented.
  • the spinning beam is arranged obliquely to the machine direction.
  • a recommended embodiment of the invention is characterized in that at least one monomer suction device is arranged between the spinnerette and the cooling chamber. With this monomer suction device, air is sucked out of the filament formation space below the spinnerette.
  • a monomer suction device preferably has at least one suction chamber to which at least one suction fan is expediently connected. It is recommended that the cooling chamber according to the invention with the air supply booths be connected to the monomer suction device in the flow direction of the filaments. - The filaments are expediently introduced from the cooling chamber into a drawing device for drawing the filaments. It is within the scope of the invention that an intermediate channel connects the cooling chamber and connects the cooling chamber to a stretching shaft of the stretching device.
  • a very particularly preferred embodiment of the invention is characterized in that the unit from the cooling chamber and the stretching device or the unit from the cooling chamber, the intermediate channel and the stretching shaft is designed as a closed system.
  • a closed system means in particular that, apart from the supply of cooling air to the cooling chamber, there is no further air supply to this unit.
  • the homogenization of the cooling air flow carried out according to the invention primarily has advantages in such a closed system. In such a closed system in particular, spunbonded nonwovens with very uniform, defect-free properties are obtained.
  • At least one diffuser through which the filaments are guided adjoins the stretching device in the flow direction of the filaments.
  • This diffuser expediently comprises a diffuser cross section which widens in the direction of the filament deposit or a divergent diffuser section.
  • the filaments are deposited on a deposit device for filament deposit or for fleece deposit.
  • the depositing device is expediently a deposit screen belt or an air-permeable deposit screen belt. With the depositing device or with the deposit screen belt, the nonwoven web formed from the filaments is conveyed in the machine direction (MD).
  • the filament deposit or the nonwoven web is expediently fed to further treatment measures - in particular a calendering.
  • the invention further teaches a method for producing spunbonded nonwovens from continuous filaments, in particular from continuous filaments made of thermoplastic, the continuous filaments being spun out of a spinnerette and being cooled in a cooling chamber with cooling air, the cooling air being on opposite sides of the Cooling chamber arranged air supply cabins is inserted into the cooling chamber wherein cooling air is supplied through a supply line connected to the air supply cabin with a cross-sectional area Q Z , the cross-sectional area Q Z increasing as the cooling air enters the air supply cabin to a cross-sectional area Q L of the air supply cabin, the cross-sectional area Q L being at least twice as large, preferably is at least three times the cross-sectional area Q Z of the feed line, wherein the cooling air in an air supply cabin is guided through at least one flat homogenizing element for homogenizing the cooling air, the flat homogenizing element having a plurality of openings and the free open area of the flat homogenizing element 1 to 40%, preferably 2 to 35% and preferably
  • a particularly preferred embodiment of the method according to the invention is characterized in that the filaments in the cooling chamber are cooled by the cooling air at an air speed of 0.15 to 3 m / s, preferably 0.15 to 2.5 m / s and preferably 0 , 17 to 2.3 m / s are applied.
  • the air speed (in m / s) is expediently measured by means of an impeller anemometer with a diameter d of 80 mm, specifically on a grid of 100 x 100 mm. The air speeds are measured offline and thus without filament flow through the cooling chamber.
  • the speed vectors of the cooling air are preferably perpendicular or substantially perpendicular to the longitudinal center axis of the device or to the device Filament flow direction FS aligned.
  • a recommended embodiment of the method according to the invention is characterized in that the filaments in the cooling chamber with a cooling air volume flow of 200 to 14000 m 3 / h / m, preferably from 250 to 13000 m 3 / h / m and preferably from 300 to 12000 m 3 / h / m can be applied.
  • M 3 / h / m means the volume flow per running meter of cooling chamber width.
  • the cooling chamber width extends transversely to the machine direction and thus in the CD direction.
  • An exemplary embodiment follows with typical cooling air flow parameters for a device according to the invention, each with two superimposed cabin sections of the two opposite air supply cabins.
  • cooling air of different temperatures is supplied in the upper and in the lower cabin section.
  • the temperature of the cooling air of two opposite cabin sections is the same.
  • Typical parameters for the production of continuous filaments from polyethylene terephthalate (PET) and, on the other hand, typical parameters for the production of continuous filaments from polypropylene are given.
  • PET polyethylene terephthalate
  • typical parameters for the production of continuous filaments from polypropylene are given.
  • the preferred minimum values (left column) and the preferred maximum values (right column) are also listed.
  • the cooling air volume flow indicated there relates to the volume flow entering from two opposite cabin sections.
  • the following table shows the vertical height of the cabin sections, the cooling air volume flow and the cooling air speed.
  • the cooling air speed in the air supply cabin or in the cabin sections of the air supply cabin is preferably 0.25 to 1.9 m / s, advantageously 0.3 to 1.8 m / s and preferably 0.35 to 1.7 m / s.
  • the cooling air volume flow in the production of PP continuous filaments is preferably 500 to 9,500 m 3 / h / m, preferably 600 to 8,300 m 3 / h / m and particularly preferably 650 to 8,100 m 3 / h / m.
  • the cooling air speed is preferably 0.15 to 3 m / s and preferably 0.15 to 2.5 m / s.
  • the cooling air volume flow is recommended 200 to 14000 m 3 / h / m and preferably 250 to 13000 m 3 / h / m.
  • the same amount of air or essentially the same amount of air and thus the same cooling air volume flow or essentially the same cooling air volume flow is introduced from both opposite air supply cabins or from two opposite cabin sections.
  • different cooling air volume flows can then advantageously be between 40 and 60% with respect to the opposite air supply booths or the opposite booth sections (asymmetrical introduction of cooling air).
  • an asymmetrical introduction of cooling air can also be achieved by dimming an upper area or upper areas of an air supply cabin or a cabin section, this dimming being able to take place over a height of up to 100 mm.
  • asymmetrical relationships can be set in that the opposite air supply booths or booth sections are arranged offset in height from one another.
  • This height offset can be up to 100 mm.
  • a lateral offset (in the CD direction) of the air supply cabins or cabin sections by up to 100 mm is also possible.
  • the measures described above can also be combined with one another.
  • edge areas can be dimmed with respect to the width of the air supply cabin or of a cabin section in the CD direction.
  • the cooling air can be introduced into the cooling chamber evenly and homogeneously over 85 to 90% of the CD width, but can be set separately in the edge areas.
  • filaments or spunbonded nonwovens made from polyolefins, in particular polypropylene are produced in the process according to the invention thread speeds or filament speeds over 2000 m / min, in particular over 2200 m / min or over 2500 m / min.
  • filaments or spunbonded nonwovens are produced from polyesters, in particular from polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • thread speeds of over 4000 m / min, in particular also of over 5000 m / min can be achieved.
  • the thread speeds mentioned can above all be achieved without loss of quality in the course of the measures according to the invention. It is within the scope of the invention that the device according to the invention is designed or set up with the proviso that it is possible to work with the thread speeds mentioned.
  • the invention is based on the knowledge that with the device according to the invention and with the method according to the invention, spunbonded webs of excellent quality and in particular with very homogeneous properties can be achieved over their surface area.
  • the spunbonded nonwovens can be produced largely free of defects or free of defects, or at least defects or defects can be largely minimized. It should be particularly emphasized that these advantages can also be achieved with the above-mentioned high filament speeds and with high throughputs. These advantageous properties of the resulting spunbonded nonwovens can be achieved due to the inventive design of the air supply cabins and due to the homogenization of the cooling air flow according to the invention.
  • the invention is based on the finding that the homogenization of the cooling air has a very positive influence on the filaments, so that ultimately undesirable ones Defects or defects in the nonwoven web can be prevented or largely minimized.
  • the homogenization of the cooling air can be achieved with relatively inexpensive and nonetheless effective measures.
  • the result of this is that the device according to the invention is also distinguished by a small apparatus structure and by low cost. Accordingly, the method according to the invention can also be carried out relatively easily and with little effort.
  • the figures show a device according to the invention for producing spunbonded nonwovens from continuous filaments 1, in particular from continuous filaments 1 made of thermoplastic material.
  • the device comprises a spinnerette 2 for spinning the continuous filaments 1.
  • These spun continuous filaments 1 are introduced into a cooling device 3 with a cooling chamber 4 and with air supply cabins 5, 6 arranged on two opposite sides of the cooling chamber 4.
  • the cooling chamber 4 and the air supply cabins 5, 6 extend transversely to the machine direction MD and thus in the CD direction of the device. Cooling air is introduced into the cooling chamber 4 from the opposite air supply cabins 5, 6.
  • a monomer suction device 7 is preferred between the spinnerette 2 and the cooling device 3 and in the exemplary embodiment. With this monomer suction device 7, disruptive gases occurring during the spinning process can be removed from the device. These gases can be, for example, monomers, oligomers or decomposition products and the like substances.
  • the cooling device 3 is followed by a drawing device 8 in which the filaments 1 are drawn.
  • the stretching device 8 preferably and in the exemplary embodiment has an intermediate channel 9, which connects the cooling device 3 to a stretching shaft 10 of the stretching device 8.
  • the assembly of the cooling device 3 and the stretching device 8 or the assembly of the cooling device 3, the intermediate channel 9 and the stretching shaft 10 is designed as a closed system. Closed system means in particular that besides the Supply of cooling air in the cooling device 3, no further air supply takes place in this unit.
  • secondary air inlet gaps 12 are provided between the drawing device 8 or between the drawing shaft 10 and the diffuser 11 for the introduction of secondary air into the diffuser 11.
  • the filaments are preferably and, in the exemplary embodiment, deposited on a depositing device designed as a depositing belt 13.
  • the filament deposit or the nonwoven web 14 is then conveyed or removed in the machine direction MD with the deposit screen belt 13.
  • a suction device for sucking out air or process air through the storage screen belt 13 is provided under the storage device or under the storage screen belt 13.
  • a suction area 15 is arranged under the deposit screen belt 13 below the diffuser outlet.
  • the suction region 15 preferably extends at least over the width B of the diffuser outlet. As recommended and in the exemplary embodiment, the width b of the suction region 15 is greater than the width B of the diffuser outlet.
  • each air supply cabin 5, 6 is divided into two cabin sections 16, 17, from which cooling air of different temperatures can be fed in each case.
  • cooling air with a temperature T 1 may be able to be supplied from the upper cabin sections 16, while from the two lower cabin sections 17 in each case cooling air of a temperature T 2 different from the temperature T 1 can be supplied.
  • a flow straightener 18 is arranged in each air supply cabin 5, 6 on the cooling chamber side, which preferably and in the exemplary embodiment extends over both cabin sections 16, 17 of each air supply cabin 5, 6.
  • the two flow straighteners 18 serve to rectify the cooling air flow impinging on the filaments 1.
  • the flow straightener 18 will be discussed in more detail below.
  • At least one supply line 22 for supplying the cooling air is connected to each air supply cabin 5, 6.
  • This supply line 22 has a cross-sectional area Q Z , this cross-sectional area Q Z increasing to a cross-sectional area Q L of the air supply cabin 5, 6 when the cooling air passes into the air supply cabin 5, 6.
  • the cross-sectional area Q L is preferably at least three times as large and preferably at least four times as large as the cross-sectional area Q Z of the feed line 22. It is within the scope of the invention that the cross-sectional area Q Z of the feed line 22 is 3 to 15 times expanded to the cross-sectional area Q L of the air supply cabin 5, 6.
  • At least one flat homogenization element 23 for homogenizing the cooling air flow introduced into the air supply cabin 5, 6 is arranged in each air supply cabin 5, 6.
  • At least one flat homogenization element 23 is expediently provided in each cabin section 16, 17 of the air supply cabins 5, 6.
  • the homogenization elements 23 are in the form of a perforated element, in particular a perforated plate 24 with a plurality formed by perforated openings 25 and / or as a homogenizing screen 26 with a plurality or a plurality of meshes 27.
  • each air supply cabin 5, 6 or in each cabin section 16, 17 23 there are a plurality of homogenizing elements in each air supply cabin 5, 6 or in each cabin section 16, 17 23 at a distance from the flow straightener 18 in the flow direction of the cooling air one behind the other and spaced apart.
  • the distance a 1 between the flow straightener 18 and the flow straightener 18 on the closest adjacent homogenization element 23 is at least 50 mm, preferably at least 100 mm.
  • the mutual distance a x between two homogenization elements 23 arranged one behind the other in an air supply cabin 5, 6 or in a cabin section 16, 17 in the flow direction is likewise at least 50 mm, preferably at least 100 mm.
  • the free open area or the area of a flat homogenization element 23 through which the cooling air can flow freely is 1 to 40%, preferably 2 to 35% and preferably 2 to 30% of the total area of the flat homogenization element 23.
  • the free open area Area of a flat homogenization element 23 2 to 25%, advantageously 2 to 20% and in particular 2 to 15%.
  • the free open area or the area of the homogenizing elements 23 arranged one behind the other, through which the cooling air can flow freely increases from the homogenizing element 23 to the homogenizing element 23 in the direction of the associated flow straightener 18 or in the direction of the cooling chamber 4.
  • the surface of a homogenizing element 23 expediently and in the exemplary embodiment extends over the entire cross-sectional area Q L of the assigned air supply cabin 5, 6 or the assigned cabin section 16, 17.
  • FIG. 3 and 4th A section through an air supply cabin 5 is shown in each case. Instead of an entire air supply cabin 5, 6, the illustration can also serve for only one cabin section 16, 17 of the air supply cabins 5, 6.
  • the cross section Q Z of the supply line 22 increases immediately and without gradation to the cross sectional area Q L of the air supply cabin 5.
  • four homogenizing elements 23 are arranged upstream of the flow straightener 18 in the flow direction of the cooling air.
  • the homogenization element 23.0 is located in the transition area between the supply line 22 and the air supply cabin 5 and extends only over the cross section Q Z of the supply line 22.
  • the further homogenization elements 23.1, 23.2 and 23.3 are each spaced apart and at a distance from the flow straightener 18 in the air supply cabin 4 arranged. They extend over the complete cross section Q L of the air supply cabin 5.
  • the table below shows typical parameters for the homogenization elements 23.0 to 23.3 in accordance with FIG Fig. 3 specified for a system width (in CD direction) of 1000 mm each.
  • the vertical height h of the homogenization elements 23 is first listed in mm, to the right the total area of each homogenization element 23 and in the two columns to the right, the free or the open area through which the cooling air can flow is shown in percent and in mm 2 specified.
  • the relative free area is calculated from the following formula: cross-sectional area of the homogenizing element x open area of the homogenizing element / area of the outflow cross section in the area of the rectifier.
  • the relative free area in Percent
  • the relative free area of only 1% results only for the homogenization element 23.0 with the cross-sectional area corresponding to the feed line 22.
  • the distance a in mm corresponds to the distance a of the individual homogenization elements 23 from the flow straightener 18.
  • the integral value in the last column corresponds to the integral under the curve when the relative free area of the homogenization elements 23 is plotted over the distance a of these homogenization elements 23 from the flow straightener 18.
  • the height H of the air supply cabin 5 according to Fig. 3 may be 500 mm in the exemplary embodiment and the length l of the air supply cabin 5 from the flow straightener 18 to the mouth of the supply line 22 may be 1000 mm.
  • the sum of the integral values explained above is above 45, preferably above 50 and preferably above 65.
  • FIG. 4 A second embodiment of an air supply cabin 5 according to the invention is shown.
  • Four homogenization elements 23.0 to 23.3 are also used here.
  • This step-wise expediently takes place in a cuboid air supply cabin 5 across all four walls to the flow straightener 18.
  • the dimensions in the exemplary embodiment otherwise correspond Fig. 4 the dimensions in the exemplary embodiment Fig. 3 .
  • the parameters for the embodiment of the Fig. 4 are analogous to the table regarding Fig.
  • Fig. 5 the connection area of a curved supply line 22 to the air supply cabin 5 is shown.
  • segmentation elements 28 are provided in the feed line 22, which subdivide the feed line 22 into individual line segments. Because of This segmentation or blading of the line section can be used to further homogenize the cooling air flow.
  • the cooling air flow here is subject to a pre-equalization and is thus, as it were, prepared for further equalization or homogenization in the air supply cabin 5.
  • the Fig. 6 shows a perspective view of a flow straightener 18 preferably used in the context of the invention.
  • the flow straighteners 18 serve to straighten the cooling air flow impinging on the filaments 1.
  • each flow straightener 18 has a plurality of flow channels 19 oriented perpendicular to the filament flow direction FS. These flow channels 19 are each delimited by channel walls 20 and are preferably linear.
  • the freely flowable open area of each flow straightener 18 is more than 90% of the total area of the flow straightener 18.
  • the ratio of the length L of the flow channels 19 to the smallest inside diameter D i of the flow channels 19 is in the range between 1 and 10, expediently in the range between 1 and 9.
  • the flow channels 19 of a flow straightener 18 can for example and in the exemplary embodiment according to Fig. 7 have a hexagonal or honeycomb cross section. The smallest inside diameter D i is measured here between opposite sides of the hexagon.
  • each flow straightener 18 has a flow sieve 21 both on its cooling air inflow side ES and on its cooling air outflow side AS.
  • the two flow screens 21 are each Flow rectifier 18 arranged immediately before or after the flow rectifier 18.
  • the flow screens 21 are to be distinguished from the homogenization elements 23 designed as homogenization screens 26.
  • the two flow screens 21 of a flow straightener 18 or the surfaces of these flow screens 21 are aligned perpendicular to the longitudinal direction of the flow channels 19 of the flow straightener 18. It has proven useful that a flow sieve 21 has a mesh size of 0.1 to 0.5 mm and preferably 0.1 to 0.4 mm and a wire thickness of 0.05 to 0.35 mm and preferably 0.05 up to 0.32 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur Herstellung von Spinnvliesen aus Endlosfilamenten, insbesondere aus Endlosfilamenten aus thermoplastischem Kunststoff, wobei eine Spinnerette zum Ausspinnen der Endlosfilamente vorgesehen ist und wobei eine Kühlkammer zum Kühlen der ausgesponnenen Filamente mit Kühlluft vorhanden ist, wobei an gegenüberliegenden Seiten der Kühlkammer jeweils eine Luftzufuhrkabine angeordnet ist, wobei aus den gegenüberliegenden Luftzufuhrkabinen jeweils Kühlluft in die Kühlkammer einführbar ist und wobei an jede Luftzufuhrkabine zumindest eine Zuführungsleitung für die Zuführung von Kühlluft angeschlossen ist. Die Erfindung betrifft weiterhin ein entsprechendes Verfahren zur Herstellung von Spinnvliesen aus Endlosfilamenten. - Spinnvlies meint im Rahmen der Erfindung insbesondere ein nach dem Spunbond-Verfahren hergestelltes Spunbond-Vlies. Endlosfilamente unterscheiden sich aufgrund ihrer quasi endlosen Länge von Stapelfasern, die deutlich geringere Längen von z. B. 10 mm bis 60 mm aufweisen.The invention relates to a device for producing spunbonded nonwovens from continuous filaments, in particular from continuous filaments made of thermoplastic, wherein a spinnerette is provided for spinning the continuous filaments and a cooling chamber for cooling the spun filaments with cooling air is provided, one on opposite sides of the cooling chamber Air supply cabin is arranged, wherein cooling air can be introduced into the cooling chamber from the opposite air supply cabins and at least one supply line for the supply of cooling air is connected to each air supply cabin. The invention further relates to a corresponding method for producing spunbonded nonwovens from continuous filaments. - Spunbond means in the context of the invention in particular a spunbond nonwoven manufactured by the spunbond process. Continuous filaments differ due to their almost endless length of staple fibers, which have significantly shorter lengths of z. B. 10 mm to 60 mm.

Vorrichtungen und Verfahren der eingangs genannten Art sind aus der Praxis in verschiedenen Ausführungsformen grundsätzlich bekannt. Eine Mehrzahl dieser bekannten Vorrichtungen und Verfahren weisen aber den Nachteil auf, dass die damit erzeugten Spinnvliese über ihre Flächenausdehnung nicht immer ausreichend homogen bzw. gleichmäßig ausgebildet sind. Häufig weisen die auf diese Weise hergestellten Spinnvliese störende Inhomogenitäten in Form von Fehlstellen bzw. Defektstellen auf. Die Anzahl der Inhomogenitäten nimmt normalerweise mit dem Durchsatz bzw. mit der Steigerung der Fadengeschwindigkeit zu. Typische Fehlstellen in derartigen Spinnvliesen entstehen durch sogenannte "Tropfen". Diese resultieren aus dem Abreißen einer oder mehrerer weicher bzw. schmelzflüssiger Filamente, wodurch eine Schmelzansammlung entsteht, die eine Fehlstelle im Spinnvlies erzeugt. Solche Fehlstellen aufgrund von "Tropfen" weisen in der Regel eine Größe von mehr als 2 mm x 2 mm auf. - Andererseits können Fehlstellen in den Spinnvliesen auch durch sogenannte "hard pieces" entstehen. Diese bilden sich wie folgt: Durch Spannungsverlust kann ein Filament relaxieren, zurückschnellen und ein Knäuel bilden, das die Defektstelle in der Spinnvliesfläche erzeugt. Solche Fehlstellen sind normalerweise kleiner als 2 mm x 2 mm.Devices and methods of the type mentioned at the outset are known in practice in various embodiments. However, a majority of these known devices and methods have the disadvantage that the spunbonded webs produced with them are not always sufficiently homogeneous or uniform over their surface area. The spunbonded webs produced in this way often have disruptive inhomogeneities in the form of defects or defects. The number of inhomogeneities usually increases with the throughput or with the increase in the thread speed. Typical defects in such spunbonded webs are caused by so-called "drops". These result from the tearing off of one or more soft or molten filaments, causing a melt accumulation arises, which creates a defect in the spunbond. Such defects due to "drops" usually have a size of more than 2 mm x 2 mm. - On the other hand, imperfections in the spunbonded fabrics can also result from so-called "hard pieces". These form as follows: Due to a loss of tension, a filament can relax, snap back and form a ball that creates the defect in the spunbonded surface. Such defects are usually smaller than 2 mm x 2 mm.

Aus DE 37 44 657 A1 ist eine Vorrichtung der eingangs genannten Art grundsätzlich bekannt. Diese Vorrichtung hat sich auch prinzipiell bewährt. Nichtsdestoweniger bestehen Verbesserungsmöglichkeiten. Weitere Verfahren und Vorrichtungen sind aus US 2007/284776 A1 , DE 37 01 531 A1 , EP 1 630 265 A1 , DE 295 12 001 U1 und DE 36 12 610 A1 bekannt.Out DE 37 44 657 A1 a device of the type mentioned is known in principle. This device has also proven itself in principle. Nevertheless, there is room for improvement. Other methods and devices are out US 2007/284776 A1 , DE 37 01 531 A1 , EP 1 630 265 A1 , DE 295 12 001 U1 and DE 36 12 610 A1 known.

Der Erfindung liegt das technische Problem zugrunde, eine Vorrichtung der eingangs genannten Art anzugeben, mit der sehr homogene und gleichmäßige Spinnvliese hergestellt werden können, die zumindest weitgehend fehlstellenfrei bzw. defektfrei ausgestaltet sind und zwar vor allem bei höheren Durchsätzen von mehr als 200 kg/h/m bzw. bei höheren Fadengeschwindigkeiten. Der Erfindung liegt fernerhin das technische Problem zugrunde, ein entsprechendes Verfahren zur Erzeugung von Spinnvliesen aus Endlosfilamenten anzugeben.The invention is based on the technical problem of specifying a device of the type mentioned at the outset with which very homogeneous and uniform spunbonded nonwovens can be produced which are at least largely free of defects or defect-free, particularly at higher throughputs of more than 200 kg / h / m or at higher thread speeds. The invention is further based on the technical problem of specifying a corresponding method for producing spunbonded nonwovens from continuous filaments.

Zur Lösung dieses technischen Problems lehrt die Erfindung eine Vorrichtung zur Herstellung von Spinnvliesen aus Endlosfilamenten, insbesondere aus Endlosfilamenten aus thermoplastischem Kunststoff, wobei eine Spinnerette zum Ausspinnen der Endlosfilamente vorgesehen ist und wobei eine Kühlkammer zum Kühlen der ausgesponnenen Filamente mit Kühlluft vorhanden ist, wobei an zwei gegenüberliegenden Seiten der Kühlkammer jeweils eine Luftzufuhrkabine angeordnet ist und wobei aus den gegenüberliegenden Luftzufuhrkabinen jeweils Kühlluft in die Kühlkammer einführbar ist, wobei an jede Luftzufuhrkabine zumindest eine Zuführungsleitung für die Zuführung der Kühlluft mit einer Querschnittsfläche QZ angeschlossen ist, wobei sich diese Querschnittsfläche QZ der Zuführungsleitung beim Übergang der Kühlluft in die Luftzufuhrkabine auf eine Querschnittsfläche QL der Luftzufuhrkabine vergrößert, wobei die Querschnittsfläche QL mindestens doppelt so groß, vorzugsweise mindestens drei Mal so groß ist wie die Querschnittsfläche QZ der Zuführungsleitung,
wobei in jeder Luftzufuhrkabine vorzugsweise zumindest ein vor der Kühlkammer angeordneter Strömungsgleichrichter vorgesehen ist, wobei in der Luftzufuhrkabine in Strömungsrichtung der Kühlluft vor dem Strömungsgleichrichter und mit Abstand zu dem Strömungsgleichrichter zumindest ein flächiges Homogenisierungselement zur Homogenisierung des in die Luftzufuhrkabine eingeführten Kühlluftstromes angeordnet ist und wobei das flächige Homogenisierungselement eine Mehrzahl von Öffnungen aufweist, wobei die freie geöffnete Fläche des flächigen Homogenisierungselementes 1 bis 40 %, vorzugsweise 1,5 bis 40 % bevorzugt 2 bis 35 %, besonders bevorzugt 2 bis 30 % und insbesondere 2 bis 25 % der gesamten Fläche des flächigen Homogenisierungselementes beträgt.
To solve this technical problem, the invention teaches a device for producing spunbonded nonwovens from continuous filaments, in particular from continuous filaments made of thermoplastic material, a spinnerette being provided for spinning the continuous filaments and a cooling chamber for cooling the spun filaments with cooling air, two of which are provided an air supply cabin is arranged on opposite sides of the cooling chamber and cooling air can be introduced into the cooling chamber from the opposite air supply cabins, wherein at least one supply line for supplying the cooling air with a cross-sectional area Q Z is connected to each air supply cabin, this cross-sectional area Q Z of the supply line increasing to a cross-sectional area Q L of the air supply cabin during the transition of the cooling air into the air supply cabin, the cross-sectional area Q L at least is twice as large, preferably at least three times as large as the cross-sectional area Q Z of the feed line,
wherein at least one flow straightener arranged in front of the cooling chamber is preferably provided in each air supply cabin, at least one flat homogenizing element for homogenizing the cooling air flow introduced into the air feed booth being arranged in the flow direction of the cooling air in front of the flow straightener and at a distance from the flow straightener, and wherein the flat air flow Homogenizing element has a plurality of openings, the free open area of the planar homogenizing element 1 to 40%, preferably 1.5 to 40%, preferably 2 to 35%, particularly preferably 2 to 30% and in particular 2 to 25% of the total area of the planar Homogenization element is.

Zweckmäßigerweise beträgt die Höhe H bzw. die vertikale Höhe H einer Luftzufuhrkabine 400 bis 1500 mm, vorzugsweise 500 bis 1200 mm und bevorzugt 600 bis 1000 mm. Eine besonders bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Höhe H bzw. die vertikale Höhe H der Luftzufuhrkabine zwischen 700 und 900 mm liegt. - Es liegt im Rahmen der Erfindung, dass eine Luftzufuhrkabine über ihre Höhe H in - weiter unten noch erläuterte - Kabinenabschnitte unterteilt ist, die übereinander bzw. vertikal übereinander angeordnet sind. Zweckmäßigerweise gelten - abgesehen von der Höhe H - die vorstehend angegebenen Merkmale sowie die nachfolgend aufgeführten bevorzugten Ausführungsformen außer für die Luftzufuhrkabine bevorzugt auch für jeden Kabinenabschnitt.The height H or the vertical height H of an air supply cabin is expediently 400 to 1500 mm, preferably 500 to 1200 mm and preferably 600 to 1000 mm. A particularly preferred embodiment of the invention is characterized in that the height H or the vertical height H of the air supply cabin is between 700 and 900 mm. It is within the scope of the invention that an air supply cabin is divided over its height H into cabin sections, which will be explained further below and are arranged one above the other or vertically one above the other. Apart from the height H, the features specified above and those listed below expediently apply preferred embodiments, in addition to the air supply cabin, preferably also for each cabin section.

Es liegt weiterhin im Rahmen der Erfindung, dass die Kühlluftzufuhr für die Kühlkammer durch Ansaugen der Kühlluft aufgrund der Filamentbewegung bzw. der abwärts gerichteten Filamentströmung erfolgt und/oder durch aktive Einblasung bzw. Einführung von Kühlluft, beispielsweise mittels zumindest eines Gebläses. Wenn ein Gebläse zur Einblasung von Kühlluft eingesetzt wird, handelt es sich empfohlenermaßen um ein regelbares Gebläse, mit dem insbesondere der Volumenstrom der eingeführten Kühlluft eingestellt werden kann. Gemäß einer Ausführungsform der Erfindung erfolgt die Einblasung bzw. Einführung von Kühlluft mit einer Mehrzahl von Gebläsen.It is also within the scope of the invention that the cooling air is supplied to the cooling chamber by sucking in the cooling air due to the filament movement or the downward filament flow and / or by actively blowing in or introducing cooling air, for example by means of at least one blower. If a blower is used to blow in cooling air, it is recommended that it be a controllable blower, with which in particular the volume flow of the introduced cooling air can be adjusted. According to one embodiment of the invention, cooling air is blown in or introduced with a plurality of fans.

Zweckmäßigerweise erweitert sich die Querschnittsfläche QZ der Zuführungsleitung auf das 3- bis 15-fache, vorzugsweise auf das 4- bis 15-fache und bevorzugt auf das 5- bis 15-fache zur Querschnittsfläche QL der Luftzufuhrkabine.The cross-sectional area Q Z of the supply line expediently expands to 3 to 15 times, preferably 4 to 15 times and preferably 5 to 15 times to the cross-sectional area Q L of the air supply cabin.

Es liegt weiterhin im Rahmen der Erfindung, dass zumindest ein Homogenisierungselement bzw. dass die Homogenisierungselemente als Lochelemente bzw. Lochbleche und/oder als Homogenisierungssiebe ausgebildet ist/sind. Ein als Homogenisierungselement ausgebildetes Lochelement bzw. Lochblech ist mit einer Mehrzahl bzw. einer Vielzahl von Lochöffnungen ausgestattet. Empfohlenermaßen weisen die Lochöffnungen jeweils einen Öffnungsdurchmesser d von 1 bis 12 mm, zweckmäßigerweise von 1 bis 10 mm, vorzugsweise von 1,5 bis 9 mm und bevorzugt von 1,5 bis 8 mm auf. - Wenn für eine Lochöffnung aufgrund ihrer geometrischen Ausgestaltung mehrere Öffnungsdurchmesser messbar sind, meint die Erfindung hier den kleinsten Öffnungsdurchmesser d der Lochöffnung. Wenn die Lochöffnungen eines Homogenisierungselementes verschiedene Durchmesser aufweisen, meint Öffnungsdurchmesser d bzw. kleinster Öffnungsdurchmesser d zweckmäßigerweise den mittleren Öffnungsdurchmesser d bzw. den mittleren kleinsten Öffnungsdurchmesser d. - Wenn ein Homogenisierungselement als Homogenisierungssieb ausgebildet ist, weist es eine Mehrzahl bzw. eine Vielzahl von Maschen auf. Es empfiehlt sich, dass das Homogenisierungssieb Maschenweiten von 0,1 bis 0,6 mm, vorzugsweise von 0,1 bis 0,5 mm, bevorzugt von 0,12 bis 0,4 mm und sehr bevorzugt von 0,15 bis 0,35 mm aufweist. Maschenweite meint hier den Abstand von zwei gegenüberliegenden Drähten einer Masche und insbesondere den kleinsten Abstand von zwei gegenüberliegenden Drähten einer Masche. Wenn also beispielsweise die Maschen einen rechteckförmigen Querschnitt mit unterschiedlich langen Rechteckseiten aufweisen, wird die Maschenweite zwischen den beiden längeren Rechteckseiten gemessen. Wenn die Maschen eines Homogenisierungssiebes unterschiedliche Maschenweiten aufweisen, meint Maschenweite insbesondere die mittlere Maschenweite der Maschen des Homogenisierungssiebes. Empfohlenermaßen weist ein Homogenisierungssieb eine Drahtstärke bzw. mittlere Drahtstärke von 0,05 bis 0,4 mm, bevorzugt von 0,06 bis 0,35 mm und sehr bevorzugt eine Drahtstärke von 0,07 bis 0,3 mm auf.It is also within the scope of the invention that at least one homogenization element or that the homogenization elements are / are designed as perforated elements or perforated plates and / or as homogenizing sieves. A perforated element or perforated plate designed as a homogenizing element is equipped with a plurality or a plurality of perforated openings. It is recommended that the hole openings each have an opening diameter d of 1 to 12 mm, expediently from 1 to 10 mm, preferably from 1.5 to 9 mm and preferably from 1.5 to 8 mm. If several opening diameters can be measured for a hole opening due to their geometric configuration, the invention here means the smallest opening diameter d of the hole opening. If the hole openings are one Homogenization element have different diameters, means opening diameter d or smallest opening diameter d expediently the average opening diameter d or the average smallest opening diameter d. If a homogenization element is designed as a homogenization screen, it has a plurality or a plurality of meshes. It is recommended that the homogenizing sieve have mesh sizes of 0.1 to 0.6 mm, preferably 0.1 to 0.5 mm, preferably 0.12 to 0.4 mm and very preferably 0.15 to 0.35 mm. Mesh size here means the distance between two opposite wires of a mesh and in particular the smallest distance between two opposite wires of a mesh. If, for example, the meshes have a rectangular cross section with rectangular sides of different lengths, the mesh size between the two longer rectangular sides is measured. If the meshes of a homogenization screen have different mesh sizes, the mesh size means in particular the average mesh size of the meshes of the homogenization screen. A homogenizing sieve preferably has a wire thickness or mean wire thickness of 0.05 to 0.4 mm, preferably 0.06 to 0.35 mm and very preferably a wire thickness of 0.07 to 0.3 mm.

Es liegt weiterhin im Rahmen der Erfindung, dass eine Mehrzahl von flächigen Homogenisierungselementen in einer Luftzufuhrkabine mit Abstand zu dem Strömungsgleichrichter der Luftzufuhrkabine angeordnet sind und zwar vorzugsweise in Strömungsrichtung der Kühlluft hintereinander und beabstandet voneinander in der Luftzufuhrkabine angeordnet sind. Dabei sind die Flächen der in einer Luftzufuhrkabine beabstandet zueinander angeordneten flächigen Homogenisierungselemente zweckmäßigerweise parallel bzw. im Wesentlichen parallel zueinander angeordnet oder zumindest in etwa parallel zueinander angeordnet. Es liegt im Rahmen der Erfindung, dass die Flächen der flächigen Homogenisierungselemente quer zur Strömungsrichtung der Kühlluft in der jeweiligen Luftzufuhrkabine angeordnet sind und nach einer bevorzugten Ausführungsform senkrecht bzw. im Wesentlichen senkrecht zur Strömungsrichtung der Kühlluft in der Luftzufuhrkabine angeordnet sind.It is also within the scope of the invention that a plurality of flat homogenization elements are arranged in an air supply cabin at a distance from the flow straightener of the air supply cabin, preferably in the flow direction of the cooling air one behind the other and spaced apart from one another in the air supply cabin. The surfaces of the flat homogenization elements spaced apart from one another in an air supply cabin are expediently arranged parallel or essentially parallel to one another or at least approximately parallel to one another. It is within the scope of the invention that the surfaces of the flat Homogenization elements are arranged transversely to the direction of flow of the cooling air in the respective air supply cabin and, according to a preferred embodiment, are arranged perpendicularly or substantially perpendicularly to the direction of flow of the cooling air in the air supply cabin.

Gemäß empfohlener Ausführungsform der Erfindung ist das zumindest eine in einer Luftzufuhrkabine angeordnete flächige Homogenisierungselement mit einem Abstand a1 in Strömungsrichtung der Kühlluft vor dem Strömungsgleichrichter der entsprechenden Luftzufuhrkabine angeordnet. Dabei ist der Abstand a1 größer als 0 und bevorzugt größer als 10 mm. Zweckmäßigerweise beträgt dieser Abstand a1 mindestens 50 mm, vorzugsweise mindestens 80 mm und bevorzugt mindestens 100 mm. Wenn nach besonders empfohlener Ausführungsform der Erfindung mehrere flächige Homogenisierungselemente in einer Luftzufuhrkabine angeordnet sind, bezieht sich der Abstand a1 auf das am nächsten vor dem Strömungsgleichrichter angeordnete Homogenisierungselement. Falls es sich bei dem mit dem Abstand a1 vor dem Strömungsgleichrichter angeordnetem Homogenisierungselement um ein Homogenisierungssieb handeln sollte, ist dieses Homogenisierungssieb von einem eventuell vorhandenen Strömungssieb des Strömungsgleichrichters zu unterscheiden. Auf ein solches Strömungssieb bzw. auf solche Strömungssiebe des Strömungsgleichrichters wird weiter unten noch eingegangen.According to the recommended embodiment of the invention, the at least one flat homogenization element arranged in an air supply cabin is arranged at a distance a 1 in the flow direction of the cooling air upstream of the flow straightener of the corresponding air supply cabin. The distance a 1 is greater than 0 and preferably greater than 10 mm. This distance a 1 is expediently at least 50 mm, preferably at least 80 mm and preferably at least 100 mm. If, according to a particularly recommended embodiment of the invention, a plurality of flat homogenization elements are arranged in an air supply cabin, the distance a 1 relates to the homogenization element arranged closest to the flow straightener. If the homogenization element with the distance a 1 in front of the flow straightener is a homogenization sieve, this homogenization sieve must be distinguished from any flow sieve of the flow straightener. Such a flow strainer or flow strainers of the flow straightener will be discussed further below.

Gemäß sehr empfohlener Ausführungsform der Erfindung sind in einer Luftzufuhrkabine mehrere Homogenisierungselemente hintereinander angeordnet. Zweckmäßigerweise beträgt der Abstand ax zwischen zwei in einer Luftzufuhrkabine in Strömungsrichtung hintereinander angeordneten Homogenisierungselementen mindestens 40 mm, vorzugsweise mindestens 50 mm, bevorzugt mindestens 80 mm und sehr bevorzugt mindestens 100 mm. Es wurde bereits darauf hingewiesen, dass dabei gemäß bewährter Ausführungsform die flächigen Homogenisierungselemente quer und nach einer empfohlenen Ausführungsform senkrecht bzw. im Wesentlichen senkrecht zur Strömungsrichtung der Kühlluft angeordnet sind.According to a highly recommended embodiment of the invention, several homogenization elements are arranged one behind the other in an air supply cabin. The distance a x between two homogenization elements arranged one behind the other in an air supply cabin in the flow direction is expediently at least 40 mm, preferably at least 50 mm, preferably at least 80 mm and very preferably at least 100 mm. It has already been pointed out that according to the tried and tested embodiment flat homogenization elements are arranged transversely and, according to a recommended embodiment, perpendicularly or substantially perpendicularly to the flow direction of the cooling air.

Erfindungsgemäß beträgt die freie geöffnete Fläche eines flächigen Homogenisierungselementes - insbesondere eines Lochelementes bzw. Lochbleches und/oder eines Homogenisierungssiebes - 1 bis 40 %, vorzugsweise 2 bis 35 % und bevorzugt 2 bis 30 % der gesamten Fläche des flächigen Homogenisierungselementes. Gemäß einer empfohlenen Ausführungsform beläuft sich die freie geöffnete Fläche eines flächigen Homogenisierungselementes auf 2 bis 25 %, vorzugsweise 2 bis 20 % und insbesondere 2 bis 18 % der gesamten Fläche des flächigen Homogenisierungselementes. Freie geöffnete Fläche meint im Rahmen der Erfindung die Fläche, die frei von der Kühlluft durchströmt werden kann und somit vorzugsweise nicht durch Blechelemente, Drahtelemente oder dergleichen Komponenten versperrt wird. Eine sehr empfohlene Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die freie geöffnete Fläche der in einer Luftzufuhrkabine hintereinander angeordneten Homogenisierungselemente von Homogenisierungselement zu Homogenisierungselement in Richtung zum Strömungsgleichrichter bzw. in Richtung zur Kühlkammer hin zunimmt. Zweckmäßigerweise hat das Homogenisierungselement mit dem geringsten Abstand zum Strömungsgleichrichter bzw. zur Kühlkammer die größte freie geöffnete Fläche aller Homogenisierungselemente.According to the invention, the free open area of a flat homogenizing element - in particular a perforated element or perforated plate and / or a homogenizing sieve - is 1 to 40%, preferably 2 to 35% and preferably 2 to 30% of the total area of the flat homogenizing element. According to a recommended embodiment, the free open area of a flat homogenization element amounts to 2 to 25%, preferably 2 to 20% and in particular 2 to 18% of the total area of the flat homogenization element. In the context of the invention, free open area means the area through which the cooling air can flow freely and thus is preferably not blocked by sheet metal elements, wire elements or similar components. A highly recommended embodiment of the invention is characterized in that the free open area of the homogenization elements arranged one behind the other in an air supply cabin increases from homogenization element to homogenization element in the direction of the flow straightener or in the direction of the cooling chamber. The homogenization element with the smallest distance from the flow straightener or the cooling chamber expediently has the largest free open area of all the homogenization elements.

Es liegt im Rahmen der Erfindung, dass sich die Fläche eines Homogenisierungselementes - insbesondere eines Lochelementes bzw. Lochbleches und/oder eines Homogenisierungssiebes - zumindest über den größten Teil der Querschnittsfläche QL der zugeordneten Luftzufuhrkabine bzw. über den größten Teil der Querschnittsfläche des zugeordneten Kabinenabschnittes der Luftzufuhrkabine erstreckt. Eine bewährte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass sich die Fläche eines Homogenisierungselementes über die gesamte Querschnittsfläche bzw. im Wesentlichen über die gesamte Querschnittsfläche der zugeordneten Luftzufuhrkabine bzw. des zugeordneten Kabinenabschnittes der Luftzufuhrkabine erstreckt.It is within the scope of the invention that the area of a homogenization element - in particular a perforated element or perforated plate and / or a homogenization screen - extends at least over the largest part of the cross-sectional area Q L of the associated air supply cabin or over the major part of the cross-sectional area of the associated cabin section Air supply cabin extends. A proven embodiment of the invention is characterized in that the area of a homogenization element extends over the entire cross-sectional area or essentially over the entire cross-sectional area of the assigned air supply cabin or the assigned cabin section of the air supply cabin.

Es liegt im Rahmen der Erfindung, dass die in die Luftzufuhrkabine bzw. in einen Kabinenabschnitt der Luftzufuhrkabine einströmende Kühlluft auf die Breite und die Höhe der Luftzufuhrkabine bzw. des Kabinenabschnittes verteilt wird, insbesondere gleichmäßig verteilt wird. Gemäß einer bevorzugten Ausführungsform der Erfindung erweitert sich die Querschnittsfläche QZ einer Zuführungsleitung stufenförmig auf die Querschnittsfläche QL der Luftzufuhrkabine bzw. auf die Querschnittsfläche eines Kabinenabschnittes der Luftzufuhrkabine. Nach einer anderen empfohlenen Ausführungsform erweitert sich die Querschnittsfläche QZ einer Zuführungsleitung kontinuierlich auf die Querschnittsfläche QL der Luftzufuhrkabine bzw. auf die Querschnittsfläche eines Kabinenabschnittes der Luftzufuhrkabine. Entsprechend einer Ausführungsvariante erfolgt dabei eine stufenförmige und/oder kontinuierliche Erweiterung der Querschnittsfläche entlang aller vier den Querschnitt einer quaderförmigen Luftzufuhrkabine definierenden Seitenwände. - Es liegt im Übrigen im Rahmen der Erfindung, dass die Querschnittsfläche QZ einer Zuführungsleitung rund und vorzugsweise kreisrund im Querschnitt ausgebildet ist. Grundsätzlich kann der Querschnitt der Zuführungsleitung geometrisch aber auch andersartig ausgebildet sein, beispielsweise rechteckförmig.It is within the scope of the invention that the cooling air flowing into the air supply cabin or into a cabin section of the air supply cabin is distributed over the width and height of the air supply cabin or cabin section, in particular is evenly distributed. According to a preferred embodiment of the invention, the cross-sectional area Q Z of a supply line widens in steps to the cross-sectional area Q L of the air supply cabin or to the cross-sectional area of a cabin section of the air supply cabin. According to another recommended embodiment, the cross-sectional area Q Z of a supply line continuously expands to the cross-sectional area Q L of the air supply cabin or to the cross-sectional area of a cabin section of the air supply cabin. According to an embodiment variant, a step-like and / or continuous expansion of the cross-sectional area takes place along all four side walls defining the cross-section of a cuboid air supply cabin. - It is also within the scope of the invention that the cross-sectional area Q Z of a feed line is round and preferably circular in cross section. In principle, the cross-section of the feed line can also be of a geometrical design, for example rectangular.

Der Erfindung liegt die Erkenntnis zugrunde, dass aufgrund der erfindungsgemäßen Ausgestaltung der Luftzufuhrkabinen eine optimale Vergleichmäßigung der Kühlluftströme erreicht werden kann sowie insbesondere eine gute homogene Kühlluftverteilung auf kleinem Raum realisiert werden kann. Insoweit liegt der Erfindung weiterhin die Erkenntnis zugrunde, dass diese erfindungsgemäße Homogenisierung der Kühlluftströmung die ersponnenen Filamente auf sehr vorteilhafte Weise im Hinblick auf die Lösung des technischen Problems beeinflusst. Letztendlich werden Filamentablagen bzw. Vliesablagen von hoher Qualität erhalten und Fehlstellen bzw. Defektstellen in den Vliesablagen können vermieden bzw. zumindest weitgehend minimiert werden. Der Erfindung liegt hier fernerhin die Erkenntnis zugrunde, dass die optimale Vergleichmäßigung der Kühlluftströmung durch die Kombination der erfindungsgemäßen Merkmale erzielt wird und vor allem durch die Kombination der in der Luftzufuhrkabine angeordneten Homogenisierungselemente zum einen und der erfindungsgemäßen Querschnittsvergrößerung zum anderen. Zusätzlich tragen die in den Luftzufuhrkabinen angeordneten Strömungsgleichrichter sehr effektiv zur Homogenisierung der Kühlluftströmung bei. Durch die erfindungsgemäßen Homogenisierungselemente wird gleichsam eine Vor-Ausrichtung der Kühlluftströmung vor dem Strömungsgleichrichter bewirkt, wodurch offenbar ein noch effektiverer Einsatz des Strömungsgleichrichters ermöglicht wird. Aufgrund der erfindungsgemäßen Ausgestaltung der Luftzufuhrkabinen können Turbulenzen in der Kühlluftströmung weitgehend vermieden werden und es kann auch insoweit Einfluss genommen werden, als unerwünschte asymmetrische Luftströmungsprofile verhindert werden können. Im Ergebnis wird durch die Ausbildung der Luftzufuhrkabinen eine optimale Einführung der Luftvolumenströme in die Kühlkammer erreicht. Unerwünschte Einspeisefehler bezüglich der Kühlluftzuführung können einfach und ohne Probleme ausgeglichen werden. Das betrifft auch unerwünschte Einspeisedifferenzen zwischen den gegenüberliegenden Luftzufuhrkabinen. Insoweit wird durch die erfindungsgemäße Ausgestaltung der Kühlvorrichtung mit Kühlkammer und Luftzufuhrkabinen gleichsam eine "fehlertolerante Konstruktion" realisiert. Die in den Luftzufuhrkabinen angeordneten Homogenisierungselemente erfüllen gleichsam den Zweck von Druckverbrauchern. Mit diesen Homogenisierungselementen können auch gezielt gewünschte Anblasprofile bzw. Kühlluft-Geschwindigkeitsprofile eingestellt werden. So ist es problemlos möglich, beispielsweise ein Blockprofil zu erzielen, bei dem die Luftgeschwindigkeiten an allen Stellen gleich sind bzw. quasi gleich sind. "Bauchige" und asymmetrische Kühlluft-Geschwindigkeitsprofile sind ebenfalls möglich.The invention is based on the knowledge that, due to the design of the air supply booths according to the invention, optimal cooling of the cooling air flows can be achieved and, in particular, good, homogeneous cooling air distribution can be achieved in a small space. So far the invention is further based on the knowledge that this homogenization of the cooling air flow according to the invention influences the spun filaments in a very advantageous manner with a view to solving the technical problem. Ultimately, filament deposits or fleece deposits of high quality are obtained and defects or defects in the fleece deposits can be avoided or at least largely minimized. The invention is further based on the finding that the optimal equalization of the cooling air flow is achieved by the combination of the features according to the invention and above all by the combination of the homogenization elements arranged in the air supply cabin on the one hand and the cross-sectional enlargement according to the invention on the other. In addition, the flow straighteners arranged in the air supply cabins contribute very effectively to the homogenization of the cooling air flow. The homogenization elements according to the invention effect, as it were, a pre-alignment of the cooling air flow in front of the flow straightener, which obviously enables the flow straightener to be used even more effectively. Due to the configuration of the air supply cabins according to the invention, turbulence in the cooling air flow can be largely avoided and it can also be influenced to the extent that undesirable asymmetrical air flow profiles can be prevented. As a result, an optimal introduction of the air volume flows into the cooling chamber is achieved through the formation of the air supply cabins. Unwanted feed errors with regard to the cooling air supply can be compensated easily and without problems. This also affects undesirable feed differences between the opposite air supply cabins. To that extent, the inventive design of the cooling device with cooling chamber and air supply cabins realizes, as it were, a "fault-tolerant construction". The homogenization elements arranged in the air supply cabins serve the purpose of pressure consumers, as it were. With these homogenization elements desired blowing profiles or cooling air speed profiles can also be set. For example, it is possible to achieve a block profile in which the air velocities are the same or are virtually the same at all points. "Bulky" and asymmetrical cooling air speed profiles are also possible.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird bei der Einführung der Kühlluft in die Luftzufuhrkabinen - insbesondere vor den Homogenisierungselementen - eine Vorverteilung der Kühlluft vorgenommen. Dadurch erfolgt gleichsam eine vorgeschaltete Unterstützung der Homogenisierungselemente bzw. Druckverbraucher. In diesem Zusammenhang können Strömungselemente in Form von Spitzkeilkanälen, Spaltkanälen mit Spaltblechabdeckungen sowie Ausströmpyramiden und dergleichen als Vorverteilungselemente zum Einsatz kommen. Auch können die Zuführungsleitungen für die Kühlluft zu diesem Zwecke segmentiert ausgebildet werden. Im Bereich von Umlenkungen der Zuführungsleitung kann insoweit auch eine Beschaufelung von Leitungsstücken realisiert werden. Grundsätzlich kann die Beschaufelung in der Luftzufuhrkabine fortgesetzt werden, so dass dann insbesondere eine Segmentierung der Luftzufuhrkabine resultiert.According to a preferred embodiment of the invention, the cooling air is pre-distributed when the cooling air is introduced into the air supply cabins, in particular in front of the homogenizing elements. As a result, the homogenization elements or pressure consumers are supported upstream. In this context, flow elements in the form of pointed wedge channels, gap channels with gap sheet covers, and outflow pyramids and the like can be used as pre-distribution elements. The supply lines for the cooling air can also be designed segmented for this purpose. In the area of deflections of the feed line, blading of line sections can also be implemented. In principle, the blading can be continued in the air supply cabin, so that a segmentation of the air supply cabin then results in particular.

Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass der einer Luftzufuhrkabine zugeführte Kühlluftvolumenstrom in eine Mehrzahl von Teilvolumenströmen aufgeteilt ist. Es liegt im Rahmen der Erfindung, dass diese Teilvolumenströme durch separate Teil-Zuführungsleitungen und/oder durch die Segmente einer segmentierten Zuführungsleitung zuströmen. Weiterhin liegt es im Rahmen der Erfindung, dass die Luftzufuhrkabine entsprechend den zugeführten Teilvolumenströmen in Kabinenabschnitte aufgeteilt ist, wobei zweckmäßigerweise jeder Kabinenabschnitt einem Teilvolumenstrom zugeordnet ist. Gemäß empfohlener Ausführungsform ist der Kühlluftvolumenstrom in zwei bis fünf, insbesondere in zwei bis vier und vorzugsweise in zwei bis drei Teilvolumenströme aufgeteilt. Zweckmäßigerweise ist die Luftgeschwindigkeit und/oder die Lufttemperatur und/oder die Luftfeuchte jedes Teilvolumenstroms separat eingestellt und zweckmäßigerweise an die jeweiligen Prozessanforderungen angepasst. Empfohlenermaßen weist die Kühlluft zumindest zweier Teilvolumenströme eine unterschiedliche Luftgeschwindigkeit und/oder eine unterschiedliche Lufttemperatur und/oder eine unterschiedliche Luftfeuchte auf. - Es liegt im Rahmen der Erfindung, dass jedem Teilvolumenstrom der Kühlluft ein Kabinenabschnitt der Luftzufuhrkabine zugeordnet ist, der in einen Strömungsgleichrichter mündet. Nach einer besonders bevorzugten Ausführungsform der Erfindung erstreckt sich ein Strömungsgleichrichter bzw. ein durchgängiger Strömungsgleichrichter über alle Kabinenabschnitte und somit zweckmäßigerweise über die Höhe bzw. vertikale Höhe der zugeordneten Luftzufuhrkabine.A preferred embodiment of the invention is characterized in that the cooling air volume flow supplied to an air supply cabin is divided into a plurality of partial volume flows. It is within the scope of the invention that these partial volume flows flow through separate partial supply lines and / or through the segments of a segmented supply line. Furthermore, it is within the scope of the invention that the air supply cabin is divided into cabin sections in accordance with the partial volume flows supplied, each cabin section advantageously being assigned to a partial volume flow. According to the recommended embodiment, the Cooling air volume flow divided into two to five, in particular in two to four and preferably in two to three partial volume flows. The air speed and / or the air temperature and / or the air humidity of each partial volume flow is expediently set separately and expediently adapted to the respective process requirements. It is recommended that the cooling air of at least two partial volume flows have a different air speed and / or a different air temperature and / or a different air humidity. It is within the scope of the invention that each partial volume flow of the cooling air is assigned a cabin section of the air supply cabin, which opens into a flow straightener. According to a particularly preferred embodiment of the invention, a flow straightener or a continuous flow straightener extends over all cabin sections and thus expediently over the height or vertical height of the assigned air supply cabin.

Es liegt im Rahmen der Erfindung, dass in jedem Kabinenabschnitt der Luftzufuhrkabinen zumindest ein Homogenisierungselement, vorzugsweise eine Mehrzahl von Homogenisierungselementen angeordnet ist. Die Homogenisierungselemente können sich dabei durchgängig über die gesamte Höhe der Luftzufuhrkabine erstrecken oder es können auch separate Homogenisierungselemente in den Kabinenabschnitten vorgesehen werden. Ansonsten gelten alle hier beschriebenen Merkmale für die Homogenisierungselemente auch für die in den einzelnen Kabinenabschnitten angeordneten Homogenisierungselemente. Zweckmäßigerweise ist in jedem Kabinenabschnitt eine Mehrzahl von in Strömungsrichtung der Kühlluft hintereinander angeordneten Homogenisierungselementen vorhanden.It is within the scope of the invention that at least one homogenization element, preferably a plurality of homogenization elements, is arranged in each cabin section of the air supply cabins. The homogenization elements can extend continuously over the entire height of the air supply cabin, or separate homogenization elements can also be provided in the cabin sections. Otherwise, all the features described here apply to the homogenization elements also for the homogenization elements arranged in the individual cabin sections. Appropriately, a plurality of homogenizing elements arranged one behind the other in the flow direction of the cooling air are present in each cabin section.

Eine sehr empfohlene Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Luftzufuhrkabine bzw. jede der beiden gegenüberliegenden Luftzufuhrkabinen in zumindest zwei, vorzugsweise in zwei, Kabinenabschnitte unterteilt ist. Aus diesen Kabinenabschnitten ist bevorzugt jeweils Kühlluft unterschiedlicher Temperatur bzw. Lufttemperatur zufuhrbar. Es liegt im Rahmen der Erfindung, dass jedem Kabinenabschnitt zumindest ein Teilvolumenstrom an Kühlluft zuführbar ist.A very recommended embodiment of the invention is characterized in that the air supply cabin or each of the two opposite Air supply cabins is divided into at least two, preferably two, cabin sections. Cooling air of different temperatures or air temperatures can preferably be supplied from these cabin sections. It is within the scope of the invention that at least a partial volume flow of cooling air can be supplied to each cabin section.

Weiterhin liegt es im Rahmen der Erfindung, dass die Luftgeschwindigkeit und/oder der Luftvolumenstrom auf einer bestimmten Höhe der Kühlkammer bzw. der Luftzufuhrkabinen in CD-Richtung (quer zur Maschinenrichtung MD) über die gesamte Breite der Vorrichtung gleichmäßig bzw. im Wesentlichen gleichmäßig bzw. quasi gleichmäßig ist. Allerdings ist es möglich, dass die Kühlluftgeschwindigkeit und/oder der Kühlluftvolumenstrom über die Höhe bzw. die vertikale Höhe der Kühlkammer bzw. der Luftzufuhrkabinen unterschiedlich ist.Furthermore, it is within the scope of the invention that the air speed and / or the air volume flow at a certain height of the cooling chamber or the air supply cabins in the CD direction (transverse to the machine direction MD) over the entire width of the device evenly or essentially evenly or is almost uniform. However, it is possible that the cooling air speed and / or the cooling air volume flow is different over the height or the vertical height of the cooling chamber or the air supply cabins.

Erfindungsgemäß wird in jeder Luftzufuhrkabine zumindest ein in Luftströmungsrichtung vor der Kühlkammer angeordneter Strömungsgleichrichter vorgesehen. Gemäß bevorzugter Ausführungsform der Erfindung weist ein Strömungsgleichrichter eine Mehrzahl von quer, vorzugsweise senkrecht bzw. im Wesentlichen senkrecht zur Bewegungsrichtung der Filamente bzw. zu dem Filamentstrom orientierten Strömungskanälen auf, wobei die Strömungskanäle durch Kanalwandungen begrenzt sind. Empfohlenermaßen beträgt die offene Fläche eines Strömungsgleichrichters mehr als 85 % und vorzugsweise mehr als 90 % der gesamten Fläche bzw. Querschnittsfläche des Strömungsgleichrichters. Es empfiehlt sich, dass die offene Fläche eines Strömungsgleichrichters größer als 91 %, bevorzugt größer als 92 % und besonders bevorzugt größer als 92,5 % ist. Offene Fläche des Strömungsgleichrichters bezieht sich dabei insbesondere auf den frei von der Kühlluft durchströmbaren Strömungsquerschnitt des Strömungsgleichrichters, der also nicht durch die Kanalwandungen bzw. die Dicke der Kanalwandungen und/oder eventuell zwischen den Strömungskanälen bzw. den Kanalwandungen angeordnete Abstandshalter blockiert wird. In die Berechnung der offenen Fläche gehen insbesondere keine am Strömungsgleichrichter angeordnete und insbesondere vor bzw. hinter dem Strömungsgleichrichter angeordnete Strömungssiebe ein. Es liegt im Rahmen der Erfindung, dass diese Strömungssiebe bei der Berechnung der offenen Fläche des Strömungsgleichrichters außer Acht bleiben. Gemäß bevorzugter Ausführungsform beträgt das Verhältnis der Länge L der Strömungskanäle eines Strömungsgleichrichters zum Innendurchmesser Di der Strömungskanäle L/Di 1 bis 15, vorzugsweise 1 bis 10 und bevorzugt 1, 5 bis 9. Der Innendurchmesser wird für einen Strömungskanal des Strömungsgleichrichters von einer Kanalwandung ausgehend zu einer gegenüberliegenden Kanalwandung gemessen. Wenn bei einem Strömungskanal aufgrund seines Querschnittes unterschiedliche Innendurchmesser messbar sind, meint Innendurchmesser Di zweckmäßigerweise den kleinsten Innendurchmesser Di eines Strömungskanals. Dieser Begriff "kleinster Innendurchmesser Di" bezieht sich also auf den bei einem Strömungskanal gemessenen kleinsten Innendurchmesser, wenn dieser Strömungskanal bezüglich seines Querschnittes unterschiedliche Innendurchmesser aufweist. So wird der kleinste Innendurchmesser Di bei einem Querschnitt in Form eines regelmäßigen Sechseckes zwischen zwei gegenüberliegenden Seiten und nicht zwischen zwei gegenüberliegenden Ecken des Sechseckes gemessen. Wenn der kleinste Innendurchmesser bei den Strömungskanälen variiert, meint kleinster Innendurchmesser Di insbesondere den bezüglich der Mehrzahl von Strömungskanälen gemittelten kleinsten Innendurchmesser bzw. mittleren kleinsten Innendurchmesser.According to the invention, at least one flow straightener arranged in the air flow direction in front of the cooling chamber is provided in each air supply cabin. According to a preferred embodiment of the invention, a flow straightener has a plurality of flow channels oriented transversely, preferably perpendicularly or essentially perpendicularly to the direction of movement of the filaments or to the filament flow, the flow channels being delimited by channel walls. The open area of a flow straightener is preferably more than 85% and preferably more than 90% of the total area or cross-sectional area of the flow straightener. It is recommended that the open area of a flow straightener is larger than 91%, preferably larger than 92% and particularly preferably larger than 92.5%. The open area of the flow straightener relates in particular to the flow cross-section of the flow straightener which can be flowed through freely by the cooling air, and which therefore does not pass through Channel walls or the thickness of the channel walls and / or spacers arranged between the flow channels or the channel walls is blocked. In particular, no flow screens arranged on the flow straightener and in particular arranged in front of or behind the flow straightener are included in the calculation of the open area. It is within the scope of the invention that these flow screens are disregarded when calculating the open area of the flow straightener. According to a preferred embodiment, the ratio of the length L of the flow channels of a flow straightener to the inner diameter D i of the flow channels L / D i is 1 to 15, preferably 1 to 10 and preferably 1.5 to 9. The inner diameter for a flow channel of the flow straightener is from a channel wall measured from an opposite duct wall. If different internal diameters can be measured in a flow channel due to its cross section, internal diameter D i expediently means the smallest internal diameter D i of a flow channel. This term "smallest inside diameter D i " therefore refers to the smallest inside diameter measured in a flow channel if this flow channel has different inside diameters with regard to its cross section. Thus, the smallest inside diameter Di is measured with a cross section in the form of a regular hexagon between two opposite sides and not between two opposite corners of the hexagon. If the smallest inside diameter varies in the flow channels, the smallest inside diameter D i means in particular the smallest inside diameter or average smallest inside diameter averaged with respect to the plurality of flow channels.

Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass ein Strömungsgleichrichter an seiner Kühlluft-Einströmseite und/oder an seiner Kühlluft-Ausströmseite zumindest ein Strömungssieb aufweist. Dabei ist zweckmäßigerweise das Strömungssieb bzw. die Fläche des Strömungssiebes quer und bevorzugt senkrecht bzw. im Wesentlichen zur Längsrichtung der Strömungskanäle des Strömungsgleichrichters angeordnet. Nach besonders empfohlener Ausführungsform weist ein Strömungsgleichrichter sowohl an seiner Kühlluft-Einströmseite als auch an seiner Kühlluft-Ausströmseite ein solches Strömungssieb auf. Die Strömungssiebe sind dabei zweckmäßigerweise unmittelbar und ohne Abstand zu dem Strömungsgleichrichter an dem Strömungsgleichrichter angeordnet. Empfohlenermaßen weist ein Strömungssieb eine Maschenweite von 0,1 bis 0,5 mm, zweckmäßigerweise von 0,1 bis 0,4 mm und vorzugsweise von 0,15 bis 0,34 mm auf. Maschenweite meint dabei den Abstand von zwei gegenüberliegenden Drähten einer Masche und insbesondere den kleinsten Abstand von zwei gegenüberliegenden Drähten einer Masche. Empfohlenermaßen weist ein Strömungssieb eine Drahtstärke von 0,1 bis 0,5 mm, bevorzugt von 0,1 bis 0,4 mm und sehr bevorzugt von 0,15 bis 0,34 mm auf. Ein Strömungssieb eines Strömungsgleichrichters ist zu unterscheiden von einem in der Luftzufuhrkabine angeordneten Homogenisierungssieb. Gemäß empfohlener Ausführungsform weist ein Strömungsgleichrichter zumindest ein Strömungssieb auf, vorzugsweise zwei Strömungssiebe auf und zusätzlich ist zumindest ein Homogenisierungselement und sehr bevorzugt eine Mehrzahl von Homogenisierungselementen in der zugeordneten Luftzufuhrkabine vorgesehen.A preferred embodiment of the invention is characterized in that a flow straightener on its cooling air inflow side and / or on has at least one flow sieve on its cooling air outflow side. The flow strainer or the surface of the flow strainer is expediently arranged transversely and preferably perpendicularly or essentially to the longitudinal direction of the flow channels of the flow straightener. According to a particularly recommended embodiment, a flow straightener has such a flow sieve both on its cooling air inflow side and on its cooling air outflow side. The flow screens are expediently arranged on the flow straightener directly and without any distance from the flow straightener. A flow sieve preferably has a mesh size of 0.1 to 0.5 mm, advantageously 0.1 to 0.4 mm and preferably 0.15 to 0.34 mm. Mesh size means the distance between two opposite wires of a mesh and in particular the smallest distance between two opposite wires of a mesh. A flow sieve preferably has a wire thickness of 0.1 to 0.5 mm, preferably 0.1 to 0.4 mm and very preferably 0.15 to 0.34 mm. A flow sieve of a flow straightener can be distinguished from a homogenization sieve arranged in the air supply cabin. According to the recommended embodiment, a flow straightener has at least one flow sieve, preferably two flow sieves, and in addition at least one homogenization element and very preferably a plurality of homogenization elements are provided in the associated air supply cabin.

Erfindungsgemäß werden die Endlosfilamente mittels einer Spinnerette ersponnen und der Kühlkammer zum Kühlen der Filamente mit Kühlluft zugeführt. - Es liegt im Rahmen der Erfindung, dass zumindest ein Spinnbalken zum Erspinnen der Filamente quer zur Maschinenrichtung (MD-Richtung) angeordnet ist. Nach einer sehr bevorzugten Ausführungsform der Erfindung ist der Spinnbalken dabei senkrecht bzw. im Wesentlichen senkrecht zur Maschinenrichtung orientiert. Es ist im Rahmen der Erfindung aber auch möglich, dass der Spinnbalken schräg zur Maschinenrichtung angeordnet ist. - Eine empfohlene Ausführungsform der Erfindung zeichnet sich dadurch aus, dass zwischen der Spinnerette und der Kühlkammer zumindest eine Monomer-Absaugungseinrichtung angeordnet ist. Mit dieser Monomer-Absaugungseinrichtung wird Luft aus dem Filamentbildungsraum unterhalb der Spinnerette abgesaugt. Dadurch können die neben den Endlosfilamenten austretenden Gase wie Monomere, Oligomere, Zersetzungsprodukte und dergleichen aus der Vorrichtung entfernt werden. Eine Monomer-Absaugungseinrichtung weist vorzugsweise zumindest eine Absaugungskammer auf, an die zweckmäßigerweise zumindest ein Absaugungsgebläse angeschlossen ist. Es empfiehlt sich, dass in Strömungsrichtung der Filamente an die Monomer-Absaugungseinrichtung die erfindungsgemäße Kühlkammer mit den Luftzufuhrkabinen anschließt. - Zweckmäßigerweise werden die Filamente aus der Kühlkammer in eine Verstreckvorrichtung zum Verstrecken der Filamente eingeführt. Es liegt im Rahmen der Erfindung, dass an die Kühlkammer ein Zwischenkanal anschließt, der die Kühlkammer mit einem Verstreckschacht der Verstreckvorrichtung verbindet.According to the invention, the continuous filaments are spun by means of a spinnerette and fed to the cooling chamber for cooling the filaments with cooling air. - It is within the scope of the invention that at least one spinning beam for spinning the filaments is arranged transversely to the machine direction (MD direction). According to a very preferred embodiment of the invention, the spinning beam is perpendicular or essentially perpendicular to Machine direction oriented. However, it is also possible within the scope of the invention that the spinning beam is arranged obliquely to the machine direction. A recommended embodiment of the invention is characterized in that at least one monomer suction device is arranged between the spinnerette and the cooling chamber. With this monomer suction device, air is sucked out of the filament formation space below the spinnerette. As a result, the gases emerging in addition to the continuous filaments, such as monomers, oligomers, decomposition products and the like, can be removed from the device. A monomer suction device preferably has at least one suction chamber to which at least one suction fan is expediently connected. It is recommended that the cooling chamber according to the invention with the air supply booths be connected to the monomer suction device in the flow direction of the filaments. - The filaments are expediently introduced from the cooling chamber into a drawing device for drawing the filaments. It is within the scope of the invention that an intermediate channel connects the cooling chamber and connects the cooling chamber to a stretching shaft of the stretching device.

Eine ganz besonders bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass das Aggregat aus der Kühlkammer und der Verstreckvorrichtung bzw. das Aggregat aus der Kühlkammer, dem Zwischenkanal und dem Verstreckschacht als geschlossenes System ausgebildet ist. Geschlossenes System meint dabei insbesondere, dass außer der Zufuhr von Kühlluft in die Kühlkammer keine weitere Luftzufuhr in dieses Aggregat stattfindet. Die erfindungsgemäß durchgeführte Homogenisierung der Kühlluftströmung bedingt vor allem Vorteile in einem solchen geschlossenen System. Insbesondere in derartigen geschlossenen System erzielt man Spinnvliese mit sehr gleichmäßigen fehlstellenfreien Eigenschaften.A very particularly preferred embodiment of the invention is characterized in that the unit from the cooling chamber and the stretching device or the unit from the cooling chamber, the intermediate channel and the stretching shaft is designed as a closed system. A closed system means in particular that, apart from the supply of cooling air to the cooling chamber, there is no further air supply to this unit. The homogenization of the cooling air flow carried out according to the invention primarily has advantages in such a closed system. In such a closed system in particular, spunbonded nonwovens with very uniform, defect-free properties are obtained.

Nach einer empfohlenen Ausführungsform der Erfindung schließt an die Verstreckvorrichtung in Strömungsrichtung der Filamente zumindest ein Diffusor an, durch den die Filamente geführt werden. Zweckmäßigerweise umfasst dieser Diffusor einen in Richtung der Filamentablage sich aufweitenden Diffusorquerschnitt bzw. einen divergenten Diffusorabschnitt. - Es liegt im Rahmen der Erfindung, dass die Filamente auf einer Ablageeinrichtung zur Filamentablage bzw. zur Vliesablage abgelegt werden. Zweckmäßigerweise handelt es sich bei der Ablageeinrichtung um ein Ablagesiebband bzw. um ein luftdurchlässiges Ablagesiebband. Mit der Ablageeinrichtung bzw. mit dem Ablagesiebband wird die aus den Filamenten gebildete Vliesbahn in Maschinenrichtung (MD) abgefördert.According to a recommended embodiment of the invention, at least one diffuser through which the filaments are guided adjoins the stretching device in the flow direction of the filaments. This diffuser expediently comprises a diffuser cross section which widens in the direction of the filament deposit or a divergent diffuser section. - It is within the scope of the invention that the filaments are deposited on a deposit device for filament deposit or for fleece deposit. The depositing device is expediently a deposit screen belt or an air-permeable deposit screen belt. With the depositing device or with the deposit screen belt, the nonwoven web formed from the filaments is conveyed in the machine direction (MD).

Es empfiehlt sich, dass im Ablagebereich der Filamente Prozessluft durch die Ablageeinrichtung bzw. durch das Ablagesiebband gesaugt wird bzw. von unten gesaugt wird. Hierdurch kann eine besonders stabile Filamentablage bzw. Vliesablage erreicht werden. Der Absaugung kommt in Kombination mit der erfindungsgemäßen Homogenisierung der Kühlluftströmung besonders vorteilhafte Bedeutung zu. - Nach der Ablage auf der Ablageeinrichtung wird die Filamentablage bzw. die Vliesbahn zweckmäßigerweise weiteren Behandlungsmaßnahmen - insbesondere einer Kalandrierung - zugeführt.It is recommended that in the filing area of the filaments process air is sucked through the filing device or through the filing belt or is sucked in from below. In this way, a particularly stable filament or fleece deposit can be achieved. The extraction is of particularly advantageous importance in combination with the homogenization of the cooling air flow according to the invention. - After the deposit on the depositing device, the filament deposit or the nonwoven web is expediently fed to further treatment measures - in particular a calendering.

Zur Lösung des technischen Problems lehrt die Erfindung weiterhin ein Verfahren zur Herstellung von Spinnvliesen aus Endlosfilamenten, insbesondere aus Endlosfilamenten aus thermoplastischem Kunststoff, wobei die Endlosfilamente aus einer Spinnerette ausgesponnen werden und in einer Kühlkammer mit Kühlluft gekühlt werden, wobei die Kühlluft aus an gegenüberliegenden Seiten der Kühlkammer angeordneten Luftzufuhrkabinen in die Kühlkammer eingeführt wird, wobei Kühlluft durch eine an die Luftzufuhrkabine angeschlossene Zuführungsleitung mit einer Querschnittsfläche QZ zugeführt wird, wobei sich die Querschnittsfläche QZ beim Übergang der Kühlluft in die Luftzufuhrkabine auf eine Querschnittsfläche QL der Luftzufuhrkabine vergrößert, wobei die Querschnittsfläche QL mindestens doppelt so groß, vorzugsweise mindestens dreimal so groß ist wie die Querschnittsfläche QZ der Zuführungsleitung,
wobei die Kühlluft in einer Luftzufuhrkabine durch zumindest ein flächiges Homogenisierungselement zur Homogenisierung der Kühlluft geführt wird, wobei das flächige Homogenisierungselement eine Mehrzahl von Öffnungen aufweist und wobei die freie geöffnete Fläche des flächigen Homogenisierungselementes 1 bis 40 %, vorzugsweise 2 bis 35 % und bevorzugt 2 bis 30 % der gesamten Fläche des flächigen Homogenisierungselementes beträgt und wobei die Kühlluft im Anschluss an das zumindest eine flächige Homogenisierungselement vorzugsweise durch einen Strömungsgleichrichter in die Kühlkammer eingeführt wird.
To solve the technical problem, the invention further teaches a method for producing spunbonded nonwovens from continuous filaments, in particular from continuous filaments made of thermoplastic, the continuous filaments being spun out of a spinnerette and being cooled in a cooling chamber with cooling air, the cooling air being on opposite sides of the Cooling chamber arranged air supply cabins is inserted into the cooling chamber wherein cooling air is supplied through a supply line connected to the air supply cabin with a cross-sectional area Q Z , the cross-sectional area Q Z increasing as the cooling air enters the air supply cabin to a cross-sectional area Q L of the air supply cabin, the cross-sectional area Q L being at least twice as large, preferably is at least three times the cross-sectional area Q Z of the feed line,
wherein the cooling air in an air supply cabin is guided through at least one flat homogenizing element for homogenizing the cooling air, the flat homogenizing element having a plurality of openings and the free open area of the flat homogenizing element 1 to 40%, preferably 2 to 35% and preferably 2 to 30% of the total area of the flat homogenization element and the cooling air is introduced into the cooling chamber following the at least one flat homogenization element, preferably through a flow straightener.

Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens zeichnet sich dadurch aus, dass die Filamente in der Kühlkammer von der Kühlluft mit einer Luftgeschwindigkeit von 0,15 bis 3 m/s, vorzugsweise von 0,15 bis 2,5 m/s und bevorzugt von 0,17 bis 2,3 m/s beaufschlagt werden. - Zweckmäßigerweise wird die Luftgeschwindigkeit (in m/s) mittels Flügelradanemometer mit einem Durchmesser d von 80 mm gemessen und zwar auf einem Raster von 100 x 100 mm. Dabei werden die Luftgeschwindigkeiten offline und somit ohne Filamentdurchströmung der Kühlkammer gemessen. In diesem Offline-Zustand sind die Geschwindigkeitsvektoren der Kühlluft vorzugsweise senkrecht bzw. im Wesentlichen senkrecht zur Längsmittelachse der Vorrichtung bzw. zu der Filamentströmungsrichtung FS ausgerichtet. - Eine empfohlene Ausführungsform des erfindungsgemäßen Verfahrens zeichnet sich dadurch aus, dass die Filamente in der Kühlkammer mit einem Kühlluft-Volumenstrom von 200 bis 14000 m3/h/m, vorzugsweise von 250 bis 13000 m3/h/m und bevorzugt von 300 bis 12000 m3/h/m beaufschlagt werden. Mit m3/h/m ist dabei der Volumenstrom pro laufendem Meter Kühlkammerbreite gemeint. Die Kühlkammerbreite erstreckt sich dabei quer zur Maschinenrichtung und somit in CD-Richtung.A particularly preferred embodiment of the method according to the invention is characterized in that the filaments in the cooling chamber are cooled by the cooling air at an air speed of 0.15 to 3 m / s, preferably 0.15 to 2.5 m / s and preferably 0 , 17 to 2.3 m / s are applied. - The air speed (in m / s) is expediently measured by means of an impeller anemometer with a diameter d of 80 mm, specifically on a grid of 100 x 100 mm. The air speeds are measured offline and thus without filament flow through the cooling chamber. In this offline state, the speed vectors of the cooling air are preferably perpendicular or substantially perpendicular to the longitudinal center axis of the device or to the device Filament flow direction FS aligned. A recommended embodiment of the method according to the invention is characterized in that the filaments in the cooling chamber with a cooling air volume flow of 200 to 14000 m 3 / h / m, preferably from 250 to 13000 m 3 / h / m and preferably from 300 to 12000 m 3 / h / m can be applied. M 3 / h / m means the volume flow per running meter of cooling chamber width. The cooling chamber width extends transversely to the machine direction and thus in the CD direction.

Es folgt ein Ausführungsbeispiel mit typischen Kühlluft-Anströmungsparametern für eine erfindungsgemäße Vorrichtung mit jeweils zwei übereinander angeordneten Kabinenabschnitten der beiden gegenüberliegenden Luftzufuhrkabinen. Dabei wird in dem oberen und in dem unteren Kabinenabschnitt jeweils Kühlluft unterschiedlicher Temperatur zugeführt. Die Temperatur der Kühlluft zweier gegenüberliegender Kabinenabschnitte stimmt dabei überein. Es werden einerseits typische Parameter für die Erzeugung von Endlosfilamenten aus Polyethylenterephthalat (PET) und andererseits typische Parameter für die Erzeugung von Endlosfilamenten aus Polypropylen angegeben. Bei der Polypropylen-Fahrweise werden zusätzlich die bevorzugten minimalen Werte (linke Spalte) und die bevorzugten maximalen Werte (rechte Spalte) aufgeführt. Der dort jeweils angegebene Kühlluft-Volumenstrom bezieht sich auf den Volumenstrom der aus beiden gegenüberliegenden Kabinenabschnitten eintritt. Es wird in den nachfolgenden Tabellen die vertikale Höhe der Kabinenabschnitte, der Kühlluft-Volumenstrom und die KühlluftGeschwindigkeit angegeben. Oberer Kabinenabschnitt PET PP (min) PP (max) Höhe mm 200 200 200 Volumenstrom m3/h/m 400 800 3000 Luftgeschwindigkeit m/s 0,22 0,44 1,67 Unterer Kabinenabschnitt PET PP (min) PP (max) Höhe mm 600 600 600 Volumenstrom m3/h/m 11000 3000 8000 Luftgeschwindigkeit m/s 2,04 0,56 1,48 An exemplary embodiment follows with typical cooling air flow parameters for a device according to the invention, each with two superimposed cabin sections of the two opposite air supply cabins. In this case, cooling air of different temperatures is supplied in the upper and in the lower cabin section. The temperature of the cooling air of two opposite cabin sections is the same. Typical parameters for the production of continuous filaments from polyethylene terephthalate (PET) and, on the other hand, typical parameters for the production of continuous filaments from polypropylene are given. In the case of the polypropylene mode of operation, the preferred minimum values (left column) and the preferred maximum values (right column) are also listed. The cooling air volume flow indicated there relates to the volume flow entering from two opposite cabin sections. The following table shows the vertical height of the cabin sections, the cooling air volume flow and the cooling air speed. Upper cabin section PET PP (min) PP (max) height mm 200 200 200 Volume flow m 3 / h / m 400 800 3000 Airspeed m / s 0.22 0.44 1.67 PET PP (min) PP (max) height mm 600 600 600 Volume flow m 3 / h / m 11000 3000 8000 Airspeed m / s 2.04 0.56 1.48

Wenn mit dem erfindungsgemäßen Verfahren Endlosfilamente aus Polypropylen (PP) hergestellt werden, beträgt vorzugsweise die Kühlluftgeschwindigkeit in der Luftzufuhrkabine bzw. in den Kabinenabschnitten der Luftzufuhrkabine 0,25 bis 1,9 m/s, zweckmäßigerweise 0,3 bis 1,8 m/s und bevorzugt 0,35 bis 1,7 m/s. Der Kühlluft-Volumenstrom beträgt bei der Herstellung von PP-Endlosfilamenten vorzugsweise 500 bis 9.500 m3/h/m, bevorzugt 600 bis 8.300 m3/h/m und besonders bevorzugt 650 bis 8.100 m3/h/m. - Wenn mit dem erfindungsgemäßen Verfahren Endlosfilamente aus einem Polyester erzeugt werden, beträgt die Kühlluftgeschwindigkeit vorzugsweise 0,15 bis 3 m/s und bevorzugt 0,15 bis 2,5 m/s. Bei der Herstellung von Polyester-Endlosfilamenten beträgt der Kühlluft-Volumenstrom empfohlenermaßen 200 bis 14000 m3/h/m und vorzugsweise 250 bis 13000 m3/h/m.If continuous filaments made of polypropylene (PP) are produced with the method according to the invention, the cooling air speed in the air supply cabin or in the cabin sections of the air supply cabin is preferably 0.25 to 1.9 m / s, advantageously 0.3 to 1.8 m / s and preferably 0.35 to 1.7 m / s. The cooling air volume flow in the production of PP continuous filaments is preferably 500 to 9,500 m 3 / h / m, preferably 600 to 8,300 m 3 / h / m and particularly preferably 650 to 8,100 m 3 / h / m. If continuous filaments are produced from a polyester using the method according to the invention, the cooling air speed is preferably 0.15 to 3 m / s and preferably 0.15 to 2.5 m / s. In the production of continuous polyester filaments, the cooling air volume flow is recommended 200 to 14000 m 3 / h / m and preferably 250 to 13000 m 3 / h / m.

Gemäß einer empfohlenen Ausführungsform der Erfindung wird aus beiden gegenüberliegenden Luftzufuhrkabinen bzw. aus beiden gegenüberliegenden Kabinenabschnitten die gleiche Luftmenge bzw. im Wesentlichen die gleiche Luftmenge und somit der gleiche Kühlluft-Volumenstrom bzw. im Wesentlichen der gleiche Kühlluft-Volumenstrom eingeführt. Es ist aber auch möglich, dass von beiden gegenüberliegenden Luftzufuhrkabinen bzw. Kabinenabschnitten unterschiedliche Kühlluft-Volumenströme zugeführt werden. Die Aufteilung der Kühlluft-Volumenströme kann dann bezüglich der gegenüberliegenden Luftzufuhrkabinen bzw. der gegenüberliegenden Kabinenabschnitte zweckmäßigerweise zwischen 40 und 60 % liegen (asymmetrische Kühlluft-Einführung). Gemäß einer weiteren Ausführungsvariante kann eine asymmetrische Kühlluft-Einführung auch erreicht werden, indem ein oberer Bereich bzw. obere Bereiche einer Luftzufuhrkabine bzw. eines Kabinenabschnittes abgeblendet wird/werden, wobei diese Abblendung über bis zu 100 mm der Höhe erfolgen kann. Weiterhin können asymmetrische Verhältnisse dadurch eingestellt werden, dass die gegenüberliegenden Luftzufuhrkabinen bzw. Kabinenabschnitte höhenversetzt zueinander angeordnet sind. Dieser Höhenversatz kann bis zu 100 mm betragen. Fernerhin ist auch ein seitlicher Versatz (in CD-Richtung) der Luftzufuhrkabinen bzw. Kabinenabschnitte um bis zu 100 mm möglich. Die vorstehend beschriebenen Maßnahmen können außerdem auch miteinander kombiniert werden. - Es liegt weiterhin im Rahmen der Erfindung, dass bezüglich der Breite der Luftzufuhrkabine bzw. eines Kabinenabschnittes in CD-Richtung Randbereiche abgeblendet werden können. So kann die Kühlluft-Einführung in die Kühlkammer über 85 bis 90 % der CD-Breite gleichmäßig und homogen erfolgen, jedoch in den Randbereichen separat eingestellt werden.According to a recommended embodiment of the invention, the same amount of air or essentially the same amount of air and thus the same cooling air volume flow or essentially the same cooling air volume flow is introduced from both opposite air supply cabins or from two opposite cabin sections. However, it is also possible for different cooling air volume flows to be supplied from the two opposite air supply cabins or cabin sections. The distribution of the cooling air volume flows can then advantageously be between 40 and 60% with respect to the opposite air supply booths or the opposite booth sections (asymmetrical introduction of cooling air). According to a further embodiment variant, an asymmetrical introduction of cooling air can also be achieved by dimming an upper area or upper areas of an air supply cabin or a cabin section, this dimming being able to take place over a height of up to 100 mm. In addition, asymmetrical relationships can be set in that the opposite air supply booths or booth sections are arranged offset in height from one another. This height offset can be up to 100 mm. Furthermore, a lateral offset (in the CD direction) of the air supply cabins or cabin sections by up to 100 mm is also possible. The measures described above can also be combined with one another. It is also within the scope of the invention that edge areas can be dimmed with respect to the width of the air supply cabin or of a cabin section in the CD direction. The cooling air can be introduced into the cooling chamber evenly and homogeneously over 85 to 90% of the CD width, but can be set separately in the edge areas.

Wenn im Rahmen des erfindungsgemäßen Verfahrens Filamente bzw. Spinnvliese aus Polyolefinen - insbesondere aus Polypropylen - hergestellt werden, kann mit Fadengeschwindigkeiten bzw. Filamentgeschwindigkeiten über 2000 m/min, insbesondere über 2200 m/min oder über 2500 m/min gearbeitet werden. Falls im Rahmen der Erfindung Filamente bzw. Spinnvliese aus Polyestern - insbesondere aus Polyethylenterephthalat (PET) - hergestellt werden, sind Fadengeschwindigkeiten von über 4000 m/min, insbesondere auch von über 5000 m/min realisierbar. Die genannten Fadengeschwindigkeiten können vor allem ohne Qualitätsverlust im Zuge der erfindungsgemäßen Maßnahmen verwirklicht werden. Es liegt im Rahmen der Erfindung, dass die erfindungsgemäße Vorrichtung so ausgestaltet ist bzw. mit der Maßgabe eingerichtet ist, dass mit den genannten Fadengeschwindigkeiten gearbeitet werden kann. Bei diesen hohen Fadengeschwindigkeiten hat sich die erfindungsgemäße Ausgestaltung der Luftzufuhrkabinen besonders bewährt. - Nach einer Ausführungsform des erfindungsgemäßen Verfahrens wird mit Durchsätzen von mehr als 150 kg/h/m oder von mehr als 200 kg/h/m gearbeitet.If filaments or spunbonded nonwovens made from polyolefins, in particular polypropylene, are produced in the process according to the invention thread speeds or filament speeds over 2000 m / min, in particular over 2200 m / min or over 2500 m / min. If filaments or spunbonded nonwovens are produced from polyesters, in particular from polyethylene terephthalate (PET), thread speeds of over 4000 m / min, in particular also of over 5000 m / min, can be achieved. The thread speeds mentioned can above all be achieved without loss of quality in the course of the measures according to the invention. It is within the scope of the invention that the device according to the invention is designed or set up with the proviso that it is possible to work with the thread speeds mentioned. At these high yarn speeds, the design of the air supply booths according to the invention has proven particularly useful. - According to one embodiment of the method according to the invention, throughputs of more than 150 kg / h / m or more than 200 kg / h / m are used.

Der Erfindung liegt die Erkenntnis zugrunde, dass mit der erfindungsgemäßen Vorrichtung und mit dem erfindungsgemäßen Verfahren Spinnvliese von hervorragender Qualität und insbesondere mit sehr homogenen Eigenschaften über ihre Flächenausdehnung erreicht werden können. Die Spinnvliese können im Rahmen der Erfindung weitgehend fehlstellenfrei bzw. defektstellenfrei hergestellt werden oder zumindest können Fehlstellen bzw. Defekte weitegehend minimiert werden. Besonders hervorzuheben ist dabei, dass diese Vorteile auch bei den vorstehend genannten hohen Filamentgeschwindigkeiten sowie bei hohen Durchsätzen erzielt werden können. Aufgrund der erfindungsgemäßen Ausgestaltung der Luftzufuhrkabinen und aufgrund der erfindungsgemäßen Homogenisierung der Kühlluftströmung können diese vorteilhaften Eigenschaften der resultierenden Spinnvliese erreicht werden. Der Erfindung liegt die Erkenntnis zugrunde, dass die Homogenisierung der Kühlluft die Filamente sehr positiv beeinflusst, so dass letztendlich unerwünschte Fehlstellen bzw. Defektstellen in der Vliesbahn verhindert oder weitgehend minimiert werden können. Die Homogenisierung der Kühlluft kann mit verhältnismäßig wenig aufwendigen und nichtsdestoweniger effektiven Maßnahmen realisiert werden. Das führt dazu, dass sich die erfindungsgemäße Vorrichtung auch durch einen geringen apparativen Aufbau sowie durch Kostengünstigkeit auszeichnet. Dementsprechend kann auch das erfindungsgemäße Verfahren relativ einfach und wenig aufwendig durchgeführt werden.The invention is based on the knowledge that with the device according to the invention and with the method according to the invention, spunbonded webs of excellent quality and in particular with very homogeneous properties can be achieved over their surface area. Within the scope of the invention, the spunbonded nonwovens can be produced largely free of defects or free of defects, or at least defects or defects can be largely minimized. It should be particularly emphasized that these advantages can also be achieved with the above-mentioned high filament speeds and with high throughputs. These advantageous properties of the resulting spunbonded nonwovens can be achieved due to the inventive design of the air supply cabins and due to the homogenization of the cooling air flow according to the invention. The invention is based on the finding that the homogenization of the cooling air has a very positive influence on the filaments, so that ultimately undesirable ones Defects or defects in the nonwoven web can be prevented or largely minimized. The homogenization of the cooling air can be achieved with relatively inexpensive and nonetheless effective measures. The result of this is that the device according to the invention is also distinguished by a small apparatus structure and by low cost. Accordingly, the method according to the invention can also be carried out relatively easily and with little effort.

Nachfolgend wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen in schematischer Darstellung:

Fig. 1
einen Vertikalschnitt durch die erfindungsgemäße Vorrichtung,
Fig. 2
einen vergrößerten Ausschnitt aus der Fig. 1 mit der Kühlvorrichtung aus der Kühlkammer und den Luftzufuhrkabinen,
Fig. 3
einen Schnitt durch eine Luftzufuhrkabine in einer ersten Ausführungsform,
Fig. 4
den Gegenstand gemäß Fig. 3 in einer zweiten Ausführungsform,
Fig. 5
eine segmentierte Zuführungsleitung mit angeschlossener Luftzufuhrkabine im Schnitt,
Fig. 6
eine perspektivische Ansicht eines Aggregates aus einem Strömungsgleichrichter mit vor- und nachgeschaltetem Strömungssieb und
Fig. 7
einen Querschnitt durch einen Strömungsgleichrichterabschnitt.
The invention is explained in more detail below on the basis of a drawing which represents only one exemplary embodiment. In a schematic representation:
Fig. 1
a vertical section through the device according to the invention,
Fig. 2
an enlarged section of the Fig. 1 with the cooling device from the cooling chamber and the air supply cabins,
Fig. 3
2 shows a section through an air supply cabin in a first embodiment,
Fig. 4
the subject according Fig. 3 in a second embodiment,
Fig. 5
a segmented supply line with connected air supply cabin on average,
Fig. 6
a perspective view of an assembly from a flow straightener with upstream and downstream flow sieve and
Fig. 7
a cross section through a flow rectifier section.

Die Figuren zeigen eine erfindungsgemäße Vorrichtung zur Herstellung von Spinnvliesen aus Endlosfilamenten 1, insbesondere aus Endlosfilamenten 1 aus thermoplastischem Kunststoff. Die Vorrichtung umfasst eine Spinnerette 2 zum Erspinnen der Endlosfilamente 1. Diese ersponnenen Endlosfilamente 1 werden in eine Kühlvorrichtung 3 mit einer Kühlkammer 4 und mit an zwei gegenüberliegenden Seiten der Kühlkammer 4 angeordneten Luftzufuhrkabinen 5, 6 eingeführt. Die Kühlkammer 4 und die Luftzufuhrkabinen 5, 6 erstrecken sich quer zur Maschinenrichtung MD und somit in CD-Richtung der Vorrichtung. Aus den gegenüberliegenden Luftzufuhrkabinen 5, 6 wird Kühlluft in die Kühlkammer 4 eingeführt.The figures show a device according to the invention for producing spunbonded nonwovens from continuous filaments 1, in particular from continuous filaments 1 made of thermoplastic material. The device comprises a spinnerette 2 for spinning the continuous filaments 1. These spun continuous filaments 1 are introduced into a cooling device 3 with a cooling chamber 4 and with air supply cabins 5, 6 arranged on two opposite sides of the cooling chamber 4. The cooling chamber 4 and the air supply cabins 5, 6 extend transversely to the machine direction MD and thus in the CD direction of the device. Cooling air is introduced into the cooling chamber 4 from the opposite air supply cabins 5, 6.

Zwischen der Spinnerette 2 und der Kühlvorrichtung 3 ist bevorzugt und im Ausführungsbeispiel eine Monomer-Absaugungseinrichtung 7 angeordnet. Mit dieser Monomer-Absaugungseinrichtung 7 können beim Spinnprozess auftretende störende Gase aus der Vorrichtung entfernt werden. Bei diesen Gasen kann es sich beispielsweise um Monomere, Oligomere bzw. Zersetzungsprodukte und dergleichen Substanzen handeln.A monomer suction device 7 is preferred between the spinnerette 2 and the cooling device 3 and in the exemplary embodiment. With this monomer suction device 7, disruptive gases occurring during the spinning process can be removed from the device. These gases can be, for example, monomers, oligomers or decomposition products and the like substances.

In Filamentströmungsrichtung FS ist der Kühlvorrichtung 3 eine Verstreckvorrichtung 8 nachgeschaltet, in der die Filamente 1 verstreckt werden. Die Verstreckvorrichtung 8 weist vorzugsweise und im Ausführungsbeispiel einen Zwischenkanal 9 auf, der die Kühlvorrichtung 3 mit einem Verstreckschacht 10 der Verstreckvorrichtung 8 verbindet. Nach besonders bevorzugter Ausführungsform und im Ausführungsbeispiel ist das Aggregat aus der Kühlvorrichtung 3 und der Verstreckvorrichtung 8 bzw. das Aggregat aus der Kühlvorrichtung 3, dem Zwischenkanal 9 und dem Verstreckschacht 10 als geschlossenes System ausgebildet. Geschlossenes System meint dabei insbesondere, dass außer der Zufuhr von Kühlluft in der Kühlvorrichtung 3 keine weitere Luftzufuhr in dieses Aggregat erfolgt.In the filament flow direction FS, the cooling device 3 is followed by a drawing device 8 in which the filaments 1 are drawn. The stretching device 8 preferably and in the exemplary embodiment has an intermediate channel 9, which connects the cooling device 3 to a stretching shaft 10 of the stretching device 8. According to a particularly preferred embodiment and in the exemplary embodiment, the assembly of the cooling device 3 and the stretching device 8 or the assembly of the cooling device 3, the intermediate channel 9 and the stretching shaft 10 is designed as a closed system. Closed system means in particular that besides the Supply of cooling air in the cooling device 3, no further air supply takes place in this unit.

Vorzugsweise und im Ausführungsbeispiel schließt in Filamentströmungsrichtung FS an die Verstreckvorrichtung 8 ein Diffusor 11 an, durch den die Filamente 1 geführt werden. Gemäß einer empfohlenen Ausführungsform und im Ausführungsbeispiel sind zwischen der Verstreckvorrichtung 8 bzw. zwischen dem Verstreckschacht 10 und dem Diffusor 11 Sekundärluft-Eintrittsspalte 12 für die Einführung von Sekundärluft in den Diffusor 11 vorgesehen. Nach Durchlaufen des Diffusors 11 werden die Filamente vorzugsweise und im Ausführungsbeispiel auf einer als Ablagesiebband 13 ausgebildeten Ablageeinrichtung abgelegt. Die Filamentablage bzw. die Vliesbahn 14 wird dann mit dem Ablagesiebband 13 in Maschinenrichtung MD abgefördert bzw. abtransportiert. Zweckmäßigerweise und im Ausführungsbeispiel ist unter der Ablageeinrichtung bzw. unter dem Ablagesiebband 13 eine Absaugungseinrichtung zum Absaugen von Luft bzw. Prozessluft durch das Ablagesiebband 13 vorgesehen. Dazu ist bevorzugt und im Ausführungsbeispiel unterhalb des Diffusoraustrittes ein Absaugbereich 15 unter dem Ablagesiebband 13 angeordnet. Bevorzugt erstreckt sich der Absaugbereich 15 zumindest über die Breite B des Diffusoraustrittes. Empfohlenermaßen und im Ausführungsbeispiel ist die Breite b des Absaugbereiches 15 größer als die Breite B des Diffusoraustrittes.A diffuser 11, through which the filaments 1 are guided, preferably adjoins the drawing device 8 in the filament flow direction FS. According to a recommended embodiment and in the exemplary embodiment, secondary air inlet gaps 12 are provided between the drawing device 8 or between the drawing shaft 10 and the diffuser 11 for the introduction of secondary air into the diffuser 11. After passing through the diffuser 11, the filaments are preferably and, in the exemplary embodiment, deposited on a depositing device designed as a depositing belt 13. The filament deposit or the nonwoven web 14 is then conveyed or removed in the machine direction MD with the deposit screen belt 13. Expediently and in the exemplary embodiment, a suction device for sucking out air or process air through the storage screen belt 13 is provided under the storage device or under the storage screen belt 13. For this purpose, and in the exemplary embodiment, a suction area 15 is arranged under the deposit screen belt 13 below the diffuser outlet. The suction region 15 preferably extends at least over the width B of the diffuser outlet. As recommended and in the exemplary embodiment, the width b of the suction region 15 is greater than the width B of the diffuser outlet.

Nach bevorzugter Ausführungsform und im Ausführungsbeispiel ist jede Luftzufuhrkabine 5, 6 in zwei Kabinenabschnitte 16, 17 unterteilt, aus denen jeweils Kühlluft unterschiedlicher Temperatur zuführbar ist. Im Ausführungsbeispiel mag aus den oberen Kabinenabschnitten 16 jeweils Kühlluft mit einer Temperatur T1 zuführbar sein, während aus den beiden unteren Kabinenabschnitten 17 jeweils Kühlluft einer von der Temperatur T1 unterschiedlichen Temperatur T2 zuführbar ist.According to a preferred embodiment and in the exemplary embodiment, each air supply cabin 5, 6 is divided into two cabin sections 16, 17, from which cooling air of different temperatures can be fed in each case. In the exemplary embodiment, cooling air with a temperature T 1 may be able to be supplied from the upper cabin sections 16, while from the two lower cabin sections 17 in each case cooling air of a temperature T 2 different from the temperature T 1 can be supplied.

Gemäß bevorzugter Ausführungsform und im Ausführungsbeispiel ist in jeder Luftzufuhrkabine 5, 6 kühlkammerseitig jeweils ein Strömungsgleichrichter 18 angeordnet, der sich bevorzugt und im Ausführungsbeispiel über beide Kabinenabschnitte 16, 17 jeder Luftzufuhrkabine 5, 6 erstreckt. Die beiden Strömungsgleichrichter 18 dienen dabei zum Gleichrichten der auf die Filamente 1 treffenden Kühlluftströmung. Auf die Strömungsgleichrichter 18 wird weiter unten noch näher eingegangen.According to a preferred embodiment and in the exemplary embodiment, a flow straightener 18 is arranged in each air supply cabin 5, 6 on the cooling chamber side, which preferably and in the exemplary embodiment extends over both cabin sections 16, 17 of each air supply cabin 5, 6. The two flow straighteners 18 serve to rectify the cooling air flow impinging on the filaments 1. The flow straightener 18 will be discussed in more detail below.

Erfindungsgemäß ist an jede Luftzufuhrkabine 5, 6 zumindest eine Zuführungsleitung 22 für die Zuführung der Kühlluft angeschlossen. Diese Zuführungsleitung 22 weist eine Querschnittsfläche QZ auf, wobei sich diese Querschnittsfläche QZ beim Übergang der Kühlluft in die Luftzufuhrkabine 5, 6 auf eine Querschnittsfläche QL der Luftzufuhrkabine 5, 6 vergrößert. Dabei ist die Querschnittsfläche QL vorzugsweise mindestens dreimal so groß und bevorzugt mindestens viermal so groß wie die Querschnittsfläche QZ der Zuführungsleitung 22. Es liegt im Rahmen der Erfindung, dass sich die Querschnittsfläche QZ der Zuführungsleitung 22 auf das 3- bis 15-fache zur Querschnittsfläche QL der Luftzufuhrkabine 5, 6 erweitert.According to the invention, at least one supply line 22 for supplying the cooling air is connected to each air supply cabin 5, 6. This supply line 22 has a cross-sectional area Q Z , this cross-sectional area Q Z increasing to a cross-sectional area Q L of the air supply cabin 5, 6 when the cooling air passes into the air supply cabin 5, 6. The cross-sectional area Q L is preferably at least three times as large and preferably at least four times as large as the cross-sectional area Q Z of the feed line 22. It is within the scope of the invention that the cross-sectional area Q Z of the feed line 22 is 3 to 15 times expanded to the cross-sectional area Q L of the air supply cabin 5, 6.

Es liegt weiterhin im Rahmen der Erfindung, dass in jeder Luftzufuhrkabine 5, 6 zumindest ein flächiges Homogenisierungselement 23 zur Homogenisierung des in die Luftzufuhrkabine 5, 6 eingeführten Kühlluftstromes angeordnet ist. Zweckmäßigerweise ist in jedem Kabinenabschnitt 16, 17 der Luftzufuhrkabinen 5, 6 zumindest ein flächiges Homogenisierungselement 23 vorgesehen. Die Homogenisierungselemente 23 sind gemäß besonders bevorzugter Ausführungsform als Lochelement, insbesondere als Lochblech 24 mit einer Mehrzahl von Lochöffnungen 25 ausgebildet und/oder als Homogenisierungssieb 26 mit einer Mehrzahl bzw. einer Vielzahl von Maschen 27. Gemäß besonders bevorzugter Ausführungsform der Erfindung und im Ausführungsbeispiel ist in jeder Luftzufuhrkabine 5, 6 bzw. in jedem Kabinenabschnitt 16, 17 jeweils eine Mehrzahl von Homogenisierungselementen 23 mit Abstand zu dem Strömungsgleichrichter 18 in Strömungsrichtung der Kühlluft hintereinander und beabstandet voneinander angeordnet. Dabei beträgt empfohlenermaßen und im Ausführungsbeispiel der Abstand a1 zwischen dem Strömungsgleichrichter 18 und dem Strömungsgleichrichter 18 am nächsten benachbarten Homogenisierungselement 23 mindestens 50 mm, bevorzugt mindestens 100 mm. Der gegenseitige Abstand ax zwischen zwei in einer Luftzufuhrkabine 5, 6 bzw. in einem Kabinenabschnitt 16, 17 in Strömungsrichtung hintereinander angeordneten Homogenisierungselementen 23 beträgt ebenfalls mindestens 50 mm, bevorzugt mindestens 100 mm.It is also within the scope of the invention that at least one flat homogenization element 23 for homogenizing the cooling air flow introduced into the air supply cabin 5, 6 is arranged in each air supply cabin 5, 6. At least one flat homogenization element 23 is expediently provided in each cabin section 16, 17 of the air supply cabins 5, 6. According to a particularly preferred embodiment, the homogenization elements 23 are in the form of a perforated element, in particular a perforated plate 24 with a plurality formed by perforated openings 25 and / or as a homogenizing screen 26 with a plurality or a plurality of meshes 27. According to a particularly preferred embodiment of the invention and in the exemplary embodiment, there are a plurality of homogenizing elements in each air supply cabin 5, 6 or in each cabin section 16, 17 23 at a distance from the flow straightener 18 in the flow direction of the cooling air one behind the other and spaced apart. As recommended and in the exemplary embodiment, the distance a 1 between the flow straightener 18 and the flow straightener 18 on the closest adjacent homogenization element 23 is at least 50 mm, preferably at least 100 mm. The mutual distance a x between two homogenization elements 23 arranged one behind the other in an air supply cabin 5, 6 or in a cabin section 16, 17 in the flow direction is likewise at least 50 mm, preferably at least 100 mm.

Erfindungsgemäß beträgt die freie geöffnete Fläche bzw. die von der Kühlluft frei durchströmbare Fläche eines flächigen Homogenisierungselementes 23 1 bis 40 %, vorzugsweise 2 bis 35 % und bevorzugt 2 bis 30 % der gesamten Fläche des flächigen Homogenisierungselementes 23. Nach einer Ausführungsvariante beträgt die freie geöffnete Fläche eines flächigen Homogenisierungselementes 23 2 bis 25 %, zweckmäßigerweise 2 bis 20 % und insbesondere 2 bis 15 %. Besonders bevorzugt und im Ausführungsbeispiel nimmt die freie geöffnete Fläche bzw. die frei von der Kühlluft durchströmbare Fläche der hintereinander angeordneten Homogenisierungselemente 23 von Homogenisierungselement 23 zu Homogenisierungselement 23 in Richtung zum zugeordneten Strömungsgleichrichter 18 bzw. in Richtung der Kühlkammer 4 hin zu. Zweckmäßigerweise und im Ausführungsbeispiel erstreckt sich im Übrigen die Fläche eines Homogenisierungselementes 23 über die gesamte Querschnittsfläche QL der zugeordneten Luftzufuhrkabine 5, 6 bzw. des zugeordneten Kabinenabschnittes 16, 17.According to the invention, the free open area or the area of a flat homogenization element 23 through which the cooling air can flow freely is 1 to 40%, preferably 2 to 35% and preferably 2 to 30% of the total area of the flat homogenization element 23. According to one embodiment variant, the free open area Area of a flat homogenization element 23 2 to 25%, advantageously 2 to 20% and in particular 2 to 15%. Particularly preferably and in the exemplary embodiment, the free open area or the area of the homogenizing elements 23 arranged one behind the other, through which the cooling air can flow freely, increases from the homogenizing element 23 to the homogenizing element 23 in the direction of the associated flow straightener 18 or in the direction of the cooling chamber 4. The surface of a homogenizing element 23 expediently and in the exemplary embodiment extends over the entire cross-sectional area Q L of the assigned air supply cabin 5, 6 or the assigned cabin section 16, 17.

In den Fig. 3 und 4 ist jeweils ein Schnitt durch eine Luftzufuhrkabine 5 dargestellt. Statt für eine gesamte Luftzufuhrkabine 5, 6 kann die Darstellung auch für lediglich einen Kabinenabschnitt 16, 17 der Luftzufuhrkabinen 5, 6 dienen. Im Ausführungsbeispiel nach Fig. 3 vergrößert sich der Querschnitt QZ der Zuführungsleitung 22 unmittelbar und ohne Abstufung auf die Querschnittsfläche QL der Luftzufuhrkabine 5. In dieser Luftzufuhrkabine 5 sind in Strömungsrichtung der Kühlluft vor dem Strömungsgleichrichter 18 vier Homogenisierungselemente 23 angeordnet. Das Homogenisierungselement 23.0 befindet sich im Ausführungsbeispiel im Übergangsbereich zwischen der Zuführungsleitung 22 und der Luftzufuhrkabine 5 und erstreckt sich lediglich über den Querschnitt QZ der Zuführungsleitung 22. Die weiteren Homogenisierungselemente 23.1, 23.2 und 23.3 sind jeweils beabstandet zueinander und mit Abstand zu dem Strömungsgleichrichter 18 in der Luftzufuhrkabine 4 angeordnet. Sie erstrecken sich über den vollständigen Querschnitt QL der Luftzufuhrkabine 5. In der nachfolgenden Tabelle sind beispielhaft typische Parameter für die Homogenisierungselemente 23.0 bis 23.3 gemäß Fig. 3 angegeben und zwar für eine Anlagenbreite (in CD-Richtung) von jeweils 1000 mm. In der linken Spalte der Tabellen wird zunächst die vertikale Höhe h der Homogenisierungselemente 23 in mm aufgeführt, rechts daneben die Gesamtfläche jedes Homogenisierungselementes 23 und in den beiden Spalten rechts daneben wird die freie bzw. die frei von der Kühlluft durchströmbare offene Fläche in Prozent und im mm2 angegeben. Die relative freie Fläche berechnet sich aus folgender Formel: Querschnittsfläche des Homogenisierungselementes x offene Fläche des Homogenisierungselementes / Fläche des Ausströmquerschnittes im Bereich des Gleichrichters. Für die Homogenisierungselemente 23.1, 23.2 und 23.3 stimmt somit die relative freie Fläche (in Prozent) mit der freien offenen Fläche (in Prozent) überein. Lediglich für das Homogenisierungselement 23.0 mit der Querschnittsfläche entsprechend der Zuführungsleitung 22 ergibt sich eine relative freie Fläche von lediglich 1 %. Der Abstand a (in mm) entspricht dem Abstand a der einzelnen Homogenisierungselemente 23 von dem Strömungsgleichrichter 18. Der Integralwert in der letzten Spalte entspricht dem Integral unter der Kurve bei einer Auftragung der relativen freien Fläche der Homogenisierungselemente 23 über dem Abstand a dieser Homogenisierungselemente 23 von dem Strömungsgleichrichter 18. Element Höhe h mm Fläche mm2 freie offene Fläche relative freie Fläche % Abstand a mm Integralwert % mm2 23.0 350 350000 4% 14000 3% 1200 23.1 500 500000 6% 30000 6% 800 17,6 23.2 500 500000 8% 40000 8% 600 14 23.3 500 500000 10% 50000 10% 400 18 Summe: 49,6 In the Fig. 3 and 4th A section through an air supply cabin 5 is shown in each case. Instead of an entire air supply cabin 5, 6, the illustration can also serve for only one cabin section 16, 17 of the air supply cabins 5, 6. In the embodiment according to Fig. 3 The cross section Q Z of the supply line 22 increases immediately and without gradation to the cross sectional area Q L of the air supply cabin 5. In this air supply cabin 5, four homogenizing elements 23 are arranged upstream of the flow straightener 18 in the flow direction of the cooling air. In the exemplary embodiment, the homogenization element 23.0 is located in the transition area between the supply line 22 and the air supply cabin 5 and extends only over the cross section Q Z of the supply line 22. The further homogenization elements 23.1, 23.2 and 23.3 are each spaced apart and at a distance from the flow straightener 18 in the air supply cabin 4 arranged. They extend over the complete cross section Q L of the air supply cabin 5. The table below shows typical parameters for the homogenization elements 23.0 to 23.3 in accordance with FIG Fig. 3 specified for a system width (in CD direction) of 1000 mm each. In the left column of the tables, the vertical height h of the homogenization elements 23 is first listed in mm, to the right the total area of each homogenization element 23 and in the two columns to the right, the free or the open area through which the cooling air can flow is shown in percent and in mm 2 specified. The relative free area is calculated from the following formula: cross-sectional area of the homogenizing element x open area of the homogenizing element / area of the outflow cross section in the area of the rectifier. For the homogenization elements 23.1, 23.2 and 23.3 the relative free area (in Percent) corresponds to the free open area (in percent). A relative free area of only 1% results only for the homogenization element 23.0 with the cross-sectional area corresponding to the feed line 22. The distance a (in mm) corresponds to the distance a of the individual homogenization elements 23 from the flow straightener 18. The integral value in the last column corresponds to the integral under the curve when the relative free area of the homogenization elements 23 is plotted over the distance a of these homogenization elements 23 from the flow straightener 18. element Height h mm Area mm 2 free open space relative free area% Distance a mm Integral value % mm 2 23.0 350 350000 4% 14000 3% 1200 23.1 500 500,000 6% 30000 6% 800 17.6 23.2 500 500,000 8th% 40000 8th% 600 14 23.3 500 500,000 10% 50000 10% 400 18th Total: 49.6

Die Höhe H der Luftzufuhrkabine 5 gemäß Fig. 3 mag im Ausführungsbeispiel 500 mm betragen und die Länge l der Luftzufuhrkabine 5 vom Strömungsgleichrichter 18 bis zur Mündung der Zuführungsleitung 22 mag 1000 mm betragen. - Nach besonders bevorzugter Ausführungsform der Erfindung liegt die Summe der vorstehend erläuterten Integralwerte über 45, vorzugsweise über 50 und bevorzugt über 65.The height H of the air supply cabin 5 according to Fig. 3 may be 500 mm in the exemplary embodiment and the length l of the air supply cabin 5 from the flow straightener 18 to the mouth of the supply line 22 may be 1000 mm. According to a particularly preferred embodiment of the invention, the sum of the integral values explained above is above 45, preferably above 50 and preferably above 65.

In der Fig. 4 wird eine zweite Ausführungsform einer erfindungsgemäßen Luftzufuhrkabine 5 dargestellt. Auch hier werden vier Homogenisierungselemente 23.0 bis 23.3 eingesetzt. Im Unterschied zu dem Ausführungsbeispiel gemäß Fig. 3 erfolgt hier jedoch eine stufenförmige Aufweitung des Querschnittes QZ der Zuführungsleitung 22 auf den Gesamtquerschnitt QL der Luftzufuhrkabine 5. Zweckmäßigerweise findet diese stufenförmige Aufweitung in einer quaderförmigen Luftzufuhrkabine 5 über alle vier Wände zum Strömungsgleichrichter 18 hin statt. Abgesehen von den Unterschieden aufgrund der stufenförmigen Querschnittsaufweitung entsprechen ansonsten die Abmessungen im Ausführungsbeispiel nach Fig. 4 den Abmessungen im Ausführungsbeispiel gemäß Fig. 3. Die Parameter für die Ausführungsform der Fig. 4 sind analog zu der Tabelle bezüglich Fig. 3 in der folgenden Tabelle aufgeführt: Element Höhe h mm Fläche mm2 freie offene Fläche relative freie Fläche % Abstand a mm Integralwert % mm2 23.0 300 300000 3% 9000 2% 1000 23.1 400 400000 6% 24000 5% 800 6,6 23.2 450 450000 8% 36000 7% 600 12 23.3 500 500000 10% 50000 12% 300 28,8 Summe: 47,4 In the Fig. 4 A second embodiment of an air supply cabin 5 according to the invention is shown. Four homogenization elements 23.0 to 23.3 are also used here. In contrast to the exemplary embodiment according to Fig. 3 However, there is a step-like widening of the cross section Q Z of the feed line 22 to the total cross section Q L of the air supply cabin 5. This step-wise expediently takes place in a cuboid air supply cabin 5 across all four walls to the flow straightener 18. Apart from the differences due to the step-like cross-sectional widening, the dimensions in the exemplary embodiment otherwise correspond Fig. 4 the dimensions in the exemplary embodiment Fig. 3 . The parameters for the embodiment of the Fig. 4 are analogous to the table regarding Fig. 3 listed in the following table: element Height h mm Area mm 2 free open space relative free area% Distance a mm Integral value % mm 2 23.0 300 300000 3% 9000 2% 1000 23.1 400 400000 6% 24000 5% 800 6.6 23.2 450 450000 8th% 36000 7% 600 12th 23.3 500 500,000 10% 50000 12% 300 28.8 Total: 47.4

In der Fig. 5 ist der Anschlussbereich einer gekrümmten Zuführungsleitung 22 an die Luftzufuhrkabine 5 dargestellt. Gemäß diesem Ausführungsbeispiel sind in der Zuführungsleitung 22 Segmentierungselemente 28 vorgesehen, die die Zuführungsleitung 22 in einzelne Leitungssegmente unterteilen. Aufgrund dieser Segmentierung bzw. Beschaufelung des Leitungsstückes kann eine zusätzliche Vergleichmäßigung der Kühlluftströmung erreicht werden. Insbesondere unterliegt die Kühlluftströmung hier einer Vor-Vergleichmäßigung und wird somit für die weitere Vergleichmäßigung bzw. Homogenisierung in der Luftzufuhrkabine 5 gleichsam vorbereitet.In the Fig. 5 the connection area of a curved supply line 22 to the air supply cabin 5 is shown. According to this exemplary embodiment, segmentation elements 28 are provided in the feed line 22, which subdivide the feed line 22 into individual line segments. Because of This segmentation or blading of the line section can be used to further homogenize the cooling air flow. In particular, the cooling air flow here is subject to a pre-equalization and is thus, as it were, prepared for further equalization or homogenization in the air supply cabin 5.

Die Fig. 6 zeigt eine perspektivische Ansicht eines bevorzugt im Rahmen der Erfindung eingesetzten Strömungsgleichrichters 18. Die Strömungsgleichrichter 18 dienen zum Gleichrichten der auf die Filamente 1 treffenden Kühlluftströmung. Dazu weist empfohlenermaßen und im Ausführungsbeispiel jeder Strömungsgleichrichter 18 eine Mehrzahl von senkrecht zur Filamentströmungsrichtung FS orientierte Strömungskanäle 19 auf. Diese Strömungskanäle 19 sind jeweils durch Kanalwandungen 20 begrenzt und sind vorzugsweise linear ausgebildet. - Gemäß bevorzugter Ausführungsform und im Ausführungsbeispiel beträgt die frei durchströmbare offene Fläche jedes Strömungsgleichrichters 18 mehr als 90 % der gesamten Fläche des Strömungsgleichrichters 18. Bewährtermaßen und im Ausführungsbeispiel liegt das Verhältnis der Länge L der Strömungskanäle 19 zum kleinsten Innendurchmesser Di der Strömungskanäle 19 im Bereich zwischen 1 und 10, zweckmäßigerweise im Bereich zwischen 1 und 9. Die Strömungskanäle 19 eines Strömungsgleichrichters 18 können beispielsweise und im Ausführungsbeispiel gemäß Fig. 7 einen sechseckförmigen bzw. wabenförmigen Querschnitt aufweisen. Der kleinste Innendurchmesser Di wird hier zwischen gegenüberliegenden Seiten des Sechseckes gemessen.The Fig. 6 shows a perspective view of a flow straightener 18 preferably used in the context of the invention. The flow straighteners 18 serve to straighten the cooling air flow impinging on the filaments 1. For this purpose, as recommended and in the exemplary embodiment, each flow straightener 18 has a plurality of flow channels 19 oriented perpendicular to the filament flow direction FS. These flow channels 19 are each delimited by channel walls 20 and are preferably linear. - According to a preferred embodiment and in the exemplary embodiment, the freely flowable open area of each flow straightener 18 is more than 90% of the total area of the flow straightener 18. Proven and in the exemplary embodiment, the ratio of the length L of the flow channels 19 to the smallest inside diameter D i of the flow channels 19 is in the range between 1 and 10, expediently in the range between 1 and 9. The flow channels 19 of a flow straightener 18 can for example and in the exemplary embodiment according to Fig. 7 have a hexagonal or honeycomb cross section. The smallest inside diameter D i is measured here between opposite sides of the hexagon.

Nach bevorzugter Ausführungsform und im Ausführungsbeispiel weist jeder Strömungsgleichrichter 18 sowohl an seiner Kühlluft-Einströmseite ES als auch an seiner Kühlluft-Ausströmseite AS ein Strömungssieb 21 auf. Vorzugsweise und im Ausführungsbeispiel sind die beiden Strömungssiebe 21 jedes Strömungsgleichrichters 18 unmittelbar vor bzw. hinter dem Strömungsgleichrichter 18 angeordnet. Insoweit sind die Strömungssiebe 21 von den als Homogenisierungssiebe 26 ausgebildeten Homogenisierungselementen 23 zu unterscheiden. Empfohlenermaßen und im Ausführungsbeispiel sind die beiden Strömungssiebe 21 eines Strömungsgleichrichters 18 bzw. die Flächen dieser Strömungssiebe 21 senkrecht zur Längsrichtung der Strömungskanäle 19 des Strömungsgleichrichters 18 ausgerichtet. Es hat sich bewährt, dass ein Strömungssieb 21 eine Maschenweite von 0,1 bis 0,5 mm und vorzugsweise von 0,1 bis 0,4 mm aufweist sowie eine Drahtstärke von 0,05 bis 0,35 mm und vorzugsweise von 0,05 bis 0,32 mm.According to a preferred embodiment and in the exemplary embodiment, each flow straightener 18 has a flow sieve 21 both on its cooling air inflow side ES and on its cooling air outflow side AS. Preferably, and in the exemplary embodiment, the two flow screens 21 are each Flow rectifier 18 arranged immediately before or after the flow rectifier 18. In this respect, the flow screens 21 are to be distinguished from the homogenization elements 23 designed as homogenization screens 26. As recommended and in the exemplary embodiment, the two flow screens 21 of a flow straightener 18 or the surfaces of these flow screens 21 are aligned perpendicular to the longitudinal direction of the flow channels 19 of the flow straightener 18. It has proven useful that a flow sieve 21 has a mesh size of 0.1 to 0.5 mm and preferably 0.1 to 0.4 mm and a wire thickness of 0.05 to 0.35 mm and preferably 0.05 up to 0.32 mm.

Claims (20)

  1. An apparatus for producing spunbonded nonwovens from continuous filaments (1), in particular from continuous filaments (1) of thermoplastic material, wherein a spinneret (2) is provided for spinning the continuous filaments (1) and wherein a cooling chamber (4) is provided for cooling the spun filaments (1) with cooling air, wherein respectively one air supply chamber (5, 6) is arranged on two opposite sides of the cooling chamber (4), and wherein cooling air can be introduced into the cooling chamber (4) from the opposite air supply chambers (5, 6),
    wherein at least one supply line (22) for the supply of cooling air having a cross-sectional area Qz is connected to each air supply chamber, wherein this cross-sectional area QZ increases on transition of the cooling air into the air supply chamber (5, 6) to a cross-sectional area QL of the air supply chamber (5, 6), wherein the cross-sectional area QL is at least twice as large, preferably at least three times as large as the cross-sectional area QZ of the supply line (22),
    wherein at least one flow straightener (18) arranged upstream of the cooling chamber (4) is provided in each air supply chamber (5, 6), wherein at last one planar homogenizing element (23) for homogenizing the cooling air flow introduced into the air supply chamber (5, 6) is provided in the air supply chamber (5, 6) in the flow direction of the cooling air upstream of the flow straightener (18) and at a distance from the flow straightener (18) and wherein the planar homogenizing element (23) comprises a plurality of openings, wherein the free open area of the planar homogenizing element (23) is 1 to 40%, preferably 2 to 35% and preferably 2 to 30% of the total area of the planar homogenizing element (23).
  2. The apparatus according to claim 1, wherein in the flow direction of the filaments (1) a stretching devices (8) adjoins the cooling chamber (4) and wherein the cooling chamber (4) and the stretching device (8) are formed as a closed system, in which apart from the air supply of the cooling air into the cooling chamber (4) no further supply of air takes place.
  3. The apparatus according to one of claims 1 or 2, wherein the air supply chamber (5, 6) has a height H or a vertical height H of 400 to 1500 mm, preferably of 500 to 1200 mm, and preferably of 600 to 1000 mm.
  4. The apparatus according to one of claims 1 to 3, wherein the cross-sectional area QZ of the supply line (22) increases to 3 to 15 times with respect to the cross-sectional area QL of the air supply chamber (5, 6) .
  5. The apparatus according to one of claims 1 to 4, wherein a flow straightener (18) comprises a plurality of flow channels (19) oriented transversely to the direction of movement of the filaments (1) or the filament flow, wherein the flow channels (19) are delimited by channel walls (20) and wherein the open area of a flow straightener (18) is preferably greater than 85%, preferably greater than 90% and wherein expediently the ratio of the length L of the flow channels (19) to the inside diameter D of the flow channels (19) L/D is 1 to 15, preferably 1 to 10 and preferably 1.5 to 9.
  6. The apparatus according to one of claims 1 to 5, wherein the cooling air volume flow supplied to an air supply chamber (5, 6) is divided into a plurality of partial volume flows, which partial volume flows flow through separate supply lines and/or through the segments of a segmented supply line.
  7. The apparatus according to claim 6, wherein the cooling air volume flow is divided into two to five, preferably into two to three partial volume flows.
  8. The apparatus according to one of claims 6 or 7, wherein the cooling air of at least two partial volume flows has a different air speed and/or a different air temperature and/or a different humidity.
  9. The apparatus according to one of claims 1 to 8, wherein an air supply chamber (5, 6) is divided into two, preferably into two chamber sections (16, 17) from which preferably cooling air at different temperature can be supplied in each case and wherein at least one partial volume flow of cooling air can be supplied to each chamber section (16, 17).
  10. The apparatus according to one of claims 1 to 9, wherein at least one homogenizing element (23) is configured as a perforated element, in particular as a perforated sheet (24) comprising a plurality of holes (25) and wherein the holes (25) preferably have an opening diameter d of 1 to 10 mm, preferably of 1.5 to 9 mm, and very preferably of 1.5 to 8 mm.
  11. The apparatus according to one of claims 1 to 10, wherein a homogenizing element (23) is configured as a homogenizing screen having a multiplicity of or having a plurality of meshes (27), wherein the homogenizing screen preferably has mesh widths (26) of 0.1 to 0.5 mm, preferably of 0.12 to 0.4 mm and very preferably of 0.15 to 0.35 mm.
  12. The apparatus according to one of claims 1 to 11, wherein the at least one planar homogenizing element (23) is arranged at a distance a1 of at least 50 mm, preferably of at least 80 mm and preferably of at least 100 mm in the flow direction of the cooling air upstream of the flow straightener (18) of the corresponding air supply chamber (5, 6).
  13. The apparatus according to one of claims 1 to 12, wherein a multiplicity of homogenizing elements (23) are arranged at a distance from the flow straightener (18) in the flow direction of the cooling air one after the other and at a distance from one another in an air supply chamber (5, 6).
  14. The apparatus according to claim 13, wherein the distance ax between two homogenizing elements (23) arranged in an air supply chamber (5, 6) one after the other in the flow direction is at least 50 mm, preferably at least 80 mm and preferably at least 100 mm.
  15. The apparatus according to one of claims 13 or 14, wherein the free open area of the consecutively arranged homogenizing elements (23) increases from homogenizing element (23) to homogenizing element (23) in the direction of the associated flow straightener (18) .
  16. The apparatus according to one of claims 1 to 15, wherein the area of one homogenizing element (23) extends over at least most of the cross-sectional area QL of the associated air supply chamber (5, 6) or over most of the cross-sectional area of the associated chamber section (16, 18) of the air supply chamber (5, 6) .
  17. The apparatus according to one of claims 1 to 16, wherein the cross-sectional area QZ of a supply line (22) increases in a stepwise manner, in particular in several steps, or continuously to the cross-sectional area QL of the air supply chamber (5, 6) or to the cross-sectional area of a cabin section (16, 17) of the air supply chamber (5, 6).
  18. Method for producing spunbonded nonwovens from continuous filaments, in particular from continuous filaments (1) of thermoplastic material, wherein the continuous filaments (1) are spun from a spinneret (2) and are cooled with cooling air in a cooling chamber (4), wherein the cooling air is introduced into the cooling chamber (4) from air supply chambers (5, 6) arranged on opposite sides of the cooling chamber (4),
    wherein cooling air is supplied through a supply line (22) having a cross-sectional area (Qz) connected to the air supply chamber, wherein this cross-sectional area (Qz) increases on transition of the cooling air into the air supply chamber to a cross-sectional area (QL) of the air supply chamber, wherein the cross-sectional area (QL) is at least twice as large, preferably at least three times as large as the cross-sectional area (Qz) of the supply line (22),
    wherein the cooling air is guided in the air supply chamber (5, 6) through at least one planar homogenizing element (23) for homogenizing the cooling air flow, wherein the planar homogenizing element (23) comprises a plurality of openings and wherein the free open area of the planar homogenizing element (23) is 1 to 40%, preferably 2 to 35% and preferably 2 to 30% of the total area of the planar homogenizing element (23)
    and wherein following the at least one planar homogenizing element (23), the cooling air is introduced into the cooling chamber (4) through a flow straightener (18).
  19. The method according to claim 18, wherein cooling air is applied to the filaments in the cooling chamber (4) at an air speed of 0.15 to 3 m/s, preferably of 0.15 to 2.5 m/s and preferably of 0.17 to 2.3 m/s.
  20. The method according to one of claims 18 or 19, wherein the filaments in the cooling chamber (4) are exposed to a cooling air volume flow of 200 to 14000 m3/h/m, preferably of 250 to 13000 m3/h/m and preferably of 300 m3/h/m to 12000 m3/h/m.
EP18174519.1A 2018-05-28 2018-05-28 Device and method for the manufacture of woven material from continuous filaments Active EP3575469B1 (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
SI201830136T SI3575469T1 (en) 2018-05-28 2018-05-28 Device and method for the manufacture of woven material from continuous filaments
DK18174519.1T DK3575469T3 (en) 2018-05-28 2018-05-28 Device and method for producing filter cloths from endless filaments
ES18174519T ES2826866T3 (en) 2018-05-28 2018-05-28 Device and procedure for the manufacture of nonwoven fabric spun from continuous filaments
EP18174519.1A EP3575469B1 (en) 2018-05-28 2018-05-28 Device and method for the manufacture of woven material from continuous filaments
PL18174519T PL3575469T3 (en) 2018-05-28 2018-05-28 Device and method for the manufacture of woven material from continuous filaments
JP2019073332A JP6923590B2 (en) 2018-05-28 2019-04-08 Equipment and methods for producing spunbonded non-woven fabrics from endless filaments
CA3041006A CA3041006A1 (en) 2018-05-28 2019-04-24 Apparatus and method of making spunbonded nonwovens from continuous filaments
AU2019202898A AU2019202898B2 (en) 2018-05-28 2019-04-24 Apparatus and method of making spunbonded nonwovens from continuous filaments
MYPI2019002376A MY193430A (en) 2018-05-28 2019-04-26 Apparatus and method of making spunbonded nonwovens from continuous filaments
TNP/2019/000145A TN2019000145A1 (en) 2018-05-28 2019-05-07 Apparatus and method of making spunbonded nonwovens from continuous filaments
MX2019005391A MX2019005391A (en) 2018-05-28 2019-05-08 Manufacture of spun-bonded nonwoven from continuous filaments.
ARP190101221A AR114882A1 (en) 2018-05-28 2019-05-08 APPARATUS AND PROCEDURE FOR THE MANUFACTURE OF NON-WOVEN TEXTILES JOINTED BY SPINNING FROM CONTINUOUS FILAMENTS
CONC2019/0004698A CO2019004698A1 (en) 2018-05-28 2019-05-08 Apparatus and process for manufacturing spunbonded nonwoven textiles from continuous filaments
CL2019001364A CL2019001364A1 (en) 2018-05-28 2019-05-20 Apparatus and method of manufacturing nonwoven fabrics joined by spinning from continuous filaments
CN201910420986.0A CN110541241B (en) 2018-05-28 2019-05-21 Apparatus and method for making spunbond nonwoven fabrics from continuous filaments
IL266791A IL266791B (en) 2018-05-28 2019-05-21 Apparatus and method of making spunbonded nonwovens from continuous filaments
BR102019010313A BR102019010313A2 (en) 2018-05-28 2019-05-21 apparatus and method for making non-woven continuous spinning fabrics from continuous filaments
PE2019001080A PE20191833A1 (en) 2018-05-28 2019-05-27 APPARATUS AND PROCEDURE FOR THE MANUFACTURE OF NON-WOVEN TEXTILES JOINTED BY SPINNING FROM CONTINUOUS FILAMENTS
KR1020190062166A KR102264181B1 (en) 2018-05-28 2019-05-27 Apparatus and method of making spunbonded nonwovens from continuous filaments
UAA201905805A UA122635C2 (en) 2018-05-28 2019-05-27 Vorrichtung und verfahren zur herstellung von spinnvliesen aus endlosfilamenten
RU2019116257A RU2734852C1 (en) 2018-05-28 2019-05-27 Method and device for production of nonwoven materials from endless filaments
US16/423,049 US11306421B2 (en) 2018-05-28 2019-05-27 Manufacture of spun-bonded nonwoven from continuous filaments
MA45968A MA45968B1 (en) 2018-05-28 2019-05-28 Apparatus and method for the manufacture of filament nonwovens by continuous filaments
JOP/2019/0122A JOP20190122B1 (en) 2018-05-28 2019-05-28 Device and method for the manufacture of woven material from continuous filaments
US17/694,867 US11697897B2 (en) 2018-05-28 2022-03-15 Manufacture of spunbonded nonwovens from continuous filaments
US18/200,610 US20230332342A1 (en) 2018-05-28 2023-05-23 Manufacture of spunbonded nonwoven from continuous filaments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18174519.1A EP3575469B1 (en) 2018-05-28 2018-05-28 Device and method for the manufacture of woven material from continuous filaments

Publications (2)

Publication Number Publication Date
EP3575469A1 EP3575469A1 (en) 2019-12-04
EP3575469B1 true EP3575469B1 (en) 2020-08-05

Family

ID=62386226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18174519.1A Active EP3575469B1 (en) 2018-05-28 2018-05-28 Device and method for the manufacture of woven material from continuous filaments

Country Status (24)

Country Link
US (3) US11306421B2 (en)
EP (1) EP3575469B1 (en)
JP (1) JP6923590B2 (en)
KR (1) KR102264181B1 (en)
CN (1) CN110541241B (en)
AR (1) AR114882A1 (en)
AU (1) AU2019202898B2 (en)
BR (1) BR102019010313A2 (en)
CA (1) CA3041006A1 (en)
CL (1) CL2019001364A1 (en)
CO (1) CO2019004698A1 (en)
DK (1) DK3575469T3 (en)
ES (1) ES2826866T3 (en)
IL (1) IL266791B (en)
JO (1) JOP20190122B1 (en)
MA (1) MA45968B1 (en)
MX (1) MX2019005391A (en)
MY (1) MY193430A (en)
PE (1) PE20191833A1 (en)
PL (1) PL3575469T3 (en)
RU (1) RU2734852C1 (en)
SI (1) SI3575469T1 (en)
TN (1) TN2019000145A1 (en)
UA (1) UA122635C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2886885T3 (en) * 2019-07-30 2021-12-21 Reifenhaeuser Masch Device and method for the manufacture of a nonwoven material from fibers
CN111172602A (en) * 2020-02-24 2020-05-19 宏大研究院有限公司 Novel side blowing device for fine denier high-speed spinning of spun-bonded non-woven fabric
EP4008814A1 (en) 2020-12-04 2022-06-08 Ramina S.R.L. Plant for producing nonwoven fabric
IT202100022190A1 (en) 2021-08-23 2023-02-23 Ramina S R L PLANT FOR THE PRODUCTION OF NON-WOVEN FABRIC
IT202100023588A1 (en) 2021-09-13 2023-03-13 Ramina S R L PLANT FOR THE PRODUCTION OF NON-WOVEN FABRIC

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL53431C (en) * 1938-08-09
US3320343A (en) * 1962-08-23 1967-05-16 Schwarza Chemiefaser Process for melt-spinning of synthetic linear high polymers
US3999910A (en) * 1975-10-08 1976-12-28 Allied Chemical Corporation Filament quenching apparatus
US4492557A (en) * 1983-07-19 1985-01-08 Allied Corporation Filament quenching apparatus
US4529368A (en) * 1983-12-27 1985-07-16 E. I. Du Pont De Nemours & Company Apparatus for quenching melt-spun filaments
US4631018A (en) * 1984-11-01 1986-12-23 E. I. Du Pont De Nemours And Company Plate, foam and screen filament quenching apparatus
DE3612610A1 (en) * 1986-04-15 1987-10-22 Reifenhaeuser Masch Process for the cooling of plastic filaments and cooling shafts designed for the process
DE3701531A1 (en) * 1987-01-21 1988-08-04 Reifenhaeuser Masch METHOD AND SYSTEM FOR PRODUCING A SPINNED FLEECE
GB2203764B (en) * 1987-04-25 1991-02-13 Reifenhaeuser Masch Production of spun fleece from continuous synthetic filaments
DE3736418A1 (en) * 1987-04-25 1988-11-10 Reifenhaeuser Masch Process and apparatus for operating a spun-bonded web installation for the production of a spun-bonded web from synthetic endless filaments
DE4220915A1 (en) * 1992-06-25 1994-01-05 Zimmer Ag Cooling filaments in high speed melt spinning - with cooling air supplied by entrainment in perforated first section of cooling chimney
DE29512001U1 (en) * 1995-07-25 1995-10-05 Inventa Ag Blow wall for cooling melt-spinnable synthetic threads
DE10022841A1 (en) * 2000-05-10 2001-11-15 Zimmer Ag Cooling tube for fresh melt-spun continuous filaments has a perforated tube in a sieve structure for cooling air to pass through and a covering ring to give a variety of cooling conditions
JP2002302862A (en) * 2001-04-06 2002-10-18 Mitsui Chemicals Inc Method of producing nonwoven fabric and apparatus therefor
ATE381630T1 (en) * 2002-02-28 2008-01-15 Reifenhaeuser Gmbh & Co Kg SYSTEM FOR THE CONTINUOUS PRODUCTION OF A SPUNNOVED WEB
DE102004040645A1 (en) * 2004-08-20 2006-03-02 REIFENHäUSER GMBH & CO. MASCHINENFABRIK Apparatus for the continuous production of a spunbonded nonwoven web
US20060040008A1 (en) * 2004-08-20 2006-02-23 Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik Device for the continuous production of a nonwoven web
DE502006004562D1 (en) * 2005-04-07 2009-10-01 Oerlikon Textile Gmbh & Co Kg METHOD AND DEVICE FOR MELTING AND COOLING A VARIETY OF FILAMENTS
DE502007003585D1 (en) * 2007-03-08 2010-06-10 Fleissner Gmbh Method and device for producing a spunbonded nonwoven
FR2935991B1 (en) * 2008-09-16 2010-10-22 Rieter Perfojet METHOD AND INSTALLATION FOR PRODUCING A NONWOVEN SAIL WITH DUST.
JP5596422B2 (en) 2010-06-04 2014-09-24 Tmtマシナリー株式会社 Yarn cooling device
CN202830263U (en) * 2012-08-11 2013-03-27 晋江市兴泰无纺制品有限公司 Spun-boned cross air blow voltage regulating device
US10301746B2 (en) * 2012-10-16 2019-05-28 Avintiv Specialty Materials, Inc. Multi-zone spinneret, apparatus and method for making filaments and nonwoven fabrics therefrom
EP2738297B1 (en) * 2012-12-03 2016-03-02 Reifenhäuser GmbH & Co. KG Maschinenfabrik Method and device for the manufacture of a spunbonded web made from filaments
CN203546223U (en) * 2013-10-18 2014-04-16 王振海 Air supplier for cooling synthetic tows
EP3199672B1 (en) * 2016-01-27 2019-06-12 Reifenhäuser GmbH & Co. KG Maschinenfabrik Device and method for the manufacture of woven material from continuous filaments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
IL266791A (en) 2019-08-29
AR114882A1 (en) 2020-10-28
US20230332342A1 (en) 2023-10-19
BR102019010313A2 (en) 2019-12-10
CL2019001364A1 (en) 2019-07-12
US20220205156A1 (en) 2022-06-30
MX2019005391A (en) 2019-11-29
CO2019004698A1 (en) 2020-05-15
US11697897B2 (en) 2023-07-11
US20190360138A1 (en) 2019-11-28
JP2019206790A (en) 2019-12-05
KR102264181B1 (en) 2021-06-10
MA45968A1 (en) 2020-10-28
ES2826866T3 (en) 2021-05-19
JP6923590B2 (en) 2021-08-18
AU2019202898A1 (en) 2019-12-12
DK3575469T3 (en) 2020-10-19
SI3575469T1 (en) 2020-12-31
EP3575469A1 (en) 2019-12-04
PL3575469T3 (en) 2021-02-08
JOP20190122A1 (en) 2019-11-28
KR20190135427A (en) 2019-12-06
CN110541241A (en) 2019-12-06
CN110541241B (en) 2022-01-28
JOP20190122B1 (en) 2021-08-17
UA122635C2 (en) 2020-12-10
PE20191833A1 (en) 2019-12-30
TN2019000145A1 (en) 2020-10-05
CA3041006A1 (en) 2019-11-28
MA45968B1 (en) 2021-04-30
RU2734852C1 (en) 2020-10-23
AU2019202898B2 (en) 2024-03-14
US11306421B2 (en) 2022-04-19
IL266791B (en) 2021-02-28
MY193430A (en) 2022-10-13

Similar Documents

Publication Publication Date Title
EP3575469B1 (en) Device and method for the manufacture of woven material from continuous filaments
EP1323852B1 (en) Device for making a spunbond web
EP3088585B1 (en) Method and device for manufacturing a spunbonding fabric made of filaments and spun fabric
EP1340843B1 (en) Apparatus for the continuous production of a spunbonded web
EP1340842B1 (en) Apparatus for the continued production of a spunbonded web
DE19620379C2 (en) Plant for the continuous production of a spunbonded nonwoven web
DE19521466C2 (en) Plant for the production of a spunbonded nonwoven web from thermoplastic continuous filaments
DE112005003176B4 (en) Apparatus for forming meltblown material
EP3199672B1 (en) Device and method for the manufacture of woven material from continuous filaments
EP1710329B1 (en) Process and apparatus for meltspinning and cooling filaments
EP3382081B1 (en) Device for the manufacture of woven material from continuous filaments
DE4036734C1 (en)
WO2019068764A1 (en) Device for extruding filaments and producing spun-bonded fabrics
EP1630265B1 (en) Apparatus for the continuous production of a spunbonded web
DE69912406T2 (en) AIR DISTRIBUTION SCREEN MADE OF PLASTIC MOLDED PARTS
DE102011087350A1 (en) Melt spinning device and melt spinning process
DE2644996A1 (en) THREAD COOLING DEVICE
EP3575470B1 (en) Device for the manufacture of woven material from continuous filaments
WO2005105334A1 (en) Device for cooling metal sheets and strips
EP1340844A1 (en) Meltblown apparatus
EP3382082B1 (en) Device for the manufacture of woven material from continuous filaments
EP3575468B1 (en) Device and method for the manufacture of woven material from continuous filaments
DE112021005673T5 (en) MELBLOW SYSTEM
EP3199671A1 (en) Device for manufacturing non-woven material
EP4123063B1 (en) Nozzle head for producing filaments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200110

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NEUENHOFER, MARTIN

Inventor name: GEUS, HANS-GEORG

Inventor name: NITSCHKE, MICHAEL

Inventor name: FREY, DETLEF

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1298836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002073

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201016

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER SCHNEIDER PATENT- UND MARKENANWAELTE AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200402612

Country of ref document: GR

Effective date: 20201116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 35612

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002073

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2826866

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210528

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230502

Year of fee payment: 6

Ref country code: NL

Payment date: 20230525

Year of fee payment: 6

Ref country code: IT

Payment date: 20230529

Year of fee payment: 6

Ref country code: FR

Payment date: 20230523

Year of fee payment: 6

Ref country code: ES

Payment date: 20230601

Year of fee payment: 6

Ref country code: DK

Payment date: 20230523

Year of fee payment: 6

Ref country code: DE

Payment date: 20230525

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230426

Year of fee payment: 6

Ref country code: CH

Payment date: 20230602

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230525

Year of fee payment: 6

Ref country code: SI

Payment date: 20230503

Year of fee payment: 6

Ref country code: SE

Payment date: 20230525

Year of fee payment: 6

Ref country code: PL

Payment date: 20230420

Year of fee payment: 6

Ref country code: GR

Payment date: 20230526

Year of fee payment: 6

Ref country code: AT

Payment date: 20230524

Year of fee payment: 6

Ref country code: SK

Payment date: 20230426

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230525

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230526

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805