EP3540528B1 - Timepiece comprising a mechanical movement the oscillating rate of which is controlled by an electronic device - Google Patents

Timepiece comprising a mechanical movement the oscillating rate of which is controlled by an electronic device Download PDF

Info

Publication number
EP3540528B1
EP3540528B1 EP18162191.3A EP18162191A EP3540528B1 EP 3540528 B1 EP3540528 B1 EP 3540528B1 EP 18162191 A EP18162191 A EP 18162191A EP 3540528 B1 EP3540528 B1 EP 3540528B1
Authority
EP
European Patent Office
Prior art keywords
regulating
pulses
mechanical
electrodes
regulating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18162191.3A
Other languages
German (de)
French (fr)
Other versions
EP3540528A1 (en
Inventor
Laurent Nagy
Alexandre Haemmerli
Lionel TOMBEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP18162191.3A priority Critical patent/EP3540528B1/en
Priority to JP2019042361A priority patent/JP6797227B2/en
Priority to CN201910193381.2A priority patent/CN110275420B/en
Priority to US16/354,217 priority patent/US11415946B2/en
Publication of EP3540528A1 publication Critical patent/EP3540528A1/en
Application granted granted Critical
Publication of EP3540528B1 publication Critical patent/EP3540528B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/047Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using other coupling means, e.g. electrostrictive, magnetostrictive
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance

Definitions

  • the present invention relates to a timepiece comprising a mechanical movement, provided with a mechanical oscillator which is formed by a balance wheel and a hairspring, and an electronic regulating device for regulating the frequency of the mechanical oscillator which controls the operation of the. mechanical movement.
  • the electronic regulation device comprises an auxiliary oscillator of the electronic type generally more precise than the mechanical oscillator, in particular a quartz oscillator, and a measuring device arranged to be able to measure, if necessary, a time drift of the mechanical oscillator relative to the auxiliary oscillator.
  • the patent application US 2013/0051191 relates to a timepiece comprising a sprung balance and an electronic circuit for regulating the frequency of oscillation of this sprung balance.
  • the hairspring is made of a piezoelectric material or has two side layers of piezoelectric material on a silicon core, two external side electrodes being arranged on the side surfaces of the hairspring. These two electrodes are connected to the electronic regulation circuit which comprises a plurality of switchable capacitors arranged in parallel and connected to the two electrodes of the balance spring.
  • FIG. 1 Using the Figures 1 to 4 , we will describe a timepiece of the type described in the aforementioned US patent application.
  • Figure 1 only the mechanical resonator 2 of the mechanical movement of the timepiece, this resonator comprising a balance 4 oscillating around a geometrical axis 6 and a balance spring 8 whose end curve 10 conventionally passes through a pin 12 integral with a balance bridge (not shown) of the mechanical movement.
  • the Figure 2 schematically shows a portion of the hairspring 8.
  • This hairspring is formed by a central body 14 in silicon, two side layers 16, 18 in piezoelectric material, in particular in aluminum nitride (AIN), and two external metal electrodes 20, 22.
  • the two electrodes are connected by conductive wires 26, 28 (schematic representation) to an electronic regulation circuit 24.
  • the Figure 3 (which reproduces the figure 1 of the previous document considered with some additional information from figures 2 and 7 ) shows the general arrangement of the regulation device 32 which is incorporated in the timepiece in question and in particular the electronic regulation circuit 24.
  • This circuit 24 comprises a first capacitor 34 connected to the two electrodes of the piezoelectric balance spring and a plurality switchable capacitors 36a to 36d which are arranged in parallel with the first capacitor, so as to form a variable capacitor Cv to be able to vary the value of the capacitor connected to the electrodes of the balance spring and thus vary, according to the teaching of the document, the rigidity of the hairspring.
  • Circuit 24 further comprises a comparator 38, the two inputs of which are connected respectively to the two electrodes of the balance spring 8, this comparator being provided to supply a logic signal making it possible to determine, thanks to the successive changes of the logic state of this logic signal, the passages by zero of the voltage induced between the two electrodes of the balance spring.
  • the logic signal is supplied to a logic circuit 40 which also receives a reference signal from a clock circuit 42 associated with a crystal resonator 44. Based on a comparison between the reference signal and the supplied logic signal speak comparator 38, the logic circuit 40 controls the switches of the switchable capacitors 36a to 36d.
  • a full-wave rectifier circuit 46 conventionally formed of a bridge with four diodes, which supplies a direct voltage V DC and charges a storage capacitor 48.
  • This supplied electric energy by the piezoelectric balance spring enables the device 32 to be powered.
  • We therefore have an autonomous electrical system because it is self-powered in the sense that the electrical energy comes from the mechanical energy supplied to the mechanical resonator 2, including the piezoelectric balance spring 8, when the resonator mechanical oscillates, forms an electromechanical transducer (an electric current generator).
  • the electronic regulation circuit 24 can only reduce the oscillation frequency of the mechanical resonator 2 by increasing the value of the variable capacitance C V.
  • This observation is confirmed by the graph of the Figure 4 which shows the curve 50 giving the operating deviation as a function of the value of the variable capacitance C V. It is in fact observed that the operating deviation obtained is always less than zero and increases in absolute value when the value of the variable capacitance increases.
  • the regulation system requests that the natural frequency of the mechanical oscillator (frequency in the absence of regulation) be greater than the nominal frequency (reference frequency) of this mechanical oscillator.
  • the present invention aims to provide a timepiece, provided with a mechanical resonator comprising a balance spring formed at least partially from a piezoelectric material and an electronic regulation system associated with the piezoelectric balance spring, which does not have drawbacks of the timepiece of the prior art described above, in particular which can be associated with a mechanical movement the rate of which is initially adjusted optimally, that is to say to the best of its ability.
  • the object of the invention is to provide an electronic regulation system which is discrete and autonomous thanks to the use of a piezoelectric balance spring and which is really complementary to the mechanical movement by making it possible to increase its precision without degrading a optimal initial setting of this mechanical movement.
  • the invention relates to a timepiece comprising a mechanical horological movement, provided with a mechanical oscillator formed by a balance wheel and a hairspring and arranged to clock the rate of the horological movement, and a regulating device for regulating the frequency of the mechanical oscillator, this regulation device comprising an auxiliary time base, formed by an auxiliary oscillator and supplying a signal reference frequency, and a device for measuring a time drift in the operation of the watch movement relative to a reference frequency for the mechanical oscillator which is determined by the auxiliary time base.
  • the hairspring is formed at least partially by a piezoelectric material and by at least two electrodes arranged so as to be able to present between them an induced voltage generated by the material.
  • the two electrodes being electrically connected to the regulation device which is arranged to be able to vary the impedance of the regulation system, formed by the piezoelectric material, said at least two electrodes and the regulating device, as a function of a signal for measuring the time drift supplied by the measuring device.
  • the regulation device is arranged so as to be able to momentarily vary the electrical resistance generated by this regulation device between the two electrodes of the hairspring and to be able to generate temporally separate regulation pulses each consisting of a momentary decrease in this electrical resistance relative to a nominal electrical resistance which is generated by the regulation device between said two electrodes outside the regulation pulses.
  • each of the aforementioned regulation pulses generates a rate deviation for the mechanical movement which is variable as a function of the instant of its start in a half-period of the mechanical oscillator, the characteristic function of this operating deviation relative to the instant when at least one regulation pulse begins respectively in at least one half-period of the mechanical oscillator being negative over a first time zone of this at least one half-period and positive over a second time zone of this at least half a period.
  • the regulation device is arranged to be able to determine whether a time drift measured by the measuring device corresponds to at least a certain advance or to at least a certain delay and to generate at least one regulation pulse with a selectively expected pulse start. , depending on whether the measured time drift corresponds to said at least one certain advance or to said at least one certain delay, in said first time zone or in said second time zone of respectively at least half a period of the mechanical oscillator.
  • the characteristics of the timepiece according to the invention it is therefore possible to correct both an advance and a delay in the rate of a mechanical movement by acting by regulating pulses, each having a limited duration, which vary the resistance between the two electrodes of the hairspring in different time zones of corresponding half-periods depending on whether an advance or a delay has been detected in the course of the mechanical movement.
  • the regulation device comprises a switch arranged between the two electrodes of the hairspring, this switch being controlled by a control circuit which is arranged to momentarily close this switch so as to make it conductive during the regulation pulses. , which then define short-circuit pulses.
  • the timepiece according to the invention comprises, like the timepiece of the prior art described above, a mechanical watch movement provided with a mechanical oscillator formed by a balance wheel and a piezoelectric balance-spring and arranged to clock the movement of the movement watchmaker. Then, the timepiece comprises a regulating device 62, the electrical diagram of which is shown in Figure 5 .
  • This regulation device which is provided to regulate the frequency of the mechanical oscillator, comprises an electronic regulation circuit 52 and an auxiliary time base which is formed by an auxiliary oscillator and which supplies a reference frequency signal to the electronic circuit. regulation.
  • This time base comprises for example a quartz resonator 44 and a clock circuit 42 which supplies the reference frequency signal to a divider having at least two stages DIV1 and DIV2.
  • the piezoelectric hairspring 8 is formed at least partially by a piezoelectric material and by at least two electrodes 20, 22 (see Figures 2 , 5 and 11 ) which are arranged so as to be able to present between them an induced voltage U (t) by said piezoelectric material when the latter is placed under mechanical stress during an oscillation of the mechanical oscillator (see Figure 7 ).
  • the two electrodes are electrically connected to the electronic regulation circuit 52.
  • the electronic regulation circuit comprises a device for measuring a possible temporal drift in the operation of the watch movement relative to a setpoint frequency for the mechanical oscillator which is determined by the auxiliary time base 42,44.
  • the measuring device is formed by a hysteresis comparator 54 whose two inputs are connected to the two electrodes 20, 22 of the piezoelectric balance spring 8. It will be noted that in the example given, the electrode 20 is electrically connected to an input of the comparator 54 via the ground of the regulation device.
  • the hysteresis comparator supplies a digital 'Comp' signal (see Figures 5 and 7 ) whose logic state changes just after each passage of the mechanical oscillator through its neutral position (angular position ⁇ (t) equal to zero), more particularly after each passage through zero of the mechanical resonator forming this mechanical oscillator.
  • the induced voltage U (t) generated by the piezoelectric balance spring is zero during the passage of the mechanical resonator through its neutral position (angular position 'zero'), while it is maximum, for a given load applied between the two electrodes, when the mechanical resonator is in one or the other of its two extreme positions (defining the amplitude of l 'mechanical oscillator respectively on both sides of the neutral position).
  • the 'Comp' signal is supplied, on the one hand, to a first 'Up' input of a bidirectional counter CB forming the measuring device and, on the other hand, to a logic control circuit 56.
  • the bidirectional counter is thus incremented by one for each period of oscillation of the mechanical oscillator. It therefore continuously receives a measurement of the instantaneous oscillation frequency of the mechanical oscillator.
  • the bidirectional counter receives at its second 'Down' input a clock signal S hor supplied by the frequency divider DIV1 and DIV2, this clock signal defining a reference frequency for the mechanical oscillator which is determined by the oscillator auxiliary of the auxiliary time base.
  • the bidirectional counter provides the logic control circuit 56 with a signal corresponding to an error accumulated over time between the oscillation frequency of the mechanical oscillator and the reference frequency, this cumulative error defining the time drift of the mechanical oscillator relative to the auxiliary oscillator.
  • the regulation device is arranged so as to be able to momentarily vary the electrical resistance generated by this regulation device between the two electrodes of the piezoelectric balance spring as a function of a signal for measuring the time drift of the operation of the timepiece which is provided by a device for measuring this time drift.
  • the regulating device is arranged to be able to generate temporally separate regulating pulses and each consisting of a momentary decrease in the aforementioned electrical resistance relative to a nominal electrical resistance which is generated by the regulating device. regulation between the two electrodes outside the regulation pulses.
  • the regulating device 62 comprises a switch 60 arranged between the two electrodes of the hairspring, this switch being controlled by the logic control circuit 56 which is arranged to momentarily close this switch so as to make it conductive during said regulation pulses, which then define short-circuit pulses.
  • the abscissa of the graph of the Figure 6 corresponds to the time interval ⁇ t between the start of the short-circuit pulses in the respective oscillation periods and the start of the half-period considered in these oscillation periods.
  • the operating deviation in seconds per day [s / d] is given as a function of the instant at which the short-circuit pulses begin over a half-period of 100 ms, between two successive passages of the mechanical resonator through its neutral position , during each of the successive oscillation periods.
  • the short-circuit pulses each last 10 ms in the example shown, but this is not limiting.
  • the electronic regulation circuit is designed to be able to determine whether a time drift measured by the measuring device corresponds to at least a certain advance (CB> N1) or to at least a certain delay (CB ⁇ -N2), the state of the bidirectional counter CB being supplied to the logic control circuit 56 by the signal S DT which gives the state of the bidirectional counter.
  • the regulation device is arranged to generate at least one regulation pulse with a selectively scheduled start, depending on whether the measured time drift corresponds to said at least a certain advance or to said at least a certain delay, in the first time zone ZT1 or in said second time zone ZT2 of respectively at least half a period of the mechanical oscillator.
  • a short-circuit pulse of limited duration starting in the first time zone generates a certain delay for the mechanical oscillator (negative phase shift) which can at least partially correct an advance detected in the operation of the timepiece.
  • a short-circuit pulse of limited duration starting in the second time zone generates a certain advance for the mechanical oscillator (positive phase shift) which can at least partially correct a delay detected in the operation of the workpiece. watchmaking.
  • the Figures 9 and 10 show the graph of the induced voltage U (t) between the electrodes of the piezoelectric balance spring during a short-circuit pulse beginning respectively at the instant ti in the first time zone ZT1 of any oscillation period and at the instant t 2 in the second time zone ZT2 of any oscillation period, i.e. respectively before and after a passage of the mechanical oscillator by an extreme position between two successive passages of this mechanical oscillator by its neutral position defining the considered half-period (see Figure 7 ).
  • the regulation pulses each have a duration less than a quarter of the reference period which is equal to the inverse of said reference frequency for the mechanical oscillator.
  • the duration of the regulation pulses is less than or equal to one tenth of a set period. At most one regulation pulse is generated per half-period of the mechanical oscillator and preferably at most one regulation pulse per oscillation period. Then, the regulation device is arranged to generate at least one regulation pulse with a selectively scheduled start, depending on whether the measured time drift corresponds to at least a certain advance or at least a certain delay, in a first interval Int1 located at inside the first time zone ZT1, for which the operating deviation given by said characteristic function 66 is greater, in absolute values, than at least half of a maximum operating deviation of this characteristic function over the first zone time, or in a second interval Int2 located inside the second time zone ZT2 and for which the operating deviation given by the characteristic function is greater than at least half of a maximum operating deviation of this characteristic function on the second time zone.
  • a relatively large effect is ensured during the regulation pulses, in particular during the short-circuit pulses.
  • the hysteresis comparator 54 supplies a 'Comp' signal to the control logic circuit 56, which also receives a signal S DT for measuring the time drift of the mechanical oscillator, and therefore of the timepiece considered.
  • the control logic circuit 56 which also receives a signal S DT for measuring the time drift of the mechanical oscillator, and therefore of the timepiece considered.
  • Each rising edge and each falling edge of the 'Comp' signal indicate that the mechanical resonator has just passed through its neutral position, respectively during two successive half-waves of the mechanical oscillator.
  • the control circuit selectively supplies a control signal S com to a timer 58 which controls a transistor 60 forming the switch by applying a signal D CC thereto . More precisely, the control circuit determines the instant of the start of each short-circuit pulse 88a, 88b by triggering or resetting the timer ('Timer') which makes transistor 60 (switch closed) directly on / on, the timer determining the duration T R of each short-circuit pulse. At the end of each short-circuit pulse, the timer opens the switch again so that the transistor 60 is no longer conducting, that is to say not conducting.
  • the control logic circuit is associated with a time counter CT which makes it possible to measure at least two time intervals ⁇ t 1 and ⁇ t 2 in order to be able to selectively trigger the timer 58 in the first interval Int1 and the second interval Int2 of a half-period, as considered at Figure 6 , depending on whether the control circuit has determined a certain advance or a certain delay, namely a positive or negative time drift, in the operation of the mechanical oscillator. More precisely, when the control circuit detects a falling edge (or alternatively a rising edge) in the 'Comp' signal, it resets ('reset') the counter CT.
  • the control circuit waits for a time interval ⁇ t 1 to activate the timer by a signal S com (1), this timer then generating a signal D CC (1) which turns on the transistor 60 at time t 1 (in the first time zone ZT1, preferably in the first interval Int1) for a duration T R , thus generating a first short-circuit pulse 88a which generates a negative phase shift in the oscillation of the mechanical oscillator (increase of an oscillation period and therefore reduction of the instantaneous frequency).
  • the control circuit waits for a time interval ⁇ t 2 to activate the timer by a signal S com (2), this timer then generating a signal D CC (2) which turns on the transistor 60 at time t 2 (in the second time zone ZT2, preferably in the second interval Int2) also for a duration T R , thus generating a second pulse of short-circuit 88b which generates a positive phase shift in the oscillation of the mechanical oscillator (reduction of an oscillation period / increase of the instantaneous frequency).
  • the algorithm given by the flowchart of the Figure 8 can have various variations.
  • N being an integer greater than one (N> 1).
  • This hairspring 70 shown in cross section, comprises a central body 72 in silicon, a layer of silicon oxide 74 deposited on the surface of the central body so as to thermally compensate the hairspring, a conductive layer 76 deposited on the silicon oxide layer, and a piezoelectric material deposited in the form of a piezoelectric layer 78 on the conductive layer 76.
  • Two electrodes 20a and 22a are arranged on the piezoelectric layer 78 respectively on the two lateral sides of the hairspring (the two electrodes being able to partially cover the lower and upper sides of the hairspring without however joining).
  • the first part 80a and the second part 80b of the piezoelectric layer extending respectively on the two lateral sides of the central body 72 have, by their growth from the conductive layer 76, respective crystallographic structures which are symmetrical with respect to a plane median 84 parallel to these two lateral sides.
  • the piezoelectric layer has two same respective piezoelectric axes 82a, 82b which are perpendicular to the piezoelectric layer and in opposite directions. There is therefore an inversion of the sign of the voltage induced between the internal electrode and each of the two external lateral electrodes for the same mechanical stress.
  • the hairspring contracts or expands from its rest position, there is a reversal of the mechanical stress between the first and second parts 80a and 80b, that is to say that one of these parts is subjected compression while the other of these parts is under tension, and vice versa.
  • the voltages induced in the first and second parts have, along an axis perpendicular to the two lateral sides, the same polarity so that the conductive layer 76 can form one and the same internal electrode which extends on the two lateral sides of the central body 72, this internal electrode not having its own electrical connection with the regulation device.
  • the piezoelectric layer consists of an aluminum nitride crystal formed by a growth of this crystal from the conductive layer 76 (internal electrode) and perpendicular to the latter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Electric Clocks (AREA)

Description

Domaine techniqueTechnical area

La présente invention concerne une pièce d'horlogerie comprenant un mouvement mécanique, muni d'un oscillateur mécanique qui est formé par un balancier et un spiral, et un dispositif électronique de régulation pour réguler la fréquence de l'oscillateur mécanique qui contrôle la marche du mouvement mécanique.The present invention relates to a timepiece comprising a mechanical movement, provided with a mechanical oscillator which is formed by a balance wheel and a hairspring, and an electronic regulating device for regulating the frequency of the mechanical oscillator which controls the operation of the. mechanical movement.

En particulier, le dispositif électronique de régulation comprend un oscillateur auxiliaire du type électronique généralement plus précis que l'oscillateur mécanique, en particulier un oscillateur à quartz, et un dispositif de mesure agencé pour pouvoir mesurer, le cas échéant, une dérive temporelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire.In particular, the electronic regulation device comprises an auxiliary oscillator of the electronic type generally more precise than the mechanical oscillator, in particular a quartz oscillator, and a measuring device arranged to be able to measure, if necessary, a time drift of the mechanical oscillator relative to the auxiliary oscillator.

Arrière-plan technologiqueTechnological background

Plusieurs documents concernent la régulation électronique d'un oscillateur mécanique dans une pièce d'horlogerie. En particulier, la demande de brevet US 2013/0051191 concerne une pièce d'horlogerie comprenant un balancier-spiral et un circuit électronique de régulation de la fréquence d'oscillation de ce balancier-spiral. Le spiral est constitué d'un matériau piézoélectrique ou comporte deux couches latérales en matériau piézoélectrique sur un noyau en silicium, deux électrodes latérales externes étant agencées sur les surfaces latérales du spiral. Ces deux électrodes sont reliées au circuit électronique de régulation qui comprend une pluralité de capacités commutables agencées en parallèle et reliées aux deux électrodes du spiral.Several documents relate to the electronic regulation of a mechanical oscillator in a timepiece. In particular, the patent application US 2013/0051191 relates to a timepiece comprising a sprung balance and an electronic circuit for regulating the frequency of oscillation of this sprung balance. The hairspring is made of a piezoelectric material or has two side layers of piezoelectric material on a silicon core, two external side electrodes being arranged on the side surfaces of the hairspring. These two electrodes are connected to the electronic regulation circuit which comprises a plurality of switchable capacitors arranged in parallel and connected to the two electrodes of the balance spring.

A l'aide des Figures 1 à 4, on décrira une pièce d'horlogerie du type décrit dans la demande de brevet américaine mentionnée ci-avant. Pour ne pas charger le dessin, on a représenté à la Figure 1 seulement le résonateur mécanique 2 du mouvement mécanique de la pièce d'horlogerie, ce résonateur comprenant un balancier 4 oscillant autour d'un axe géométrique 6 et un spiral 8 dont la courbe terminale 10 passe classiquement au travers d'un piton 12 solidaire d'un pont de balancier (non représenté) du mouvement mécanique. La Figure 2 montre schématiquement une portion du spiral 8. Ce spiral est formé par un corps central 14 en silicium, deux couches latérales 16, 18 en matériau piézoélectrique, notamment en nitrure d'aluminium (AIN), et deux électrodes métalliques externes 20, 22. Les deux électrodes sont reliées par des fils conducteurs 26, 28 (représentation schématique) à un circuit électronique de régulation 24.Using the Figures 1 to 4 , we will describe a timepiece of the type described in the aforementioned US patent application. In order not to load the drawing, we have shown Figure 1 only the mechanical resonator 2 of the mechanical movement of the timepiece, this resonator comprising a balance 4 oscillating around a geometrical axis 6 and a balance spring 8 whose end curve 10 conventionally passes through a pin 12 integral with a balance bridge (not shown) of the mechanical movement. The Figure 2 schematically shows a portion of the hairspring 8. This hairspring is formed by a central body 14 in silicon, two side layers 16, 18 in piezoelectric material, in particular in aluminum nitride (AIN), and two external metal electrodes 20, 22. The two electrodes are connected by conductive wires 26, 28 (schematic representation) to an electronic regulation circuit 24.

La Figure 3 (qui reproduit la figure 1 du document antérieur considéré avec quelques informations supplémentaires provenant des figures 2 et 7) montre l'agencement général du dispositif de régulation 32 qui est incorporé dans la pièce d'horlogerie en question et en particulier le circuit électronique de régulation 24. Ce circuit 24 comprend une première capacité 34 reliée aux deux électrodes du spiral piézoélectrique et une pluralité de capacités commutables 36a à 36d qui sont agencées en parallèle de la première capacité, de manière à former une capacité variable Cv pour pouvoir varier la valeur de la capacité reliée aux électrodes du spiral et ainsi varier, selon l'enseignement du document, la rigidité du spiral. Le circuit 24 comprend en outre un comparateur 38 dont les deux entrées sont reliées respectivement aux deux électrodes du spiral 8, ce comparateur étant prévu pour fournir un signal logique permettant de déterminer grâce aux changements successifs de l'état logique de ce signal logique les passages par zéro de la tension induite entre les deux électrodes du spiral. Le signal logique est fourni à un circuit logique 40 qui reçoit également un signal de référence d'un circuit d'horloge 42 associé à un résonateur à quartz 44. Sur la base d'une comparaison entre le signal de référence et le signal logique fourni par le comparateur 38, le circuit logique 40 commande les interrupteurs des capacités commutables 36a à 36d.The Figure 3 (which reproduces the figure 1 of the previous document considered with some additional information from figures 2 and 7 ) shows the general arrangement of the regulation device 32 which is incorporated in the timepiece in question and in particular the electronic regulation circuit 24. This circuit 24 comprises a first capacitor 34 connected to the two electrodes of the piezoelectric balance spring and a plurality switchable capacitors 36a to 36d which are arranged in parallel with the first capacitor, so as to form a variable capacitor Cv to be able to vary the value of the capacitor connected to the electrodes of the balance spring and thus vary, according to the teaching of the document, the rigidity of the hairspring. Circuit 24 further comprises a comparator 38, the two inputs of which are connected respectively to the two electrodes of the balance spring 8, this comparator being provided to supply a logic signal making it possible to determine, thanks to the successive changes of the logic state of this logic signal, the passages by zero of the voltage induced between the two electrodes of the balance spring. The logic signal is supplied to a logic circuit 40 which also receives a reference signal from a clock circuit 42 associated with a crystal resonator 44. Based on a comparison between the reference signal and the supplied logic signal speak comparator 38, the logic circuit 40 controls the switches of the switchable capacitors 36a to 36d.

De plus, il est prévu à la suite du circuit de capacités commutables un circuit redresseur double alternance 46, formé classiquement d'un pont à quatre diodes, qui fournit une tension continue VDC et charge une capacité de stockage 48. Cette énergie électrique fournie par le spiral piézoélectrique permet une alimentation du dispositif 32. On a donc un système électrique autonome car il est autoalimenté en ce sens que l'énergie électrique provient de l'énergie mécanique fournie au résonateur mécanique 2 dont le spiral piézoélectrique 8, lorsque le résonateur mécanique oscille, forme un transducteur électromécanique (un générateur de courant électrique).In addition, there is provided after the switchable capacitor circuit a full-wave rectifier circuit 46, conventionally formed of a bridge with four diodes, which supplies a direct voltage V DC and charges a storage capacitor 48. This supplied electric energy by the piezoelectric balance spring enables the device 32 to be powered. We therefore have an autonomous electrical system because it is self-powered in the sense that the electrical energy comes from the mechanical energy supplied to the mechanical resonator 2, including the piezoelectric balance spring 8, when the resonator mechanical oscillates, forms an electromechanical transducer (an electric current generator).

Comme indiqué dans le document US 2013/0051191 à son paragraphe 0052, le circuit électronique de régulation 24 ne peut que réduire la fréquence d'oscillation du résonateur mécanique 2 en augmentant la valeur de la capacité variable CV. Cette constatation est confirmée par le graphe de la Figure 4 qui montre la courbe 50 donnant l'écart de marche en fonction de la valeur de la capacité variable CV. On observe en effet que l'écart de marche obtenu est toujours inférieur à zéro et augmente en valeur absolue lorsque la valeur de la capacité variable augmente. Ainsi, le système de régulation demande que la fréquence naturelle de l'oscillateur mécanique (fréquence en l'absence de régulation) soit supérieure à la fréquence nominale (fréquence de consigne) de cet oscillateur mécanique. En d'autres termes, il est prévu de régler l'oscillateur mécanique de manière à ce que sa fréquence naturelle corresponde à une fréquence supérieure à la fréquence de consigne, le circuit de régulation ayant pour fonction de faire diminuer plus ou moins cette fréquence naturelle pour que la marche corresponde à la fréquence de consigne. Ainsi, un grand désavantage d'un tel système réside dans le fait que la marche du mouvement mécanique n'est pas optimale en l'absence de régulation électronique. Pour un mouvement horloger mécanique de haute précision, on doit en effet dégrader ses propres caractéristiques mécaniques par un réglage non optimal. On peut conclure qu'un tel système de régulation électronique n'a de sens que pour des mouvements mécaniques de qualité moyenne, voire de mauvaise qualité, la précision de ces mouvements mécaniques dépendant du système de régulation électronique.As stated in the document US 2013/0051191 in paragraph 0052, the electronic regulation circuit 24 can only reduce the oscillation frequency of the mechanical resonator 2 by increasing the value of the variable capacitance C V. This observation is confirmed by the graph of the Figure 4 which shows the curve 50 giving the operating deviation as a function of the value of the variable capacitance C V. It is in fact observed that the operating deviation obtained is always less than zero and increases in absolute value when the value of the variable capacitance increases. Thus, the regulation system requests that the natural frequency of the mechanical oscillator (frequency in the absence of regulation) be greater than the nominal frequency (reference frequency) of this mechanical oscillator. In other words, provision is made to adjust the mechanical oscillator so that its natural frequency corresponds to a frequency greater than the setpoint frequency, the regulation circuit having the function of reducing this natural frequency more or less. so that the operation corresponds to the setpoint frequency. Thus, a great disadvantage of such a system lies in the fact that the rate of the mechanical movement is not optimal in the absence of electronic regulation. For a high-precision mechanical watch movement, one must indeed degrade its own mechanical characteristics. by a non-optimal setting. It can be concluded that such an electronic regulation system only makes sense for mechanical movements of average quality, or even of poor quality, the precision of these mechanical movements depending on the electronic regulation system.

On connaît aussi le document EP 2 590 035 A1 . Ce document décrit une montre mécanique dont le spiral est formé par un matériau piézoélectrique. La fréquence d'oscillation du balancier spiral est réglée grâce à un circuit électronique portant un oscillateur de référence. Le signal issu par le spiral pendant ses oscillations, sur ses deux bornes de connexion électrique, est utilisé pour mesurer la fréquence d'oscillation du système balancier spiral. Cette fréquence est comparée à la fréquence de l'oscillateur de référence. Lors d'une déviation, avance ou retard, le circuit électronique impose une tension continue aux bornes du spiral. De cette manière, la rigidité du spiral peut être variée, jusqu'à minimiser l'écart de marche entre le système oscillant mécaniquement et celui porté par le circuit électronique.We also know the document EP 2 590 035 A1 . This document describes a mechanical watch, the hairspring of which is formed by a piezoelectric material. The oscillation frequency of the spiral balance is regulated by an electronic circuit carrying a reference oscillator. The signal issued by the hairspring during its oscillations, on its two electrical connection terminals, is used to measure the oscillation frequency of the hairspring system. This frequency is compared to the frequency of the reference oscillator. During a deviation, advance or delay, the electronic circuit imposes a DC voltage across the balance spring. In this way, the rigidity of the hairspring can be varied, until the difference in rate between the mechanically oscillating system and that carried by the electronic circuit is minimized.

Résumé de l'inventionSummary of the invention

La présente invention a pour but de proposer une pièce d'horlogerie, munie d'un résonateur mécanique comprenant un spiral formé au moins partiellement d'un matériau piézoélectrique et d'un système de régulation électronique associé au spiral piézoélectrique, qui ne présente pas les inconvénients de la pièce d'horlogerie de l'art antérieur précédemment décrite, en particulier qui puisse être associé à un mouvement mécanique dont la marche est réglée initialement de manière optimale, c'est-à-dire au mieux de ses possibilités. Ainsi, l'invention a pour objectif de fournir un système de régulation électronique qui soit discret et autonome grâce à l'utilisation d'un spiral piézoélectrique et qui soit réellement complémentaire au mouvement mécanique en permettant d'augmenter sa précision sans dégrader par ailleurs un réglage initial optimal de ce mouvement mécanique.The present invention aims to provide a timepiece, provided with a mechanical resonator comprising a balance spring formed at least partially from a piezoelectric material and an electronic regulation system associated with the piezoelectric balance spring, which does not have drawbacks of the timepiece of the prior art described above, in particular which can be associated with a mechanical movement the rate of which is initially adjusted optimally, that is to say to the best of its ability. Thus, the object of the invention is to provide an electronic regulation system which is discrete and autonomous thanks to the use of a piezoelectric balance spring and which is really complementary to the mechanical movement by making it possible to increase its precision without degrading a optimal initial setting of this mechanical movement.

L'invention a pour objet une pièce d'horlogerie comprenant un mouvement horloger mécanique, muni d'un oscillateur mécanique formé par un balancier et un spiral et agencé pour cadencer la marche du mouvement horloger, et un dispositif de régulation pour réguler la fréquence de l'oscillateur mécanique, ce dispositif de régulation comprenant une base de temps auxiliaire, formée par un oscillateur auxiliaire et fournissant un signal de fréquence de référence, et un dispositif de mesure d'une dérive temporelle dans la marche du mouvement horloger relativement à une fréquence de consigne pour l'oscillateur mécanique qui est déterminée par la base de temps auxiliaire. Le spiral est formé au moins partiellement par un matériau piézoélectrique et par au moins deux électrodes agencées de manière à pouvoir présenter entre elles une tension induite générée par le matériau piézoélectrique lorsque ce dernier est mis sous contrainte mécanique lors d'une oscillation de l'oscillateur mécanique, les deux électrodes étant reliées électriquement au dispositif de régulation qui est agencé pour pouvoir varier l'impédance du système de régulation, formé par le matériau piézoélectrique, lesdites au moins deux électrodes et le dispositif de régulation, en fonction d'un signal de mesure de la dérive temporelle fourni par le dispositif de mesure. Plus particulièrement, selon l'invention, le dispositif de régulation est agencé de manière à pouvoir varier momentanément la résistance électrique engendrée par ce dispositif de régulation entre les deux électrodes du spiral et pour pouvoir engendrer des impulsions de régulation temporellement séparées et consistant chacune en une diminution momentanée de cette résistance électrique relativement à une résistance électrique nominale qui est engendrée par le dispositif de régulation entre lesdites deux électrodes en dehors des impulsions de régulation. Selon une caractéristique physique remarquable mise en lumière par les inventeurs, chacune des impulsions de régulation susmentionnées engendre un écart de marche pour le mouvement mécanique qui est variable en fonction de l'instant de son début dans une demi-période de l'oscillateur mécanique, la fonction caractéristique de cet écart de marche relativement à l'instant où débute au moins une impulsion de régulation respectivement dans au moins une demi-période de l'oscillateur mécanique étant négative sur une première zone temporelle de cette au moins une demi-période et positive sur une deuxième zone temporelle de cette au moins une demi-période. Le dispositif de régulation est agencé pour pouvoir déterminer si une dérive temporelle mesurée par le dispositif de mesure correspond à au moins une certaine avance ou à au moins un certain retard et pour engendrer au moins une impulsion de régulation avec un début d'impulsion prévu sélectivement, selon que la dérive temporelle mesurée correspond à ladite au moins une certaine avance ou audit au moins un certain retard, dans ladite première zone temporelle ou dans ladite deuxième zone temporelle de respectivement au moins une demi-période de l'oscillateur mécanique.The invention relates to a timepiece comprising a mechanical horological movement, provided with a mechanical oscillator formed by a balance wheel and a hairspring and arranged to clock the rate of the horological movement, and a regulating device for regulating the frequency of the mechanical oscillator, this regulation device comprising an auxiliary time base, formed by an auxiliary oscillator and supplying a signal reference frequency, and a device for measuring a time drift in the operation of the watch movement relative to a reference frequency for the mechanical oscillator which is determined by the auxiliary time base. The hairspring is formed at least partially by a piezoelectric material and by at least two electrodes arranged so as to be able to present between them an induced voltage generated by the material. piezoelectric when the latter is placed under mechanical stress during an oscillation of the mechanical oscillator, the two electrodes being electrically connected to the regulation device which is arranged to be able to vary the impedance of the regulation system, formed by the piezoelectric material, said at least two electrodes and the regulating device, as a function of a signal for measuring the time drift supplied by the measuring device. More particularly, according to the invention, the regulation device is arranged so as to be able to momentarily vary the electrical resistance generated by this regulation device between the two electrodes of the hairspring and to be able to generate temporally separate regulation pulses each consisting of a momentary decrease in this electrical resistance relative to a nominal electrical resistance which is generated by the regulation device between said two electrodes outside the regulation pulses. According to a remarkable physical characteristic brought to light by the inventors, each of the aforementioned regulation pulses generates a rate deviation for the mechanical movement which is variable as a function of the instant of its start in a half-period of the mechanical oscillator, the characteristic function of this operating deviation relative to the instant when at least one regulation pulse begins respectively in at least one half-period of the mechanical oscillator being negative over a first time zone of this at least one half-period and positive over a second time zone of this at least half a period. The regulation device is arranged to be able to determine whether a time drift measured by the measuring device corresponds to at least a certain advance or to at least a certain delay and to generate at least one regulation pulse with a selectively expected pulse start. , depending on whether the measured time drift corresponds to said at least one certain advance or to said at least one certain delay, in said first time zone or in said second time zone of respectively at least half a period of the mechanical oscillator.

Grâce aux caractéristiques de la pièce d'horlogerie selon l'invention, il est donc possible de corriger aussi bien une avance qu'un retard dans la marche d'un mouvement mécanique en agissant par des impulsions de régulation, ayant chacune une durée limitée, qui varient la résistance entre les deux électrodes du spiral dans des zones temporelles différentes de demi-périodes correspondantes selon qu'une avance ou un retard a été détecté dans la marche du mouvement mécanique.Thanks to the characteristics of the timepiece according to the invention, it is therefore possible to correct both an advance and a delay in the rate of a mechanical movement by acting by regulating pulses, each having a limited duration, which vary the resistance between the two electrodes of the hairspring in different time zones of corresponding half-periods depending on whether an advance or a delay has been detected in the course of the mechanical movement.

Dans un mode de réalisation préféré, le dispositif de régulation comprend un interrupteur agencé entre les deux électrodes du spiral, cet interrupteur étant commandé par un circuit de commande qui est agencé pour fermer momentanément cet interrupteur de manière à le rendre conducteur durant les impulsions de régulation, lesquelles définissent alors des impulsions de court-circuit.In a preferred embodiment, the regulation device comprises a switch arranged between the two electrodes of the hairspring, this switch being controlled by a control circuit which is arranged to momentarily close this switch so as to make it conductive during the regulation pulses. , which then define short-circuit pulses.

Brève description des figuresBrief description of the figures

L'invention sera décrite ci-après de manière plus détaillée à l'aide des dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :

  • La Figure 1, déjà décrite, montre une pièce d'horlogerie de l'art antérieur comprenant un résonateur mécanique horloger, ayant un spiral piézoélectrique, et un circuit électronique de régulation qui est relié aux deux électrodes du spiral piézoélectrique ;
  • La Figure 2 est un agrandissement d'une portion du spiral piézoélectrique de la Figure 1 ;
  • La Figure 3 montre partiellement le schéma électrique du dispositif de régulation de la pièce d'horlogerie de la Figure 1 ;
  • La Figure 4 donne l'écart de marche pour la pièce d'horlogerie des figures précédentes en fonction d'une capacité variable appliquée entre les deux électrodes du spiral piézoélectrique ;
  • La Figure 5 montre le schéma électrique d'un dispositif de régulation incorporé dans un mode de réalisation d'une pièce d'horlogerie selon l'invention qui comprend un résonateur mécanique avec un spiral piézoélectrique ;
  • La Figure 6 montre l'écart de marche par jour, pour la pièce d'horlogerie selon l'invention, qui est engendré par le dispositif de régulation de la Figure 5 en fonction du début d'impulsions de court-circuit, au cours de périodes d'oscillation respectives, sur une demi-période entre deux passages par la position neutre du résonateur mécanique dans chacune de ces périodes d'oscillation ;
  • La Figure 7 montre un mode de génération des impulsions de court-circuit dans le dispositif de régulation de la Figure 5 en fonction d'une dérive temporelle mesurée dans la marche de la pièce d'horlogerie ;
  • La Figure 8 est un organigramme d'un procédé de régulation implémenté dans le dispositif de régulation de la Figure 5 ;
  • Les Figures 9 et 10 montrent le graphe de la tension induite entre les électrodes du spiral piézoélectrique lors d'une impulsion de court-circuit produite respectivement avant et après un passage du résonateur mécanique par une position extrême (entre deux passages successifs du résonateur mécanique par sa position neutre) ; et
  • La Figure 11 est une coupe transversale d'un mode de réalisation préféré d'un spiral piézoélectrique formant le résonateur mécanique d'une pièce d'horlogerie selon l'invention.
The invention will be described below in more detail with the aid of the appended drawings, given by way of non-limiting examples, in which:
  • The Figure 1 , already described, shows a timepiece of the prior art comprising a mechanical horological resonator, having a piezoelectric balance spring, and an electronic regulation circuit which is connected to the two electrodes of the piezoelectric balance spring;
  • The Figure 2 is an enlargement of a portion of the piezoelectric hairspring of the Figure 1 ;
  • The Figure 3 partially shows the electrical diagram of the device for regulating the timepiece of the Figure 1 ;
  • The Figure 4 gives the rate deviation for the timepiece of the preceding figures as a function of a variable capacitance applied between the two electrodes of the piezoelectric balance spring;
  • The Figure 5 shows the electrical diagram of a regulation device incorporated in an embodiment of a timepiece according to the invention which comprises a mechanical resonator with a piezoelectric balance spring;
  • The Figure 6 shows the rate of change per day, for the timepiece according to the invention, which is generated by the device for regulating the Figure 5 as a function of the start of short-circuit pulses, during respective oscillation periods, over a half-period between two passages through the neutral position of the mechanical resonator in each of these oscillation periods;
  • The Figure 7 shows a mode of generation of the short-circuit pulses in the regulation device of the Figure 5 as a function of a time drift measured in the operation of the timepiece;
  • The Figure 8 is a flowchart of a regulation process implemented in the device for regulating the Figure 5 ;
  • The Figures 9 and 10 show the graph of the voltage induced between the electrodes of the piezoelectric balance spring during a short-circuit pulse produced respectively before and after one passage of the mechanical resonator through an extreme position (between two successive passages of the mechanical resonator through its neutral position); and
  • The Figure 11 is a cross section of a preferred embodiment of a piezoelectric balance spring forming the mechanical resonator of a timepiece according to the invention.

Description détaillée de l'inventionDetailed description of the invention

La pièce d'horlogerie selon l'invention comprend, comme la pièce d'horlogerie de l'art antérieur décrite précédemment, un mouvement horloger mécanique muni d'un oscillateur mécanique formé par un balancier et un spiral piézoélectrique et agencé pour cadencer la marche du mouvement horloger. Ensuite, la pièce d'horlogerie comprend un dispositif de régulation 62 dont le schéma électrique est représenté à la Figure 5. Ce dispositif de régulation, qui est prévu pour réguler la fréquence de l'oscillateur mécanique, comprend un circuit électronique de régulation 52 et une base de temps auxiliaire qui est formée par un oscillateur auxiliaire et qui fournit un signal de fréquence de référence au circuit électronique de régulation. Cette base de temps comprend par exemple un résonateur à quartz 44 et un circuit d'horloge 42 qui fournit le signal de fréquence de référence à un diviseur présentant au moins deux étages DIV1 et DIV2. Le spiral piézoélectrique 8 est formé au moins partiellement par un matériau piézoélectrique et par au moins deux électrodes 20,22 (voir Figures 2, 5 et 11) qui sont agencées de manière à pouvoir présenter entre elles une tension induite U(t) par ledit matériau piézoélectrique lorsque ce dernier est mis sous contrainte mécanique lors d'une oscillation de l'oscillateur mécanique (voir Figure 7). Les deux électrodes sont reliées électriquement au circuit électronique de régulation 52.The timepiece according to the invention comprises, like the timepiece of the prior art described above, a mechanical watch movement provided with a mechanical oscillator formed by a balance wheel and a piezoelectric balance-spring and arranged to clock the movement of the movement watchmaker. Then, the timepiece comprises a regulating device 62, the electrical diagram of which is shown in Figure 5 . This regulation device, which is provided to regulate the frequency of the mechanical oscillator, comprises an electronic regulation circuit 52 and an auxiliary time base which is formed by an auxiliary oscillator and which supplies a reference frequency signal to the electronic circuit. regulation. This time base comprises for example a quartz resonator 44 and a clock circuit 42 which supplies the reference frequency signal to a divider having at least two stages DIV1 and DIV2. The piezoelectric hairspring 8 is formed at least partially by a piezoelectric material and by at least two electrodes 20, 22 (see Figures 2 , 5 and 11 ) which are arranged so as to be able to present between them an induced voltage U (t) by said piezoelectric material when the latter is placed under mechanical stress during an oscillation of the mechanical oscillator (see Figure 7 ). The two electrodes are electrically connected to the electronic regulation circuit 52.

Le circuit électronique de régulation comprend un dispositif de mesure d'une dérive temporelle éventuelle dans la marche du mouvement horloger relativement à une fréquence de consigne pour l'oscillateur mécanique qui est déterminée par la base de temps auxiliaire 42,44. Dans le mode de réalisation représenté à la Figure 5, le dispositif de mesure est formé par un comparateur à hystérèse 54 dont les deux entrées sont reliées aux deux électrodes 20,22 du spiral piézoélectrique 8. On remarquera que dans l'exemple donné, l'électrode 20 est reliée électriquement à une entrée du comparateur 54 via la masse du dispositif de régulation. Le comparateur à hystérèse fournit un signal digital 'Comp' (voir Figures 5 et 7) dont l'état logique change juste après chaque passage de l'oscillateur mécanique par sa position neutre (position angulaire θ(t) égal à zéro), plus particulièrement après chaque passage par zéro du résonateur mécanique formant cet oscillateur mécanique. La tension induite U(t) générée par le spiral piézoélectrique est nulle lors du passage du résonateur mécanique par sa position neutre (position angulaire 'zéro'), alors qu'elle est maximale, pour une charge donnée appliquée entre les deux électrodes, lorsque le résonateur mécanique est dans une ou l'autre de ses deux positions extrêmes (définissant l'amplitude de l'oscillateur mécanique respectivement des deux côtés de la position neutre).The electronic regulation circuit comprises a device for measuring a possible temporal drift in the operation of the watch movement relative to a setpoint frequency for the mechanical oscillator which is determined by the auxiliary time base 42,44. In the embodiment shown in Figure 5 , the measuring device is formed by a hysteresis comparator 54 whose two inputs are connected to the two electrodes 20, 22 of the piezoelectric balance spring 8. It will be noted that in the example given, the electrode 20 is electrically connected to an input of the comparator 54 via the ground of the regulation device. The hysteresis comparator supplies a digital 'Comp' signal (see Figures 5 and 7 ) whose logic state changes just after each passage of the mechanical oscillator through its neutral position (angular position θ (t) equal to zero), more particularly after each passage through zero of the mechanical resonator forming this mechanical oscillator. The induced voltage U (t) generated by the piezoelectric balance spring is zero during the passage of the mechanical resonator through its neutral position (angular position 'zero'), while it is maximum, for a given load applied between the two electrodes, when the mechanical resonator is in one or the other of its two extreme positions (defining the amplitude of l 'mechanical oscillator respectively on both sides of the neutral position).

Le signal 'Comp' est fourni, d'une part, à une première entrée 'Up' d'un compteur bidirectionnel CB formant le dispositif de mesure et, d'autre part, à un circuit logique de commande 56. Le compteur bidirectionnel est ainsi incrémenté d'une unité à chaque période d'oscillation de l'oscillateur mécanique. Il reçoit donc en continu une mesure de la fréquence d'oscillation instantanée de l'oscillateur mécanique. Le compteur bidirectionnel reçoit à sa deuxième entrée 'Down' un signal d'horloge Shor fourni par le diviseur de fréquence DIV1 et DIV2, ce signal d'horloge définissant une fréquence de consigne pour l'oscillateur mécanique qui est déterminée par l'oscillateur auxiliaire de la base de temps auxiliaire. Ainsi, le compteur bidirectionnel fournit au circuit logique de commande 56 un signal correspondant à une erreur cumulée au cours du temps entre la fréquence d'oscillation de l'oscillateur mécanique et la fréquence de consigne, cette erreur cumulée définissant la dérive temporelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire.The 'Comp' signal is supplied, on the one hand, to a first 'Up' input of a bidirectional counter CB forming the measuring device and, on the other hand, to a logic control circuit 56. The bidirectional counter is thus incremented by one for each period of oscillation of the mechanical oscillator. It therefore continuously receives a measurement of the instantaneous oscillation frequency of the mechanical oscillator. The bidirectional counter receives at its second 'Down' input a clock signal S hor supplied by the frequency divider DIV1 and DIV2, this clock signal defining a reference frequency for the mechanical oscillator which is determined by the oscillator auxiliary of the auxiliary time base. Thus, the bidirectional counter provides the logic control circuit 56 with a signal corresponding to an error accumulated over time between the oscillation frequency of the mechanical oscillator and the reference frequency, this cumulative error defining the time drift of the mechanical oscillator relative to the auxiliary oscillator.

De manière générale, le dispositif de régulation selon l'invention est agencé de manière à pouvoir varier momentanément la résistance électrique engendrée par ce dispositif de régulation entre les deux électrodes du spiral piézoélectrique en fonction d'un signal de mesure de la dérive temporelle de la marche de la pièce d'horlogerie qui est fourni par un dispositif de mesure de cette dérive temporelle. Plus particulièrement, le dispositif de régulation est agencé pour pouvoir engendrer des impulsions de régulation temporellement séparées et consistant chacune en une diminution momentanée de la résistance électrique susmentionnée relativement à une résistance électrique nominale qui est engendrée par le dispositif de régulation entre les deux électrodes en dehors des impulsions de régulation. Ainsi, on a un système de régulation de la marche de la pièce d'horlogerie, et donc de la fréquence moyenne de l'oscillateur mécanique, qui est formé par le matériau piézoélectrique du spiral 8, les deux électrodes 20,22 de ce spiral et le dispositif de régulation selon l'invention.In general, the regulation device according to the invention is arranged so as to be able to momentarily vary the electrical resistance generated by this regulation device between the two electrodes of the piezoelectric balance spring as a function of a signal for measuring the time drift of the operation of the timepiece which is provided by a device for measuring this time drift. More particularly, the regulating device is arranged to be able to generate temporally separate regulating pulses and each consisting of a momentary decrease in the aforementioned electrical resistance relative to a nominal electrical resistance which is generated by the regulating device. regulation between the two electrodes outside the regulation pulses. Thus, we have a system for regulating the rate of the timepiece, and therefore the average frequency of the mechanical oscillator, which is formed by the piezoelectric material of the hairspring 8, the two electrodes 20, 22 of this hairspring and the regulation device according to the invention.

Dans un mode de réalisation préféré, le dispositif de régulation 62 comprend un interrupteur 60 agencé entre les deux électrodes du spiral, cet interrupteur étant commandé par le circuit logique de commande 56 qui est agencé pour fermer momentanément cet interrupteur de manière à le rendre conducteur durant lesdites impulsions de régulation, lesquelles définissent alors des impulsions de court-circuit.In a preferred embodiment, the regulating device 62 comprises a switch 60 arranged between the two electrodes of the hairspring, this switch being controlled by the logic control circuit 56 which is arranged to momentarily close this switch so as to make it conductive during said regulation pulses, which then define short-circuit pulses.

Dans le cadre de l'invention, les inventeurs ont mis en lumière que les impulsions de régulation mentionnées précédemment engendrent chacune un écart de marche pour le mouvement mécanique qui est variable en fonction de l'instant du début de l'impulsion de régulation considérée dans une demi-période de l'oscillateur mécanique. Cette observation est représentée à la Figure 6 où est donnée la fonction caractéristique 66 de l'écart de marche de la pièce d'horlogerie sur un jour relativement à l'instant où débute des impulsions de court-circuit respectivement dans toutes les périodes d'oscillation de l'oscillateur mécanique au cours d'un jour, plus particulièrement dans des demi-périodes respectives de ces périodes d'oscillation qui sont définies, dans chaque période d'oscillation, par les deux passages successifs par la position neutre de cet oscillateur mécanique. Ainsi, l'abscisse du graphe de la Figure 6 correspond à l'intervalle de temps Δt entre le début des impulsions de court-circuit dans les périodes d'oscillation respectives et le début de la demi-période considérée dans ces périodes d'oscillation. De manière remarquable, les inventeurs ont mis en lumière le fait que l'écart de marche est négatif sur une première zone temporelle ZT1 = ZT1.1 & ZT1.2 de la demi-période considérée pour le début des impulsions de court-circuit et qu'il est positif sur une deuxième zone temporelle ZT2 de cette demi-période. On notera encore que la fonction caractéristique 66 représentée à la Figure 6 concerne une variante de réalisation dans laquelle la fréquence d'oscillation est sensiblement égale à 5 Hz (période d'oscillation = 200 ms). L'écart de marche en secondes par jour [s/j] est donné en fonction de l'instant où débutent les impulsions de court-circuit sur une demi-période de 100 ms, entre deux passages successifs du résonateur mécanique par sa position neutre, au cours de chacune des périodes d'oscillation successives. Les impulsions de court-circuit durent chacune 10 ms dans l'exemple représenté, mais ceci n'est pas limitatif.In the context of the invention, the inventors have brought to light that the regulation pulses mentioned above each generate a rate deviation for the mechanical movement which is variable as a function of the instant of the start of the regulation pulse considered in half a period of the mechanical oscillator. This observation is represented at Figure 6 where is given the characteristic function 66 of the operating deviation of the timepiece over one day relative to the instant at which short-circuit pulses begin respectively in all the periods of oscillation of the mechanical oscillator during of a day, more particularly in respective half-periods of these oscillation periods which are defined, in each oscillation period, by the two successive passages by the neutral position of this mechanical oscillator. Thus, the abscissa of the graph of the Figure 6 corresponds to the time interval Δt between the start of the short-circuit pulses in the respective oscillation periods and the start of the half-period considered in these oscillation periods. Remarkably, the inventors have brought to light the fact that the operating deviation is negative over a first time zone ZT1 = ZT1.1 & ZT1.2 of the half-period considered for the start of the short-circuit pulses and that it is positive on a second zone time ZT2 of this half-period. It will also be noted that the characteristic function 66 represented in Figure 6 relates to an alternative embodiment in which the oscillation frequency is substantially equal to 5 Hz (oscillation period = 200 ms). The operating deviation in seconds per day [s / d] is given as a function of the instant at which the short-circuit pulses begin over a half-period of 100 ms, between two successive passages of the mechanical resonator through its neutral position , during each of the successive oscillation periods. The short-circuit pulses each last 10 ms in the example shown, but this is not limiting.

Le circuit électronique de régulation est agencé pour pouvoir déterminer si une dérive temporelle mesurée par le dispositif de mesure correspond à au moins une certaine avance (CB > N1) ou à au moins un certain retard (CB < -N2), l'état du compteur bidirectionnel CB étant fourni au circuit logique de commande 56 par le signal SDT qui donne l'état du compteur bidirectionnel. Le dispositif de régulation est agencé pour engendrer au moins une impulsion de régulation avec un début prévu sélectivement, selon que la dérive temporelle mesurée correspond à ladite au moins une certaine avance ou audit au moins un certain retard, dans la première zone temporelle ZT1 ou dans ladite deuxième zone temporelle ZT2 de respectivement au moins une demi-période de l'oscillateur mécanique. En effet, une impulsion de court-circuit de durée limitée débutant dans la première zone temporelle engendre un certain retard pour l'oscillateur mécanique (déphasage négatif) qui peut corriger au moins en partie une avance détectée dans la marche de la pièce d'horlogerie, alors qu'une impulsion de court-circuit de durée limitée débutant dans la deuxième zone temporelle engendre une certaine avance pour l'oscillateur mécanique (déphasage positif) qui peut corriger au moins en partie un retard détecté dans la marche de la pièce d'horlogerie.The electronic regulation circuit is designed to be able to determine whether a time drift measured by the measuring device corresponds to at least a certain advance (CB> N1) or to at least a certain delay (CB <-N2), the state of the bidirectional counter CB being supplied to the logic control circuit 56 by the signal S DT which gives the state of the bidirectional counter. The regulation device is arranged to generate at least one regulation pulse with a selectively scheduled start, depending on whether the measured time drift corresponds to said at least a certain advance or to said at least a certain delay, in the first time zone ZT1 or in said second time zone ZT2 of respectively at least half a period of the mechanical oscillator. Indeed, a short-circuit pulse of limited duration starting in the first time zone generates a certain delay for the mechanical oscillator (negative phase shift) which can at least partially correct an advance detected in the operation of the timepiece. , while a short-circuit pulse of limited duration starting in the second time zone generates a certain advance for the mechanical oscillator (positive phase shift) which can at least partially correct a delay detected in the operation of the workpiece. watchmaking.

Les Figures 9 et 10 montrent le graphe de la tension induite U(t) entre les électrodes du spiral piézoélectrique lors d'une impulsion de court-circuit débutant respectivement à l'instant ti dans la première zone temporelle ZT1 d'une quelconque période d'oscillation et à l'instant t2 dans la deuxième zone temporelle ZT2 d'une quelconque période d'oscillation, soit respectivement avant et après un passage de l'oscillateur mécanique par une position extrême entre deux passages successifs de cet oscillateur mécanique par sa position neutre définissant la demi-période considérée (voir Figure 7).The Figures 9 and 10 show the graph of the induced voltage U (t) between the electrodes of the piezoelectric balance spring during a short-circuit pulse beginning respectively at the instant ti in the first time zone ZT1 of any oscillation period and at the instant t 2 in the second time zone ZT2 of any oscillation period, i.e. respectively before and after a passage of the mechanical oscillator by an extreme position between two successive passages of this mechanical oscillator by its neutral position defining the considered half-period (see Figure 7 ).

Dans une variante générale, les impulsions de régulation ont chacune une durée inférieure au quart de la période de consigne qui est égale à l'inverse de ladite fréquence de consigne pour l'oscillateur mécanique.In a general variant, the regulation pulses each have a duration less than a quarter of the reference period which is equal to the inverse of said reference frequency for the mechanical oscillator.

Dans une variante de réalisation préférée, la durée des impulsions de régulation est inférieure ou égale à un dixième d'une période de consigne. Au plus une impulsion de régulation est engendrée par demi-période de l'oscillateur mécanique et de préférence au plus une impulsion de régulation par période d'oscillation. Ensuite, le dispositif de régulation est agencé pour engendrer au moins une impulsion de régulation avec un début prévu sélectivement, selon que la dérive temporelle mesurée correspond à au moins une certaine avance ou à au moins un certain retard, dans un premier intervalle Int1 situé à l'intérieur de la première zone temporelle ZT1, pour lequel l'écart de marche donné par ladite fonction caractéristique 66 est supérieur, en valeurs absolues, à au moins la moitié d'un écart de marche maximal de cette fonction caractéristique sur la première zone temporelle, ou dans un deuxième intervalle Int2 situé à l'intérieur de la deuxième zone temporelle ZT2 et pour lequel l'écart de marche donné par la fonction caractéristique est supérieur à au moins la moitié d'un écart de marche maximal de cette fonction caractéristique sur la deuxième zone temporelle. Ainsi, on assure un effet relativement important lors des impulsions de régulation, en particulier lors des impulsions de court-circuit.In a preferred variant embodiment, the duration of the regulation pulses is less than or equal to one tenth of a set period. At most one regulation pulse is generated per half-period of the mechanical oscillator and preferably at most one regulation pulse per oscillation period. Then, the regulation device is arranged to generate at least one regulation pulse with a selectively scheduled start, depending on whether the measured time drift corresponds to at least a certain advance or at least a certain delay, in a first interval Int1 located at inside the first time zone ZT1, for which the operating deviation given by said characteristic function 66 is greater, in absolute values, than at least half of a maximum operating deviation of this characteristic function over the first zone time, or in a second interval Int2 located inside the second time zone ZT2 and for which the operating deviation given by the characteristic function is greater than at least half of a maximum operating deviation of this characteristic function on the second time zone. Thus, a relatively large effect is ensured during the regulation pulses, in particular during the short-circuit pulses.

En référence aux Figures 7 et 8, on décrira un procédé de régulation selon l'invention qui est mis en œuvre par le dispositif de régulation 62, ce procédé de régulation étant conforme aux caractéristiques de l'invention décrites précédemment. Comme déjà indiqué, le comparateur à hystérèse 54 fournit un signal 'Comp' au circuit logique de commande 56, lequel reçoit également un signal SDT de mesure de la dérive temporelle de l'oscillateur mécanique, et donc de la pièce d'horlogerie considérée. Chaque flanc montant et chaque flanc descendant du signal 'Comp' indiquent que le résonateur mécanique vient de passer par sa position neutre, respectivement au cours de deux alternances successives de l'oscillateur mécanique. Le circuit de commande fournit sélectivement un signal de commande Scom à un minuteur 58 qui commande un transistor 60 formant l'interrupteur en lui appliquant un signal DCC. Plus précisément, le circuit de commande détermine l'instant du début de chaque impulsion de court-circuit 88a, 88b en déclenchant ou réinitialisant le minuteur ('Timer') qui rend directement passant / conducteur le transistor 60 (interrupteur fermé), le minuteur déterminant la durée TR de chaque impulsion de court-circuit. A la fin de chaque impulsion de court-circuit, le minuteur ouvre à nouveau l'interrupteur de sorte que le transistor 60 n'est plus passant, c'est-à-dire non conducteur.With reference to Figures 7 and 8 , there will be described a regulation method according to the invention which is implemented by the regulation device 62, this regulation method being in accordance with the characteristics of the invention described previously. As already indicated, the hysteresis comparator 54 supplies a 'Comp' signal to the control logic circuit 56, which also receives a signal S DT for measuring the time drift of the mechanical oscillator, and therefore of the timepiece considered. . Each rising edge and each falling edge of the 'Comp' signal indicate that the mechanical resonator has just passed through its neutral position, respectively during two successive half-waves of the mechanical oscillator. The control circuit selectively supplies a control signal S com to a timer 58 which controls a transistor 60 forming the switch by applying a signal D CC thereto . More precisely, the control circuit determines the instant of the start of each short-circuit pulse 88a, 88b by triggering or resetting the timer ('Timer') which makes transistor 60 (switch closed) directly on / on, the timer determining the duration T R of each short-circuit pulse. At the end of each short-circuit pulse, the timer opens the switch again so that the transistor 60 is no longer conducting, that is to say not conducting.

En exploitant la fonction caractéristique 66 décrite précédemment, le circuit logique de commande est associé à un compteur temporelle CT qui permet de mesurer au moins deux intervalles de temps Δt1 et Δt2 pour pouvoir déclencher sélectivement le minuteur 58 dans le premier intervalle Int1 et le deuxième intervalle Int2 d'une demi-période, telle que considérée à la Figure 6, selon que le circuit de commande a déterminé une certaine avance ou un certain retard, à savoir une dérive temporelle positive ou négative, dans la marche de l'oscillateur mécanique. Plus précisément, lorsque le circuit de commande détecte dans le signal 'Comp' un flanc descendant (ou alternativement un flanc montant), il réinitialise ('reset') le compteur CT. Si le signal SDT indique une avance, soit CB > N1, N1 étant un nombre naturel positif, alors le circuit de commande attend un intervalle de temps Δt1 pour activer le minuteur par un signal Scom(1), ce minuteur engendrant alors un signal DCC(1) qui rend conducteur le transistor 60 au temps t1 (dans la première zone temporelle ZT1, de préférence dans le premier intervalle Int1) pour une durée TR, engendrant ainsi une première impulsion de court-circuit 88a qui génère un déphasage négatif dans l'oscillation de l'oscillateur mécanique (augmentation d'une période d'oscillation et donc diminution de la fréquence instantanée). Par contre, si le signal SDT indique un retard, soit CB < -N2, N2 étant un nombre naturel positif, alors le circuit de commande attend un intervalle de temps Δt2 pour activer le minuteur par un signal Scom(2), ce minuteur engendrant alors un signal DCC(2) qui rend conducteur le transistor 60 au temps t2 (dans la deuxième zone temporelle ZT2, de préférence dans le deuxième intervalle Int2) également pour une durée TR, engendrant ainsi une deuxième impulsion de court-circuit 88b qui génère un déphasage positif dans l'oscillation de l'oscillateur mécanique (diminution d'une période d'oscillation / augmentation de la fréquence instantanée).By using the characteristic function 66 described previously, the control logic circuit is associated with a time counter CT which makes it possible to measure at least two time intervals Δt 1 and Δt 2 in order to be able to selectively trigger the timer 58 in the first interval Int1 and the second interval Int2 of a half-period, as considered at Figure 6 , depending on whether the control circuit has determined a certain advance or a certain delay, namely a positive or negative time drift, in the operation of the mechanical oscillator. More precisely, when the control circuit detects a falling edge (or alternatively a rising edge) in the 'Comp' signal, it resets ('reset') the counter CT. If the signal S DT indicates an advance, or CB> N1, N1 being a positive natural number, then the control circuit waits for a time interval Δt 1 to activate the timer by a signal S com (1), this timer then generating a signal D CC (1) which turns on the transistor 60 at time t 1 (in the first time zone ZT1, preferably in the first interval Int1) for a duration T R , thus generating a first short-circuit pulse 88a which generates a negative phase shift in the oscillation of the mechanical oscillator (increase of an oscillation period and therefore reduction of the instantaneous frequency). On the other hand, if the signal S DT indicates a delay, ie CB <-N2, N2 being a positive natural number, then the control circuit waits for a time interval Δt 2 to activate the timer by a signal S com (2), this timer then generating a signal D CC (2) which turns on the transistor 60 at time t 2 (in the second time zone ZT2, preferably in the second interval Int2) also for a duration T R , thus generating a second pulse of short-circuit 88b which generates a positive phase shift in the oscillation of the mechanical oscillator (reduction of an oscillation period / increase of the instantaneous frequency).

On notera que l'algorithme donné par l'organigramme de la Figure 8 peut présenter diverses variantes. Ainsi, en particulier, il est possible de prévoir une sous-séquence, lorsqu'une certaine avance ou un certain retard a été constaté, dans laquelle on effectue une pluralité d'impulsions de court-circuit dans une pluralité respective de périodes d'oscillation. Dans un tel cas, on peut prévoir une variante où la pluralité d'impulsions de court-circuit est effectuée dans des périodes d'oscillation successives ou une autre variante où ces impulsions de court-circuit sont effectuées périodiquement toutes les N périodes d'oscillation, N étant un nombre entier supérieur à un (N > 1). Dans une variante a priori moins avantageuse, il est cependant possible d'effectuer une pluralité d'impulsions de régulation dans une pluralité de demi-périodes consécutives. Dans ce dernier cas on déclenchera une impulsion de régulation alternativement lors de l'apparition d'un flanc descendant et d'un flanc montant dans le signal 'Comp'.Note that the algorithm given by the flowchart of the Figure 8 can have various variations. Thus, in particular, it is possible to provide a sub-sequence, when a certain advance or a certain delay has been observed, in which a plurality of short-circuit pulses are carried out in a respective plurality of oscillation periods. . In such a case, one can provide a variant where the plurality of short-circuit pulses are performed in successive oscillation periods or another variant where these short-circuit pulses are performed periodically every N oscillation periods. , N being an integer greater than one (N> 1). In an a priori less advantageous variant, it is however possible to perform a plurality of regulation pulses in a plurality of consecutive half-periods. In the latter case, a regulation pulse will be triggered alternately on the appearance of a falling edge and a rising edge in the 'Comp' signal.

A l'aide de la Figure 11 (page 4/7 des dessins annexés), on décrira un mode de réalisation préféré du spiral piézoélectrique 70 de la pièce d'horlogerie selon l'invention. Ce spiral 70, représenté en coupe transversale, comprend un corps central 72 en silicium, une couche d'oxyde de silicium 74 déposée en surface du corps central de manière à compenser thermiquement le spiral, une couche conductrice 76 déposée sur la couche d'oxyde de silicium, et un matériau piézoélectrique déposé sous forme d'une couche piézoélectrique 78 sur la couche conductrice 76. Deux électrodes 20a et 22a sont agencées sur la couche piézoélectrique 78 respectivement des deux côtés latéraux du spiral (les deux électrodes pouvant recouvrir en partie les côtés inférieur et supérieur du spiral sans toutefois se rejoindre).Using the Figure 11 (page 4/7 of the accompanying drawings), a preferred embodiment of the piezoelectric balance spring 70 of the timepiece according to the invention will be described. This hairspring 70, shown in cross section, comprises a central body 72 in silicon, a layer of silicon oxide 74 deposited on the surface of the central body so as to thermally compensate the hairspring, a conductive layer 76 deposited on the silicon oxide layer, and a piezoelectric material deposited in the form of a piezoelectric layer 78 on the conductive layer 76. Two electrodes 20a and 22a are arranged on the piezoelectric layer 78 respectively on the two lateral sides of the hairspring (the two electrodes being able to partially cover the lower and upper sides of the hairspring without however joining).

Dans la variante particulière représentée à la Figure 11, la première partie 80a et la deuxième partie 80b de la couche piézoélectrique s'étendant respectivement sur les deux côtés latéraux du corps central 72 présentent, de par leur croissance depuis la couche conductrice 76, des structures cristallographiques respectives qui sont symétriques relativement à un plan médian 84 parallèle à ces deux côtés latéraux. Ainsi, dans les deux parties latérales 80a et 80b, la couche piézoélectrique présente deux mêmes axes piézoélectriques respectifs 82a, 82b qui sont perpendiculaires à la couche piézoélectrique et de sens opposés. On a donc une inversion du signe de la tension induite entre l'électrode interne et chacune des deux électrodes latérales externes pour une même contrainte mécanique. Or, lorsque le spiral se contracte ou se dilate depuis sa position de repos, il y a une inversion de la contrainte mécanique entre les première et deuxième parties 80a et 80b, c'est-à-dire que l'une de ces parties subit une compression alors que l'autre de ces parties subit une traction, et inversement. Au final il résulte de ces considérations que les tensions induites dans les première et deuxième parties présentent, selon un axe perpendiculaire aux deux côtés latéraux, une même polarité de sorte que la couche conductrice 76 peut former une seule et même électrode interne qui s'étend des deux côtés latéraux du corps central 72, cette électrode interne n'ayant pas de liaison électrique propre avec le dispositif de régulation. Dans une variante particulière, la couche piézoélectrique est constituée d'un cristal de nitrure d'aluminium formé par une croissance de ce cristal depuis la couche conductrice 76 (électrode interne) et perpendiculairement à celle-ci.In the particular variant shown in Figure 11 , the first part 80a and the second part 80b of the piezoelectric layer extending respectively on the two lateral sides of the central body 72 have, by their growth from the conductive layer 76, respective crystallographic structures which are symmetrical with respect to a plane median 84 parallel to these two lateral sides. Thus, in the two lateral parts 80a and 80b, the piezoelectric layer has two same respective piezoelectric axes 82a, 82b which are perpendicular to the piezoelectric layer and in opposite directions. There is therefore an inversion of the sign of the voltage induced between the internal electrode and each of the two external lateral electrodes for the same mechanical stress. However, when the hairspring contracts or expands from its rest position, there is a reversal of the mechanical stress between the first and second parts 80a and 80b, that is to say that one of these parts is subjected compression while the other of these parts is under tension, and vice versa. In the end, it follows from these considerations that the voltages induced in the first and second parts have, along an axis perpendicular to the two lateral sides, the same polarity so that the conductive layer 76 can form one and the same internal electrode which extends on the two lateral sides of the central body 72, this internal electrode not having its own electrical connection with the regulation device. In a particular variant, the piezoelectric layer consists of an aluminum nitride crystal formed by a growth of this crystal from the conductive layer 76 (internal electrode) and perpendicular to the latter.

Claims (7)

  1. Timepiece comprising a mechanical timepiece movement, provided with a mechanical oscillator formed by a balance (4) and a balance spring (8; 70) and arranged to set the rate of the timepiece movement, and a regulating device (62) for regulating the frequency of the mechanical oscillator, this regulating device including an auxiliary time base (42, 44), formed by an auxiliary oscillator and providing a reference frequency signal, and a device (54, CB) for measuring a time deviation in the rate of the timepiece movement with respect to a desired frequency (Shor) of the mechanical oscillator which is determined by the auxiliary time base, the balance spring being at least partially formed by a piezoelectric material and by at least two electrodes (20, 22; 20a, 22a) arranged to be able to have therebetween a voltage induced by said piezoelectric material when the latter is subjected to mechanical stress during an oscillation of the mechanical oscillator, the two electrodes being electrically connected to the regulating device which is arranged to be able to vary the impedance of the regulating system, formed by said piezoelectric material, said at least two electrodes and the regulating device, as a function of a time deviation measurement signal provided by the measuring device; characterized in that the regulating device (62) is arranged to be able to momentarily vary the electrical resistance produced by said regulating device between said two electrodes, the regulating device being arranged to be able to produce time-separated regulating pulses (8a, 88b), each consisting of a momentary decrease in said electrical resistance relative to a nominal electrical resistance which is produced by the regulating device between said two electrodes outside said regulating pulses, each of said regulating pulses producing a variation of rate in the mechanical movement which varies as a function of the moment of starting thereof in a half-period of the mechanical oscillator, the characteristic function (66) of said variation of rate relative to said moment of starting of at least one of said regulating pulses respectively in at least one half-period of the mechanical oscillator being negative in a first temporal part (ZT1.1 & ZT1.2) of said at least one half-period and positive in a second temporal part (ZT2) of said at least one half-period; and in that the regulating device is arranged to be able to determine whether a time deviation measured by the measuring device corresponds to at least some gain or to at least some loss, the regulating device being arranged to produce at least one of said regulating pulses (88a, 88b) with a selectively arranged start, depending on whether the measured time deviation corresponds to said at least some gain or to said at least some loss, in said first temporal part or in said second temporal part respectively of at least one half-period of the mechanical oscillator.
  2. Timepiece according to claim 1, characterized in that said regulating pulses (88a, 88b) each have a duration (TR) less than a quarter of the desired period which is equal to the inverse of said desired frequency.
  3. Timepiece according to claim 1 or 2, characterized in that the duration (TR) of said regulating pulses (88a, 88b) is less than or equal to one tenth of a desired period; and in that the regulating device is arranged to produce at least one of said regulating pulses with a selectively arranged start, depending on whether the measured time deviation corresponds to said at least some gain or to said at least some loss, in a first interval (Int1) within said first temporal part (ZT1.1) and wherein said variation of rate given by said characteristic function is greater, in absolute value, than at least half of a maximum variation of rate of said characteristic function in the first temporal part or in a second time interval (Int2) within said second temporal part (ZT2) and wherein the variation of rate given by said characteristic function is greater than at least half of a maximum variation of rate of said his characteristic function in the second temporal part.
  4. Timepiece according to any of claims 1 to 3, characterized in that said regulating device (62) includes a switch (60) arranged between the two balance spring electrodes (20, 22), said switch being controlled by a control logic circuit (56), which is arranged to momentarily close said switch during said regulating pulses in order to turn on / make conductive said switch, said regulating pulses then generating short circuit pulses.
  5. Timepiece according to any of claims 1 to 4, characterized in that said balance spring (70) includes a central silicon body (72), a silicon oxide layer (74) deposited at the surface of said central body for temperature compensation of the balance spring, a conductive layer (76) deposited on the silicon oxide layer, and said piezoelectric material deposited in the form of a piezoelectric layer (78) on said conductive layer, said two electrodes (20a, 20b) being arranged on the piezoelectric layer respectively on the two lateral sides of the balance spring.
  6. Timepiece according to claim 5, characterized in that first and second parts (80a, 80b) of the piezoelectric layer, which extend respectively on the two lateral sides of said central body (72) have respective crystallographic structures which are symmetrical with respect to a median plane (84) parallel to said two lateral sides; and in that said conductive layer (76) forms a single same internal electrode which extends over the two lateral sides of the central body, said internal electrode having no electrical connection of its own to the regulating device.
  7. Timepiece according to claim 6, characterized in that said piezoelectric layer (78) consists of an aluminium nitride crystal formed by crystal growth perpendicular to said conductive layer (76) and from said conductive layer.
EP18162191.3A 2018-03-16 2018-03-16 Timepiece comprising a mechanical movement the oscillating rate of which is controlled by an electronic device Active EP3540528B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18162191.3A EP3540528B1 (en) 2018-03-16 2018-03-16 Timepiece comprising a mechanical movement the oscillating rate of which is controlled by an electronic device
JP2019042361A JP6797227B2 (en) 2018-03-16 2019-03-08 A timekeeper with a mechanical movement whose speed is controlled by an electronic device
CN201910193381.2A CN110275420B (en) 2018-03-16 2019-03-14 Timepiece comprising a mechanical movement and an electronic device for adjusting the rate of the movement
US16/354,217 US11415946B2 (en) 2018-03-16 2019-03-15 Timepiece comprising a mechanical movement whose rate is regulated by an electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18162191.3A EP3540528B1 (en) 2018-03-16 2018-03-16 Timepiece comprising a mechanical movement the oscillating rate of which is controlled by an electronic device

Publications (2)

Publication Number Publication Date
EP3540528A1 EP3540528A1 (en) 2019-09-18
EP3540528B1 true EP3540528B1 (en) 2020-08-05

Family

ID=61691302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18162191.3A Active EP3540528B1 (en) 2018-03-16 2018-03-16 Timepiece comprising a mechanical movement the oscillating rate of which is controlled by an electronic device

Country Status (4)

Country Link
US (1) US11415946B2 (en)
EP (1) EP3540528B1 (en)
JP (1) JP6797227B2 (en)
CN (1) CN110275420B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3629103B1 (en) * 2018-09-28 2021-05-12 The Swatch Group Research and Development Ltd Timepiece comprising a mechanical movement of which the oscillation precision is regulated by an electronic device
EP4099100A1 (en) 2021-06-02 2022-12-07 The Swatch Group Research and Development Ltd Timepiece movement provided with an oscillator comprising a piezoelectric hairspring
EP4130890B1 (en) 2021-08-04 2024-03-27 The Swatch Group Research and Development Ltd Timepiece movement provided with an oscillator comprising a piezoelectric hairspring

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH1801671A4 (en) * 1971-12-10 1975-05-30
JPS4996771A (en) * 1972-11-10 1974-09-12
US4340948A (en) * 1980-04-24 1982-07-20 General Time Corporation Single-coil balance wheel for driving a mechanical movement
WO2001048565A1 (en) * 1999-12-24 2001-07-05 Seiko Instruments Inc. Mechanical timepiece having train wheel operation controller
JP3767388B2 (en) * 2001-01-30 2006-04-19 セイコーエプソン株式会社 Piezoelectric governor and electronic device using the piezoelectric governor
EP1605323A3 (en) * 2004-04-13 2006-07-12 Coredem S.A. Spiral spring for mechanical clockwork
JP4692967B2 (en) * 2006-01-27 2011-06-01 セイコーインスツル株式会社 Calendar clock with two date wheels arranged eccentrically
EP2104008A1 (en) * 2008-03-20 2009-09-23 Nivarox-FAR S.A. Single-body regulating organ and method for manufacturing same
CH703052B1 (en) 2010-04-21 2015-03-13 Team Smartfish Gmbh Regulating member clockwork.
CH704693B1 (en) * 2010-07-16 2015-08-14 Eta Sa Manufacture Horlogère Suisse A method of adjusting the oscillation frequency, and / or adjusting the inertia, and / or balancing a movable component of a clockwork movement, or a clockwork balance-spring assembly.
CH705679B1 (en) * 2011-10-28 2017-01-31 Swatch Group Res & Dev Ltd A circuit for self-regulating the oscillation frequency of an oscillating mechanical system, and a device comprising the same.
EP2590035B1 (en) * 2011-11-01 2020-12-30 The Swatch Group Research and Development Ltd. Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same
WO2015023871A1 (en) 2013-08-15 2015-02-19 Medicinova, Inc. Treatment of alcoholism using ibudilast
CH709279B1 (en) * 2014-02-17 2018-12-14 Swatch Group Res & Dev Ltd Frequency regulation of a clock resonator by action on the stiffness of an elastic return means.
CH710603B1 (en) * 2015-01-09 2020-06-15 Sigatec Sa Clock spring with adjustable frequency.
EP3252545B1 (en) * 2016-06-03 2019-10-16 The Swatch Group Research and Development Ltd. Timepiece mechanism with balance wheel inertia adjustment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6797227B2 (en) 2020-12-09
US20190286063A1 (en) 2019-09-19
JP2019158882A (en) 2019-09-19
EP3540528A1 (en) 2019-09-18
CN110275420A (en) 2019-09-24
US11415946B2 (en) 2022-08-16
CN110275420B (en) 2020-11-27

Similar Documents

Publication Publication Date Title
EP3629103B1 (en) Timepiece comprising a mechanical movement of which the oscillation precision is regulated by an electronic device
EP3540528B1 (en) Timepiece comprising a mechanical movement the oscillating rate of which is controlled by an electronic device
EP3629104B1 (en) Mechanical timepiece comprising an electronic device for regulating the time keeping precision of the timepiece
EP0048689A1 (en) Quartz thermometer
EP3457224B1 (en) Piezoelectric element for a frequency self-regulation circuit, oscillating mechanical system and device including the same, and method for manufacturing the piezoelectric element
EP3457223A1 (en) Piezoelectric element for a frequency self-regulation circuit, and oscillating mechanical system and device including the same
CH714794A2 (en) Timepiece comprising a mechanical movement whose movement is regulated by an electronic device.
EP3502798B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP4099100A1 (en) Timepiece movement provided with an oscillator comprising a piezoelectric hairspring
EP3502796B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
EP3502797B1 (en) Timepiece comprising a mechanical oscillator associated with a control system
CH715392A2 (en) Timepiece comprising a mechanical movement, the progress of which is regulated by an electronic device.
EP2590035A1 (en) Circuit for self-regulating the oscillation frequency of an oscillating mechanical system and device including same
EP4130890B1 (en) Timepiece movement provided with an oscillator comprising a piezoelectric hairspring
CH714144A2 (en) Piezoelectric element for a frequency self-regulating circuit, oscillating mechanical system and device comprising same, and method of manufacturing the piezoelectric element.
CH718897A2 (en) Watch movement equipped with an oscillator comprising a piezoelectric hairspring.
CH718689A2 (en) Watch movement fitted with an oscillator comprising a piezoelectric hairspring.
EP4009119B1 (en) Timepiece movement provided with a generator and a circuit for controlling the frequency of rotation of said generator
EP1634373B1 (en) Layout for a time base
CH714143A2 (en) Piezoelectric element for a frequency self-regulating circuit, and oscillating mechanical system and device comprising same.
JP2024501675A (en) watch
CH714485A2 (en) Timepiece comprising a mechanical oscillator associated with a control system.
FR2638519A1 (en) DEVICE FOR MEASURING A PHYSICAL SIZE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200318

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200423

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NAGY, LAURENT

Inventor name: HAEMMERLI, ALEXANDRE

Inventor name: TOMBEZ, LIONEL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1299575

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018006541

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200805

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1299575

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018006541

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230401

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805