EP3521739A1 - Verfahren und vorrichtung zur gewinnung von druckstickstoff durch tieftemperaturzerlegung von luft - Google Patents

Verfahren und vorrichtung zur gewinnung von druckstickstoff durch tieftemperaturzerlegung von luft Download PDF

Info

Publication number
EP3521739A1
EP3521739A1 EP19020030.3A EP19020030A EP3521739A1 EP 3521739 A1 EP3521739 A1 EP 3521739A1 EP 19020030 A EP19020030 A EP 19020030A EP 3521739 A1 EP3521739 A1 EP 3521739A1
Authority
EP
European Patent Office
Prior art keywords
pressure column
low
stream
gaseous
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19020030.3A
Other languages
English (en)
French (fr)
Inventor
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3521739A1 publication Critical patent/EP3521739A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04321Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04442Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with a high pressure pre-rectifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/52Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger

Definitions

  • the invention relates to a process for the production of pressurized nitrogen by cryogenic separation of air according to the preamble of patent claim 1.
  • the method particularly relates to systems with withdrawal of nitrogen product from the high pressure column.
  • the nitrogen product can come from both columns, for example by removing gaseous nitrogen (GAN) both directly from the low pressure column and from the high pressure column.
  • GAN gaseous nitrogen
  • at least part of the low-pressure column nitrogen can be taken off liquid (LIN), fed into the high-pressure column and withdrawn therefrom as GAN product.
  • Such methods with "pumping back" of low-pressure column LIN in the high-pressure column are off US 2004244417 A1 .
  • main condensers and low-pressure column top condensers are usually used, which are formed on their evaporation side as a bath evaporator.
  • the invention has for its object to improve the aforementioned method and a corresponding device in terms of energy consumption while allowing the safe operation of the system.
  • a forced-flow evaporator as a low-pressure column top condenser allows a particularly lower pressure difference between evaporating and condensing flow at the same average temperature difference as in a bath evaporator.
  • liquid bath above the low-pressure column it is also possible to remove a flushing stream and to discharge high-boiling components, in particular propane.
  • a purge stream is withdrawn from the bottom of the high-pressure column.
  • a barrier floor section is provided which retains the high-boiling, in particular propane, in the bottom of the high-pressure column.
  • the oxygen-enriched liquid stream for the low-pressure column is removed above the barrier bottom section and contains less high-boiling and in particular virtually no more propane.
  • FIG. 2 and that of WO 2016131545 A1 : US 2004244417 A1 WO 2016131545 A1 High air pressure, well above high pressure column pressure. Total air is only compressed to high pressure column pressure. 10% fluid production Gaseous high-pressure nitrogen as the main product Large choke current (total air without turbine air) over 232 No choke current bath evaporator Forced-flow evaporator Residual gas turbine only makes cold (does not drive a cold compressor) Residual gas turbine only pressure (drives cold compressor)
  • the two methods have such a different character that a combination for the unprejudiced expert would be in any case in question.
  • the feed air contains at US 2004244417 A1 because of the relatively low pressure in the process (or relatively small pressure difference to the emerging from the rectification system streams) and a minor proportion of liquid in the feed to the high pressure column - this would apply even with very low liquid product extraction or pure gas operation. Therefore, a relatively large amount of liquid would end up in the bottom of the high pressure column, taking the above measures (see also WO 2016131545 A1 ) applied to one of these methods. This amount would be deducted in total with the purge stream and reduce the product yield noticeably or adversely affect the energy consumption of the system.
  • claim 1 contains yet another feature according to which the gaseous nitrogen stream from the high pressure column is warmed before its warming in the main heat exchanger in a supercooling countercurrent in indirect heat exchange with the oxygen-enriched liquid stream from the high pressure column. It seems unclear at first glance what this measure should have to do with the evacuation of the high-boilers. In any case, it leads to an increase in the enthalpy of the gaseous nitrogen stream when entering the main heat exchanger. Since the enthalpy difference of a balancing group around the distillation column system remains unchanged (with unchanged product quantities and constant heat input from the environment), this causes a temperature increase at the cold end of the main heat exchanger.
  • the invention is compared with a mode of operation without directing the pressure nitrogen through the subcooling countercurrent. If one waives these measures, 96,600 Nm 3 / h of air at 8.50 bar and a vapor fraction of 0.9966864 flow into the high-pressure column, ie 320 Nm 3 / h of air pass liquid into the high-pressure column (pre-liquefaction).
  • the proportion of the air which passes liquid into the high pressure column is reduced in a process that would otherwise occur more pre-liquefaction.
  • This "reduction” can go to zero or even lead to overheating of the fed into the high pressure column air, so to a warming beyond the dew point.
  • the invention does not relate to methods in which no pre-liquefaction occurs without introduction of the pressurized nitrogen into the subcooling countercurrent.
  • the measure described is relatively simple in terms of apparatus, but very effective. It uses an already required apparatus, the subcooling countercurrent, and allows a stable adjustment of the amount of purge stream, which is taken from the high pressure column sump, with good product yield and relatively low energy consumption. Overall, a particularly efficient method for obtaining pressurized nitrogen results.
  • low-pressure column for example 4.0 to 7.0 bar, preferably 4.5 to 6.5 bar
  • High pressure column for example 7 to 12 bar, preferably 8 to 11 bar
  • Low-pressure column overhead condenser on the evaporation side for example 1.5 to 3.5 bar, preferably 1.9 to 3.2 bar
  • the pre-liquefaction can be reduced. In some cases, a reduced pre-liquefaction will occur.
  • the Vorverminuteung is completely eliminated by the invention, that is, the feed air flows completely gaseous under Tautemperatur or slightly overheating in the high pressure column.
  • lightly overheating is meant here a temperature difference of at least 0.1 K, for example (depending on the liquid production) 0.1 K to 2.0 K, preferably 0.2 K to 1.8 K.
  • the evaporation space operated as a forced-flow evaporator is operated with an oxygen-rich liquid from the low-pressure column; this can come in particular from the bottom of the low-pressure column.
  • the gas generated in the evaporation chamber of the low-pressure column head condenser is preferably heated to residual temperature in the main heat exchanger to an intermediate temperature and then expanded to perform work in a residual gas turbine, then reintroduced into the main heat exchanger and warmed to about ambient temperature. This can be obtained in an economical way cold for the process.
  • the residual gas turbine can be braked by an electric generator or by a compressor.
  • the latter can, for example, compress the warmed expanded residual gas or a part thereof.
  • the efficiency of the process can be further increased, even if the evaporation space of the main condenser is designed as a forced-flow evaporator.
  • the invention also relates to a device according to claim 10.
  • the device according to the invention can be supplemented by device features that correspond to the characteristics of individual, several or all dependent method claims.
  • the initial stages of an air compressor, a pre-cooling and air cleaning are not shown here and are carried out in the embodiments in a known manner.
  • the air 1 is cooled in the main heat exchanger 2 to almost its dew point and flows with some overheating via line 3 into the bottom of the high-pressure column 4 of the distillation column system.
  • the distillation column system also includes a main condenser 5, a low pressure column 6, and a low pressure column top condenser 7.
  • the two capacitors are as Condenser-evaporator formed; their evaporation chambers are each operated as a forced-flow evaporator.
  • the high-pressure column 4 has a barrier bottom section 8, which is arranged directly above the point at which the feed air 3 is introduced. It consists for example of one to five, preferably from two to three classical rectification. Alternatively, a section of ordered packing of, for example, one to five, preferably two to three theoretical plates may be used. This section holds back high-boiling components of the air, in particular propane, which are removed with a purge stream 9A (purge) from the bottom of the high-pressure column 4 and removed therewith from the distillation column system. The purge stream 9B may be introduced into a warm waste stream 10 as shown.
  • a purge stream 9A purge
  • an oxygen-enriched liquid stream 11 is removed from the high-pressure column 4, cooled in a supercooling countercurrent 12 and fed via line 13 to the low-pressure column 6 at an intermediate point.
  • This stream is virtually free of propane and other high-boiling components. This then also applies to all other oxygen-rich fractions in the low-pressure column, in particular for the bottoms liquid, which can be vaporized without risk in both the main condenser 5 (via line 14) and in the low-pressure column top condenser 7 (via lines 15 and 16).
  • capacitor 7 can be carried out easily complete evaporation.
  • liquid nitrogen 19 is returned as reflux into the high-pressure column 4.
  • the low-pressure column head condenser liquefies head gas 20 of the low-pressure column 6 liquid nitrogen 21 is returned to the low-pressure column 6.
  • a part of it is immediately withdrawn as liquid nitrogen stream 22 from the low pressure column 6. (Alternatively, this stream could also be taken directly from the liquefaction space of the low pressure column top condenser 7.)
  • a pump 23 brings the liquid nitrogen stream 22 to about high pressure column pressure.
  • the pressurized fluid 24 is fed via the supercooling countercurrent 12 and line 25A / 25B to the top of the high-pressure column 4.
  • a gaseous stream of nitrogen from the head of the high-pressure column 4 is withdrawn via line 17 / 26A / 26B and initially heated according to the invention in the subcooling countercurrent 12. Subsequently, the nitrogen 27 is warmed in the main heat exchanger to some ambient temperature and can be withdrawn at 28 as gaseous pressure nitrogen product under high-pressure column pressure. In this example, however, it is further compressed by one or z. B. two nitrogen compressor 29, 30 each with intermediate or aftercooling, so that the final pressure nitrogen product 31 (PGAN) here has a pressure of, for example, 120 or 150 bar.
  • a residual gas 32 is generated, which is first heated in the subcooling countercurrent 12. Subsequently, it flows via line 33 to the main heat exchanger 2, in which it is heated to an intermediate temperature. It is then expanded to work in a residual gas turbine 35 with bypass 37. The expanded residual gas is introduced in two parts back into the main heat exchanger and warmed to about ambient temperature. A first part 38 is supplied via line 39 as a regeneration of air purification. The remainder 40 is delivered via line 10 into the atmosphere (ATM).
  • a portion 41 of the overhead gas of the low-pressure column 6 is discharged via the lines 42 and 43 and by the supercooling countercurrent 12 and the main heat exchanger 2 as a sealing gas (Seal).
  • Line 44 shows the balancing group around the distillation column system. It cuts the purge gas line 9A, the residual gas line 33 and the sealing gas line 41 and above all the feed air line 3 and the pressure nitrogen line 27 (shown in bold here).
  • H_Luft means the enthalpy of the air flow
  • H_Prod the enthalpy of the product streams
  • WPump the heat introduced by the pump 23.
  • FIG. 1b only differs from this FIG. 1a in that a portion 125C of the liquid nitrogen 22 warmed in the subcooling countercurrent 12 is withdrawn as liquid product LIN.
  • all of the current 25A may be routed via line 125C; the entire gaseous nitrogen product, which originates from the low pressure column 6, is then withdrawn via line 41 from the low pressure column 6.
  • FIG. 2 only differs from this FIG. 1a in that the turbine 35 is braked by a compressor 236. This brings the part 39 of the warmed expanded residual gas to the pressure needed to use it as a regeneration gas in the air purification. As a result, the pressure in the distillation column system and at the outlet of the (not shown) air compressor can be reduced and the energy saved directly on the air compressor. For example, the pressure on the MAC is lowered by about 500 mbar or even more.
  • FIG. 3 becomes different from FIG. 2 the entire expanded and warmed residual gas 339 in the turbine driven compressor 236 is compressed.
  • a first portion 340 of the compressed residual gas becomes as in FIG FIG. 2 used as regeneration gas; the remainder 341 is decompressed in a throttle valve and vented to the atmosphere (atm).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Power Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System. Das Destillationssäulen-System weist eine Hochdrucksäule (4), eine Niederdrucksäule (6) sowie einen Hauptkondensator (5) und einen Niederdrucksäulen-Kopfkondensator (7) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind. Verdichtete und gereinigte Einsatzluft (1) wird in einem Hauptwärmetauscher (2) abgekühlt und zum mindestens größten Teil gasförmig in die Hochdrucksäule (4) eingeleitet (3). Ein sauerstoffangereicherter Flüssigstrom (11, 13) wird aus der Hochdrucksäule (4) entnommen und in die Niederdrucksäule eingeleitet. Ein gasförmiger Stickstoffstrom (17, 26A, 26B, 27) wird aus der Hochdrucksäule (4) entnommen, im Hauptwärmetauscher (2) angewärmt und als gasförmiges Druckstickstoffprodukt (28, 31) abgezogen. Der Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) ist als Forced-Flow-Verdampfer ausgebildet. Die Hochdrucksäule (4) weist einen Sperrbodenabschnitt (8) auf, der unmittelbar oberhalb der Stelle angeordnet ist, an der die Einsatzluft (3) eingeleitet wird, und ein bis fünf theoretische beziehungsweise praktische Böden aufweist. Der sauerstoffangereicherte Flüssigstrom (11), der in die Niederdrucksäule (6) eingeleitet wird, wird oberhalb des Sperrbodenabschnitts (8) aus der Hochdrucksäule (4) entnommen. Unterhalb der Sperrbodenabschnitts (8) wird ein Spülstrom (9A) entnommen und aus dem Destillationssäulen-System entfernt (9B). Der gasförmige Stickstoffstrom (26A, 26B) wird vor seiner Anwärmung im Hauptwärmetauscher (2) in einem Unterkühlungs-Gegenströmer (12) in indirektem Wärmeaustausch mit dem sauerstoffangereicherten Flüssigstrom (11) aus der Hochdrucksäule (4) angewärmt.

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.
  • Das Verfahren bezieht sich insbesondere auf Systeme mit Entnahme von Stickstoffprodukt aus der Hochdrucksäule. Das Stickstoffprodukt kann aus beiden Säulen stammen, zum Beispiel durch Herausführen von gasförmigem Stickstoff (GAN) sowohl unmittelbar aus der Niederdrucksäule als auch aus der Hochdrucksäule. Alternativ kann mindestens ein Teil des Niederdrucksäulenstickstoffs flüssig (LIN) entnommen, in die Hochdrucksäule eingespeist und von dort als GAN-Produkt abgezogen werden. Derartige Verfahren mit "Zurückpumpen" von Niederdrucksäulen-LIN in die Hochdrucksäule sind aus US 2004244417 A1 , Figur 2, DE 19933557 oder EP 1022530 bekannt. Bei solchen Prozessen werden in der Regel Hauptkondensatoren und Niederdrucksäulen-Kopfkondensatoren eingesetzt, die auf ihrer Verdampfungsseite als Badverdampfer ausgebildet sind. Dies stellt die bewährteste Verdampferform dar, bei der insbesondere keine betriebstechnischen Schwierigkeiten aufgrund schwerer als Sauerstoff flüchtiger Komponenten wie zum Beispiel Propan zu erwarten sind. Energetisch sind Badkondensatoren allerdings nicht optimal, weil die hydrostatische Höhe im Flüssigkeitsbad zu einer erhöhten Verdampfungstemperatur führt.
  • Der Erfindung liegt die Aufgabe zugrunde, das eingangs genannte Verfahren und eine entsprechende Vorrichtung hinsichtlich des Energieverbrauchs zu verbessern und gleichzeitig den sicheren Betrieb des Systems zu erlauben.
  • Diese Aufgabe wird durch die Gesamtheit der Merkmale des Patentanspruchs 1 gelöst.
  • Die Verwendung eines Forced-Flow-Verdampfers als Niederdrucksäulen-Kopfkondensator erlaubt eine besonders niedrigere Druckdifferenz zwischen verdampfendem und kondensierendem Strom bei dergleichen mittleren Temperaturdifferenz wie bei einem Badverdampfer. Dies verringert spürbar den Energieverbrauch der Anlage, beispielsweise um 3,2 % bei einem Produktabgabedruck im Stickstoff von 10 bar, der dem Hochdrucksäulendruck entspricht; rechnet man eine Weiterverdichtung von 10 auf 60 bar mit ein, so liegt die Energieersparnis bei 2,2 % des Gesamtenergieverbrauchs.
  • Allerdings verschwindet mit dem Flüssigkeitsbad über der Niederdrucksäule auch die Möglichkeit, einen Spülstrom zu entnehmen und Schwersiedende, insbesondere Propan, auszuschleusen. Dies wird bei der Erfindung dadurch kompensiert, dass ein Spülstrom vom Sumpf der Hochdrucksäule abgezogen wird. Oberhalb dieser Entnahme (und der Zuspeisung der Einsatzluft) ist ein Sperrbodenabschnitt vorgesehen, der die Schwersiedenden, insbesondere Propan, im Sumpf der Hochdrucksäule zurückhält. Der sauerstoffangereicherte Flüssigstrom für die Niederdrucksäule wird oberhalb des Sperrbodenabschnitts entnommen und enthält weniger Schwersiedende und insbesondere praktisch kein Propan mehr. Schon mit zwei theoretischen Böden in dem Sperrbodenabschnitt werden bei einem Propangehalt von 0,0075 ppm in der Luft stromabwärts der Luftreinigung (mit einer beispielhaften Annahme für Propanrückhaltung im Molekularsieb der Luftreinigung von ca. 85%) 99,8 % des Propans mit dem Spülstrom entfernt. Auch N2O wird dabei zu 84 % abgeschieden (relativ zu der N2O-Menge, welche die Luftreinigung passiert). Die Abscheidungsgrade anderer Komponenten liegen bei 69 % bei C2H6, 15 % bei C2H4 und etwa 2,5 % bei Methan, das weniger kritisch ist. Unter "Schwersiedenden" werden hier Stoffe verstanden, die eine höhere Verdampfungstemperatur als Sauerstoff aufweisen.
  • Grundsätzlich kann mit den genannten Maßnahmen ein sicherer Betrieb der Anlage gewährleistet werden. Diese Maßnahmen sind für sich bekannt aus WO 2016131545 A1 , werden dort aber bei relativ hohem Verfahrensdruck angewendet, der dazu führt, dass es keine Vorverflüssigung gibt, also keine Verflüssigung der Einsatzluft stromaufwärts der Destillation, sondern die gesamte Luft gasförmig in die Hochdrucksäule eingeleitet wird.
  • Insgesamt gibt es folgende Unterschiede zwischen dem eingangs genannten Verfahren gemäß US 2004244417 A1 , Figur 2 und demjenigen von WO 2016131545 A1 :
    US 2004244417 A1 WO 2016131545 A1
    Hoher Luftdruck, deutlich über Hochdrucksäulendruck. Gesamtluft wird lediglich auf Hochdrucksäulendruck verdichtet.
    10 % Flüssigkeitsproduktion Gasförmiger Hochdruck-Stickstoff als Hauptprodukt
    Großer Drosselstrom (Gesamtluft ohne Turbinenluft) über 232 Kein Drosselstrom
    Badverdampfer Forced-Flow-Verdampfer
    Restgasturbine macht nur Kälte (treibt keinen Kaltverdichter an) Restgasturbine mach nur Druck (treibt Kaltverdichter an)
  • Die beiden Verfahren haben einen derart unterschiedlichen Charakter, dass eine Kombination für den unvoreingenommenen Fachmann in keinem Fall in Frage käme.
  • Die Einsatzluft enthält bei US 2004244417 A1 wegen des relativ geringen Drucks im Prozess (beziehungsweise relativ geringer Druckdifferenz zu den aus dem Rektifikationssystem austretenden Strömen) auch einen geringfügigen Flüssiganteil bei der Einspeisung in die Hochdrucksäule - dies gälte selbst bei sehr geringer Flüssigproduktgewinnung oder reinem Gasbetrieb. Deshalb würde relativ viel Flüssigkeit im Sumpf der Hochdrucksäule landen, wenn man die oben genannten Maßnahmen (siehe auch WO 2016131545 A1 ) auf eines dieser Verfahren anwendete. Diese Menge würde insgesamt mit dem Spülstrom abgezogen und die Produktausbeute spürbar verringern beziehungsweise den Energieverbrauch der Anlage negativ beeinflussen.
  • Aus diesem Grunde enthält Patentanspruch 1 noch ein weiteres Merkmal, gemäß dem der gasförmige Stickstoffstrom aus der Hochdrucksäule vor seiner Anwärmung im Hauptwärmetauscher in einem Unterkühlungs-Gegenströmer in indirektem Wärmeaustausch mit dem sauerstoffangereicherter Flüssigstrom aus der Hochdrucksäule angewärmt wird. Es erscheint auf den ersten Blick unklar, was diese Maßnahme mit der Ausschleusung der Schwersiedenden zu tun haben soll. Sie führt jedenfalls zu einer Erhöhung der Enthalpie des gasförmigen Stickstoffstroms beim Eintritt in den Hauptwärmetauscher. Da die Enthalpiedifferenz eines Bilanzkreises um das Destillationssäulen-System herum (bei unveränderten Produktmengen und konstantem Wärmeeinfall aus der Umgebung) unverändert bleibt, bewirkt dies eine Temperaturerhöhung am kalten Ende des Hauptwärmetauschers. Dies spürt der sich abkühlende Einsatzluftstrom; er weist daher ebenfalls eine höhere Enthalpie und eine höhere Temperatur als ohne Anwärmung des Stickstoffs im Unterkühlungs-Gegenströmer auf. Diese Enthalpieerhöhung verhindert oder vermindert eine Vorverflüssigung der Luft und führt in vielen Fällen sogar dazu, dass der Luftstrom am Eintritt in die Hochdrucksäule leicht überhitzt ist, seine Temperatur also etwas über der Taupunktstemperatur liegt; die Temperaturdifferenz zum Taupunkt beträgt im Fall der Überhitzung beispielsweise 1,4 K (beim Verfahren mit "Zurückpumpen" von Niederdrucksäulen-LIN in die Hochdrucksäule und Entnahme des Stickstoffproduktes hauptsächlich aus der Hochdrucksäule) . Damit enthält die Einsatzluft beim Eintritt in die Hochdrucksäule keine Flüssigkeit mehr, und der Spülstrom besteht nur noch aus der Rücklaufflüssigkeit, die unten aus dem Sperrbodenabschnitt austritt.
  • Bezogen auf eine Einsatzluftmenge von 100.000 Nm3/h ist diese durch die Anwärmung des Druckstickstoffs im Unterkühlungs-Gegenströmer erzeugte Überhitzung der Einsatzluft wesentlich und entspricht einer Flüssigproduktion von ca. 1.000 Nm3/h Flüssigstickstoff. Es kann also beispielsweise etwa 1 % der Luftmenge als Flüssigprodukt gewonnen, ohne dass Vorverflüssigung entsteht; vielmehr kann die gesamte Luftmenge gasförmig in die Hochdrucksäule eingeleitet werden. Aber auch bei höheren Mengen an Flüssigstickstoffproduktion (bis etwa 2 % der Luftmenge) bleibt eine gewisse Überhitzung im Luftstrom bestehen, da mit steigender Flüssigproduktion der Einsatzluftdruck angehoben wird.
  • In einem konkreten Zahlenbeispiel für eine Anlage mit 100.000 Nm3/h Einsatzluft und einer Flüssigproduktion von weniger als 0,1 % der Einsatzluftmenge wird im Folgenden die Erfindung mit einer Betriebsweise ohne Leitung des Druckstickstoffs durch den Unterkühlungs-Gegenströmer verglichen. Verzichtet man auf diese Maßnahmen, strömen 96.600 Nm3/h Luft mit 8,50 bar und einem Dampfanteil von 0,9966864 in die Hochdrucksäule ein, das heißt 320 Nm3/h Luft gehen flüssig in die Hochdrucksäule (Vorverflüssigung). Betreibt man das Verfahren demgegenüber erfindungsgemäß, werden 96.105 Nm3/h unter 8.55 bar mit einer Überhitzung von 1,405 K (mit ähnlicher Größe des Hauptwärmetauscher bzw. mit gleicher mittleren Temperatur im Hauptwärmetauscher im Vergleich zum Fall mit Anwärmung des Druckstickstoffs im Unterkühlungs-Gegenströmer) in die Hochdrucksäule eingespeist. Obwohl diese Temperaturdifferenz zum Taupunkt auf den ersten Blick gering wirkt, hat sie einen sehr großen Effekt auf den Prozess, weil sie ja die gesamte in die Hochdrucksäule einströmende Luftmenge betrifft.
  • Mit Hilfe der erfindungsgemäßen Anwärmung des Druckstickstoffs im Unterkühlungs-Gegenströmer wird also der Anteil der Luft, die flüssig in die Hochdrucksäule geleitet wird, bei einem Verfahren reduziert, bei dem ansonsten mehr Vorverflüssigung auftreten würde. Diese "Reduktion" kann bis Null gehen oder auch darüber hinaus zu einer Überhitzung der in die Hochdrucksäule eingespeisten Luft führen, also zu einer Erwärmung über den Taupunkt hinaus. Die Erfindung bezieht sich nicht auf Verfahren, bei denen bereits ohne Einleitung des Druckstickstoffs in den Unterkühlungs-Gegenströmer keine Vorverflüssigung auftritt.
  • Die beschriebene Maßnahme ist apparativ relativ einfach, aber sehr wirksam. Sie nutzt eine ohnehin benötigte Apparatur, den Unterkühlungs-Gegenströmer, und erlaubt eine stabile Einstellung der Spülstrommenge, die aus dem Hochdrucksäulensumpf entnommen wird, bei guter Produktausbeute und relativ geringem Energieverbrauch. Insgesamt ergibt sich ein besonders effizientes Verfahren zur Gewinnung von Druckstickstoff.
  • Die Betriebsdrücke bei dem erfindungsgemäßen Verfahren betragen: Niederdrucksäule (am Kopf):
    beispielsweise 4,0 bis 7,0 bar, vorzugsweise 4,5 bis 6,5 bar
  • Hochdrucksäule (am Kopf):
    beispielsweise 7 bis 12 bar, vorzugsweise 8 bis 11 bar
  • Niederdrucksäulen-Kopfkondensator auf der Verdampfungsseite:
    beispielsweise 1,5 bis 3,5 bar, vorzugsweise 1,9 bis 3,2 bar
  • Mit Hilfe der Erfindung kann die Vorverflüssigung reduziert werden. In einzelnen Fällen wird noch eine verminderte Vorverflüssigung auftreten. Vorzugsweise wird die Vorverflüssigung durch die Erfindung jedoch vollständig beseitigt, das heißt, die Einsatzluft strömt komplett gasförmig unter Tautemperatur oder mit leichter Überhitzung in die Hochdrucksäule. Unter "leichter Überhitzung" wird hier eine Temperaturdifferenz von mindestens 0,1 K, beispielsweise (je nach Flüssigproduktion) 0,1 K bis 2,0 K, vorzugsweise 0,2 K bis 1,8 K verstanden.
  • Vorzugsweise wird der als Forced-Flow-Verdampfer betriebene Verdampfungsraum mit einer sauerstoffreichen Flüssigkeit aus der Niederdrucksäule betrieben; diese kann insbesondere aus dem Sumpf der Niederdrucksäule stammen. Das im Verdampfungsraum des Niederdrucksäulen-Kopfkondensators erzeugte Gas wird vorzugsweise als Restgas in dem Hauptwärmetauscher auf eine Zwischentemperatur angewärmt und anschließend in einer Restgasturbine arbeitsleistend entspannt, danach wieder in den Hauptwärmetauscher eingeführt und auf etwa Umgebungstemperatur angewärmt. Hierdurch kann auf wirtschaftliche Weise Kälte für das Verfahren gewonnen werden.
  • Die Restgasturbine kann von einem elektrischen Generator oder von einem Verdichter gebremst werden. Letzterer kann zum Beispiel das angewärmte entspannte Restgas oder einen Teil davon verdichten.
  • Weiter erhöht werden kann die Effizienz des Verfahrens, wenn auch der Verdampfungsraum des Hauptkondensators als Forced-Flow-Verdampfer ausgebildet ist.
  • Die Erfindung betrifft außerdem eine Vorrichtung gemäß Patentanspruch 10. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen einzelner, mehrerer oder aller abhängigen Verfahrensansprüche entsprechen.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1a
    ein erstes Ausführungsbeispiel der Erfindung mit Generatorturbine,
    Figur 1b
    eine Variante von Figur 1a mit Gewinnung eines Flüssigstickstoffprodukts,
    Figur 2
    ein zweites Ausführungsbeispiel der Erfindung mit Booster-Turbine,
    Figur 3
    eine Variante von Figur 2 und
    Figur 4
    ein drittes Ausführungsbeispiel der Erfindung mit Entnahme von GAN-Produkt aus beiden Säulen.
  • Über Leitung 1 strömt in Figur 1a verdichtete und gereinigte Einsatzluft heran. Die anfänglichen Stufen eines Luftverdichters, einer Vorkühlung und einer Luftreinigung sind hier nicht dargestellt und werden bei den Ausführungsbeispielen in bekannter Weise ausgeführt. Die Luft 1 wird in dem Hauptwärmetauscher 2 auf fast ihren Taupunkt abgekühlt und strömt mit gewisser Überhitzung über Leitung 3 in den Sumpf der Hochdrucksäule 4 des Destillationssäulen-Systems. Das Destillationssäulen-System weist außerdem einen Hauptkondensator 5, eine Niederdrucksäule 6 und einen Niederdrucksäulen-Kopfkondensator 7 auf. Die beiden Kondensatoren sind als Kondensator-Verdampfer ausgebildet; ihre Verdampfungsräume werden jeweils als Forced-Flow-Verdampfer betrieben.
  • Erfindungsgemäß weist die Hochdrucksäule 4 einen Sperrbodenabschnitt 8 auf, der unmittelbar oberhalb der Stelle angeordnet ist, an der die Einsatzluft 3 eingeleitet wird. Er besteht beispielsweise aus ein bis fünf, vorzugsweise aus zwei bis drei klassischen Rektifizierböden. Alternativ kann auch ein Abschnitt geordneter Packung von beispielsweise ein bis fünf, vorzugsweise zwei bis drei theoretischen Böden eingesetzt werden. Dieser Abschnitt hält schwersiedende Bestandteile der Luft, insbesondere Propan zurück, die mit einem Spülstrom 9A (Purge) aus dem Sumpf der Hochdrucksäule 4 entnommen und mit diesem aus dem Destillationssäulen-System entfernt werden. Der Spülstrom 9B kann dazu, wie dargestellt, in einem warmen Abfallstrom 10 eingeführt werden.
  • Oberhalb des Sperrbodenabschnitts 8 wird ein sauerstoffangereicherter Flüssigstrom 11 aus der Hochdrucksäule 4 entnommen, in einem Unterkühlungs-Gegenströmer 12 abgekühlt und über Leitung 13 der Niederdrucksäule 6 an einer Zwischenstelle zugeführt. Dieser Strom ist praktisch frei von Propan und anderen schwersiedenden Komponenten. Dies gilt dann auch für alle anderen sauerstoffreichen Fraktionen in der Niederdrucksäule, insbesondere für die Sumpfflüssigkeit, die sowohl im Hauptkondensator 5 (über Leitung 14) als auch im Niederdrucksäulen-Kopfkondensator 7 (über die Leitungen 15 und 16) gefahrlos verdampft werden kann. Im Niederdrucksäulen-Kopfkondensator 7 kann problemlos eine vollständige Verdampfung durchgeführt werden. Mit zwei theoretischen Böden in dem Sperrbodenabschnitt werden bei einem Propangehalt von 0,0075 ppm in der Luft stromabwärts der Luftreinigung (mit einer beispielhaften Annahme für Propanrückhaltung im Molekularsieb der Luftreinigung von ca. 85%) 99,8 % des Propans mit dem Spülstrom entfernt. Auch N2O wird dabei zu 84 % abgeschieden (relativ zu der N2O-Menge, welche die Luftreinigung passiert). Die Abscheidungsgrade anderer Komponenten liegen bei 69 % bei C2H6, 15 % bei C2H4 und etwa 2,5 % bei Methan, das weniger kritisch ist.
  • Im Hauptkondensator 5 wird ein Teil 18 des Stickstoff-Kopfgases 17 der Hochdrucksäule 4 kondensiert. Der dabei gewonnene flüssige Stickstoff 19 wird als Rücklauf in die Hochdrucksäule 4 zurückgeleitet. Der Niederdrucksäulen-Kopfkondensator verflüssigt Kopfgas 20 der Niederdrucksäule 6. Dabei erzeugter flüssiger Stickstoff 21 wird in die Niederdrucksäule 6 zurückgeleitet. Ein Teil davon wird gleich wieder als Flüssigstickstoffstrom 22 aus der Niederdrucksäule 6 abgezogen. (Alternativ könnte dieser Strom auch direkt vom Verflüssigungsraum des Niederdrucksäulen-Kopfkondensators 7 abgenommen werden.) Eine Pumpe 23 bringt den Flüssigstickstoffstrom 22 auf etwa Hochdrucksäulendruck. Die Druckflüssigkeit 24 wird über den Unterkühlungs-Gegenströmer 12 und Leitung 25A/25B auf den Kopf der Hochdrucksäule 4 aufgegeben.
  • Ein gasförmiger Stickstoffstrom vom Kopf der Hochdrucksäule 4 wird über Leitung 17/26A/26B entnommen und zunächst erfindungsgemäß im Unterkühlungs-Gegenströmer 12 angewärmt. Anschließend wird der Stickstoff 27 im Hauptwärmetauscher auf etwas Umgebungstemperatur angewärmt und kann bei 28 als gasförmiges Druckstickstoffprodukt unter Hochdrucksäulendruck abgezogen werden. In diesem Beispiel wird er allerdings noch weiter verdichtet durch einen oder z. B. zwei Stickstoffverdichter 29, 30 jeweils mit Zwischen- beziehungsweise Nachkühlung, sodass das endgültige Druckstickstoffprodukt 31 (PGAN) hier einen Druck von beispielsweise 120 oder 150 bar aufweist.
  • Durch die Verdampfung der Niederdrucksäulen-Sumpfflüssigkeit 16 in dem Niederdrucksäulen-Kopfkondensator 7 wird ein Restgas 32 erzeugt, das zunächst im Unterkühlungs-Gegenströmer 12 angewärmt wird. Anschließend strömt es über Leitung 33 zum Hauptwärmetauscher 2, in dem es auf eine Zwischentemperatur angewärmt wird. Anschließend wird es in einer Restgasturbine 35 mit Bypass 37 arbeitsleistend entspannt. Das entspannte Restgas wird in zwei Teilen wieder in den Hauptwärmetauscher eingeführt und auf etwa Umgebungstemperatur angewärmt. Ein erster Teil 38 wird über Leitung 39 als Regeneriergas der Luftreinigung zugeführt. Der Rest 40 wird über Leitung 10 in die Atmosphäre (ATM) abgegeben.
  • Ein Teil 41 des Kopfgases der Niederdrucksäule 6 wird über die Leitungen 42 und 43 und durch den Unterkühlungs-Gegenströmer 12 und den Hauptwärmetauscher 2 als Dichtgas (Seal) abgegeben.
  • Die Linie 44 zeigt den Bilanzkreis um das Destillationssäulen-System. Sie schneidet die Spülgasleitung 9A, die Restgasleitung 33 und die Dichtgasleitung 41 und vor Allem die Einsatzluftleitung 3 und die Druckstickstoffleitung 27 (hier fett dargestellt). H_Luft bedeutet die Enthalpie des Luftstroms, H_Prod die Enthalpie der Produktströme, WPump die durch die Pumpe 23 eingebrachte Wärme.
  • Figur 1b unterscheidet sich nur dadurch von Figur 1a, dass ein Teil 125C des im Unterkühlungs-Gegenströmer 12 angewärmten Flüssigstickstoffs 22 als Flüssigprodukt LIN abgezogen wird. Alternativ kann der gesamte Strom 25A über Leitung 125C geführt werden; das gesamte gasförmige Stickstoffprodukt, das aus der Niederdrucksäule 6 stammt, wird dann über Leitung 41 aus der Niederdrucksäule 6 abgezogen.
  • Figur 2 unterscheidet sich nur dadurch von Figur 1a, dass die Turbine 35 von einem Verdichter 236 gebremst wird. Dieser bringt den Teil 39 des angewärmten entspannten Restgases auf den Druck, der benötigt wird, um es als Regeneriergas in der Luftreinigung einzusetzen. Dadurch kann der Druck im Destillationssäulen-System und am Austritt des (nicht dargestellten) Luftverdichters reduziert und die Energie direkt am Luftverdichter gespart werden. Beispielsweise wird dabei der Druck am MAC um ca. 500 mbar oder sogar mehr abgesenkt.
  • In Figur 3 wird abweichend von Figur 2 das gesamte entspannte und angewärmte Restgas 339 im turbinengetriebenen Verdichter 236 verdichtet. Ein erster Teil 340 des verdichteten Restgases wird wie in Figur 2 als Regeneriergas eingesetzt; der Rest 341 wird in einem Drosselventil entspannt und in die Atmosphäre (Atm) abgelassen.
  • Bei dem Verfahren von Figur 4 wird im Unterschied zu den vorangegangenen Ausführungsbeispielen kein flüssiger Stickstoff aus der Niederdrucksäule 6 in die Hochdrucksäule gepumpt. Vielmehr wird das gesamte Stickstoffprodukt der Niederdrucksäule 6 über Leitung 41/42 direkt gasförmig entnommen und im Warmen in einem weiteren Stickstoffverdichter 129 auf Hochdrucksäulendruck gebracht. Es kann dann dem Produkt aus der Hochdrucksäule 28 zugemischt oder separat über Leitung 43 abgezogen werden.

Claims (10)

  1. Verfahren zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das eine Hochdrucksäule (4), eine Niederdrucksäule (6) sowie einen Hauptkondensator (5) und einen Niederdrucksäulen-Kopfkondensator (7) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind, wobei
    - verdichtete und gereinigte Einsatzluft (1) in einem Hauptwärmetauscher (2) abgekühlt und mindestens zum größten Teil gasförmig in die Hochdrucksäule (4) eingeleitet (3) wird,
    - ein sauerstoffangereicherter Flüssigstrom (11, 13) aus der Hochdrucksäule (4) entnommen und in die Niederdrucksäule eingeleitet wird und
    - ein gasförmiger Stickstoffstrom (17, 26A, 26B, 27) aus der Hochdrucksäule (4) entnommen, im Hauptwärmetauscher (2) angewärmt und als gasförmiges Druckstickstoffprodukt (28, 31) abgezogen wird,
    dadurch gekennzeichnet, dass
    - der Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) als Forced-Flow-Verdampfer ausgebildet ist,
    - die Hochdrucksäule (4) einen Sperrbodenabschnitt (8) aufweist, der unmittelbar oberhalb der Stelle angeordnet ist, an der die Einsatzluft (3) eingeleitet wird, und ein bis fünf theoretische beziehungsweise praktische Böden aufweist,
    - der sauerstoffangereicherte Flüssigstrom (11), der in die Niederdrucksäule (6) eingeleitet wird, oberhalb des Sperrbodenabschnitts (8) aus der Hochdrucksäule (4) entnommen wird,
    - unterhalb der Sperrbodenabschnitts (8) ein Spülstrom (9A) entnommen und aus dem Destillationssäulen-System entfernt (9B) wird und
    - der gasförmige Stickstoffstrom (26A, 26B) vor seiner Anwärmung im Hauptwärmetauscher (2) in einem Unterkühlungs-Gegenströmer (12) in indirektem Wärmeaustausch mit dem sauerstoffangereicherten Flüssigstrom (11) aus der Hochdrucksäule (4) angewärmt und damit der Anteil der Luft, die flüssig in die Hochdrucksäule geleitet wird, reduziert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die verdichtete, gereinigte und abgekühlte Einsatzluft (1) vollständig gasförmig in die Hochdrucksäule (4) eingeleitet (3) wird und insbesondere um mindestens 0,1 K oder mindestens 0,2 K überhitzt ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass
    - der Niederdrucksäule (6) eine sauerstoffreiche Flüssigkeit (15, 16) entnommen und dem Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) zugeleitet wird,
    - das im Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) erzeugte Gas als Restgas (32, 33) in dem Hauptwärmetauscher (2) auf eine Zwischentemperatur angewärmt und anschließend (34) in einer Restgasturbine (35) arbeitsleistend entspannt wird und
    - das arbeitsleistend entspannte Restgas (38, 40) wieder in den Hauptwärmetauscher (2) eingeführt und auf etwa Umgebungstemperatur angewärmt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Restgasturbine (35) von einem Generator (36) gebremst wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Restgasturbine (35) von einem Verdichter (236) gebremst wird, der auf etwa Umgebungstemperatur angewärmtes entspanntes Restgas (39, 339) verdichtet, wobei der Verdichter insbesondere im Warmen betrieben wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass auch der Verdampfungsraum des Hauptkondensators (5) als Forced-Flow-Verdampfer ausgebildet ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Flüssigstickstoffstrom (22) aus der Niederdrucksäule (6) oder aus dem Verflüssigungsraum des Niederdrucksäulen-Kopfkondensators (7) abgezogen und mittels einer Pumpe (23) in die Hochdrucksäule (4) eingeführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein gasförmiger Stickstoffstrom (41) aus der Niederdrucksäule (6) abgezogen und als gasförmiges Druckstickstoffprodukt (PGAN, Seal) gewonnen wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein Flüssigstickstoffstrom (22) aus der Niederdrucksäule (6) entnommen, in dem Unterkühlungs-Gegenströmer (12) angewärmt und als Flüssigstickstoffprodukt (125C, LIN) abgezogen wird.
  10. Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft mit einem Destillationssäulen-System, das eine Hochdrucksäule (4), eine Niederdrucksäule (6) sowie einen Hauptkondensator (5) und einen Niederdrucksäulen-Kopfkondensator (7) aufweist, die beide als Kondensator-Verdampfer ausgebildet sind,
    - mit einem Hauptwärmetauscher (2) zum Abkühlen verdichteter und gereinigter Einsatzluft (1) und mit Mitteln (3) zum Einleiten im Hauptwärmetauscher (2) abgekühlter Einsatzluft in Gasform in die Hochdrucksäule (4),
    - mit Mitteln zum Entnehmen eines sauerstoffangereicherten Flüssigstroms (11, 13) aus der Hochdrucksäule (4) und zum Einleiten des sauerstoffangereicherten Flüssigstroms (11, 13) in die Niederdrucksäule und
    - mit einer Produktleitung zum Entnehmen eines gasförmigen Stickstoffstroms (17, 26A, 26B, 27) aus der Hochdrucksäule (4) zum Anwärmen des gasförmigen Stickstoffstroms (17, 26A, 26B, 27) im Hauptwärmetauscher (2) und zum Abziehen des angewärmten gasförmigen Stickstoffstroms (17, 26A, 26B, 27) als gasförmiges Druckstickstoffprodukt (28, 31),
    dadurch gekennzeichnet, dass
    - der Verdampfungsraum des Niederdrucksäulen-Kopfkondensators (7) als Forced-Flow-Verdampfer ausgebildet ist,
    - die Hochdrucksäule (4) einen Sperrbodenabschnitt (8) aufweist, der unmittelbar oberhalb der Stelle angeordnet ist, an der die Einsatzluft (3) eingeleitet wird, und ein bis fünf theoretische beziehungsweise praktische Böden aufweist und
    - die Mittel zum Entnehmen eines sauerstoffangereicherten Flüssigstroms (11, 13) aus der Hochdrucksäule (4) oberhalb des Sperrbodenabschnitts (8) mit der Hochdrucksäule (4) verbunden sind,
    wobei die Vorrichtung ferner
    - eine Spülleitung zum Entnehmen eines Spülstrom (9A) aus der Hochdrucksäule (4) und zum Entfernen (9B) des Spülstroms aus dem Destillationssäulen-System, wobei die Spülleitung unterhalb des Sperrbodenabschnitts (8) mit der Hochdrucksäule (4) verbunden ist und
    - einen Unterkühlungs-Gegenströmer (12) zum Anwärmen des gasförmigen Stickstoffstroms (26A, 26B) vor seiner Anwärmung im Hauptwärmetauscher (2) in indirektem Wärmeaustausch mit dem sauerstoffangereicherten Flüssigstrom (11) aus der Hochdrucksäule (4)
    aufweist.
EP19020030.3A 2018-02-02 2019-01-17 Verfahren und vorrichtung zur gewinnung von druckstickstoff durch tieftemperaturzerlegung von luft Pending EP3521739A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018000842.9A DE102018000842A1 (de) 2018-02-02 2018-02-02 Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft

Publications (1)

Publication Number Publication Date
EP3521739A1 true EP3521739A1 (de) 2019-08-07

Family

ID=65041546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19020030.3A Pending EP3521739A1 (de) 2018-02-02 2019-01-17 Verfahren und vorrichtung zur gewinnung von druckstickstoff durch tieftemperaturzerlegung von luft

Country Status (5)

Country Link
US (1) US20190242646A1 (de)
EP (1) EP3521739A1 (de)
CN (1) CN110131963A (de)
DE (1) DE102018000842A1 (de)
MX (1) MX2019001250A (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190784A1 (de) 2020-03-23 2021-09-30 Linde Gmbh Verfahren und anlage zur tieftemperaturzerlegung von luft
DE102020006393A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
WO2022179748A1 (de) 2021-02-25 2022-09-01 Linde Gmbh Verfahren und anlage zur bereitstellung von druckstickstoff

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021242308A1 (en) * 2020-05-26 2021-12-02 Praxair Technology, Inc. Enhancements to a dual column nitrogen producing cryogenic air separation unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240484A (ja) * 1988-07-29 1990-02-09 Hitachi Ltd 窒素発生装置
EP0921367A2 (de) * 1997-11-24 1999-06-09 The BOC Group plc Herstellung von Stickstoff
EP1022530A1 (de) 1999-01-21 2000-07-26 Linde Technische Gase GmbH Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
DE19933557A1 (de) 1999-07-16 2000-09-28 Linde Tech Gase Gmbh Verfahren und Vorrichtung zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
US20010029749A1 (en) * 2000-03-02 2001-10-18 Robert Anthony Mostello Method and apparatus for producing nitrogen from air by cryogenic distillation
US20040244417A1 (en) 2001-08-09 2004-12-09 Alamorian Robert Mathew Nitrogen generation
DE10339224A1 (de) * 2003-08-26 2005-03-31 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2016131545A1 (de) 2015-02-19 2016-08-25 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckstickstoffprodukts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4453957A (en) * 1982-12-02 1984-06-12 Union Carbide Corporation Double column multiple condenser-reboiler high pressure nitrogen process
EP3290843A3 (de) * 2016-07-12 2018-06-13 Linde Aktiengesellschaft Verfahren und vorrichtung zur erzeugung von druckstickstoff und flüssigstickstoff durch tieftemperaturzerlegung von luft

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240484A (ja) * 1988-07-29 1990-02-09 Hitachi Ltd 窒素発生装置
EP0921367A2 (de) * 1997-11-24 1999-06-09 The BOC Group plc Herstellung von Stickstoff
EP1022530A1 (de) 1999-01-21 2000-07-26 Linde Technische Gase GmbH Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
DE19933557A1 (de) 1999-07-16 2000-09-28 Linde Tech Gase Gmbh Verfahren und Vorrichtung zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
US20010029749A1 (en) * 2000-03-02 2001-10-18 Robert Anthony Mostello Method and apparatus for producing nitrogen from air by cryogenic distillation
US20040244417A1 (en) 2001-08-09 2004-12-09 Alamorian Robert Mathew Nitrogen generation
DE10339224A1 (de) * 2003-08-26 2005-03-31 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2016131545A1 (de) 2015-02-19 2016-08-25 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckstickstoffprodukts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190784A1 (de) 2020-03-23 2021-09-30 Linde Gmbh Verfahren und anlage zur tieftemperaturzerlegung von luft
DE102020006393A1 (de) 2020-10-17 2022-04-21 Linde Gmbh Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
WO2022179748A1 (de) 2021-02-25 2022-09-01 Linde Gmbh Verfahren und anlage zur bereitstellung von druckstickstoff

Also Published As

Publication number Publication date
MX2019001250A (es) 2019-10-04
CN110131963A (zh) 2019-08-16
US20190242646A1 (en) 2019-08-08
DE102018000842A1 (de) 2019-08-08

Similar Documents

Publication Publication Date Title
EP3521739A1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff durch tieftemperaturzerlegung von luft
EP1134525B1 (de) Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
DE69509836T2 (de) Verfahren und Vorrichtung zur Lufttrennung
EP1031804B1 (de) Tieftemperaturzerlegung von Luft mit Stickstoff Rückführung
EP1666824A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
DE4443190A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2236964A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
DE102009048456A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2016131545A1 (de) Verfahren und vorrichtung zur gewinnung eines druckstickstoffprodukts
EP3290843A2 (de) Verfahren und vorrichtung zur erzeugung von druckstickstoff und flüssigstickstoff durch tieftemperaturzerlegung von luft
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2014146779A2 (de) Verfahren und vorrichtung zur erzeugung von gasförmigem druckstickstoff
EP2322888B1 (de) Verfahren und Vorrichtung zur Gewinnung eines Helium-Neon-Konzentrats aus Luft
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP2053331A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
DE69512821T2 (de) Verfahren und Vorrichtung zur Herstellung von Sauerstoff durch Rektifikation von Luft
WO2016058666A1 (de) Verfahren und vorrichtung zur variablen gewinnung von argon durch tieftemperaturzerlegung
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP2938952A2 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP3343159A1 (de) Verfahren und vorrichtung zur erzeugung von gasförmigem sauerstoff und gasförmigem druckstickstoff
DE19720453A1 (de) Verfahren und Vorrichtung zur Gewinnung von Stickstoff durch Tieftemperaturzerlegung von Luft
EP1134524B1 (de) Verfahren zur Gewinnung von gasförmigem Stickstoff
DE19819263C2 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
WO2014037091A2 (de) Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200207

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220209