EP3519378A1 - Procede de fabrication du 1-chloro-2,2-difluoroethane - Google Patents

Procede de fabrication du 1-chloro-2,2-difluoroethane

Info

Publication number
EP3519378A1
EP3519378A1 EP17780836.7A EP17780836A EP3519378A1 EP 3519378 A1 EP3519378 A1 EP 3519378A1 EP 17780836 A EP17780836 A EP 17780836A EP 3519378 A1 EP3519378 A1 EP 3519378A1
Authority
EP
European Patent Office
Prior art keywords
chloro
stream
cis
trans
difluoroethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17780836.7A
Other languages
German (de)
English (en)
Inventor
Dominique Garrait
Charlotte HERDT
Camille SCHERPEREEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3519378A1 publication Critical patent/EP3519378A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • C07C19/12Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine having two carbon atoms

Definitions

  • the present invention relates to the field of saturated fluorinated hydrocarbons. It relates more particularly to a process for producing 1-chloro-2,2-difluoroethane from 1,1,2-trichloroethane.
  • HCFC-142 1-Chloro-2,2-difluoroethane is not only known as an expander in the manufacture of foams, but also as a raw material in the manufacture of pharmaceutical or agrochemical compounds.
  • WO2015 / 082812 discloses a process for producing 1-chloro-2,2-difluoroethane from 1,1,2-trichloroethane and / or 1,2-dichloroethylene comprising at least one step during which the 1 , 1,2-trichloroethane and / or 1,2-dichloroethylene reacts or reacts with hydrofluoric acid in the gas phase to give a stream comprising 1-chloro-2,2-difluoroethane, hydrochloric acid, hydrofluoric acid and 1,1-dichloroethylene.
  • the presence of 1,1-dichloroethylene may be troublesome for subsequent reaction steps.
  • the applicant has developed a process for producing 1-chloro-2,2-difluoroethane which does not have the drawbacks of the prior art, in particular a process which avoids the formation of 1,1-dichloroethylene.
  • the present invention relates to a process for producing 1-chloro-2,2-difluoroethane from 1,1,2-trichloroethane comprising (i) at least one step in which 1,1,2-trichloroethane reacts with optionally hydrofluoric acid gas phase in the presence of an oxidizing agent, and in the presence or absence of a fluorination catalyst to give a stream comprising 1-chloro-2,2-difluoroethane, hydrochloric acid, hydrofluoric acid and at least one compound (s) A chosen from 1,2-dichloroethylenes (cis and trans), 1 chloro, 2-fluoroethylenes (cis and trans), 1, 2-dichloro-2-fluoroethane and unreacted 1,1,2-trichloroethane; (ii) at least one step of separating the compounds resulting from the reaction stage to give a first stream comprising hydrochloric acid and a second stream comprising hydrofluoric acid, 1-chloro-2,2- difluoro
  • step (iii) a purification of the organic phase obtained in step (iii) to form a first stream comprising 1-chloro-2,2-difluoroethane, at least one compound (s) A and hydrofluoric acid and a second current comprising 1,1,2-trichloroethane;
  • step a) of purification of the organic phase obtained in (iii) is a distillation, preferably carried out at a temperature of between 30 and 80 ° C. and at an absolute pressure of between 1 and 4 bar.
  • the second stream comprising 1, 1,2-trichloroethane is recycled to step (i), preferably after distillation thereof at a temperature between 100 and 170 ° C and at a pressure of absolute between 1 and 4 absolute bar ..
  • step b) comprises a step of washing said first stream to form an intermediate stream B comprising 1-chloro-2,2-difluoroethane and said at least one of the compounds A selected from the group cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluoroethane and a current intermediate C comprising hydrofluoric acid.
  • said intermediate stream B is dried to form said third stream.
  • the drying is carried out at a temperature of 0 to 30 ° C and an absolute pressure of between 1 and 4 bar.
  • the first stream obtained in step a) and the third stream obtained in step b) also comprise trans-1,2-dichloroethylene and optionally at least one of the compounds A selected from the group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluoroethane.
  • step c) comprises at least one distillation, preferably carried out preferably by distillation at a temperature of between 35 and 79 ° C. and at an absolute pressure of between 1 and 4 bar.
  • the first stream obtained in step a), the intermediate stream B and the third stream obtained in step b) comprise trans-1,2-dichloroethylene and at least one of the selected compounds A from the group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluoroethane.
  • the first stream obtained in step a), the intermediate stream B and the third stream obtained in step b) comprise 1-chloro-2,2-difluoroethane, trans-l, 2- dichlorethylene and at least one of the compounds A selected from the group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloroethylene. l-fluoroethane.
  • step c) forms a fourth stream comprising 1-chloro-2,2-difluoroethane and trans-1,2-dichloroethylene and a fifth stream comprising at least one of compounds A selected from the group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluoroethane.
  • compounds A selected from the group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluoroethane.
  • the subject of the present invention is therefore a process for producing 1-chloro-2,2-difluoroethane from 1,1,2-trichloroethane.
  • the method comprises the following steps:
  • step (v) optionally recycling to step (i) the organic phase after separation from step (iv);
  • step (vi) optionally recycling in step (i) the non-organic phase resulting from the step
  • step (iv) comprises:
  • step (iii) a purification, preferably a distillation, of the organic phase obtained in step (iii) to form a first stream comprising 1-chloro-2,2-difluoroethane, at least one compound (s) A and hydrofluoric acid and a second stream comprising 1,1,2-trichloroethane;
  • a catalyst is preferably used in step (i) and advantageously in the presence of an oxidizing agent.
  • the temperature of the reaction stage is preferably between 150 and 400 ° C., advantageously between 200 and 350 ° C.
  • the pressure at which the fluorination reaction is carried out is preferably between 1 and 30 bar absolute, advantageously between 3 and 20 bar absolute and more particularly between 3 and 15 bar.
  • the amount of hydrofluoric acid used in the reaction is preferably between 5 and 40 moles and advantageously between 10 and 30 moles per mole of HCC-140.
  • the contact time defined as being the volume of catalyst / total volume gas flow at temperature and pressure of the reaction may be between 2 and 200 seconds, preferably between 2 and 100 seconds, advantageously between 2 and 50 seconds.
  • the oxidizing agent pure or mixed with nitrogen may be selected from oxygen and chlorine. Chlorine is preferably chosen.
  • the amount of oxidizing agent used is preferably between 0.01 and 20 mol% per mol of F140, advantageously between 0.01 and 0.2 mol% per mole of HCC-140.
  • the catalyst used can be mass or supported.
  • the catalyst may be based on a metal, in particular a transition metal or an oxide, halide or oxyhalide derivative of such a metal.
  • a metal in particular a transition metal or an oxide, halide or oxyhalide derivative of such a metal.
  • magnesium such as magnesium derivatives, in particular halides such as MgF 2 or magnesium oxyhalides such as oxyfluorides or aluminum-based ones such as alumina, activated alumina or aluminum derivatives including halides, such as Al F3 or aluminum oxyhalides such as oxyfluoride.
  • the catalyst may further comprise cocatalysts selected from Co, Zn, Mn, Mg, V, Mo, Te, Nb, Sb, Ta, P, Ni, Zr, Ti, Sn, Cu, Pd, Cd, Bi rare earths or their mixtures.
  • cocatalysts selected from Co, Zn, Mn, Mg, V, Mo, Te, Nb, Sb, Ta, P, Ni, Zr, Ti, Sn, Cu, Pd, Cd, Bi rare earths or their mixtures.
  • cocatalysts selected from Co, Zn, Mn, Mg, V, Mo, Te, Nb, Sb, Ta, P, Ni, Zr, Ti, Sn, Cu, Pd, Cd, Bi rare earths or their mixtures.
  • the atomic ratio cocatalyst / catalyst is preferably between 0.01 and 5.
  • Chromium catalysts are particularly preferred.
  • the catalyst used in the present invention can be prepared by coprecipitation of the corresponding salts optionally in the presence of a support.
  • the catalyst can also be prepared by co-grinding the corresponding oxides.
  • the catalyst Prior to the fluorination reaction, the catalyst is subjected to an activation step with THF at a temperature preferably of between 100 and 450 ° C., advantageously of between 200 and 400 ° C. for a duration of between 1 and 50 hours.
  • the activation can be carried out in the presence of the oxidizing agent.
  • the activation steps may be carried out at atmospheric pressure or under pressure up to 20 bar.
  • the support can be prepared from high porosity alumina.
  • the alumina is converted into aluminum fluoride or a mixture of aluminum fluoride and alumina, by fluorination with air and hydrofluoric acid, the conversion rate of the alumina aluminum fluoride depending essentially on the temperature at which the fluorination of the alumina is carried out (generally between 200 ° C and 450 ° C, preferably between 250 ° C and 400 ° C).
  • the support is then impregnated with aqueous solutions of chromium salts, nickel and possibly rare earth metal, or with aqueous solutions of chromic acid, nickel or zinc salt, and optionally salts or rare earth oxides and methanol (used as chromium reducer).
  • salts of chromium, nickel or zinc and of rare earth metals it is possible to use chlorides, or other salts such as, for example, oxalates, formates, acetates, nitrates and sulphates or nickel dichromate, and rare earth metals, provided that these salts are soluble in the amount of water that can be absorbed by the support.
  • the catalyst can also be prepared by direct impregnation of alumina (which is generally activated) using the solutions of chromium, nickel or zinc compounds, and optionally rare earth metals, mentioned above. In this case, the transformation of at least a portion (for example 70% or more) of the alumina into aluminum fluoride or aluminum oxyfluoride is carried out during the activation step of the catalyst metal.
  • the activated aluminas that can be used for catalyst preparation are well known, commercially available products. They are generally prepared by calcining alumina hydrates (aluminum hydroxides) at a temperature between 300 ° C and 800 ° C. Alumina (activated or not) can contain significant levels (up to 1000 ppm) of sodium without affecting the catalytic performance.
  • the catalyst is conditioned or activated, that is to say transformed into active constituents and stable (at the reaction conditions) by a prior operation called activation.
  • This treatment can be carried out either "in situ” (in the fluorination reactor) or in a suitable apparatus designed to withstand the activation conditions.
  • the catalyst is dried at a temperature between 100 ° C and 350 ° C, preferably 220 ° C to 280 ° C in the presence of air or nitrogen.
  • the dried catalyst is then activated in one or two stages with hydrofluoric acid, optionally in the presence of an oxidizing agent.
  • the duration of this activation step by fluorination can be between 6 and 100 hours and the temperature between 200 and 400 ° C.
  • the separation step (ii) comprises at least one distillation, advantageously carried out at a temperature of between -60 ° and 120 ° C. and more particularly between -60 and 89 ° C. and an absolute pressure of between 3 and 20 bar and advantageously between 3 and 11 bar.
  • the organic phase obtained in step (iii) also comprises at least one of the compounds A selected from the group consisting of cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane and trans-1-chloro-2-fluoroethylene.
  • the non-organic phase obtained in (iii) preferably contains the majority of the HF initially present in the second stream with respect to the organic phase also obtained in step (iii) ).
  • the organic phase obtained in (iii) may contain hydrofluoric acid.
  • the amount of hydrofluoric acid in the organic phase is less than the amount of hydrofluoric acid in the inorganic phase.
  • the molar ratio of the hydrofluoric acid present in the organic phase to the hydrofluoric acid present in the non-organic phase is less than 1: 10, preferably less than 1: 50, in particular 1: 100.
  • the non-organic phase obtained in (iii) is purified so that the content of H F is greater than or equal to 90% by weight.
  • this purification comprises at least one distillation, advantageously carried out at a temperature of between -23 and 46 ° C. and an absolute pressure of between 0.3 and 3 bar.
  • the separation step (iii) comprises at least one settling step, advantageously carried out at a temperature between -20 and 60 ° C and more particularly between -20 and 10 ° C.
  • the separation step (iv) comprises a step of purifying the organic phase obtained in (iii) for separating 1-chloro-2,2-difluoroethane and 1,1,2-trichloroethane.
  • the organic phase obtained in step (iii) also comprises at least two, three, four or all the compounds A selected from the group consisting of cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane and trans-1-chloro-2-fluoroethylene; and optionally hydrofluoric acid.
  • the organic phase obtained in step (iii) may comprise trans-1,2-dichloroethylene or trans-1,2-dichloroethylene.
  • dichloroethylene and cis-1-chloro-2-fluoroethylene or trans-1,2-dichloroethylene cis-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluorethane or trans-1,2-dichloroethylene, cis- 1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane and cis-1,2-dichloroethylene or trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloroethane 1-fluorethane, cis-1,2-dichloroethylene and trans-1-chloro-2-fluoroethylene.
  • step a) of purification of the organic phase obtained in (iii) is a distillation.
  • the distillation of the organic phase obtained in (iii) is carried out at a temperature of 10 to 100 ° C, preferably of 20 to 90 ° C, more preferably of 30 to 80 ° C, and at a pressure of absolute from 0.3 to 8 bar, preferably from 0.5 to 6 bar, more preferably from 1 to 4 bar.
  • the first stream obtained in step a) and the third stream obtained in step b) comprise said at least one of the compounds A selected from the group consisting of cis-l, 2- dichloroethylene, trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluoroethane.
  • the first stream obtained in step a) and the third stream obtained in step b) comprise at least two, three, four or all of the compounds A selected from the group consisting of cis-1,2 dichlorethylene, trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane and trans-1-chloro-2-fluoroethylene.
  • the first stream obtained in step a) and the third stream obtained in step b) may comprise trans-1,2-dichloroethylene or trans-1,2-dichloroethylene and cis-1-chloro-2-fluoroethylene. or trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluorethane or trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2 1-dichloro-1-fluorethane and cis-1,2-dichloroethylene or trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane, cis-1,2-dichloroethylene and trans-1-chloro-2-fluoroethylene.
  • the second stream comprising 1,1,2-trichloroethane is recycled to step (i), preferably after purification thereof, in particular the purification is a distillation at a temperature of 20 to 300 ° C, preferably from 50 to 250 ° C, more preferably from 75 to 200 ° C, in particular from 100 to 170 ° C and at an absolute pressure of 0.3 to 8 bar, preferably from 0.5 to 6 bar, more preferably 1 to 4 bar.
  • step b) comprises a step of washing said first stream to form an intermediate stream B comprising 1-chloro-2,2- difluoroethane and said at least one of compounds A selected from the group consisting of cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2 and fluoroethylene and 1,2-dichloro-1-fluoroethane and an intermediate stream C comprising hydrofluoric acid.
  • the intermediate stream B can comprise 1-chloro-2,2-difluoroethane and at least at least two, three, four or all of the compounds A selected from the group consisting of cis-1,2-dichloroethylene, trans-1, 2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane and trans-1-chloro-2-fluoroethylene.
  • the intermediate stream B in addition to 1-chloro-2,2-difluoroethane, may comprise trans-1,2-dichloroethylene or trans-1,2-dichloroethylene and cis-1-chloro-2-fluoroethylene or trans-1,2-dichloroethylene.
  • the washing step is carried out at a temperature of 0 to 30 ° C.
  • the washing step is carried out at an absolute pressure of between 1 and 4 bar.
  • said intermediate stream B is dried to form said third stream.
  • the drying is carried out at a temperature of 0 to 30 ° C.
  • the drying is carried out at an absolute pressure of between 1 and 4 bar.
  • the first stream obtained in step a), the intermediate stream B and the third stream obtained in step b) comprise 1-chloro-2,2-difluoroethane, trans-l, 2- dichlorethylene and at least one of the compounds A selected from the group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloroethylene. l-fluoroethane.
  • the first stream obtained in step a), the intermediate stream B and the third stream obtained in step b) comprise 1-chloro-2,2-difluoroethane, trans-1,2-dichloroethylene and at least one, two, three or all of the compounds A selected from the group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane and trans-1 chloro-2-fluoroethylene.
  • the intermediate stream C comprising hydrofluoric acid may be recycled in step (i).
  • step c) the third stream obtained in step b) is purified in step c).
  • This is preferably a distillation.
  • step c) can be a distillation implemented at a temperature between 35 and 79 ° C, preferably at an absolute pressure between 1 and 4 bar.
  • the third stream obtained in step b) comprises 1-chloro-2,2-difluoroethane, trans-1,2-dichloroethylene and at least one of the compounds A selected from the group consisting of cis 1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluoroethane.
  • step c) of the present process makes it possible to form a fourth stream comprising 1-chloro-2,2-difluoroethane and trans-1,2-dichloroethylene and a fifth stream comprising at least one of the compounds A selected from the group consisting of group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, trans-1-chloro-2-fluoroethylene and 1,2-dichloro-1-fluoroethane.
  • the fifth stream may comprise at least one, two, three or all of the compounds A selected from the group consisting of cis-1,2-dichloroethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane and trans-1-chloro-2-fluoroethylene, if the third stream comprises at least one, two, three or all of the compounds A selected from the group consisting of cis-1,2 dichlorethylene, cis-1-chloro-2-fluoroethylene, 1,2-dichloro-1-fluorethane and trans-1-chloro-2-fluoroethylene, as mentioned above.
  • said first stream obtained in step a), the intermediate stream B, the third stream obtained in step b) and / or the fourth stream are free of 1, 1-dichloroethylene.
  • the absence of 1,1-dichloroethylene in said first stream obtained in step a) and / or said intermediate stream B, and / or said third stream obtained in step b) and / or the fourth stream is thus obtained thanks to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de fabrication du 1-chloro-2,2-difluoroéthane à partir du 1,1,2-trichloroéthane comprenant au moins une étape de séparation du 1-chloro-2,2-difluoroéthane de la phase organique produite pendant le procédé; ladite étape comprend a) une purification de la phase organique obtenue à l'étape (iii) pour former un premier courant comprenant du 1-chloro-difluoroethane et de l'acide fluorhydrique et un second courant comprenant 1,1,2-trichloroethane; b) l'élimination de l'acide fluorhydrique dudit premier courant pour former un troisième courant comprenant du 1-chloro-difluoroethane; c) une purification dudit troisième courant comprenant du 1-chloro-difluoroethane.

Description

Procédé de fabrication du l-chloro-2,2-difluoroethane
Domaine technique de l'invention
La présente invention concerne le domaine des hydrocarbures fluorés saturés. Elle se rapporte plus particulièrement à un procédé de fabrication du l-chloro-2,2-difluoroethane à partir du 1,1,2-trichloroethane.
Arrière-plan technologique de l'invention
Le l-chloro-2,2-difluoroéthane (HCFC-142) est non seulement connu comme agent d'expansion dans la fabrication des mousses, mais aussi comme matière première dans la fabrication des composés pharmaceutiques ou agrochimiques.
On connaît par WO2015/082812 un procédé de fabrication du l-chloro-2,2- difluoroéthane à partir du 1,1,2-trichloroéthane et/ou du 1,2-dichloroéthylène comprenant au moins une étape au cours de laquelle le 1,1,2-trichloroéthane et/ou le 1,2-dichloroéthylène réagit ou réagissent avec de l'acide fluorhydrique en phase gaz pour donner un flux comprenant du l-chloro-2,2-difluoroéthane, de l'acide chlorhydrique, de l'acide fluorhydrique et du 1,1- dichloroéthylène. La présence de 1,1-dichloroéthylene peut être gênante pour des étapes réactionnelles subséquentes.
Le demandeur a mis au point un procédé de fabrication du l-chloro-2,2-difluoroethane ne présentant les inconvénients de l'art antérieur, en particulier un procédé évitant la formation de 1,1-dichloroéthylene.
Résumé de l'invention
La présente invention concerne un procédé de fabrication du l-chloro-2,2- difluoroéthane à partir du 1,1,2-trichloroéthane comprenant (i) au moins une étape au cours de laquelle le 1,1,2-trichloroéthane réagit avec de l'acide fluorhydrique en phase gaz optionnellement en présence d'un agent oxydant, et en présence ou en l'absence d'un catalyseur de fluoration pour donner un flux comprenant du l-chloro-2,2-difluoroéthane, de l'acide chlorhydrique, de l'acide fluorhydrique et au moins un composé(s) A choisi(s) parmi les 1,2-dichloroéthylènes (cis et trans), les 1 chloro,2-fluoroéthylènes (cis et trans), le 1,2-dichloro- 2-fluoroéthane et du 1,1,2-trichloroéthane non réagi ; (ii) au moins une étape de séparation des composés issus de l'étape réactionnelle pour donner un premier flux comprenant de l'acide chlorhydrique et un second flux comprenant de l'acide fluorhydrique, du l-chloro-2,2- difluoroéthane, au moins un composé(s) A et du 1, 1,2-trifluoroéthane non réagi ; (iii) au moins une étape de séparation du second flux pour donner une phase organique comprenant le 1- chloro-2,2-difluoroéthane, au moins un composé(s) A et du 1, 1,2-trichloroéthane non réagi et une phase non organique comprenant de TH F; (iv) au moins une étape de séparation du 1- chloro-2,2-difluoroéthane de la phase organique obtenue en (iii) ; (v) éventuellement recyclage à l'étape (i) de la phase organique après séparation de l'étape (iv) ; et (vi) éventuellement recyclage à l'étape (i) de la phase non organique issue de l'étape (iii), caractérisé en ce que l'étape (iv) comprend :
a) une purification de la phase organique obtenue à l'étape (iii) pour former un premier courant comprenant du l-chloro-2,2-difluoroethane, au moins un composé(s) A et de l'acide fluorhydrique et un second courant comprenant 1,1,2-trichloroethane ;
b) l'élimination de l'acide fluorhydrique dudit premier courant pour former un troisième courant comprenant du l-chloro-2,2-difluoroethane et au moins un composé(s) A ;
c) une purification, de préférence une distillation, dudit troisième courant comprenant du l-chloro-2,2-difluoroethane.
Selon un mode de réalisation préféré, l'étape a) de purification de la phase organique obtenue en (iii) est une distillation, de préférence mise en œuvre à une température comprise entre 30 et 80°C et à une pression absolue comprise entre 1 et 4 bar.
Selon un mode de réalisation préféré, le second courant comprenant 1, 1,2- trichloroethane est recyclé à l'étape (i), de préférence après distillation de celui-ci à une température comprise entre 100 et 170°C et à une pression absolue comprise entre 1 et 4 bar absolu..
Selon un mode de réalisation préféré, l'étape b) comprend une étape de lavage dudit premier courant pour former un courant intermédiaire B comprenant l-chloro-2,2- difluoroéthane et ledit au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-1- chloro-2-fluoroethylene et 1,2-dichloro-l-fluoréthane et un courant intermédiaire C comprenant l'acide fluorhydrique.
Selon un mode de réalisation préféré, ledit courant intermédiaire B est séché pour former ledit troisième courant.
Selon un mode de réalisation préféré, le séchage est mis en œuvre à une température de 0 à 30°C et une pression absolue comprise entre 1 et 4 bar. Selon un mode de réalisation préféré, le premier courant obtenu à l'étape a) et le troisième courant obtenu à l'étape b) comprennent également trans-l,2-dichloroethylene et éventuellement au moins un des composés A sélectionnés parmi le groupe consistant en cis- 1,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2- dichloro-l-fluoréthane.
Selon un mode de réalisation préféré, l'étape c) comprend au moins une distillation, de préférence mise en œuvre préférentiellement par une distillation à une température comprise entre 35 et 79°C et à une pression absolue comprise entre 1 et 4 bar.
Selon un mode de réalisation préféré, le premier courant obtenu à l'étape a), le courant intermédiaire B et le troisième courant obtenu à l'étape b) comprennent du trans-1,2- dichloroethylene et au moins un des composés A sélectionnés parmi le groupe consistant en cis- 1,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2- dichloro-l-fluoréthane.
Selon un mode de réalisation préféré, le premier courant obtenu à l'étape a), le courant intermédiaire B et le troisième courant obtenu à l'étape b) comprennent l-chloro-2,2- difluoroethane, trans-l,2-dichloroethylene et au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-l-chloro- 2-fluoroethylene et 1,2-dichloro-l-fluoréthane.
Selon un mode de réalisation préféré, l'étape c) forme un quatrième courant comprenant l-chloro-2,2-difluoroethane et trans-l,2-dichloroethylene et un cinquième courant comprenant au moins un des composés A sélectionnés parmi le groupe consistant en cis-1,2- dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2- dichloro-l-fluoréthane. Description détaillée de l'invention
La présente invention a donc pour objet un procédé de fabrication du l-chloro-2,2- difluoroéthane à partir du 1,1,2-trichloroéthane. Le procédé comprend les étapes suivantes :
(i) au moins une étape au cours de laquelle le 1,1,2-trichloroéthane réagit avec de l'acide fluorhydrique en phase gaz optionnellement en présence d'un agent oxydant, et en présence ou en l'absence d'un catalyseur de fluoration pour donner un flux comprenant du l-chloro-2,2- difluoroéthane, de l'acide chlorhydrique, de l'acide fluorhydrique et au moins un composé(s) A choisi(s) parmi les 1,2-dichloroéthylènes (cis et trans), les 1 chloro,2-fluoroéthylènes (cis et trans), le l,2-dichloro-2-fluoroéthane et du 1,1,2-trichloroéthane non réagi ; (ii) au moins une étape de séparation des composés issus de l'étape réactionnelle pour donner un premier flux comprenant de l'acide chlorhydrique et un second flux comprenant de l'acide fluorhydrique, du l-chloro-2,2-difluoroéthane, au moins un composé(s) A et du 1,1,2- trifluoroéthane ;
(iii) au moins une étape de séparation du second flux pour donner une phase organique comprenant le l-chloro-2,2-difluoroéthane, au moins un composé(s) A et du 1,1,2- trichloroéthane non réagi et une phase non organique comprenant de l'HF;
(iv) au moins une étape de séparation du l-chloro-2,2-difluoroéthane de la phase organique obtenue en (iii) ;
(v) éventuellement recyclage à l'étape (i) de la phase organique après séparation de l'étape (iv) ; et
(vi) éventuellement recyclage à l'étape (i) de la phase non organique issue de l'étape
(iii).
Selon un mode de réalisation préféré, l'étape (iv) comprend :
a) une purification, de préférence une distillation, de la phase organique obtenue à l'étape (iii) pour former un premier courant comprenant du l-chloro-2,2-difluoroethane, au moins un composé(s) A et de l'acide fluorhydrique et un second courant comprenant 1,1,2- trichloroethane ;
b) l'élimination de l'acide fluorhydrique dudit premier courant pour former un troisième courant comprenant du l-chloro-2,2-difluoroethane et au moins un composé(s) A ;
c) une purification, de préférence une distillation, dudit troisième courant comprenant du l-chloro-2,2-difluoroethane.
On utilise de préférence un catalyseur à l'étape (i) et avantageusement en présence d'un agent oxydant. La température de l'étape réactionnelle est de préférence comprise entre 150 et 400°C, avantageusement comprise entre 200 et 350°C. La pression à laquelle la réaction de fluoration est réalisée est de préférence comprise entre 1 et 30 bar absolu, avantageusement comprise entre 3 et 20 bar absolu et plus particulièrement entre 3 et 15 bar.
La quantité de l'acide fluorhydrique utilisée dans la réaction est de préférence comprise entre 5 et 40 moles et avantageusement comprise entre 10 et 30 moles par mole du HCC-140.
Le temps de contact défini comme étant le volume de catalyseur/débit de gaz volumique total à température et pression de la réaction peut être compris entre 2 et 200 secondes, de préférence, compris entre 2 et 100 secondes, avantageusement compris entre 2 et 50 secondes. L'agent oxydant pur ou en mélange avec de l'azote peut être choisi parmi l'oxygène, et le chlore. On choisit de préférence le chlore.
La quantité d'agent oxydant mise en œuvre est de préférence comprise entre 0,01 et 20% molaire par mol de F140, avantageusement entre 0,01 à 0,2 % molaire par mole du HCC- 140.
Une quantité d'agent oxydant comprise entre 1 - 10% molaire par rapport au F140 a donné des résultats très prometteurs.
Le catalyseur utilisé peut être massique ou supporté. Le catalyseur peut être à base d'un métal notamment d'un métal de transition ou un dérivé oxyde, halogénure ou oxyhalogénure d'un tel métal. A titre d'exemple, on peut citer notamment FeCU, oxyfluorure de chrome, N1CI2, CrF3 et leurs mélanges.
A titre de catalyseurs supportés, on peut citer ceux supportés sur carbone ou à base de magnésium tels que les dérivés de magnésium notamment des halogénures tel que MgF2 ou des oxyhalogénures de magnésium tel que les oxyfluorures ou à base d'aluminium comme l'alumine, l'alumine activée ou les dérivés d'aluminium notamment des halogénures, tel que AI F3 ou oxyhalogénures d'aluminium tel que oxyfluorure.
Le catalyseur peut en outre comprendre des co-catalyseurs choisi parmi le Co, Zn, Mn, Mg, V, Mo, Te, Nb, Sb, Ta, P, Ni, Zr, Ti, Sn, Cu, Pd, Cd, Bi, les terres rares ou leurs mélanges. Lorsque le catalyseur est à base de chrome, le Ni, Mg et Zn sont avantageusement choisis comme co-catalyseur.
Le ratio atomique co-catalyseur/catalyseur est de préférence compris entre 0,01 et 5.
Les catalyseurs à base de chrome sont particulièrement préférés.
Le catalyseur utilisé dans la présente invention peut être préparé par coprécipitation des sels correspondants éventuellement en présence d'un support.
Le catalyseur peut également être préparé par co-broyage des oxydes correspondants.
Préalablement à la réaction de fluoration le catalyseur est soumis à une étape d'activation par de THF à une température de préférence comprise entre 100 et 450°C, avantageusement comprise entre 200 et 400°C pour une durée comprise entre 1 et 50 heures.
Outre le traitement par THF, l'activation peut être mise en œuvre en présence de l'agent oxydant.
Les étapes d'activation peuvent être mises en œuvre à pression atmosphérique ou sous pression jusqu'à 20 bar. Selon un mode préféré de l'invention, le support peut être préparé à partir d'alumine à porosité élevée. Dans une première étape l'alumine est transformée en fluorure d'aluminium ou en mélange de fluorure d'aluminium et d'alumine, par fluoration à l'aide d'air et d'acide fluorhydrique, le taux de transformation de l'alumine en fluorure d'aluminium dépendant essentiellement de la température à laquelle est effectuée la fluoration de l'alumine (en général entre 200°C et 450°C, de préférence entre 250°C et 400°C). Le support est ensuite imprégné à l'aide de solutions aqueuses de sels de chrome, de nickel et éventuellement de métal de terre rare, ou à l'aide de solutions aqueuses d'acide chromique, de sel de nickel ou zinc, et éventuellement de sels ou d'oxydes de terre rares et de méthanol (servant de réducteur au chrome). Comme sels de chrome, de nickel ou zinc et de métaux de terre rare, on peut employer des chlorures, ou d'autres sels tels que, par exemple, les oxalates, formiates, acétates, nitrates et sulfates ou le bichromate de nickel, et de métaux de terre rare, pour autant que ces sels soient solubles dans la quantité d'eau susceptible d'être absorbée par le support.
Le catalyseur peut aussi être préparé par imprégnation directe de l'alumine (qui en général est activée) à l'aide des solutions des composés de chrome, de nickel ou zinc, et éventuellement de métaux de terre rare, ci-dessus mentionnées. Dans ce cas, la transformation d'au moins une partie (par exemple 70% ou plus) de l'alumine en fluorure d'aluminium ou oxyfluorure d'aluminium s'effectue lors de l'étape d'activation du métal du catalyseur.
Les alumines activées susceptibles d'être utilisées pour la préparation du catalyseur sont des produits bien connus, disponibles dans le commerce. Elles sont généralement préparées par calcination d'hydrates d'alumine (hydroxydes d'aluminium) à une température comprise entre 300°C et 800°C. Les alumines (activées ou non) peuvent contenir des teneurs importantes (jusqu'à 1000 ppm) de sodium sans que cela nuise aux performances catalytiques.
De préférence, le catalyseur est conditionné ou activé, c'est-à-dire transformé en constituants actifs et stables (aux conditions réactionnelles) par une opération préalable dite d'activation. Ce traitement peut être réalisé soit "in situ" (dans le réacteur de fluoration) ou bien dans un appareillage adéquat conçu pour résister aux conditions d'activation.
Après imprégnation du support, le catalyseur est séché à une température comprise entre 100°C et 350°C, de préférence 220°C à 280°C en présence d'air ou d'azote.
Le catalyseur séché est ensuite activé en une ou deux étapes avec de l'acide fluorhydrique, éventuellement en présence d'un agent oxydant. La durée de cette étape d'activation par fluoration peut être comprise entre 6 et 100 heures et la température comprise entre 200 et 400°C. De préférence, l'étape de séparation (ii) comprend au moins une distillation, avantageusement mise en œuvre à une température comprise entre -60° et 120°C et plus particulièrement entre -60 et 89°C et une pression absolue comprise entre 3 et 20 bar et avantageusement entre 3 et 11 bar.
Outre du l-chloro-2,2-difluoroethane, de l'acide fluorhydrique et du 1,1,2- trichloroethane, la phase organique obtenue à l'étape (iii) comprend également au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, trans-1,2- dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l-fluorethane et trans-l-chloro-2- fluoroethylene.
Après la séparation du second flux à l'étape (iii), la phase non organique obtenue en (iii) contient de préférence la majorité du H F présent initialement dans le second flux par rapport à la phase organique également obtenue à l'étape (iii). La phase organique obtenue en (iii) peut contenir de l'acide fluorhydrique. La quantité d'acide fluorhydrique dans la phase organique est inférieure à la quantité d'acide fluorhydrique dans la phase non organique. Le rapport molaire de l'acide fluorhydrique présent dans la phase organique sur l'acide fluorhydrique présente dans la phase non organique est inférieur à 1 : 10, de préférence inférieur à 1 : 50, en particulier 1 :100.
Selon un mode de réalisation, avant le recyclage à l'étape (i), la phase non organique obtenue en (iii) est purifiée de sorte que la teneur en H F soit supérieure ou égale à 90 % en poids. De préférence, cette purification comprend au moins une distillation, avantageusement mise en œuvre à une température comprise entre -23 et 46 °C et une pression absolue comprise entre 0,3 et 3 bar.
De préférence, l'étape de séparation (iii) comprend au moins une étape de décantation, avantageusement mise en œuvre à une température comprise entre -20 et 60°C et plus particulièrement entre -20 et 10°C.
De préférence, l'étape de séparation (iv) comprend une étape de purification de la phase organique obtenue en (iii) permettant de séparer le l-chloro-2,2-difluoroethane et le 1, 1,2- trichloroethane. Outre du l-chloro-2,2-difluoroethane et du 1, 1,2-trichloroethane, la phase organique obtenue à l'étape (iii) comprend également au moins deux, trois, quatre ou l'ensemble des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l-fluorethane et trans- l-chloro-2-fluoroethylene ; et éventuellement de l'acide fluorhydrique. Ainsi la phase organique obtenue à l'étape (iii) peut comprendre trans-l,2-dichloroethylene ou trans-1,2- dichloroethylene et cis-l-chloro-2-fluoroethylene ou trans-l,2-dichloroethylene, cis-l-chloro-2- fluoroethylene et 1,2-dichloro-l-fluorethane ou trans-l,2-dichloroethylene, cis-l-chloro-2- fluoroethylene, 1,2-dichloro-l-fluorethane et cis-l,2-dichloroethylene ou trans-1,2- dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l-fluorethane, cis-1,2- dichloroethylene et trans-l-chloro-2-fluoroethylene.
De préférence, l'étape a) de purification de la phase organique obtenue en (iii) est une distillation. En particulier, la distillation de la phase organique obtenue en (iii) est mise en œuvre à une température de 10 à 100°C, de préférence de 20 à 90°C, plus préférentiellement de 30 à 80°C, et à une pression absolue de 0,3 à 8 bar, de préférence de 0,5 à 6 bar, plus préférentiellement de 1 à 4 bar.
Selon un mode de réalisation préféré, le premier courant obtenu à l'étape a) et le troisième courant obtenu à l'étape b) comprennent ledit au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2-dichloro-l-fluoréthane. De préférence, le premier courant obtenu à l'étape a) et le troisième courant obtenu à l'étape b) comprennent au moins deux, trois, quatre ou l'ensemble des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, trans-l,2-dichloroethylene, cis-l-chloro-2- fluoroethylene, 1,2-dichloro-l-fluorethane et trans-l-chloro-2-fluoroethylene.
Ainsi, le premier courant obtenu à l'étape a) et le troisième courant obtenu à l'étape b) peuvent comprendre trans-l,2-dichloroethylene ou trans-l,2-dichloroethylene et cis-l-chloro- 2-fluoroethylene ou trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene et 1,2-dichloro-l- fluorethane ou trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l- fluorethane et cis-l,2-dichloroethylene ou trans-l,2-dichloroethylene, cis-l-chloro-2- fluoroethylene, 1,2-dichloro-l-fluorethane, cis-l,2-dichloroethylene et trans-l-chloro-2- fluoroethylene.
Selon un mode de réalisation préféré, le second courant comprenant 1, 1,2- trichloroethane est recyclé à l'étape (i), de préférence après purification de celui-ci, en particulier la purification est une distillation à une température de 20 à 300°C, de préférence de 50 à 250°C, plus préférentiellement de 75 à 200°C, en particulier de 100 à 170°C et à une pression absolue de 0,3 à 8 bar, de préférence de 0,5 à 6 bar, plus préférentiellement de 1 à 4 bar.
Selon un mode de réalisation préféré, l'étape permet d'éliminer l'acide fluorhydrique résiduel présent dans le premier courant. Ainsi, l'étape b) comprend une étape de lavage dudit premier courant pour former un courant intermédiaire B comprenant l-chloro-2,2- difluoroethane et ledit au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-1- chloro-2-fluoroethylene et 1,2-dichloro-l-fluoréthane et un courant intermédiaire C comprenant l'acide fluorhydrique. Le courant intermédiaire B peut comprendre l-chloro-2,2- difluoroethane et au moins au moins deux, trois, quatre ou l'ensemble des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l-fluorethane et trans-l-chloro-2-fluoroethylene. De préférence, le courant intermédiaire B, outre le l-chloro-2,2-difluoroethane, peut comprendre trans-l,2-dichloroethylene ou trans-l,2-dichloroethylene et cis-l-chloro-2- fluoroethylene ou trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene et 1,2-dichloro-l- fluorethane ou trans-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l- fluorethane et cis-l,2-dichloroethylene ou trans-l,2-dichloroethylene, cis-l-chloro-2- fluoroethylene, 1,2-dichloro-l-fluorethane, cis-l,2-dichloroethylene et trans-l-chloro-2- fluoroethylene.
De préférence, l'étape de lavage est mise en œuvre à une température de 0 à 30°C. De préférence, l'étape de lavage est mise en œuvre à une pression absolue comprise entre 1 et 4 bar.
De préférence, ledit courant intermédiaire B est séché pour former ledit troisième courant. En particulier, le séchage est mis en œuvre à une température de 0 à 30°C. De préférence, le séchage est mis en œuvre à une pression absolue comprise entre 1 et 4 bar.
Selon un mode de réalisation particulier, le premier courant obtenu à l'étape a), le courant intermédiaire B et le troisième courant obtenu à l'étape b) comprennent l-chloro-2,2- difluoroethane, trans-l,2-dichloroethylene et au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-l-chloro- 2-fluoroethylene et 1,2-dichloro-l-fluoréthane. De préférence, le premier courant obtenu à l'étape a), le courant intermédiaire B et le troisième courant obtenu à l'étape b) comprennent l-chloro-2,2-difluoroethane, trans-l,2-dichloroethylene et au moins un, deux, trois ou l'ensemble des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l-fluorethane et trans-l-chloro-2-fluoroethylene.
De préférence, le courant intermédiaire C comprenant l'acide fluorhydrique peut être recyclé à l'étape (i).
Selon un mode de réalisation préféré, le troisième courant obtenu à l'étape b) est purifié à l'étape c). Celle-ci est de préférence une distillation. Ainsi, l'étape c) peut être une distillation mise en œuvre à une température comprise entre 35 et 79°C, de préférence à une pression absolue comprise entre 1 et 4 bar.
Comme mentionné ci-dessus, le troisième courant obtenu à l'étape b) comprennent 1- chloro-2,2-difluoroethane, trans-l,2-dichloroethylene et au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, cis-l-chloro-2- fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2-dichloro-l-fluoréthane. Ainsi, l'étape c) du présent procédé permet de former un quatrième courant comprenant l-chloro-2,2- difluoroethane et trans-l,2-dichloroethylene et un cinquième courant comprenant au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, cis-1- chloro-2-fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2-dichloro-l-fluoréthane.
Selon un mode de réalisation préféré, le cinquième courant peut comprendre au moins un, deux, trois ou l'ensemble des composés A sélectionnés parmi le groupe consistant en cis- 1,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l-fluorethane et trans-1- chloro-2-fluoroethylene, si le troisième courant comprend au moins un, deux, trois ou l'ensemble des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, 1,2-dichloro-l-fluorethane et trans-l-chloro-2-fluoroethylene, comme mentionné ci-dessus.
Selon un mode de réalisation particulier, ledit premier courant obtenu à l'étape a), le courant intermédiaire B, le troisième courant obtenu à l'étape b) et/ou le quatrième courant sont dépourvus de 1, 1-dichloroethylene. L'absence de 1, 1-dichloroethylene dans ledit premier courant obtenu à l'étape a) et/ou ledit courant intermédiaire B, et/ou ledit troisième courant obtenu à l'étape b) et/ou le quatrième courant est ainsi obtenue grâce à la présente invention.

Claims

Revendications
1. Procédé de fabrication du l-chloro-2,2-difluoroéthane à partir du 1,1,2-trichloroéthane comprenant (i) au moins une étape au cours de laquelle le 1,1,2-trichloroéthane réagit avec de l'acide fluorhydrique en phase gaz optionnellement en présence d'un agent oxydant, et en présence ou en l'absence d'un catalyseur de fluoration pour donner un flux comprenant du 1- chloro-2,2-difluoroéthane, de l'acide chlorhydrique, de l'acide fluorhydrique et au moins un composé(s) A choisi(s) parmi les 1,2-dichloroéthylènes (cis et trans), les 1 chloro,2- fluoroéthylènes (cis et trans), le l,2-dichloro-2-fluoroéthane et du 1,1,2-trichloroéthane non réagi ; (ii) au moins une étape de séparation des composés issus de l'étape réactionnelle pour donner un premier flux comprenant de l'acide chlorhydrique et un second flux comprenant de l'acide fluorhydrique, du l-chloro-2,2-difluoroéthane, au moins un composé(s) A et du 1,1,2- trichloroéthane non réagi ; (iii) au moins une étape de séparation du second flux pour donner une phase organique comprenant le l-chloro-2,2-difluoroéthane, au moins un composé(s) A et du 1,1,2-trichloroéthane non réagi et une phase non organique comprenant de l'HF; (iv) au moins une étape de séparation du l-chloro-2,2-difluoroéthane de la phase organique obtenue en (iii) ; (v) éventuellement recyclage à l'étape (i) de la phase organique après séparation de l'étape (iv) ; et (vi) éventuellement recyclage à l'étape (i) de la phase non organique issue de l'étape (iii), caractérisé en ce que l'étape (iv) comprend :
a) une purification de la phase organique obtenue à l'étape (iii) pour former un premier courant comprenant du l-chloro-2,2-difluoroethane, au moins un composé(s) A et de l'acide fluorhydrique et un second courant comprenant 1,1,2-trichloroethane ;
b) l'élimination de l'acide fluorhydrique dudit premier courant pour former un troisième courant comprenant du l-chloro-2,2-difluoroethane et au moins un composé(s) A ;
c) une purification, de préférence une distillation, dudit troisième courant comprenant du l-chloro-2,2-difluoroethane.
2. Procédé selon la revendication précédente caractérisé en ce que l'étape a) de purification de la phase organique obtenue en (iii) est une distillation, de préférence mise en œuvre à une température comprise entre 30 et 80°C et à une pression absolue comprise entre 1 et 4 bar.
3. Procédé selon l'une quelconque des revendications précédentes caractérisée en ce que le second courant comprenant 1,1,2-trichloroethane est recyclé à l'étape (i), de préférence après distillation de celui-ci à une température comprise entre 100 et 170°C et à une pression absolue comprise entre 1 et 4 bar absolu.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) comprend une étape de lavage dudit premier courant pour former un courant intermédiaire
B comprenant l-chloro-2,2-difluoroethane et ledit au moins l'un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, trans-l,2-dichloroethylene, cis-l-chloro- 2-fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2-dichloro-l-fluoréthane et un courant intermédiaire C comprenant l'acide fluorhydrique.
5. Procédé selon la revendication précédente caractérisé en ce que ledit courant intermédiaire B est séché pour former ledit troisième courant.
6. Procédé selon la revendication précédente caractérisé en ce que le séchage est mis en œuvre à une température de 0 à 30°C et une pression absolue comprise entre 1 et 4 bar.
7. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le premier courant obtenu à l'étape a) et le troisième courant obtenu à l'étape b) comprennent également trans-l,2-dichloroethylene et éventuellement au moins un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, cis-l-chloro-2- fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2-dichloro-l-fluoréthane.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape c) comprend au moins une distillation, de préférence mise en œuvre préférentiellement par une distillation à une température comprise entre 35 et 79°C et à une pression absolue comprise entre 1 et 4 bar.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le premier courant obtenu à l'étape a), le courant intermédiaire B et/ou le troisième courant obtenu à l'étape b) comprennent du trans-l,2-dichloroethylene et au moins un des composés A sélectionnés parmi le groupe consistant en cis-l,2-dichloroethylene, cis-l-chloro-2- fluoroethylene, trans-l-chloro-2-fluoroethylene et 1,2-dichloro-l-fluoréthane.
10. Procédé selon la revendication précédente caractérisé en ce que l'étape c) forme un quatrième courant comprenant l-chloro-2,2-difluoroethane et trans-l,2-dichloroethylene et un cinquième courant comprenant au moins un des composés A sélectionné parmi le groupe consistant en cis-l,2-dichloroethylene, cis-l-chloro-2-fluoroethylene, trans-l-chloro-2- fluoroethylene et 1,2-dichloro-l-fluoréthane.
EP17780836.7A 2016-09-27 2017-09-25 Procede de fabrication du 1-chloro-2,2-difluoroethane Withdrawn EP3519378A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1659079A FR3056584B1 (fr) 2016-09-27 2016-09-27 Procede de fabrication du 1-chloro-2,2-difluoroethane
PCT/FR2017/052559 WO2018060576A1 (fr) 2016-09-27 2017-09-25 Procede de fabrication du 1-chloro-2,2-difluoroethane

Publications (1)

Publication Number Publication Date
EP3519378A1 true EP3519378A1 (fr) 2019-08-07

Family

ID=57485719

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17780836.7A Withdrawn EP3519378A1 (fr) 2016-09-27 2017-09-25 Procede de fabrication du 1-chloro-2,2-difluoroethane

Country Status (8)

Country Link
US (1) US10640439B2 (fr)
EP (1) EP3519378A1 (fr)
JP (1) JP2019529450A (fr)
CN (1) CN109790089A (fr)
FR (1) FR3056584B1 (fr)
MX (1) MX2019003139A (fr)
RU (1) RU2019112250A (fr)
WO (1) WO2018060576A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3406222B1 (fr) 2008-11-20 2021-11-10 Align Technology, Inc. Systèmes et procédés orthodontiques comprenant des fixations paramétriques
JP6673395B2 (ja) * 2018-05-07 2020-03-25 ダイキン工業株式会社 1,2−ジフルオロエチレン及び/又は1,1,2−トリフルオロエタンの製造方法
JP6908060B2 (ja) * 2019-01-16 2021-07-21 ダイキン工業株式会社 1−クロロ−1,2−ジフルオロエタンを含む共沸又は共沸様組成物
KR20210151152A (ko) * 2019-04-10 2021-12-13 다이킨 고교 가부시키가이샤 1,1,2-트리플루오로에탄, 1-클로로-2,2-디플루오로에탄 또는 1,2-디클로로-1-플루오로에탄과, 불화수소를 포함하는 공비 또는 유사 공비 조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1008575A1 (fr) * 1998-12-08 2000-06-14 Elf Atochem North America, Inc. Préparation de 1-chloro-2,2-difluoroethane ("142")
DK2766117T3 (en) * 2011-10-12 2018-06-25 Bayer Ip Gmbh CATALYTIC GAS PHASE FLUORATION OF 1,1,2-TRICHLORETHANE AND / OR 1,2-DICHLORETHANE TO PREPARE 1-CHLOR-2,2-DIFLUORETHANE
FR3014099B1 (fr) * 2013-12-04 2017-01-13 Arkema France Procede de fabrication du 1-chloro-2,2,-difluoroethane
CN104692998B (zh) * 2015-02-11 2018-06-26 巨化集团技术中心 1,1-二氟-2-氯乙烷的制备方法
CN104692997B (zh) * 2015-02-11 2017-12-22 巨化集团技术中心 一种1,1‑二氟‑2‑氯乙烷的制备方法

Also Published As

Publication number Publication date
MX2019003139A (es) 2019-06-17
US20200002253A1 (en) 2020-01-02
FR3056584A1 (fr) 2018-03-30
RU2019112250A (ru) 2020-10-29
CN109790089A (zh) 2019-05-21
JP2019529450A (ja) 2019-10-17
WO2018060576A1 (fr) 2018-04-05
US10640439B2 (en) 2020-05-05
FR3056584B1 (fr) 2020-05-08

Similar Documents

Publication Publication Date Title
EP3077351A1 (fr) Procede de fabrication du 1-chloro-2,2,difluoroethane
EP0486333B1 (fr) Procédé de fabrication du tétrafluoro-1,1,1,2-éthane
EP2760811B1 (fr) Procede de fabrication du 2,3,3,3-tetrafluoropropene
WO2018060576A1 (fr) Procede de fabrication du 1-chloro-2,2-difluoroethane
EP2271606B1 (fr) Procede pour la preparation du 1, 2, 3, 3, 3-pentafluoropropene-1
EP0609123B1 (fr) Procédé de fluoration du perchloréthylène ou du pentachloréthane
EP3049382B1 (fr) Procede de fluoration en phase gaz
EP3207010B1 (fr) Compositions a base de 1,1,1,2,3-pentachloropropane
EP3526184A1 (fr) Composition comprenant du 1-chloro-2,2-difluoroethane et du 1,1-dichloroethylene.
EP0609124B1 (fr) Procédé de fabrication du 1,1,1,2-tetrafluoro-2-chloroethane et du pentafluoroethane
WO2018224381A1 (fr) 1,1,1,2,3,3-hexafluoropropane de haute pureté, son procédé de fabrication et utilisation
EP0920910B1 (fr) Catalyseur mixte de fluoration
EP2024312B1 (fr) Procede de fabrication du pentafluoroethane
WO2018178553A1 (fr) Procédé de récupération d'acide fluorhydrique
WO2019135057A1 (fr) Procédé de purification du 1,1,1,2,3-pentafluoropropane et utilisation de celui-ci pour l'obtention de 2,3,3,3-tétrafluoropropène de haute pureté
EP2285489A1 (fr) Procede de preparation de composes fluores
WO2018197787A1 (fr) Procédé de purification du 1,1,1,2,2-pentafluoropropane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20190304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHERPEREEL, CAMILLE

Inventor name: GARRAIT, DOMINIQUE

Inventor name: HERDT, CHARLOTTE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20200422

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200903