EP3517294B1 - Structure tubulaire multicouche possédant une meilleure résistance à l'extraction dans la bio-essence et son utilisation - Google Patents

Structure tubulaire multicouche possédant une meilleure résistance à l'extraction dans la bio-essence et son utilisation Download PDF

Info

Publication number
EP3517294B1
EP3517294B1 EP19158603.1A EP19158603A EP3517294B1 EP 3517294 B1 EP3517294 B1 EP 3517294B1 EP 19158603 A EP19158603 A EP 19158603A EP 3517294 B1 EP3517294 B1 EP 3517294B1
Authority
EP
European Patent Office
Prior art keywords
layer
polyamide
mlt
tubular structure
advantageously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19158603.1A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3517294A1 (fr
Inventor
Thibaut Montanari
Christelle Recoquille
Bertrand VERBAUWHEDE
Nicolas Dufaure
Florent Dechamps
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56117822&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3517294(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arkema France SA filed Critical Arkema France SA
Priority to EP21212079.4A priority Critical patent/EP3981594A1/fr
Publication of EP3517294A1 publication Critical patent/EP3517294A1/fr
Application granted granted Critical
Publication of EP3517294B1 publication Critical patent/EP3517294B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/045Hoses, i.e. flexible pipes made of rubber or flexible plastics with four or more layers without reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • F16L11/125Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting non-inflammable or heat-resistant hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]

Definitions

  • the invention relates to a multilayer structure, in particular in the form of a tube, and its use for transporting fluids, in particular gasoline-type fuel, in particular alcoholic, in particular for motor vehicles.
  • the invention relates more particularly to the tubes present within an engine.
  • These tubes can for example be intended for the transport of fuels, in particular between the tank and the engine, for the cooling circuit, for the hydraulic system, or for the air conditioning circuit or the transport of a mixture of urea and water. .
  • the tubes used are manufactured by mono-extrusion, if it is a single-layer tube, or by co-extrusion of the different layers, if it is a multilayer tube, according to the techniques. usual processes for thermoplastics processing.
  • the structures (MLT) for the transport of gasoline typically consist of a barrier layer such as EVOH, surrounded on both sides by a PA layer (at least one layer) and optionally comprising layers of binders in the case where the adhesion, between the other layers, proves insufficient.
  • patent EP 2098580 describes in particular tubes having an EVOH barrier and at least two layers of polyamides, plasticized or not, one being located above the barrier layer and the other being located below the barrier layer.
  • the present invention intends to solve this new problem by an arrangement and a particular constitution of the layers of the multilayer structure.
  • fluid denotes a gas used in the automobile or a liquid, in particular a liquid and in particular an oil, a brake fluid, a urea solution, a glycol-based coolant, fuels, in particular.
  • light fuels liable to pollute advantageously fuels except diesel, in particular gasoline or LPG, in particular gasoline and more particularly alcoholic gasoline.
  • Air, nitrogen and oxygen are excluded from the definition of said gas.
  • said fluid designates fuels, in particular gasoline, in particular alcoholic gasoline.
  • gasoline denotes a mixture of hydrocarbons obtained from the distillation of petroleum to which additives or alcohols such as methanol and ethanol may be added, the alcohols possibly being the major components in certain cases.
  • alcoholic gasoline denotes a gasoline to which methanol or ethanol has been added. It also designates a gasoline of type E95 which does not contain any petroleum distillation product.
  • all the layers (2) and any other layers located below the barrier layer means all the layers present located below the barrier layer.
  • barrier layer denotes a layer having characteristics of low permeability and of good resistance to the various constituents of fluids, in particular fuels, that is to say that the barrier layer slows down the passage of fluid, in particular fuel, both for its polar components (such as ethanol) and for its non-polar components (hydrocarbons) in the other layers of the structure or even outside the structure.
  • the barrier layer is therefore a layer allowing above all not to lose too much gasoline in the atmosphere by diffusion, thus making it possible to avoid atmospheric pollution.
  • barrier materials are chosen from polyphthalamides and / or copolymers of ethylene and of vinyl alcohol (denoted EVOH below).
  • the EVOHs are particularly advantageous, in particular the richest in vivnyl alcohol comonomer as well as those modified impact because they make it possible to produce less fragile structures.
  • the inventors have therefore found that the absence or at least a very small proportion of plasticizer in the inner layer (s), that is to say located under the barrier layer, made it possible to greatly reduce the proportion of extractables such as as determined by a test as defined above and in particular by a test which consists of filling a tubular structure with alcoholic gasoline type FAM-B and heating the assembly to 60 ° C for 96 hours, then emptying it by filtering it in a beaker, then allowing the filtrate from the beaker to evaporate at room temperature to finally weigh this residue, the proportion of which must be less than or equal to approximately 6 g / m2 of the internal surface of the tube.
  • FAM B alcoholic gasoline is described in DIN 51604-1: 1982, DIN 51604-2: 1984 and DIN 51604-3: 1984.
  • FAM A alcoholic gasoline is first prepared with a mixture of 50% Toluene, 30% isooctane, 15% di-isobutylene and 5% ethanol then FAM B is prepared by mixing 84.5% FAM A with 15% methanol and 0.5% water.
  • FAB consists of 42.3% toluene, 25.4% isooctane, 12.7% di-isobutylene, 4.2% ethanol, 15% methanol and 0.5% water.
  • said inner layer (2) comprising predominantly at least one polyamide of aliphatic type means that said polyamide of aliphatic type is present in a proportion of more than 50% by weight in layer (2).
  • the polyamide of the aliphatic type is linear and is not of the cycloaliphatic type.
  • said polyamide of predominantly aliphatic type of the layer or layers (2) also predominantly comprises aliphatic units, namely more than 50% of aliphatic units.
  • said polyamide of the majority aliphatic type of the layer (s) (2) consists of more than 75% of aliphatic units, preferably said polyamide of the majority aliphatic type of the layer (s) (2) is completely aliphatic.
  • PPAs are also of interest, in particular coPA6T, PA9T and its copolymers, PA10T and its copolymers.
  • copolyamides in the broad sense, which although not preferred, falls within the scope of the invention.
  • copolyamides comprising not only amide units (which will be in the majority, hence the fact that they are to be considered as copolyamides in the broad sense), but also units of a non-amide nature, for example ether units.
  • the best known examples are PEBA or polyether-block-amide, and their copolyamideester-ether variants, copolyamide-ether, copolyamide ester.
  • PEBA-12 where the polyamide units are the same as those of PA12
  • PEBA-6.12 where the polyamide units are the same as those of PA6.12.
  • Homopolyamides, copolyamides and alloys are also distinguished by their number of carbon atoms per nitrogen atom, knowing that there are as many nitrogen atoms as there are amide groups (-CO-NH-).
  • a high carbon polyamide is a polyamide with a high ratio of carbon atoms (C) relative to the nitrogen atom (N). These are polyamides with approximately at least 9 carbon atoms per nitrogen atom, such as for example polyamide-9, polyamide-12, polyamide-11, polyamide-10.10 (PA10.10), copolyamide 12 / 10.T, copolyamide 11 / 10.T, polyamide-12.T, polyamide-6.12 (PA6.12). T represents terephthalic acid.
  • a low carbon polyamide is a polyamide with a low ratio of carbon atoms (C) relative to the nitrogen atom (N). These are the polyamides with approximately less than 9 carbon atoms per nitrogen atom, such for example polyamide-6, polyamide-6.6, polyamide-4.6, copolyamide-6.T / 6.6, copolyamide 6.I /6.6, copolyamide 6.T / 6.I / 6.6, polyamide 9.T. I represents isophthalic diacid.
  • PA6.12 is an PA with 9 carbon atoms per nitrogen atom, in other words a PA in C9.
  • PA6.13 is in C9.5.
  • the number of carbon atoms per nitrogen atom is calculated according to the same principle. The calculation is carried out on a molar basis for the various amide units. In the case of a copolyamide having units of non-amide type, the calculation is carried out only on the part of amide units.
  • PEBA-12 which is a block copolymer of amide units 12 and ether units
  • the average number of carbon atoms per nitrogen atom will be 12, as for PA12; for PEBA-6.12, it will be 9, as for PA6.12.
  • high carbon polyamides such as polyamide PA12 or 11 adhere with difficulty to an EVOH polymer, to a low carbon polyamide.
  • polyamide such as PA6, or on an alloy of polyamide PA6 and polyolefin (such as, for example, a Orgalloy ® marketed by Arkema).
  • Bio-fuels are not only derived from petroleum but include a proportion of polar products such as alcohols of plant origin, such as ethanol or methanol, of at least 3%. This rate can go up to 85% or even 95%.
  • the fuel circulation temperature tends to rise due to the new engines (more confined, operating at higher temperature).
  • Said inner layer (2) or each of the layers (2) and of the other possible layers located below the barrier layer contains from 0 to 1.5% by weight of plasticizer relative respectively to the total weight of the composition of the layer (2) or to the total weight of each of the compositions of the layers (2) and of any other layers located below the barrier layer.
  • said inner layer (2) or each of the layers (2) and any other layers located below the barrier layer is ( are) devoid of plasticizer.
  • all the layers located under the barrier layer are completely devoid of plasticizer and constitute one of the preferred structures of the invention.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which at least one more outer layer (3) located above the barrier layer is present, said outer layer (3) comprising mainly at least one polyamide of the aliphatic type or one consisting of more than 75% of aliphatic units, in particular said aliphatic polyamide having an average number of carbon atoms per nitrogen atom of between 9.5 and 18, advantageously from 11 to 18.
  • MMT multilayer tubular structure
  • said outer layer (3) comprising predominantly at least one polyamide of aliphatic type means that said polyamide of aliphatic type is present in a proportion of more than 50% by weight in layer (3).
  • the polyamide of the aliphatic type is linear and is not of the cycloaliphatic type.
  • said polyamide of predominantly aliphatic type of the layer or layers (3) also predominantly comprises aliphatic units, namely more than 50% of aliphatic units.
  • said polyamide of the majority aliphatic type of the layer or layers (3) consists of more than 75% of aliphatic units, preferably said polyamide of the majority aliphatic type of the layer or layers (3) is completely aliphatic.
  • said polyamide of predominantly aliphatic type of the layer or layers (2) and of the layer or layers (3) also predominantly comprises aliphatic units, namely more than 50% of aliphatic units.
  • said polyamide of the majority aliphatic type of the layer (s) (2) and of the layer (s) (3) consists of more than 75% of aliphatic units, preferably said polyamide of the majority aliphatic type of the layer (s) ( 2) and the layer (s) (3) is completely aliphatic.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which said outer layer (3) comprises from 0 to 15% of plasticizer relative to the total weight of the composition of the layer (3). , or in which all of the outer layers comprise on average from 0 to 5% of plasticizer.
  • MKT multilayer tubular structure
  • one of the outer layers has a large proportion of plasticizer such as 15% by weight, but in this case, the proportion of plasticizer is compensated by the thickness of the layer which is then much thinner so that the average value of plasticizer present in all the inner layers does not exceed 5%.
  • the proportion of plasticizer in this layer can then be up to 15% but its thickness does not exceed 20% of the total thickness of the tube, preferably it does not exceed 200 ⁇ m.
  • the present invention relates to a multilayer tubular structure (MLT) comprising a layer (3) as defined above, in which at least a second outer layer (3 ') located above the barrier layer is present, and preferably located above the layer (3), said layer (3 ') being plasticized, said plasticizer being present in a proportion of 1.5% to 15% by weight relative to the total weight of the composition of said layer, the thickness of said layer (3 ') preferably represents up to 20% of the total thickness of the tubular structure, in particular up to 200 ⁇ m.
  • MLT multilayer tubular structure
  • Layer (3 '), like layer (3), comprises predominantly an aliphatic type polyamide, that is to say that said aliphatic type polyamide is present in a proportion of more than 50% by weight in layer (3') .
  • the polyamide of the aliphatic type is linear and is not of the cycloaliphatic type.
  • said polyamide of predominantly aliphatic type of the layer or layers (3 ′) also predominantly comprises aliphatic units, namely more than 50% of aliphatic units.
  • said polyamide of the majority aliphatic type of the layer (s) (3 ') consists of more than 75% of aliphatic units, preferably said polyamide of the majority aliphatic type of the layer (s) (3') is completely aliphatic.
  • the present invention relates to a multilayer tubular structure (MLT), in which the layer (s) (3) comprises (comprise) up to 1.5% by weight of plasticizer, by relative to the total weight of the composition of said layer or of all the compositions of the layers (3).
  • the multilayer tubular structure comprises a single layer (3) and is devoid of plasticizer.
  • the multilayer tubular structure comprises a single layer (3) and a single layer (2), the layers (2) and (3) being devoid of plasticizer.
  • the present invention relates to a multilayer tubular structure (MLT), in which the level of plasticizer of all the layers located above the barrier layer is at most 5% by weight based on the total weight. compositions of all layers located above the barrier layer.
  • MLT multilayer tubular structure
  • the present invention relates to a multilayer tubular structure (MLT), in which the layer (3 ') is the outermost and is the only plasticized, the layer (s) (3) being plasticizer (s).
  • MLT multilayer tubular structure
  • the proportion of plasticizer can represent up to 15% by weight of the total weight of the composition of the layer (3 ′).
  • Layer (4) when it is not a binder layer is an aliphatic type polyamide as defined for layers (2), (3) and (3 ').
  • the tubular structure of the invention is a four-layer structure made up from the outside to the inside of the following layers: (3) // (4) // (1) // (2), the ( 3) being plasticized up to 15% as above and thin and the layer (4) when it is different from the binder layer as defined above is devoid of plasticizer as well as the layer (2).
  • the tubular structure of the invention is a four-layer structure made up from the outside to the inside of the following layers: (3) // (1) // (4) // (2), the ( 3) being plasticized up to 15% by weight as above and preferably thin and the layer (4) when it is different from the binder layer, as defined above, is devoid of plasticizer as well as the layer (2).
  • this layer (3) plasticized up to 15% by weight must not be too thin otherwise the barrier layer is too little in the center and the MLT structure may not be good enough in impact.
  • Another layer (2 ') and / or a layer (3') may also be present in these two types of four-layer structures.
  • the said layer (4) can also be a binder as described, in particular in the patents EP 1452307 and EP1162061 , EP 1216826 and EP0428833 .
  • the binder layer is intended to be interposed between two layers which do not adhere to each other with difficulty.
  • the binder can be for example, but without being limited to these, a composition based on 50% of copolyamide 6/12 (of ratio 70/30 by mass) of Mn 16000, and of 50% copolyamide 6/12 ( of ratio 30/70 by mass) of Mn 16000, a composition based on PP (polypropylene) grafted with maleic anhydride, known under the name Admer QF551A from the company Mitsui, a composition based on PA610 (from Mn 30,000, and as defined elsewhere) and 36% PA6 (from Mn 28000) and 1.2% organic stabilizers (consisting of 0.8% of Lowinox 44B25 phenol from Great Lakes, 0.2% of Irgafos 168 phosphite from the company Ciba, 0.2% anti-UV Tinuvin 312 from the company Ciba), a composition based on PA612 (from Mn 29000, and as defined elsewhere) and of 36% of PA6 (of Mn 28000, and as defined elsewhere)
  • the layer (4 ') may or may not contain a plasticizer.
  • it is devoid of plasticizer just like the layer (2) and the layer (4), the layer (3) being plasticized but thin as defined above.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the polyamide of the inner layer (2) or the polyamide of the outer layer (3) is a fully polyamide.
  • the polyamide of the inner layer (2) or the polyamide of the outer layer (3) is a fully polyamide.
  • aliphatic preferably the polyamide of the inner layer (2) and the polyamide of the outer layer (3) are fully aliphatic polyamides.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which a second barrier layer (5) is present, said second barrier layer (5) being adjacent or not to the first barrier layer (1) and located below said barrier layer (1).
  • MLT multilayer tubular structure
  • This second barrier layer is different from the first barrier layer (1).
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the barrier layer (1) is an EVOH layer.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the EVOH is an EVOH comprising up to 27% ethylene.
  • MHT multilayer tubular structure
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the EVOH is an EVOH comprising an impact modifier.
  • MHT multilayer tubular structure
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the barrier layer (1) is a polyphthalamide (PPA) layer.
  • MLT multilayer tubular structure
  • PPA polyphthalamide
  • PPA signifies a composition based mainly on a polyamide comprising a majority of units which comprise at least one aromatic monomer, in particular polyphthalamide of the type of copolyamide 6.T / x (or x designates one or more comonomoers) such as Zytel HTN from the company Dupont, such as Grivory HT from the company Ems, such as Amodel from the company Solvay, such as Genestar from the company Kuraray, such as PPA compositions based on coPA6T / 6I , coPA6T / 66, coPA6T / 6, coPA6T / 6I / 66, PPA9T, coPPA9T / x, PPA10T, coPPA10T / x.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the barrier layer (1) is an EVOH layer and the second barrier layer (5) is a fiber layer.
  • MLT multilayer tubular structure
  • the barrier layer (1) is an EVOH layer
  • the second barrier layer (5) is a fiber layer.
  • PPA or fluoropolymer, in particular of ETFE, EFEP, CPT type.
  • the barrier layer (1) is an EVOH layer and the second barrier layer (5) is a PPA layer.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the barrier layer (1) is an EVOH layer and the second barrier layer (5) is a fiber layer.
  • MLT multilayer tubular structure
  • the barrier layer (1) is an EVOH layer
  • the second barrier layer (5) is a fiber layer.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the barrier layer (1) is an EVOH layer and the second barrier layer (5) is a fiber layer.
  • fluoropolymer in particular of ETFE, EFEP, CPT type.
  • the polyamide of the inner layer (2) is a composition based on a polyamide chosen from A, B or C as defined above, in in particular PA6, PA66, PA6 / 66, PA11, PA610, PA612, PA1012, the corresponding copolyamides and mixtures of said polyamides or copolyamides, the polyamides obtained from a lactam being advantageously washed.
  • the polyamide of the outer layer (3) is a polyamide chosen from B or C as defined above, in particular PA 11, PA12, PA610, PA612, PA1012, the corresponding copolyamides and mixtures of said polyamides or copolyamides, the polyamides obtained from a lactam being advantageously washed.
  • the polyamide of the inner layer (2) is a composition based on a polyamide chosen from A, B or C as defined above, in in particular PA6, PA66, PA6 / 66, PA11, PA610, PA612, PA1012, the corresponding copolyamides and mixtures of said polyamides or copolyamides, the polyamides obtained from a lactam being advantageously washed
  • the polyamide of the outer layer (3) is a polyamide chosen from B or C as defined above, in particular PA 11, PA12, PA610, PA612, PA1012, the corresponding copolyamides and mixtures of said polyamides or copolyamides, polyamides obtained from a lactam being advantageously washed.
  • the present invention relates to a multilayer tubular structure (MLT) as defined below, in which the polyamide of the inner layer (2) or of at least one of the other layers (2) is a conductive polyamide.
  • MKT multilayer tubular structure
  • the conductive layer is that which is most internally, that is to say in contact with the fluid.
  • the polyamide of layer (4) and / or (4 ') is a mixture of a polyamide having an average number of carbon atoms per atom of nitrogen of 10 or more and a polyamide having an average number of carbon atoms per nitrogen atom of 6 or less, for example PA12 and PA6 and an anhydride functionalized (co) polyolefin.
  • the polyamide of layer (4) and / or (4 ') is chosen from binary mixtures: PA6 and PA12, PA6 and PA612, PA6 and PA610 , PA12 and PA612, PA12 and PA610, PA1010 and PA612, PA1010 and PA610, PA1012 and PA612, PA1012 and PA610, and ternary mixtures: PA6, PA610 and PA12; PA6, PA612 and PA12; PA6, PA614 and PA12.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which at least one of the layers (2), (3), (3 '), (4) and ( 4 ') comprises at least one impact modifier and / or at least one additive.
  • MLT multilayer tubular structure
  • the impact modifier or the additive is not a plasticizer.
  • the layers (2) and (3) comprise at least one impact modifier and / or at least one additive.
  • the layers (2), (3) and (3 ') comprise at least one impact modifier and / or at least one additive.
  • the layers (2), (3), (3 ') and (4) comprise at least one impact modifier and / or at least one additive.
  • the layers (2), (3), (3 '), (4) and (4') comprise at least one impact modifier and / or at least one additive.
  • the present invention relates to a multilayer tubular structure (MLT) as defined above, in which the structure comprises the layers in the following order: (3 ') // (3) // (4') // (1) // (4) // (2) in which layers (3) and (3 ') are as defined above, the layer (2) and (4) not containing more than 1.5% by weight of plasticizer, relative to the total weight of the composition of each layer, in particular the layer (2) and / or (4) is (are) devoid of plasticizer, the layer (4 ') comprising plasticizer, in particular the layer (4') is devoid of plasticizer.
  • MKT multilayer tubular structure
  • said layer (3 ') of the above six-layer structure is plasticized, said plasticizer being in particular present in a proportion of 1.5% to 15% by weight relative to the total weight of the composition of said layer , the thickness of said layer (3 ') preferably represents up to 20% of the total thickness of the tubular structure, in particular up to 200 ⁇ m, in particular the layer (3') is the outermost and is the only plasticized, the layer (s) (3) being devoid of plasticizer.
  • the present invention relates to the use of a multilayer tubular MLT structure, as defined above, for the transport of fluids, in particular gasoline.
  • the present invention relates to the use of an MLT multilayer tubular structure as defined above, to satisfy an extractable test, said test consisting in particular of filling said MLT multilayer tubular structure with alcoholic gasoline.
  • FAM-B type and heating the whole to 60 ° C for 96 hours, then emptying it by filtering it into a beaker, then allowing the filtrate from the beaker to evaporate at room temperature to finally weigh this residue, the proportion of which must be less than or equal to approximately 6g / m2 internal tube surface.
  • An extractable value less than or equal to approximately 6 g / m2 of internal tube surface indicates that the proportion of extractables is very low and will thus avoid clogging the injectors.
  • Multilayer pipes are produced by coextrusion.
  • An industrial McNeil multilayer extrusion line is used, equipped with 5 extruders, connected to a multilayer extrusion head with spiral mandrels.
  • the 5 extruder configuration is used to make tubes ranging from 2 layers to 5 layers. In the case of structures with a number of layers less than 5, several extruders are then supplied with the same material. In the case of structures comprising 6 layers, an additional extruder is connected and a spiral mandrel is added to the existing head, with a view to making the internal layer, in contact with the fluid.
  • the extruded materials Before the tests, in order to ensure the best tube properties and good extrusion quality, it is checked that the extruded materials have a residual moisture level before extrusion of less than 0.08%. Otherwise, an additional step of drying the material is carried out before the tests, generally in a vacuum dryer, for 1 night at 80 ° C.
  • the tubes which meet the characteristics described in the present patent application, were taken, after stabilization of the extrusion parameters, the dimensions of the tubes referred to no longer changing over time.
  • the diameter is controlled by a laser diameter gauge installed at the end of the line.
  • the line speed is typically 20m / min. It generally varies between 5 and 100m / min.
  • the screw speed of the extruders depends on the thickness of the layer and the diameter of the screw as is known to those skilled in the art.
  • the temperature of the extruders and the tools must be adjusted so as to be sufficiently higher than the melting temperature of the compositions considered, so that they remain in the molten state, thus avoiding they solidify and block the machine.
  • Extractables consisting of a tube filled with alcoholic essence of FAM-B type at 60 ° C, for 96 hours, then emptied and filtered into a beaker which is then allowed to evaporate and the residue of which is weighed, the latter having to be less than or equal to 6g / m2 (internal tube surface) ⁇ 4.5 g / m 2 of tube surface (internal internal surface) 4.5-5.5 g / m 2 of tube surface (internal internal surface) 5.5-6 g / m 2 of tube surface (internal internal surface) > 6 g / m 2 of tube surface (internal internal surface) VW shock-40 ° C standard VW TL52435 2010 ⁇ 4% breakage ⁇ 11% breakage ⁇ 21% breakage > 2
  • the instantaneous permeability is zero during the induction period, then it increases progressively to a value at equilibrium which corresponds to the value of permeability in steady state. This value obtained in steady state is considered to be the permeability of the material.
  • PA12-TL denotes a composition based on polyamide 12 of Mn (number molecular mass) 35,000, containing 6% of plasticizer BBSA (benzyl butyl sulfonamide), and 6% of EPR functionalized anhydride Exxelor VA1801 (company Exxon), and 1.2% organic stabilizers (consisting of 0.8% of Lowinox 44B25 phenol from Great Lakes, 0.2% of Irgafos 168 phosphite from Ciba, 0.2% Tinuvin 312 anti-UV from Ciba). The melting point of this composition is 175 ° C.
  • PA12-NoPlast PA12-TL without the plasticizer (the latter is replaced by the same% in PA12)
  • Organic stabilizer 1.2% organic stabilizers consisting of 0.8% phenol (Lowinox 44B25 from the company Great Lakes), 0.2% phosphite (Irgafos 168 from the company Ciba, 0.2% anti-UV (Tinuvin 312 from the Ciba company).
  • Plasticizer BBSA (benzyl butyl sulfonamide)
  • Binder Composition based on 43.8% PA612 (tq defined elsewhere), 25% PA6 (tq defined elsewhere) and 20% impact modifier type EPR1, and 1.2% organic stabilizers (consisting of 0.8% of phenol Lowinox 44B25 from the company Great Lakes, 0.2% phosphite Irgafos 168 from the company Ciba, 0.2% anti-UV Tinuvin 312 from the company Ciba), and 10% plasticizer BBSA (benzyl butyl sulfonamide).
  • Binder-NoPlast Composition based on 48.8% PA612 (tq defined elsewhere), 30% PA6 (tq defined elsewhere), and 20% of impact modifier type EPR1, and 1.2% of organic stabilizers (consisting of 0.8% Lowinox 44B25 phenol from Great Lakes, 0.2% Irgafos 168 phosphite from Ciba, 0.2% Tinuvin 312 anti-UV from Ciba).
  • Binder2 Composition based on 43.8% PA610 (tq defined elsewhere), 25% PA6 (tq defined elsewhere) and 20% impact modifier type EPR1, and 1.2% organic stabilizers (consisting of 0.8% phenol Lowinox 44B25 from the company Great Lakes, 0.2% phosphite Irgafos 168 from the company Ciba, 0.2% anti-UV Tinuvin 312 from the company Ciba), and 10% plasticizer BBSA (benzyl butyl sulfonamide).
  • Binder PA610 + PA6 Designates a composition based on PA612 (of Mn 29000, and as defined elsewhere) and of 36% of PA6 (of Mn 28000, and as defined elsewhere) and of 1.2% of organic stabilizers (consisting of 0.8% of phenol Lowinox 44B25 from the company Great Lakes, 0.2% phosphite Irgafos 168 from the company Ciba, 0.2% anti-UV Tinuvin 312 from the company Ciba).
  • the structures having layers devoid of plasticizer located under the barrier and in particular in contact with the fluid exhibit excellent results on the extractables test and much better than the counter examples in which the layer in contact with the fluid is plasticized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Fuel-Injection Apparatus (AREA)
EP19158603.1A 2016-01-15 2017-01-12 Structure tubulaire multicouche possédant une meilleure résistance à l'extraction dans la bio-essence et son utilisation Active EP3517294B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21212079.4A EP3981594A1 (fr) 2016-01-15 2017-01-12 Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1650337A FR3046826B1 (fr) 2016-01-15 2016-01-15 Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
EP17712187.8A EP3283293B1 (fr) 2016-01-15 2017-01-12 Utilisation d'une structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence
PCT/FR2017/050066 WO2017121961A1 (fr) 2016-01-15 2017-01-12 Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP17712187.8A Division EP3283293B1 (fr) 2016-01-15 2017-01-12 Utilisation d'une structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence
EP17712187.8A Division-Into EP3283293B1 (fr) 2016-01-15 2017-01-12 Utilisation d'une structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP21212079.4A Division EP3981594A1 (fr) 2016-01-15 2017-01-12 Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation

Publications (2)

Publication Number Publication Date
EP3517294A1 EP3517294A1 (fr) 2019-07-31
EP3517294B1 true EP3517294B1 (fr) 2021-12-08

Family

ID=56117822

Family Applications (4)

Application Number Title Priority Date Filing Date
EP19158603.1A Active EP3517294B1 (fr) 2016-01-15 2017-01-12 Structure tubulaire multicouche possédant une meilleure résistance à l'extraction dans la bio-essence et son utilisation
EP17712187.8A Active EP3283293B1 (fr) 2016-01-15 2017-01-12 Utilisation d'une structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence
EP19158604.9A Pending EP3517295A1 (fr) 2016-01-15 2017-01-12 Structure tubulaire multicouche possédant une meilleure résistance à l'extraction dans la bio-essence et son utilisation
EP21212079.4A Pending EP3981594A1 (fr) 2016-01-15 2017-01-12 Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP17712187.8A Active EP3283293B1 (fr) 2016-01-15 2017-01-12 Utilisation d'une structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence
EP19158604.9A Pending EP3517295A1 (fr) 2016-01-15 2017-01-12 Structure tubulaire multicouche possédant une meilleure résistance à l'extraction dans la bio-essence et son utilisation
EP21212079.4A Pending EP3981594A1 (fr) 2016-01-15 2017-01-12 Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation

Country Status (8)

Country Link
US (4) US11339899B2 (ja)
EP (4) EP3517294B1 (ja)
JP (6) JP6585731B2 (ja)
KR (1) KR102089135B1 (ja)
CN (4) CN110027262B (ja)
DE (2) DE202017006905U1 (ja)
FR (1) FR3046826B1 (ja)
WO (1) WO2017121961A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046826B1 (fr) 2016-01-15 2018-05-25 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
EP3299165B1 (de) 2016-09-21 2020-08-12 Evonik Operations GmbH Mehrschichtiger hohlkörper mit hoher auswaschbeständigkeit
FR3072047B1 (fr) 2017-10-05 2019-09-27 Arkema France Multicouche combinant et vieillissement et eclatement a chaud, utile pour les applications automobile haute temperature
FR3078132B1 (fr) * 2018-02-21 2020-05-22 Arkema France Structure tubulaire annelee destinee au transport de carburant dans le reservoir
DE102018116567B4 (de) 2018-07-09 2020-02-13 Norma Germany Gmbh Fluidleitung
EP3640280A1 (de) 2018-10-19 2020-04-22 Evonik Operations GmbH Leitfähige formmassen
FR3089147B1 (fr) 2018-12-04 2020-11-06 Arkema France Structure tubulaire multicouche destinee au transport d’un fluide de climatisation
FR3106646B1 (fr) * 2020-01-28 2022-06-24 Arkema France Structure multicouche pour le transport ou le stockage de l’hydrogene
FR3106647B1 (fr) * 2020-01-28 2021-12-31 Arkema France Structure multicouche pour le transport ou le stockage de l’hydrogene
US20220379578A1 (en) * 2021-05-28 2022-12-01 AGC Inc. Fuel filler pipe
FR3127435A1 (fr) 2021-09-27 2023-03-31 Arkema France Structure tubulaire multicouche présentant un faible taux d’extractibles pour le transport de l’hydrogène
FR3133337B1 (fr) 2022-03-09 2024-03-01 Arkema France Structure tubulaire multicouche destinee au transport d’un fluide de transfert de chaleur

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302153B1 (en) 1999-03-16 2001-10-16 Atofina Antistatic tube based on polyamides for transporting petrol
WO2001094110A1 (en) 2000-06-09 2001-12-13 Ems-Chemie Ag Thermoplastic multilayer composites
US20020155242A1 (en) 2001-03-23 2002-10-24 Atofina Polyamide- and EVOH-based multiplayer tube for fluid transfer
US20050131147A1 (en) 2003-02-18 2005-06-16 Benoit Brule Polyamide/polyolefin blends containing carbon nanotubes
DE60004907T2 (de) 1999-03-16 2005-12-29 Atofina Aus mehreren auf Polyamid basierenden Schichten zusammengesetzter Schlauch für den Kraftstofftransport
WO2006040206A1 (de) 2004-10-07 2006-04-20 Degussa Gmbh Mehrschichtverbund mit evoh-schicht und schutzschicht
WO2007057584A1 (fr) 2005-10-18 2007-05-24 Arkema France Tube multicouche antistatique a base de polyamide pour le transfert de fluides
DE102005061530A1 (de) 2005-12-22 2007-07-12 Ems-Chemie Ag Thermoplastischer Mehrschichtverbund in Form eines Hohlkörpers
EP1884356A1 (de) 2006-07-31 2008-02-06 Ems-Patent Ag Mehrschichtverbund in Form eines extrudierten Hohlprofils
EP1886810A1 (en) 2006-07-14 2008-02-13 Nitta Moore Company Tube
US20090252979A1 (en) 2008-03-03 2009-10-08 Arkema France Adhesive composition and structure comprising at least one layer of the said composition
EP3069871A1 (de) 2015-03-17 2016-09-21 Evonik Degussa GmbH Mehrschichtverbund mit einer EVOH-Schicht
WO2017121961A1 (fr) 2016-01-15 2017-07-20 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040040607A1 (en) * 2002-08-28 2004-03-04 Wilson Reji Paul Refrigerant hose
DE3510395A1 (de) 1985-03-22 1986-09-25 Technoform Caprano + Brunnhofer KG, 3501 Fuldabrück Kraftstoffuehrende, mit vorgegebener laenge fest installierbare leitung fuer ein kraftfahrzeug
JP2703932B2 (ja) * 1988-07-22 1998-01-26 横浜ゴム株式会社 モノクロロジフルオロメタンガス低透過性ホース
DE3827092C1 (en) 1988-08-10 1989-09-07 Technoform Caprano + Brunnhofer Kg, 3501 Fuldabrueck, De Use of a multi-layered plastic pipe, produced by coextrusion, as a heat-resistant pipe for fuel-carrying lines in motor vehicles
JPH02235633A (ja) * 1989-03-08 1990-09-18 Takiron Co Ltd 耐熱性フィルム又はその類似物
DK165969C (da) 1989-05-29 1993-11-08 Haldor Topsoe As Fremgangsmaade til fjernelse af sulfider fra gasstroemme
DE4001125C1 (ja) 1989-11-20 1990-12-13 Technoform Caprano + Brunnhofer Kg, 3501 Fuldabrueck, De
JP2925865B2 (ja) * 1992-11-27 1999-07-28 三洋電機株式会社 カルテ管理システム
DE4336289A1 (de) 1993-10-25 1995-04-27 Huels Chemische Werke Ag Mehrschichtiges Kunststoffrohr
DE4336290A1 (de) 1993-10-25 1995-04-27 Huels Chemische Werke Ag Mehrschichtiges Kunststoffrohr
DE4410148A1 (de) * 1994-03-24 1995-09-28 Huels Chemische Werke Ag Mehrschichtiges Kunststoffrohr
ES2130759T3 (es) 1995-03-09 1999-07-01 Atochem Elf Sa Tubo a base de poliamida para el transporte de gasolina.
FR2765520B1 (fr) * 1997-07-03 1999-08-27 Nyltech Italia Structure multicouche a base de polyamides et tube ou conduit a structure multicouche
US6267148B1 (en) * 1997-12-15 2001-07-31 Tokai Rubber Industries, Ltd. Conductive resin tube and conductive polyamide resin composition
FR2801365B1 (fr) 1999-11-19 2002-06-14 Nobel Plastiques Tuyau multicouche en matiere plastique pour transfert de fluide du genre carburant
EP1270209B1 (en) 2000-02-18 2008-07-02 Daikin Industries, Ltd. Layered resin molding and multilayered molded article
US7132073B2 (en) 2000-03-23 2006-11-07 Daikin Industries, Ltd. Process for producing multilayered product
DE10064333A1 (de) 2000-12-21 2002-06-27 Degussa Mehrschichtverbund mit einer EVOH-Schicht
US6652939B2 (en) * 2001-09-13 2003-11-25 Dayco Products, Llc Low permeation nylon tube with aluminum barrier layer
JP2003094540A (ja) * 2001-09-26 2003-04-03 Toray Ind Inc 多層可撓性管
EP1306203A1 (en) * 2001-10-26 2003-05-02 Atofina Polyamide or polyester- and aluminium-based multilayer tube
FR2832486A1 (fr) * 2001-11-22 2003-05-23 Atofina Tube multicouche conducteur a base de polyamides et d'evoh pour le transport d'essence
ATE332335T1 (de) * 2001-11-23 2006-07-15 Arkema Rohr aus vulkanisiertem elastomer mit barriereschichten aus polyamid und aus evoh
FR2835215B1 (fr) * 2002-01-29 2004-02-27 Atofina Structure multicouche a base de polyamides et d'un liant en melange de copolyamides
DE60319903T2 (de) * 2002-03-04 2009-04-16 Arkema France, S.A. Zusammensetzung auf Polyamidbasis für flexible Rohre zum Transport von Öl und Gas
GB2390658B (en) 2002-07-13 2005-06-15 Tfx Group Ltd Multilayer tubular articles
JP2004143448A (ja) * 2002-09-30 2004-05-20 Tokai Rubber Ind Ltd 自動車燃料用インタンクホース
JP4175942B2 (ja) * 2002-10-29 2008-11-05 株式会社クラレ 積層構造体
US20050025920A1 (en) 2003-02-28 2005-02-03 Alex Stolarz Thermoplastic multilayer composite in the form of a hollow body
KR101118818B1 (ko) 2003-02-28 2012-06-13 이엠에스-케미에 아게 중공 본체 형상의 열가소성 다층 복합물
US20050031818A1 (en) * 2003-07-08 2005-02-10 Sebastien Micheneau Polyamide-based multilayer tube for transferring fluids
BRPI0402583A (pt) * 2003-07-11 2005-05-31 Goodyear Tire & Rubber Mangueira para refrigerante
US8067075B2 (en) 2004-01-27 2011-11-29 Ube Industries, Inc. Multilayer tube
PL1717022T3 (pl) * 2005-04-29 2014-07-31 Arkema France Wielowarstwowa rura na bazie poliamidu do przesyłania płynów
US20070244244A1 (en) 2006-04-13 2007-10-18 Franck Bertoux Low oligomer conductive polyamide
CN101125469B (zh) 2006-07-31 2012-02-29 Ems专利股份公司 挤出的中空截面形式的多层复合材料
FR2909433B1 (fr) * 2006-11-30 2014-01-10 Arkema France Utilisation d'une structure multicouche pour la fabrication de conduites de gaz, notamment de methane.
CN103029334B (zh) * 2007-02-01 2016-05-11 三樱工业株式会社 多层管
CN201078526Y (zh) * 2007-10-07 2008-06-25 文谟统 一种车用树脂复合管
FR2928102B1 (fr) * 2008-03-03 2012-10-19 Arkema France Structure multicouche comprenant au moins une couche stabilisee
FR2925865A1 (fr) * 2008-04-04 2009-07-03 Arkema France Structure multicouche comprenant une couche barriere comprenant des nanoparticules
EP2355980B1 (en) * 2008-11-21 2017-10-18 E. I. du Pont de Nemours and Company Laminar articles with good hydrocarbon barrier
DE102008044224A1 (de) * 2008-12-01 2010-06-02 Evonik Degussa Gmbh Verwendung einer Zusammensetzung für den Kontakt mit überkritischen Medien
DE102010037211A1 (de) * 2010-08-30 2012-03-01 Contitech Kühner Gmbh & Cie. Kg Schlauch mit niedriger Permeationsrate, insbesondere ein Hochtemperaturkälteschlauch, und Verfahren zu dessen Herstellung
FR2974028B1 (fr) 2011-04-14 2013-04-19 Arkema France Structure multicouche comprenant une couche d'un copolyamide particulier et une couche barriere
US9494260B2 (en) * 2012-04-13 2016-11-15 Ticona Llc Dynamically vulcanized polyarylene sulfide composition
EP2772354B1 (de) * 2013-03-01 2018-12-05 TI Automotive (Fuldabrück) GmbH Mehrschichtige Kraftstoffrohrleitung
JP2014240139A (ja) * 2013-06-11 2014-12-25 宇部興産株式会社 積層チューブ
JP6202255B2 (ja) * 2013-06-11 2017-09-27 宇部興産株式会社 積層チューブ
US11254082B2 (en) * 2013-09-04 2022-02-22 Ube Industries, Ltd. Multi-layer tube
JP6255824B2 (ja) * 2013-09-11 2018-01-10 宇部興産株式会社 積層チューブ
JP2015104830A (ja) * 2013-11-29 2015-06-08 宇部興産株式会社 積層チューブ
US20170283556A1 (en) 2013-12-06 2017-10-05 Mitsui Chemicals, Inc. Polyamide-based thermoplastic elastomer composition and molded article thereof
JP5899286B2 (ja) * 2014-08-12 2016-04-06 ヤフー株式会社 広告配信装置
US10663092B2 (en) 2014-09-12 2020-05-26 Ube Industries, Ltd. Multilayer tube
JP6455075B2 (ja) * 2014-10-29 2019-01-23 宇部興産株式会社 積層チューブ
JP6135640B2 (ja) 2014-11-04 2017-05-31 コニカミノルタ株式会社 画像形成装置、画像形成システムおよび濃度ムラ検出方法
CN204554091U (zh) * 2014-12-12 2015-08-12 河北亚大汽车塑料制品有限公司 多层复合输油管
CN204312876U (zh) * 2014-12-19 2015-05-06 长春亚大汽车零件制造有限公司 多层管
JP6801456B2 (ja) * 2014-12-26 2020-12-16 三菱瓦斯化学株式会社 多層中空成形体
US10877188B2 (en) 2015-04-08 2020-12-29 Kuraray Co., Ltd. Composite diffuser plate
JP2017002174A (ja) * 2015-06-09 2017-01-05 株式会社ブリヂストン ホース用ゴム組成物及びホース
CN204922264U (zh) * 2015-08-24 2015-12-30 弗兰科希管件***(上海)有限公司 三层燃油管
US20170074427A1 (en) * 2015-09-16 2017-03-16 Cooper-Standard Automotive, Inc. Fuel tube for a gasoline engine
EP3299165B1 (de) 2016-09-21 2020-08-12 Evonik Operations GmbH Mehrschichtiger hohlkörper mit hoher auswaschbeständigkeit

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302153B1 (en) 1999-03-16 2001-10-16 Atofina Antistatic tube based on polyamides for transporting petrol
DE60004907T2 (de) 1999-03-16 2005-12-29 Atofina Aus mehreren auf Polyamid basierenden Schichten zusammengesetzter Schlauch für den Kraftstofftransport
WO2001094110A1 (en) 2000-06-09 2001-12-13 Ems-Chemie Ag Thermoplastic multilayer composites
US20020155242A1 (en) 2001-03-23 2002-10-24 Atofina Polyamide- and EVOH-based multiplayer tube for fluid transfer
US20050131147A1 (en) 2003-02-18 2005-06-16 Benoit Brule Polyamide/polyolefin blends containing carbon nanotubes
WO2006040206A1 (de) 2004-10-07 2006-04-20 Degussa Gmbh Mehrschichtverbund mit evoh-schicht und schutzschicht
WO2007057584A1 (fr) 2005-10-18 2007-05-24 Arkema France Tube multicouche antistatique a base de polyamide pour le transfert de fluides
DE102005061530A1 (de) 2005-12-22 2007-07-12 Ems-Chemie Ag Thermoplastischer Mehrschichtverbund in Form eines Hohlkörpers
EP1886810A1 (en) 2006-07-14 2008-02-13 Nitta Moore Company Tube
EP1884356A1 (de) 2006-07-31 2008-02-06 Ems-Patent Ag Mehrschichtverbund in Form eines extrudierten Hohlprofils
US20090252979A1 (en) 2008-03-03 2009-10-08 Arkema France Adhesive composition and structure comprising at least one layer of the said composition
EP3069871A1 (de) 2015-03-17 2016-09-21 Evonik Degussa GmbH Mehrschichtverbund mit einer EVOH-Schicht
WO2017121961A1 (fr) 2016-01-15 2017-07-20 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
EP3283293B1 (fr) 2016-01-15 2020-07-08 Arkema France Utilisation d'une structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALEWELT W., ARETS, BARON, BAUMANN, BRUENS, BURR, DAEBEL, DRÖSCHER, DULNER, ELTINK, FAHLER, VAN GEENEN: "2.2 Gleit-und Entformugsmittel", TECHNISCHE THERMOPLASTE POLYAMIDE. KUNSTSTOFF HANDBUCH 3/4, 1 January 1998 (1998-01-01), pages 294 - 295, XP055962027, [retrieved on 20220919]
ANONYMOUS: "Grilamid® . Grilamid Polyamid 12 Technischer Kunststoff für höchste Ansprüche", EMS, 1 June 2003 (2003-06-01), pages 1 - 40, XP055962451, Retrieved from the Internet <URL:https://docplayer.org/139657-Grilamid-polyamid-12-technischer-kunststoff-fuer-hoechste-ansprueche.html> [retrieved on 20220919]
ANONYMOUS: "Orgally®", ARKEMA, 1 January 2005 (2005-01-01), pages 1 - 24, XP055962432, Retrieved from the Internet <URL:https://www.arkema.com> [retrieved on 20220919]
KALLIO, K.J. ; HEDENQVIST, M.S.: "Ageing properties of polyamide-12 pipes exposed to fuels with and without ethanol", POLYMER DEGRADATION AND STABILITY, BARKING, GB, vol. 93, no. 10, 1 October 2008 (2008-10-01), GB , pages 1846 - 1854, XP025466671, ISSN: 0141-3910, DOI: 10.1016/j.polymdegradstab.2008.07.025

Also Published As

Publication number Publication date
US20200116280A1 (en) 2020-04-16
DE202017006828U1 (de) 2018-07-12
CN109927352A (zh) 2019-06-25
US11339899B2 (en) 2022-05-24
CN110027263A (zh) 2019-07-19
JP2022161915A (ja) 2022-10-21
KR102089135B1 (ko) 2020-03-13
US11598452B2 (en) 2023-03-07
US20180080583A1 (en) 2018-03-22
KR20170116146A (ko) 2017-10-18
JP7222855B2 (ja) 2023-02-15
EP3517295A1 (fr) 2019-07-31
US20230151909A1 (en) 2023-05-18
CN107428139A (zh) 2017-12-01
JP2018521872A (ja) 2018-08-09
JP7409768B2 (ja) 2024-01-09
FR3046826A1 (fr) 2017-07-21
EP3517294A1 (fr) 2019-07-31
EP3981594A1 (fr) 2022-04-13
JP7387829B2 (ja) 2023-11-28
WO2017121961A1 (fr) 2017-07-20
CN110027262A (zh) 2019-07-19
EP3283293A1 (fr) 2018-02-21
US20200166157A1 (en) 2020-05-28
CN110027262B (zh) 2021-12-31
US10914408B2 (en) 2021-02-09
DE202017006905U1 (de) 2018-10-15
JP7399150B2 (ja) 2023-12-15
JP2024037791A (ja) 2024-03-19
CN110027263B (zh) 2021-10-15
JP2022058361A (ja) 2022-04-12
FR3046826B1 (fr) 2018-05-25
JP2019059238A (ja) 2019-04-18
JP6585731B2 (ja) 2019-10-02
JP2019218955A (ja) 2019-12-26
EP3283293B1 (fr) 2020-07-08
CN107428139B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
EP3517294B1 (fr) Structure tubulaire multicouche possédant une meilleure résistance à l&#39;extraction dans la bio-essence et son utilisation
EP3259132B1 (fr) Structure tubulaire multicouche possédant une meilleure résistance a l&#39;extraction dans la bio-essence et son utilisation
EP2098580B1 (fr) Composition adhésive et structure comprenant au moins une couche de ladite composition.
EP2098365B1 (fr) Structure multicouche en polyamide comprenant une couche stabilisée avec un stabilisant organique et une couche stabilisée avec un stabilisant à base de cuivre
EP2948514B1 (fr) Composition adhésive et structure comprenant au moins une couche de ladite composition
WO2012140157A1 (fr) Structure multicouche comprenant une couche d&#39;un copolyamide particulier et une couche barrière
EP3755749A1 (fr) Structure tubulaire annelée destinée au transport de carburant dans le réservoir
WO2023047057A1 (fr) Structure tubulaire multicouche presentant un faible taux d&#39;extractibles pour le transport de l&#39;hydrogene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3283293

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190912

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20211014

INTG Intention to grant announced

Effective date: 20211027

AC Divisional application: reference to earlier application

Ref document number: 3283293

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1453465

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017050809

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220308

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1453465

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220308

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220309

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017050809

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220408

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

26 Opposition filed

Opponent name: EVONIK OPERATIONS GMBH

Effective date: 20220905

26 Opposition filed

Opponent name: TI AUTOMOTIVE (FULDABRUECK) GMBH

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220112

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231130

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231212

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231128

Year of fee payment: 8

Ref country code: CH

Payment date: 20240201

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170112